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Cancer is one of the most challenging diseases, the current treatment of malignant

tumors has entered the era of immunotherapy. Immunotherapy has made great

progress in the treatment of malignant tumors, but many patients have limited

response to treatment. The search for new molecular biomarkers to evaluate the

immunotherapy efficacy is particularly important. Liquid biopsy is a non-invasive

method that has the advantage of providing real-time disease information to cancer

patients. Extracellular vesicles (EVs), released by parental cells, contain

important molecules associated with cell growth, proliferation and migration,

which are regarded as the targets of liquid biopsy. In addition, EVs also participate

in the information communication in tumor immune microenvironment, and are

important molecular markers for monitoring the cancer immunotherapy efficacy. In

this review, we summarize the challenges of conventional detection methods for

EVs, and the advantages of nanotechnology detection of EVs. The important role of

EVs in tumor immune microenvironment was discussed and the potential clinical

significance of EVs in monitoring and predicting cancer immunotherapy response

was summarized.
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1 Introduction

The emergence of immunotherapy in cancer treatment has brought revolutionary

changes to oncology research (1). Immunotherapy aims to reactivate anti-tumor immune

cells and overcome tumor immune escape. Tumor immunotherapy, represented by

immune checkpoint inhibitors (ICIs) has achieved great success in clinical practice, and

can induce long-term regression of some tumors that are difficult to cure by other

therapies. Among them, programmed death receptor 1 (PD-1)/programmed death ligand

1 (PD-L1)/inhibitors and cytotoxic T-lymphocyte antigen 4(CTLA-4) are the most

important ICIs, and PD-1/PD-L1 inhibitors are most commonly used in clinical
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practice (2). ICIs, activating the anti-tumor immune response by

blocking inhibitory immune signaling has been shown to be

effective against a variety of cancers, including non-small cell

lung cancer (NSCLC), melanoma, head and neck squamous cell

carcinoma (HNSCC), kidney cancer, and breast cancer. However,

there are great discrepancies in immune response in different

patients and different cancer types, and the underlying mechanism

is still far from fully understood (3–8). As a result, current

screening methods remain inadequate and reliable predictive

biomarkers are urgently needed for personalized clinical

management and new treatment strategies.

Tissue biopsy is often used to diagnose malignant tumors, and

many biomarkers of immunotherapy are also evaluated by tissue

biopsy. In clinical practice, the expression level of PD-L1 is usually

detected by immunohistochemistry of tumor biopsy tissue, which is

used to screen patients with ICIs (9). Importantly, this tissue-based

testing requires an adequate tissue biopsy. For some tumors, there is

not enough tumor tissue for molecular testing at the time of

diagnosis (10). Tissue biopsies are not only invasive, they may

also not fully represent the state of the entire tumor due to the

heterogeneity of the tumor (11). During the course of treatment, the

immune status of patients is dynamically changing, and repeated

and invasive tissue biopsy is not clinically feasible. Such temporal

and spatial heterogeneity will inevitably constitute the limitations of

tissue biopsy.

Liquid biopsy is a non-invasive method with the advantages of

real-time monitoring and minimal damage to cancer patients (12,

13). In the course of immunotherapy, liquid biopsy technology is

used to analyze and evaluate the molecular changes in the body of

patients after medication, which is conducive to evaluating whether

the tumor has progressed (14). Recent approaches to liquid biopsies

to identify clinically useful biomarkers have focused on circulating

tumor cells (CTCs) and circulating tumor DNA (ctDNA) (15).

CTCs have the potential to provide critical information to help

develop real-time biomarkers for diagnosis, prognosis, and

prediction of treatment response. ctDNA has gained more

attraction in clinical practice because its prognostic significance

and ability to continuously monitor residual disease during

treatment has been demonstrated in several cancer types (16–19).

Clinical trials of immunotherapy have further demonstrated the

predictive ability of ctDNA as a biomarker associated with survival

benefits (15). Nevertheless, CTCs and ctDNA still face a number of

challenges that limit their clinical application. CTCs are

characterized by short lifespan, low number and concentration,

dynamic heterogeneity, often relying on epithelial markers for

isolation, and requiring advanced technologies such as

microfluidic devices and enrichment strategies to increase

sensitivity (20–22). ctDNA only accounts for 0.1-10% of the total

circulating free cell DNA (cfDNA) (23).Therefore, analysis of

ctDNA often requires a larger blood sample size, and the

mutations identified may also reflect non-malignant cells,

resulting in false-positive results (20).

Extracellular vesicles (EVs) are a new biomarker of liquid

biopsy. EVs isolated from biological liquids are composed of a

series of vesicles and nanoparticles with different cell origins, sizes,
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and concentrations (24). In contrast to ctDNA and CTCs, EVs are

superior because of the unique properties as shown below. 1. They

are more abundant in biological liquids than CTCs while more

informative than ctDNA; 2. EVs can be obtained from variety of

biofliuds including blood, cerebrospinal fluid (CSF), urine, etc,

other than only blood samples for CTCs and ctDNA; 3. EVs can

penetrate through many cell membrane barriers, especially blood-

brain barriers, which are critically important for diseases in central

nerve system; 4. EVs are relatively stable due to their lipid bilayer

and can be stored at -80°C for a relatively long time while preserving

their morphology and content (25, 26).

Studies have shown that EVs mediates a variety of biological

pathway or mechanism in cancer progression including cell growth,

proliferation, and migration, through transferring EV-containing

molecules between different cells. Thus cancer-related molecules

present in EVs should be biomarkers for the diagnosis and

prognosis of cancer patients (27). EVs contain a variety of

biomolecules, including DNA, mRNA, microRNA (miRNA), long

non-coding RNA (lncRNA), proteins, metabolites, and lipids,

which represent the heterogeneity of parental cells, making them

an important source of biomarkers (28). Specifically, their changes

before and after treatment also show great potential in monitoring

therapeutic response (29) to facilitate patient stratification and

personalized treatment of cancer patients. In particular, as a key

medium of intercellular communication in the tumor

microenvironment, EVs could be a critical factors for monitoring

of the immunotherapy response (16).

This review summarizes the sources of EVs, the efficient EVs

detection methods by nanotechnology, the relationship of EVs with

the tumor immune microenvironment, and its application as

biomarkers in immunotherapy.
2 Sources and detection methods of
EVs

2.1 The source of EVs

EVs are microvesicles secreted by cells into the extracellular

space and various body fluids (30). Microvesicles are vesicles that

bud directly from the cell membrane. They are particles and large

vesicles with diameters ranging from 50 nanometers (nm) to 1

micrometer (mm). In contrast, exosomes are endoderm - derived

vesicles with diameters ranging from 40 to 160 nm (with an average

of 100 nm). The formation of exosomes follows a specific

intracellular endolysosomal pathway in a step-by-step manner

involving several mechanisms. The initial step in exosome

formation is that endocytic vesicles arise from the lipid raft

domains of the plasma membrane through endocytosis, leading to

the intracellular formation of early endosomes. Subsequently, these

early endosomes mature into late endosomes in the Golgi complex.

During this process, intraluminal vesicles (ILVs) accumulate within

the lumen. These vesicles can further accumulate in late endosomes

via inward budding or cytosolic sequestration, transforming the late

endosomes into multivesicular bodies (MVBs). Eventually, the
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membrane vesicle biofilms (MVBs) either fuse with the lysosome

for degradation or with the plasma membrane, releasing the ILVs

into the extracellular space as exosomes (31). Exosomes play a

crucial role in cell-to-cell information exchange. They contain

molecular information such as phospholipids, proteins, DNA,

mRNA, miRNA, and so on. Since exosomes are enveloped by a

lipid-bilayer membrane, the RNA information they carry is not

easily degraded. This protects the integrity of RNA molecular

information and reduces the sampling difficulty. Therefore, the

aforementioned characteristics of exosomes determine their

significant role in the tumor immune microenvironment.
2.2 Challenges and nanotechnology
applications for EVs detection

Detecting and analyzing EVs poses significant technical

challenges. Their small size, heterogeneity, and the difficulty of

separating them from complex samples, particularly those with

complex components like proteins, lipoproteins, and lipids (32),

contribute to this. As a result, differentiating EVs from a large

number of blood cells and other complex components in blood

demands high sensitivity and specificity. Generally, as shown in

Figure 1, the detection of EVs involves three processes: the isolation

of EVs, the characterization and identification of EVs, and the

analysis of EVs.

2.2.1 The isolation and enrichment of EVs
As shown in Figure 2, the isolation methods of EVs can be

categorized into conventional methods and nanotechnology-

based methods.
Frontiers in Immunology 03
2.2.1.1 Advances and challenges of conventional methods

Based on the mechanism and principle of EVs separation,

conventional EV separation methods can essentially be classified

into three categories: density-based separation, size-based

separation, and immune-based separation. Ultracentrifugation is

the most frequently employed method for EVs separation. This

method precipitates EVs based on density differences using high-

speed centrifugation (100,000×g), serving as the current “gold

standard” for EVs isolation. However, it is labor-intensive and

prone to contamination by protein aggregates (34). It also serves

as the gold standard for EVs isolation and is currently the most

commonly used approach in EVs research. Nevertheless, the

ultracentrifugation procedure is rather cumbersome, sample

handling is complex, and it is impossible to completely eliminate

the contamination of aggregates and ribosomal protein particles.

Sucrose gradient centrifugation(SGC) is a more stringent method

for separating EVs. Building upon UC, this technique further

purifies EVs via density gradients, enabling the separation of EV

subpopulations with distinct densities (e.g., tumor-derived vs.

normal cell-derived EVs). Nevertheless, it is time-consuming (4–6

hours) It builds on ultracentrifugation and exploits the density

differences among EVs (3, 4), which is beneficial for further

separating vesicles with varying densities (35, 36). Several

companies have developed sedimentation kits that utilize polymer

coprecipitation strategies to enrich EVs. These agents typically

decrease the solubility of EVs by altering the surface properties of

the vesicles, thus leading to precipitation. However, these kits are

costly, not suitable for large-scale use, and lack specificity in EVs

isolation. Moreover, this co-precipitation method also generates a

large number of polymer particles that are difficult to distinguish

from EVs. As a result, its practical application is restricted. Size-
FIGURE 1

Liquid biopsy based on extracellular vesicles mainly involves the analysis of relevant components in body fluids such as blood, urine, and
cerebrospinal fluid. This mainly consists of three processes: isolation, characterization and identification, and analysis.
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exclusion chromatography(SEC) is a chromatographic separation

technique that relies on the gel column method for separation. This

method separates EVs by size using a gel column, yielding high-

purity EVs. However, it has a slow flow rate (2–3 hours) and

struggles to resolve vesicles with similar sizes (37, 38). Molecules

flow out of the gel column successively according to their sizes.

Field-flow fractionation is another separation technique where a

force field is applied perpendicular to the sample flow to

differentiate samples with different sizes and molecular weights.

Recently, asymmetric flow field flow separation has been applied to

EVs isolation (39).

2.2.1.2 Advances of methods by nanotechnology

In this context, nanostructures and nanomaterials exhibit

significant advantages in the separation and detection of EVs.

This is due to their large surface-to-volume ratio, which can

substantially increase the number of binding sites. As a result, it

enhances the efficiency of capturing EVs (40–42).Additionally, the

nanoscale dimensions of these nanostructures enable the

fabrication of substrates featuring densely packed nanostructures.

This characteristic offers a valuable opportunity to amplify the local

signals emitted by the captured EVs (42).

Nanomaterials and nanostructures utilized for the separation and

enrichment of EVs can generally be grouped into three categories:

separation relying on physical properties like size, density,

deformability, and charge; capture and isolation by means of

nanobeads, and enrichment based on nanostructured substrates.
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Filtration systems based on nanopores or gaps have been

devised to separate and categorize EVs. Leveraging membranes

with precise pore sizes (100–1000 nm), this technique enables rapid

size-based isolation of EVs subpopulations (e.g., small EVs vs. large

EVs), reducing processing time to 30 minutes. Nanopore systems,

such as Exodisc (43) and Exotic (44), incorporate a series of

nanopore filtration membranes with varying pore sizes. This

enables the direct separation of EVs and different-sized

subpopulations of EVs from biological samples. Moreover, the

nanoporous structure can be adjusted through micro-machining

of thin-layer electrode chips. By using surfactant-based

electrochemical deposition to grow nanopores, and subsequently

applying specific antibodies, it becomes possible to detect and

enrich EVs (45).

Separation and enrichment of EVs using micro/nano particles is

also a prevalent approach. EVs enrichment with microbeads (either

aldehyde-modified or antibody-coated, magnetic or non-magnetic)

is frequently employed to boost the detection signal of EVs (46–48).

After isolation, the EVs are labeled with fluorescent antibodies for

imaging or flow cytometric analysis, or they are cleaved for RNA

analysis. An engineered superparamagnetic material, namely gold-

loaded iron oxide, which is modified with a universal four-protein

antibody, has been developed to capture and detect a large number

of EVs (49).

EVs enrichment based on micro/nanoparticles is also integrated

with microfluidics for a comprehensive detection and molecular

analysis of EVs. The nanostructured substrate offers an excellent
FIGURE 2

The isolation methods of extracellular vesicles can be categorized into conventional methods and nanotechnology-based methods. Conventional
methods include ultracentrifugation (UC), sucrose gradient centrifugation (SGC), sedimentation kits (SK), size-exclusion chromatography (SEC), and
field-flow fractionation (FFF). Nanotechnology-based methods encompass the nanopore/gap filtration system, as well as micro/nano particles and
nanostructures (33).
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opportunity to enhance the capture efficiency and the local binding

signal of EVs because of the increased interface. The nanoscale

roughness of these substrates augments the physical interaction

between EVs and the substrate, thus improving the adhesion of EVs

(50). Nanostructured substrates can be readily combined with

microfluidic technology, enabling the integrated capture and

molecular analysis of EVs (51, 52). Moreover, various releasing

strategies can be applied to nanostructured substrates to retrieve the

captured EVs and to facilitate the downstream molecular analysis (53,

54). Common nanostructured surfaces for EVs include horizontally

aligned nanostructures, such as nanotextured films covering substrates

(55)and vertically aligned nanostructures, such as nanowires (56).The

high surface-to-volume ratio of nanowires provides more binding sites

for interaction with EVs. They can readily work in conjunction with

antibodies, peptides, or aptamers to capture EVs. Additionally, they

can be modified with reactive materials, such as those with enzymatic

or pH reactivity, to release the captured EVs (57). Numerous studies

have verified the effectiveness of nanostructure-based and

nanotechnology-based EV analysis in the diagnosis, prognostic

assessment, and monitoring of various tumors (58).
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2.2.2 Characterization and identification of EVs
As shown in Figure 3, characterization and identification of EVs

involve various techniques. In this chapter, we provide a

comprehensive review of the technologies for characterization and

analysis of EVs.

2.2.2.1 Physical characterization of EVs

Measuring the concentration and size of EVs is a crucial

standardization factor in EV research, which contributes to

enhancing the repeatability of experimental data. The concentration

and size of EVs can be determined through light scattering, resistance

pulse sensing, surface plasmon resonance, and numerous other

methods with comparable capabilities.

Dynamic light scattering (DLS), also known as photon

correlation spectroscopy, is a light scattering technique. It

employs a laser beam to measure the size of particles in

suspension and, in certain cases, their zeta potential (59). The size

measurement range of DLS techniques is generally from as small as

1 nm up to particles larger than a micron (60). Nevertheless, the

sample sources suitable for DLS are severely restricted to non-
FIGURE 3

Characterization and identification of extracellular vesicles involve various techniques, namely transmission electron microscopy (TEM), cryogenic
electron microscopy (Cryo-EM), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoparticle tracking analyzer (NTA), dynamic
light scattering (DLS), tunable resistance pulse sensing (TRPS), flow cytometry (FCM), surface-enhanced Raman scattering (SERS), tip enhanced
Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (S-SNOM), and atomic force microscopy-infrared spectroscopy
(AFM-IR).
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biological ones. Otherwise, some filtration steps are necessary to

decrease the heterogeneity of the sample.

Nanoparticle Tracking Analyzer (NTA) is a commonly used

approach for assessing particle concentration and size distribution.

It works by recording the light spots generated by EVs when they

are illuminated by a laser beam, using a microscope camera, and

tracking their Brownian motion (61). NTA distinguishes itself from

DLS techniques in that it can measure both the light-scattering

intensity and the size of individual particles, enabling higher

resolution analysis for heterogeneous sample populations. The

typical size detection range of NTA is 10–1000 nm, though this

value can vary depending on the refractive index (RI) and the

signal-to-noise ratio of the sample. Additionally, false signaling is a

persistent issue, mainly caused by the aggregation of particles and

proteins. This is often why NTA is used in combination with a zeta

potential reader to avoid such false signals (62).

Tunable Resistance Pulse Sensing (TRPS) is a novel non-optical

technique that is currently being utilized to quantify the size and

concentration of EVs (63). This technique makes use of a non-

conductive nanopore membrane, through which EVs can pass

driven by a current of charged ions. The fundamental principle of

this technique is based on the combined action of electrophoretic

and convective flow, which are induced by external pressure and an

applied voltage. Each EVs passing through the charged pores causes

a change in the pore’s resistance. This resistive pulse can be detected

as a transient change in the current, which is proportional to the

particle volume and concentration (64).Regrettably, this technique

has several significant drawbacks. Firstly, it is technically difficult to

implement due to the heterogeneous size range of EVs and the

problem of pore clogging. Secondly, the calibration of beads in

TRPS depends on the buffer components of the sample, which are

often unknown when measuring EVs, especially for biological

samples (65).

Flow cytometry (FCM) is not only capable of detecting particles

in a sample but also of characterizing the structure and morphology

of EVs (66). FCM is particularly suitable for reproducible studies of

clinical samples. It is a powerful tool that enables the simultaneous

multi-parameter analysis of up to thousands of particles per second.

Thus, it is an effective method for quantifying, separating, and

purifying particles in suspension. However, due to the overlap

between the light scattering of particles and background noise, a

large number of particles, especially small ones, cannot be

characterized by conventional flow cytometry. To overcome these

problems, high-resolution FCM, which features higher sensitivity,

forward scattering detection, fluorescence amplification, and high-

resolution imaging, can effectively distinguish the signals of stained

EVs from the background (67).

2.2.2.2 EV topology characterization

Electron microscopy encompasses a wide range of microscopy

techniques that are employed to identify and characterize EVs

derived from biofluids and cell cultures. These are low-throughput

techniques, which means they enable the detailed examination of

only a few particles at a time. Despite this limitation, they are highly

valuable for providing in-depth information regarding the size, shape,
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and morphology of EVs (68). The majority of electron microscopy

(EM) techniques can be classified into scanning electron microscopy

(SEM), transmission electron microscopy (TEM), cryogenic electron

microscopy (Cryo-EM), and atomic force microscopy (AFM) (69–

71). TEM: Provides high-resolution morphological images of EVs

(e.g., cup-shaped structures), though sample preparation requiring

fixation and dehydration may cause EV deformation (68). Cryo-EM:

Observes native EV structures under cryogenic conditions, resolving

the bilayer membrane features of exosomes, which is used for

morphological validation of immunotherapy-related EVs (e.g.,

antigen-loaded dendritic cell EVs) (69).Although these EM

techniques have demonstrated their utility in confirming the

topological features of EVs and other physical characteristics, it is

important to note that the observed EVs are often not in their native

form. This is because the sample preparation procedures for several

EM techniques, such as SEM, TEM, Cryo-TEM, and AFM, subject

the EVs to extreme conditions. These conditions include chemical

drying, freezing, and layer sectioning, among others. Such treatments

can alter the structure of the EVs before they are observed under the

microscope. This limitation should be taken into account when

selecting an appropriate electron microscopy technique for EV

analysis. In addition, all EM techniques share the disadvantage of

low sample throughput. This makes it challenging to observe a large

number of samples or multiple samples simultaneously.

2.2.2.3 Deeper integration of spectral characterization
techniques with microscopic characterization techniques

The more profound integration of spectral characterization

techniques with microscopic characterization techniques offers

valuable insights into the surface interface properties and enables

the characterization of the nanoscale chemical structure of EVs.

Currently, there are four novel techniques available: surface-

enhanced Raman scattering (SERS) (72), tip enhanced Raman

spectroscopy (TERS) (73).Scattering-type Scanning near-field

Optical microscopy (S-SNOM) (74) and Atomic Force

microscopy-infrared spectroscopy (AFM-IR) (75). Antibody-

functionalized SERS has the ability to target specific EVs, and

these targeted EVs can then be detected through signal

amplification (76). One of the primary advantages of SERS

labeling is that, compared to fluorescent labeling, Raman

spectroscopy exhibits superior photochemical stability. This is due

to the vibrational nature of the signal it generates. This technique

has been specifically developed for the detection of EVs in tumors

(77). When it comes to the S-SNOM technique, the spectra

obtained are prone to shifts in the position of the absorption

peaks. Such shifts lead to distortions and artifacts, which are not

conducive to revealing the properties of biological specimens and

determining protein structures (78). In the case of the TERS

technique, the spectra acquired from biological systems generally

lack the amide band I. This band is crucial for studying the structure

and interactions of proteins (73). These aspects have presented

obstacles to the high-throughput application of TERS and S-SNOM

for the detection of EVs in clinical settings. For AFM-IR, it can

leverage the advantage of AFM, high spatial resolution (1-10 nm),

to measure infrared absorption associated with sample thermal
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expansion. This measurement can be carried out without the need

for additional enhancement factors, regardless of the properties of

the sample and the AFM probe (75). The advantage of AFM-IR lies

in its ability to detect changes in nucleic acids, lipids, and proteins

within a small number of EVs. This characteristic endows it with

great potential for the early diagnosis of diseases (79).

2.2.3 EVs analysis
The analysis of EVs cargo is of utmost importance for

biomarker discovery. Research on EVs cargo associated with

predicting the efficacy of cancer immunotherapy primarily centers

around proteins and nucleic acids, with miRNAs being a major

component. Hence, just as shown in Figure 4, this chapter will be

dedicated to the analysis methods of EVs-related proteins and

nucleic acids.

2.2.3.1 Proteins

Traditional approaches for protein analysis frequently rely on

the enzyme-linked immunosorbent assay (ELISA) or Western Blot

(WB) to assess EV protein biomarkers. Nevertheless, these methods

are marked by low sensitivity and low throughput. Specifically, they

can only evaluate a single biomarker or a limited number of

biomarkers at one time (80). Given that nanoscale EVs are

vulnerable to interference from background noise, effective signal
Frontiers in Immunology 07
transduction and amplification are indispensable for the detection

and molecular analysis of EVs. A variety of detection methods have

been developed for EVs detection and molecular analysis, such as

colorimetry (81), electrochemical assays (82), surface plasmon

resonance (SPR) sensors (83), and so on.

Fluorescence detection (FSD) is one of the most classic methods

for detecting EVs. Enriched EVs are commonly stained with

fluorescent probes that target membrane proteins or lipids,

facilitating their visualization, detection, and molecular analysis.

With the advancement of labeling techniques and fluorescent

probes, it has become possible to conduct multiple analyses of

different markers on EVs, including proteins (84). For instance, by

labeling the captured EVs with a lipophilic fluorescent dye and an

antibody-coupled quantum dot probe, the fluorescence signal from

the quantum dot can be normalized using the signal from the

lipophilic dye as a reference, enabling the quantification of the

captured EVs (85).

The electrochemical sensor (ECS) is one of the classic sensing

systems for EVs detection. It is characterized by high sensitivity,

rapid response, portability, and ease of integration with microfluidic

chips. Nanomaterials are utilized to coat electrode substrates or

serve as reporters, capitalizing on their large surface area and

excellent electrical conductivity to enhance signal transduction

and amplification (86, 87). A typical example is the integrated
FIGURE 4

Analysis of extracellular vesicles. Conventional methods for analyzing extracellular vesicles (EVs) include the enzyme-linked immunosorbent assay
(ELISA) or Western blot (WB) for detecting EVs-related proteins. For EVs-related nucleic acids, techniques such as NanoDrop for nucleic acid
quantification, quantitative reverse transcription PCR (qRT-PCR), and next-generation sequencing (NGS) are commonly employed. Nanotechnology-
based methods, on the other hand, involve the use of flow cytometry (FCM), fluorescence detection (FSD), and electrochemical sensors (ECS), as
well as surface plasmon resonance (SPR) for the analysis of EVs-related proteins. When it comes to EVs-related nucleic acids, methods like
molecular beacons (MB), sensing technologies, microfluidic chips, and membrane fusion techniques are utilized.
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magneto electrochemical EVs system, which combines

immunomagnetic microbead-based EVs enrichment and

electrochemical sensing for EVs detection. Microfluidic platforms

have been employed to achieve accurate analyses at the single-

particle level through electrochemical detection (88).

Nano plasma sensors based on local surface plasmon resonance

(NPS-LSPR) have been widely applied in EVs analysis due to their

high sensitivity and colorimetric detection capability. These nano

plasma sensors typically feature regularly distributed nanostructures

to boost sensitivity and signal amplification. A representative of

nanostructure-based nano plasmonic sensors is the nano plasmonic

EVs sensor system. This system is based on transmission surface

plasmonic resonance and is patterned on a gold film with a thickness

close to the size of EVs using an antibody-functionalized periodic

nanopore array, thus achieving high sensitivity (89). When EVs bind

to the nanopores, it leads to a spectral shift or intensity change that is

proportional to the expression level of labeled proteins on the EVs.

Signal amplification is accomplished by introducing spherical or star-

shaped gold nanoparticles for the secondary labeling of the captured

EVs. This sensor system allows for the parallel analysis of up to 12

labeled proteins. Nano plasma enhanced scattering is a method for

detecting EVs that is based on the principle that gold nanoparticles of

varying sizes and shapes scatter light at characteristic wavelengths.

When the designed gold nanospheres and gold nanorods are

combined on the same EVs, due to the nanoscale size of the EVs

(< 200 nm), their scattering is coupled, generating a local plasma

effect that turns the spectrum of the scattered light yellow. This

system enables the ultrasensitive detection of EVs from as little as 1 ml
of plasma. Surface enhanced Raman spectroscopy sensors have been

rapidly adopted for detecting cell-secreted EVs because of their

remarkable features, such as non-invasive analysis compared to

standard enzyme-linked tests. Typically, the trapping substrate

consists of magnetic beads that are further molecularly

functionalized for specific EVs binding.

Batch separation, extraction, and analysis of EVs may lead to

inaccuracies due to the differences among individual EVs (90).

Therefore, several techniques have been developed to address these

challenges by analyzing the information of individual EVs.

Examples include fluorescence-activated vesicle sorting (91) and

high resolution FCM (92), which can more reliably quantify the

expression of cancer-related proteins and surface biomarkers

compared to traditional flow cytometry (93). Currently, efforts are

being made to explore the development of nanoflow cytometry as a

liquid biopsy platform for diagnosing cancer biomarkers (94).

Other methods for detecting individual small EVs include

photoactivation localization microscopy/Random optical

reconstruction microscopy with super-resolution microscopy (95),

quantitative single-molecule localization microreplication (96), and

interparticle iron reflection imaging sensors (97).

2.2.3.2 Nucleic acid

EVs encapsulate a diverse array of nucleic acids within their

lipid structures. For the analysis of EVs-related DNA, DNA

enzymes are employed to identify the specific forms of DNA

fragments that are encapsulated within EVs (98, 99). In terms of
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quantification, the concentrations of EVs-related nucleic acids can

be determined using a NanoDrop instrument, which relies on

ultraviolet absorption (100). In contrast, fluorescence

quantification, which involves combining DNA with fluorescent

dyes, offers greater sensitivity and specificity towards targeted

nucleic acids. Additionally, the lengths of EVs-associated DNA

fragments can be labeled using a DNA ladder through agarose gel

electrophoresis (101, 102). Jiao et al. developed a hydrogel-based

droplet digital multiple displacement amplification method,

enabling a comprehensive analysis of EVs-related DNA at the

level of individual EVs (103).

Techniques such as microarrays, real-time quantitative reverse

transcription PCR (qRT-PCR), and next-generation sequencing

(NGS) have been extensively utilized to quantify the expression

levels of exosomal RNA. However, each of these methods has its

own drawbacks, as they are tailored to specific purposes with their

unique capabilities (104). The analysis of EVs-related RNA

predominantly focuses on microRNAs (miRNAs). A variety of

probes have been employed for the detection of miRNAs in EVs,

including molecular beacon (MB) probes, self-assembled probes

with various structures, and certain nanomaterial probes. An MB is

a hairpin-shaped probe designed as a stem-loop structure, with a

fluorescent dye and a quencher attached to its two ends. When the

MB binds to the target miRNA, the hairpin structure unfolds,

separating the fluorescent dye and the quencher spatially, which

then allows the fluorescent dye to emit fluorescence. Using this

approach, several MBs have been designed for the detection of

miRNAs in EVs, such as miRNA-21 (105) and miRNA-375 (106).

DNA can be engineered into various elaborate structures. Through

precise spatial control, different probes can be anchored in the

designated positions, thereby increasing the concentration of probes

within a specific space and enhancing the detection efficiency. Due

to its relatively large-scale producibility and simple synthesis

process, the DNA tetrahedron has become one of the most widely

used nanostructures in biomedicine (107). Some nanomaterials

have also been utilized to bind nucleic acid probes for the

detection of miRNAs in EVs (107). Gold nanoparticles are

commonly used nanomaterials, boasting advantages such as good

stability, high adsorption capacity for nucleic acid ligands, and ease

of synthesis (108).

Fluorescent labeling provides a convenient and visual approach

for biomolecular detection and is a classic method for the analysis of

EVs-related miRNAs. Nano torches, composed of gold

nanoparticles functionalized with fluorescence-labeled single-

stranded DNA probes, allow for the direct analysis of RNA

within cells or vesicles without the need for cleavage and RNA

extraction (81).

Signal amplification strategies for the detection of EVs-related

miRNAs mainly include enzymatic and non-enzymatic approaches.

Enzyme-assisted amplification is a DNA amplification reaction

triggered by different enzymes under isothermal conditions. A

dual-signal amplification biosensor was developed for the

sensitive detection of EVs-miRNA-21 (109). Catalytic hairpin

assembly (CHA) is a common enzyme-free signal amplification

method. It relies on a series of primers and two hairpin probes to
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function. Many studies have combined CHA hairpin probes with

DNA nanostructures, as DNA nanostructures can increase the local

concentration of hairpin probes in a given space and improve the

collision efficiency among the probes (110).

Sensing technology has also been widely applied in the detection

of EVs-miRNAs due to its high sensitivity, real-time monitoring

capabilities, and flexibility in integrating with other technologies and

devices. The sensing methods for detecting EVs-miRNAs mainly

include optical sensors, such as SERS and surface plasmon resonance,

as well as non-optical sensors, such as electrochemical detection.

Currently, the majority of EVs-miRNA detection methods

involve extracting miRNAs after cleaving the EVs. However, once

the EVs-miRNAs are separated from the protection of the EVs

membrane, they are prone to degradation, leading to insufficient

detection sensitivity (111). In-situ detection based on membrane

fusion represents a novel approach for the in-situ detection of

miRNAs. By preparing an artificial membrane capsule containing

the probe, the probe can be introduced into the EVs without

damaging the EVs membrane through membrane fusion. The

probe then reacts with the EVs-miRNA and emits signals for the

detection of EVs-miRNA (112).

A microfluidic chip, also known as a lab-on-a-chip, is a

technology characterized by the manipulation of fluids in a

micrometer-scale space (112). Lu et al. designed a portable system

for the isothermal amplification and detection of EVs-miRNA. This

system consists of two separate chips: one for the enrichment and

cleavage of EVs, and the other for miRNA detection. The EVs are first

captured using magnetic beads, and then the cleaved EVs release the

miRNAs. Subsequently, the EVs are directly transferred to the

miRNA detection chip to quantitatively measure the miRNAs

carried by specific EVs (112).

In conclusion, the development of numerous new technologies

has significantly enhanced the detection efficiency of EVs and their

cargo. Nevertheless, the widespread application of nanotechnology-

based EVs detection in cancer management has not yet become

routine in clinical practice. The relatively limited understanding of

the correlation and efficiency of different nanotechnologies in EVs

detection has hindered the standardization and industrialization of

nanotechnology-based EVs detection. Therefore, it is anticipated

that more extensive and in-depth clinical translational research will

be carried out in the future.
3 The relationship between EVs and
tumor immune microenvironment and
the detection methods of tumor-
related EVs

3.1 The relationship between EVs and
tumor immune microenvironment

The occurrence and development of tumors are intricately

linked to the tumor immune microenvironment. Research has
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indicated that tumor progression is attributable to immune escape

(113–115).Tumor cells can elude immune cells by releasing

immunosuppressive molecules or losing adhesion molecules. They

can also induce apoptosis through the overexpression of anti-

apoptotic molecules or immunosuppressive receptor ligands

(116).Moreover, tumor antigens are heterogeneous and have a

high mutation rate, rendering it difficult for immune cells to

recognize and eliminate tumor cells. EVs, secreted by a diverse

range of cell types, play a pivotal role in intercellular signaling. They

are increasingly acknowledged as key molecular components in

shaping the immunosuppressive microenvironment within the

tumor microenvironment. The tumor immune microenvironment

harbors a variety of immunosuppressive molecules and cells, which

facilitate immune evasion and cancer progression (117).Complex

interactions among malignant cells, endothelial cells, stromal cells,

and immune cells govern the homeostasis and evolution of the

tumor microenvironment. EVs, serving as crucial mediators, play a

vital role in intercellular communication by enabling the transfer of

cellular components such as lipids, proteins, and nucleic acids

between cells (118, 119).Tumor -derived EVs are of great

significance in the complex tumor immune network (120).These

vesicles possess multiple functions, including regulating tumor

growth, promoting neovascularization, enabling immune escape,

and facilitating tumor invasion and metastasis (121). Consequently,

EVs not only help regulate cell-to-cell communication among

cancer cells but also communication among cells within the

tumor microenvironment (122).Cancer immunotherapy, which

effectively eradicates tumor cells by enhancing the immune

system function of cancer patients, has recently emerged as a

novel and successful treatment strategy (123).Therefore, EVs hold

promise as a biomarker for immunotherapy.
3.2 The detection methods of tumor-
related EVs

EVs are named differently according to their cell origin. Those

derived from tumor cells are termed tumor-associated EVs. Tumor-

associated EVs are closely intertwined with the tumor immune

microenvironment. As a result, the detection of tumor - associated

EVs and their corresponding molecular markers is of particular

importance for predicting and evaluating the efficacy of

immunotherapy. The current challenge in this area is to establish a

“gold standard” for the detection of tumor - associated EVs. This

standard should be able to provide morphologically intact, purified,

and functional endocytogenic vesicles with high recovery and

reproducibility for processing clinical samples. However, EVs in

biological fluids are heterogeneous in size, origin, and composition.

Moreover, it is possible that tumor-associated EVs share the same

physicochemical properties as other EVs. Additionally, the co-

separation of EVs with liposomes, chylomicrons, and the presence of

contaminants like lipoproteins or protein aggregates pose common

obstacles to the currently used separation techniques (124). SEC, a size

- based separation technique widely used for high-resolution separation
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of macromolecules, has been adapted for EVs separation. SEC is

especially suitable for isolating EVs from biological liquids as it can

remove most, though not all, of the contaminating proteins. SEC offers

advantages such as minimal volume requirements, minimal sample

loss, and it is a high-throughput, relatively fast method for isolating a

high yield of intact, bioactive EVs even with a small sample size

(125).Nevertheless, SEC is not without flaws. It fails to successfully

separate vesicles from lipoproteins and similarly sized protein

aggregates. To eliminate lipoproteins, additional ultrafiltration steps

are often necessary (126). Many advanced and complex techniques

have been developed to detect EVs or EVs subgroups (90).

For a specific tumor-associated EV, a customized isolation

method may need to be designed. Total EVs may first need to be

isolated from body fluids and then captured based on the

availability of one or a set of antibodies that are overexpressed in

parental tumor cells and are specific to the antigen of tumor-

associated EVs. There are specific antigens on the surface of

tumor-associated EVs, enabling their isolation from non-tumor-

derived vesicles through immunoaffinity capture using relevant

specific antibodies. Antibody mixtures, such as Epithelial cell

adhesion molecule (EPCAM), epidermal growth factor receptor

(EGFR), or chondroitin sulfate proteoglycan 4 (CSPG4), have been

used to enrich tumor-associated EVs by identifying highly

overexpressed tumor-associated EVs on tumor cells and have

been applied to construct microarrays for capturing EVs from

body fluids (127–129).

Researchers have developed a two- step approach for separating

tumor-associated EVs from non-tumor-associated EVs. This

approach combines initially purified and enriched SEC with

immunoaffinity-based tumor-associated EVs capture, using

antigens that are only present in tumors and tumor-associated

EVs but not expressed in normal cells or non-tumor-associated EVs

(130).Studies have also utilized microarrays or chips coated with

antibodies against antigens overexpressed by tumor cells to capture

tumor-associated EVs from body fluids. Recently, the above-

described immunocapture method has been applied to isolate

tumor-associated EVs from the plasma of patients with metastatic

melanoma (130). By using the epitope - specific monoclonal

antibody CSPG4, melanoma cell-derived EVs can be isolated

from other vesicles (non-melanoma-associated EVs) in patient

plasma, and the EVs can be analyzed by flow cytometry. The

analysis revealed that melanoma-associated antigens such as

tyrosinase-associated protein 2 (TYRP2) or MelanA were only

carried by melanoma-associated EVs and were not detected in

non-melanoma EVs or EVs recovered from the plasma of healthy

individuals. Thus, in practice, combining two or more techniques

offers the best strategy for isolating tumor-associated EVs.
4 Application of EVs as a molecular
marker in cancer immunotherapy
monitoring

The biochemical characteristics and origin of EVs endow these

nanoparticles with great potential as biomarkers in cancer diagnosis,
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prognosis assessment, and therapeutic monitoring. Moreover, the

cargo within EVs, such as RNA, DNA, proteins, and others, are

shielded by the natural lipid bilayer capsules from unfavorable

biological impacts (like ribonucleases, deoxyribonucleases,

proteases) and environmental conditions. As presented in Table 1,

this chapter provides a review of the applications of EVs cargo as

molecular markers in immunotherapy. Since most current studies on

the screening of molecular markers of EVs in immunotherapy have

focused on NSCLC and melanoma, this chapter primarily focuses on

these two cancers.
4.1 RNA

Subsequent research has verified that the RNA carried by EVs

participates in intercellular communication (31). Conventionally,

the discovery of EVs biomarkers has mainly centered on miRNAs,

yet long-stranded RNAs (such as mRNAs, lncRNAs, etc.) carried by

EVs are more valuable in detecting somatic mutations and

alterations in gene transcription. Among all types of RNA,

miRNAs, as predictive biomarkers, have been the most intensively

studied in clinical practice. This is attributed to their high

abundance, stability, ease of analysis, and their unique function in

mediating cell interactions within the tumor microenvironment

(28). Studies have reported that in patients with advanced Non-

small cell lung cancer (NSCLC) who did not respond to anti-PD-1

or anti-PD-L1 treatment, the levels of miRNA-200c-3p, miRNA-

21-5p, and miRNA-28-5p in plasma EVs prior to treatment were

elevated (15). Moreover, the combination of three biomarkers,

namely miRNA-199a-3p, miRNA-21-5p, and miRNA-28-5p, was

more effective in predicting the response to immunotherapy than

the PD-L1 expression evaluated through immunohistochemical

assessments. miRNAs such as miRNA-320d, miRNA-320c, and

miRNA-320b were able to predict the partial responses of

advanced NSCLC patients to ICIs (131).Additionally, miRNA-

125b-5p, a suppressor of T cells, significantly decreased in the

plasma of samples that showed a partial response to ICIs after

treatment when compared to the pre-treatment levels (131). Several

studies have confirmed the significance of miRNAs as the preferred

biomarkers for patients with advanced NSCLC. Notably, three

miRNAs from the hsa-miRNA-320 family were identified as

potential predictors, and hsa-miRNA-125b-5p was found to be a

potential target for anti-PD-1 therapy, as it was downregulated in

patients who responded to this treatment. The findings of this study

suggest that patients with low levels of miRNA-320d, miRNA-320c,

miRNA-320b, and miRNA-125b-5p may be more suitable

candidates for anti-PD-1 therapy. A continuous decrease in the

levels of the T cell suppressor (miRNA-125b-5p) due to enhanced T

cell function can be regarded as an indicator of better treatment

outcomes and longer progression-free survival (PFS) (131).miRNA-

200c and miRNA-34a in plasma were also associated with the

response and prognosis of patients with advanced NSCLC receiving

anti-PD1 immunotherapy (132).

In addition to miRNAs, EVs also contain circular RNAs

(circRNAs).The latter serve as the foundation for several
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TABLE 1 Literatures on immunotherapy efficacy prediction of EVs-related molecular profiles.

Molecular profiles
of EVs

Body
fluid
types

Tumor
types

Key results Literature references

miRNA(miR)

miR-200c-3p,miR-21-5p
miR-28-5p

Plasma NSCLC
Association with poor response.
AUC for the combination (miR-21-5p, miR-28-5p and miR-199a-3p)
=0.925; AUC for (PD-L1 tissue expression)=0.575

Shukuya et al., 2020 (15)

miR-320d,miR-320c,miR-320b Plasma NSCLC
Association with poor response. Association with progressive disease
compared to partial response for baseline levels.

Peng et al., 2020 (131)

miR-125b-5p Plasma NSCLC
Reduction in miR-125b-5p post-treatment levels when compared to pre-
treatment samples among those who achieved a partial response.

Peng et al., 2020 (131)

miR-200c and miR-34a Plasma NSCLC
Associated with response and prognosis in patients with advanced
NSCLC receiving anti-PD-1 immunotherapy

Monastirioti A,et al.2022 (132)

Circular RNAs

circCCAR1 Plasma HCC Promotes CD8 + T cell dysfunction and anti-PD1 resistance Hu Z,et al,2023 (133)

circUHRF1 Plasma HCC Induces natural killer cell exhaustion and resistance to anti-PD-1 therapy Zhang PF,et al (134)

circUSP7 Plasma NSCLC Induces CD8+ T cell dysfunction and anti-PD1 resistance Chen SW,et al 2021 (135)

Proteins

AnnexinA2
S100A8/9

blood NSCLC Protein decrease is associated immune response Brocco D,et al (136)

PD-L1 Plasma NSCLC
Association with poor response, shorter PFS and OS for the increase in
EVs PD-L1following treatment with immunotherapy.

Miguel-Perez et al., 2022 (137)

PD-L1(mRNA) Plasma
Melanoma
and
NSCLC

Association with poor response for the increase in EVs PD-L1 following
treatment with immunotherapy.

Del Re et al., 2018 (138)

PD-L1 Plasma Melanoma

Association with poor response for pre-treatment plasma EVs PD-L1
protein levels.
Association with improved response for the increase in EVs PD-
L1among responders. This observation was not found among
non-responders.

Chen et al., 2018 (139)

PD-L1 Plasma Melanoma

Association with poor response especially in an increase of EVs PD-L1.
EVs PD-L1 was detected in all patients (100%) whereas only 67% were
PD-L1 positive in tumor biopsies. AUC for D PD-L1 = 0.87 for
discriminating between responders and non-responders.

Cordonnier et al., 2020 (140)

PD-L1 CD73 Serum Melanoma
Association with improved response for the increase in EVs PD-
L1among responders. Association with poor response for the increase in
EVs CD73 among non-responders

Turiello et al., 2022 (141)

EV biomarkers from T-cells
(PD-1 and CD28) and dendritic
cells (CD80 and CD86) based
on fow cytometry analysis

Plasma Melanoma

Association of baseline EVs PD-1 and CD28 from T cells with improved
survival. Upregulated levels of costimulatory molecules (CD80 and
CD86) on dendritic cells at the end of immunotherapy treatment in
patients who achieved a longer survival.

Tucci et al., 2017 (142)

EV biomarkers from T-cells
(PD-1) and melanoma cells

Melanoma

Association of higher levels of PD-1+ EVs from CD8+ T cells with poor
response.
Association of higher levels of PD-L1+ EVs from melanoma cells with
poor response. AUC=0.86 for the combination of (PD-1 EVs from CD8+
T cells and PD-L1+EVs from melanoma cells) showing a strong
predictive value for poor prognosis.

Serratì et al., 2022 (143)
F
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AUC, area under curve; EVs, extracellular vesicles; PD-1, programmed death receptor 1; PD-L1, programmed death ligand 1; NSCLC, non-small cell lung cancer; HCC, hepatocellular carcinoma;
PFS, progression free survival; OS, overall survival.
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mechanisms through which they can confer resistance to certain

cancer therapies, including immunotherapy. EVs-derived

circCCAR1 has been demonstrated to exacerbate CD8+ T cell

dysfunction and resistance to anti-PD-1 therapy in liver cancer

patients (133).Moreover, cancer-derived EVs-derived circUSP7

may induce CD8+ T cell dysfunction and anti-PD-1 resistance in

NSCLC patients by regulating the miR-934/SHP2 axis (135). EVs-

derived cirHRF1 is mainly secreted by hepatocellular carcinoma

(HCC) cells and exerts an immunosuppressive effect in HCC by

inducing natural killer (NK) cell dysfunction. CirHRF1 may

contribute to resistance to anti-PD-1 immunotherapy, offering a

potential therapeutic strategy for HCC patients (134).
4.2 Protein

EVs-related proteins associated with neutrophils (such as

annexin A2 and S100A8/9) decreased during treatment with ICIs,

whereas positive changes were noted in patients who did not

respond to the treatment (136). In line with these findings, a

recent study has associated adverse reactions to ICIs in NSCLC

patients with alterations in plasma proteins related to neutrophil

function during the course of treatment (144).

Recent investigations into the dynamics of EVs protein

biomarkers in NSCLC have revealed that an increase in EVs PD-

L1 levels after ICIs treatment is associated with adverse reactions

and poor survival outcomes (137). In melanoma, the dynamic

changes in PD-L1 levels have been the focal point of EVs-related

RNA and protein analyses, and these changes are linked to the

response to ICIs (145). By assessing the PD-L1 mRNA expression in

plasma-derived EVs to monitor the treatment response in

melanoma and non-small cell lung cancer, a study reported that

PD-L1 levels decreased in patients who achieved partial or complete

responses, while PD-L1 expression increased in patients who did

not respond after ICI treatment (138). Recent studies have indicated

that the expression levels of EVs PD-L1 in plasma are significantly

higher before treatment in metastatic melanoma patients who do

not respond to ICIs (139). Conversely, according to Chen et al.,

elevated EVs PD-L1 expression levels during the early stage of

immunotherapy predicted higher response rates in melanoma

patients. Interestingly, this correlation was not observed in non-

responders. Thus, the findings of this study suggest that EVs PD-L1

may have different clinical implications depending on factors such

as the sampling time, disease duration, treatment planning rules,

and the differences between responders and non-responders (139).

In this regard, the authors suggest that high levels of EVs PD-L1 at

baseline may indicate T cell dysfunction, and that the increase in

EVs PD-L1 levels after immunotherapy may be associated with T

cell reactivation and an enhanced anti-tumor immune response,

which is more evident in responders compared to non-responders

whose T cells cannot be restored by immunotherapy. The

responders have “less depleted” immunity against the original

tumor (139). Additionally, although EVs PD-L1 was detected in
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all patients in this study, only 67% of patients with tumor biopsies

showed positive PD-L1 expression (140). These results emphasize

the limitations of PD-L1 in immunohistochemistry as a biomarker

for predicting the response to immunotherapy (146), and also

support further exploration of EVs PD-L1 in plasma as a

promising predictive biomarker in clinical practice.

EVs released from immune cells have also been reported as a

potential source of biomarkers related to the response to ICIs. The

study found that in metastatic melanoma patients treated with PD-1

inhibitors, higher levels of PD-1+ EVs, especially those derived from

CD8+ T cells, were strongly associated with poorer progression-free

survival (143). However, further research is required to better define

the predictive value of EV PD-1 in various immunotherapy regimens.

Integrating these results with recent efforts to study the dynamics of

other immune cells in the blood may lead to the development of a

more accurate predictive model for the response to immunotherapy.

As shown in Figure 5, Luong T. H. Nguyen, et al. (147). proposed an

immunogold biochip for quantifying single EVs-related RNA and

protein. Using only 20 ml of purified serum, the PD-1/PD-L1 proteins

on the surface of EVs and the PD-1/PD-L1 mRNA within EVs were

detected at the single-vesicle resolution, with a sensitivity 1000 times

higher than that of conventional batch analysis methods such as

ELISA and qRT-PCR. A cohort test involving 27 non-responsive and

27 responsive NSCLC patients demonstrated the potential of this

method to enhance the prediction of immunotherapy and cancer

diagnosis in a clinical setting.
4.3 Others

Interestingly, EVs-related lipids can also be relevant to cancer

immunotherapy. For instance, EVs associated with B-cell

lymphomas have been shown to contain the phosphatidylcholine

transporter. This exosome may contribute to immunotherapy

resistance by protecting target cells from treatment with

rituximab, an antibody that targets the B-cell lymphocyte antigen

CD20 (148).

Figure 5 demonstrates the use of a nanoplatform for detecting

EV molecules to assess the efficacy of immunotherapy, which is a

typical representation. Currently, based on existing research, most

molecular characterizations of EVs still rely on conventional

methods to predict immunotherapy efficacy. Therefore, more

future research should focus on how to apply nanotechnology for

EV detection more extensively in immunotherapy.
5 Conclusion

Liquid biopsy is a minimally invasive approach that offers the

advantage of real-time monitoring. During the process of

immunotherapy, utilizing liquid biopsy technology to analyze and

assess the microscopic changes in patients after drug administration

is beneficial for determining whether the tumor is progressing. EVs
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represent a novel method within the realm of liquid biopsy.

Additionally, EVs contain a diverse range of biomolecules,

predominantly miRNAs and proteins. These biomolecules reflect

the heterogeneity of the parental cells and serve as important

sources of biomarkers yet to be fully explored. As a crucial

medium for intercellular communication in the tumor

microenvironment, EVs are inevitably associated with the

monitoring of the tumor’s response to immunotherapy. However,

detecting and analyzing EVs pose significant technical challenges

due to their minute size, heterogeneity, and the difficulty of

separating them from complex samples. This is particularly the

case because complex components such as proteins, lipoproteins,

and lipids are abundantly present in serum or plasma.

Consequently, distinguishing EVs from a large number of blood

cells and other intricate components in the blood demands high

sensitivity and specificity. In this context, nanotechnologies possess

remarkable advantages in the detection of EVs. Nonetheless, the

extensive application of nanotechnology-based EVs detection in

cancer management has not yet been integrated into routine clinical

practice. Hence, it is anticipated that more comprehensive clinical

translational research will be carried out in the future. Moreover,

the molecular markers currently investigated in clinical practice

mainly center around EVs-derived miRNAs and PD-L1. Therefore,

it is hoped that more studies will be conducted in the future to
Frontiers in Immunology 13
explore novel molecular markers, which will enable a more accurate

detection of the efficacy of immunotherapy.
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FIGURE 5

These figures are cited from the research of Nguyen, et al (147). A single extracellular vesicle related RNA and protein(AuSERP) assembly. A
functionalized gold-coated coverslip was attached to a silicone gasket with 64 chambers for high-throughput analysis of single-EV biomarkers. B.A
schematic representation of the mechanism of detection for protein and mRNA biomarkers present in single extracellular vesicles (EVs) using
AuSERP. A gold-coated coverslip with PEG-tethered gold nanoparticles (NPs) conjugated to capture antibodies was used to immobilize single EVs.
Proteins on the surface of the single EVs were detected using the corresponding primary antibody and a tyramide signal amplification (TSA) method,
resulting in fluorescent signals. mRNA was identified using target-specific molecular beacons (MBs) encapsulated in cationic lipoplex nanoparticles
(CLNs), resulting in fluorescent signals.C Cryogenic electron microscopy (Cryo-TEM) images of immunogold labelled PD-L1 protein on the EVs
surface.D Box plots of quantitative fluorescence intensities of PD-1/PD-L1 protein and mRNA expression levels. 54 patients were evaluated (27
responders and 27 non-responders), along with 20 healthy donors. RFI, relative fluorescence intensity.
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