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Innate immune dysregulation: a driving force of autoimmunity and
chronic inflammation
1 Introduction

Innate immunity plays a critical role in protecting the host against infections, tumors,

and tissue damage by initiating inflammatory responses, recruiting immune cells, and

orchestrating the production of both pro- and anti-inflammatory mediators (1).

Traditionally considered the first line of defense, emerging evidence reveals that innate

immunity operates through far more complex mechanisms. It not only responds to a wide

array of pathogens but also engages in intricate crosstalk with the adaptive immune system

(2). Importantly, its dysregulation is increasingly linked to various pathological conditions.

The initiation, activation, and resolution of innate inflammatory responses must be

tightly controlled to ensure effective pathogen clearance and preservation of tissue

homeostasis, while preventing excessive or prolonged inflammation. When this

regulation fails, it can lead to autoinflammatory diseases and significantly contribute to

chronic inflammation and autoimmune disorders (Figure 1) (3) such as systemic lupus

erythematosus (SLE), rheumatoid arthritis (RA), and juvenile idiopathic arthritis (JIA).

Although autoimmune diseases are typically characterized by a breakdown in self-tolerance

associated with the adaptive immune system, the innate immune system plays a

fundamental role in their onset, progression, and chronicity.

Over recent decades, autoimmune and chronic inflammatory diseases have become a

growing clinical challenge, marked by rising incidence and a lack of effective, long-term

treatments (4, 5). Despite advances in understanding their underlying mechanisms, current
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therapies largely rely on non-specific immunosuppressants, which

are limited by suboptimal efficacy and potential safety concerns.

These limitations often result in high disease burden, morbidity,

and, in many cases, mortality. There is, therefore, an urgent unmet

medical need for precisely modulating innate immune responses

that reduce pathological inflammation without compromising

overall immune function. Given the significant role of innate

immune dysregulation in driving autoimmune and chronic

inflammatory conditions, fostering scientific insights into the

mechanisms by which innate immunity contributes to
Frontiers in Immunology 02
autoimmunity and chronic inflammation holds promise for

identifying new therapeutic targets.
2 Molecular mechanisms of
inflammation regulation

While the activation of immune responses is necessary to

defend the body, unchecked or prolonged inflammation can lead

to tissue damage and chronic disease. A central component of this
FIGURE 1

Outcomes of innate immune activation under regulated versus dysregulated conditions. Innate immune cells, including dendritic cells, natural killer (NK)
cells, neutrophils, monocytes, and macrophages, respond to pathogens through receptors such as FcgR, TLRs, complement receptors, and nuclear
receptors. These pathways converge on transcription factors like NF-kB and promote the production of pro-inflammatory cytokines and reactive oxygen
species (ROS). Under a regulated response, this leads to acute inflammation, effective pathogen clearance, and resolution of inflammation. However,
under dysregulated conditions, excessive cytokine production may trigger a cytokine storm and chronic inflammation, resulting in a sustained reactive
immune state. This can aberrantly activate the adaptive immune system and contribute to the development of autoimmunity. Created with BioRender.
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regulation is the transcription factor NF-kB, which orchestrates the

expression of pro-inflammatory genes during infections or tissue

injury. However, NF-kB must be swiftly inactivated once the threat

is resolved. This is where proteins like PDLIM2, an E3 ubiquitin

ligase, come into play. PDLIM2 targets the p65 subunit of NF-kB
for degradation, effectively silencing the inflammatory signal.

Recent research by Sugimoto-Ishige et al. revealed that the F-box

protein Fbxo16 is critical in this process. Fbxo16 enables PDLIM2

to interact with p65 within the nucleus. Without Fbxo16, p65

accumulates, prolonging cytokine production and increasing the

risk of chronic inflammation (6).

Another important checkpoint is provided by IRAK3, a

negative regulator of Toll-like receptor (TLR) and interleukin-1

receptor (IL-1R) signaling. Borghese et al. demonstrated that mice

lacking IRAK3 exhibit more severe inflammatory arthritis. They

produce higher levels of IL-1b and show reduced numbers of

regulatory T cells, suggesting impaired immune tolerance.

Moreover, IRAK3 expression is often diminished in autoimmune

conditions such as SLE and inflammatory bowel disease,

highlighting its relevance in human disease (7, 8).

In a different regulatory context, ARHGAP25, a Rho GTPase-

activating protein, controls cytoskeletal dynamics and cell

migration (9). Czárán et al. found that mice deficient in

ARHGAP25 had significantly milder allergic contact dermatitis,

associated with reduced immune cell migration and activation. This

suggests that manipulating cytoskeletal signaling could represent a

novel approach to treating chronic inflammation.
3 Innate immune cells and
components in disease progression

Innate immune components are crucial regulators of

inflammation. In JIA, Tang et al. reported an increased NET

formation correlates with disease activity. Anti-TNF therapies

reduce NET formation, indicating that NETs may serve as both

biomarkers and therapeutic targets (10, 11). It has also been shown

that the complement system, particularly the C5a-C5aR1 axis, is

another potent driver of inflammation. An original article published

by Vahldieck et al. indicated that in acute myocardial infarction,

C5a disrupts the endothelial glycocalyx, reduces nitric oxide

bioavailability, and recruits inflammatory cells, contributing to

tissue injury. C5aR1 antagonists show therapeutic potential by

preserving vascular integrity and reducing inflammation (12).

Besides these molecules, innate immune cells such as

monocytes and macrophages play a key role in immune

regulation. In the article by Akiyama et al., it has been shown

that during hyperinflammatory conditions, such as cytokine release

syndrome, monocytes undergo apoptosis to prevent overwhelming

cytokine production. Disruption of this process, as shown in mouse

models, leads to exaggerated immune responses and higher

mortality. Maintaining monocyte homeostasis through controlled

cell death or immunomodulation is emerging as a critical strategy in
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preventing systemic inflammatory damage (13, 14). Furthermore,

Wang et al. identified that marked expression of Mincle receptors,

transmembrane pattern recognition receptors on macrophages and

neutrophils, exert pro-inflammatory and pro-fibrotic effects,

involved in persistence of renal inflammatory microenvironment

and accelerated renal fibrosis progression by inducing TNF

production (15, 16).
4 Neutrophils in immunity and
autoimmunity: balancing host defense
and inflammation

Neutrophils are among the first responders in innate immunity,

essential for eliminating pathogens.However, their prolonged activation

can exacerbate inflammation, especially in sterile conditions. One key

process is the formationofneutrophil extracellular traps (NETs),websof

DNA, histones, and granule proteins that capture microbes but also

stimulate autoimmunity if dysregulated (10, 11). Li et al. reviewed the

involvement of NETs in fibrotic and sterile inflammatory

diseases. In conditions such as RA, NETs release modified self-

antigens that provoke adaptive immune responses. Chen et al.

showed that citrullinated proteins within NETs activate

dendritic cells, encouraging T cell activation and the production

of autoantibodies, thereby fueling the autoimmune cycle.

Given the dual nature of neutrophils, new strategies aim to

reprogram rather than eliminate them. Raudszus et al. used cell-

derived nanoparticles (CDNPs) to modulate neutrophil function.

These CDNPs induced an anti-inflammatory phenotype, marked by

increased IL-10 production and programmed cell death, facilitating

inflammation resolution without compromising microbial defense.

Such approaches reflect a growing interest in using nanomedicine to

selectively steer immune cell function (17).
5 Inflammasomes and cytosolic DNA
sensors as central drivers of chronic
inflammation

Inflammasomes are multiprotein complexes that detect

intracellular threats and activate caspase-1, leading to the release of

IL-1b and IL-18 and triggering pyroptosis, a highly inflammatory

form of cell death. The NLRP3 and AIM2 inflammasomes are the

most studied and are increasingly implicated in chronic inflammatory

diseases (18, 19). In idiopathic inflammatory myopathies, Sun et al.

found that overactivation of NLRP3 and AIM2 correlates with

disease severity. Inhibitors like MCC950, which specifically block

NLRP3 activation, reduced inflammation in preclinical models and

are being investigated in clinical trials (20, 21).

Parallel to inflammasomes, the cytosolic DNA sensing pathway,

particularly cGAS-STING, is another major contributor to chronic

inflammation. The article by Zhu and Zhou explained that while
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this pathway is vital in recognizing viral DNA, it can be aberrantly

triggered by self-DNA released during cellular stress or apoptosis.

The result is the chronic production of type I interferons and pro-

inflammatory cytokines, a hallmark of diseases like SLE and

dermatomyositis (22, 23). Small-molecule inhibitors of STING are

currently under development, aiming to mitigate this persistent

immune activation (24).
6 Metabolic and systemic influences
on immune function

Beyond molecular signaling, immune function is tightly linked

to systemic metabolic cues. Obesity, for instance, promotes chronic

low-grade inflammation and can exacerbate inflammatory

disorders. Shang and Zhao demonstrated that obesity impairs

skin barrier integrity, alters the microbiome, and increases

inflammatory mediators such as TNF-a and leptin. These

changes worsen conditions like atopic dermatitis and reduce

treatment efficacy (25, 26).

In contrast, nuclear receptors such as PPAR-g serve as anti-

inflammatory regulators. PPAR-g activation inhibits pro-

inflammatory gene transcription and promotes lipid metabolism,

improving epithelial integrity and immune tolerance. Agonists

targeting PPAR-g have shown promise in reducing inflammation,

particularly in obesity-related immune disorders (27, 28). This

highlights the therapeutic potential of integrating metabolic

interventions into inflammatory disease management.
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