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Value of dynamic changes in
inflammatory biomarkers for
predicting intravenous
immunoglobulin resistance in
children with Kawasaki disease
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Qianzi Ge3, Mingyang Zhang1, Jing Li1, Sheng Zhao4,
Haitao Lv1* and Shuhui Wang1*

1Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China,
2Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University,
Suzhou, Jiangsu, China, 3Department of Emergency, Children’s Hospital of Soochow University,
Suzhou, Jiangsu, China, 4Department of Cardiology, Anhui Provincial Children’s Hospital, Hefei,
Anhui, China
Purpose: This study assessed the predictive value of dynamic laboratory

parameter changes before and after intravenous immunoglobulin (IVIG)

treatment for IVIG resistance in children with Kawasaki disease (KD).

Methods: Children with KD were stratified based on the occurrence of IVIG

resistance. Logistic regression analyses were conducted to identify independent

risk factors. The predictive performance of variables and their fractional changes

(FC) was evaluated through receiver operating characteristic (ROC) curve

analysis. Nonlinear associations between predictors and outcomes were

examined via restricted cubic spline (RCS) analysis.

Results: The Soochow cohort analyzed 1,796 children, with IVIG resistance

observed in 140 cases (7.8%). 636 children from the Anhui cohort were

included in external validation. Multivariate regression analysis identified pre-

treatment CLR and Hb, post-treatment CLR, LMR, NLR, Hb, and FCs in WBC, Hb,

NE%, and NE count as significant independent predictors of IVIG resistance (P <

0.05). ROC analysis demonstrated that WBC(FC) and NE count(FC) were the

strongest predictors of IVIG resistance, with AUCs of 0.7677 and 0.7818,

respectively, outperforming other parameters. The combined AUC of FC was

0.8307 in the Soochow cohort and 0.8564 in the validation cohort. RCS analysis

revealed significant nonlinear relationships between predictors and

IVIG resistance.
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Conclusion: Fractional changes in WBC and NE count were established as robust

predictors of IVIG resistance in KD. Future efforts should focus on developing

predictive models with thresholds and dynamic risk assessments at various time

points to enhance the accuracy of IVIG resistance prediction. Clinicians should

closely monitor children with IVIG resistance risk factors and reassess the risk

after first treatment.
KEYWORDS
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1 Introduction

Kawasaki disease (KD) is a febrile illness characterized by

inflammation of medium and small arteries, predominantly in

children below 5 years old (1). In developed countries, KD is the

primary cause of acquired heart disease in children, with coronary

artery lesions (CAL) being its most serious outcome (2). In

untreated cases, approximately 25% of children develop CAL,

which can progress to coronary aneurysms or sudden death in

severe cases (3). The etiology and precise pathogenesis of KD

remain unclear. The standard treatment of high-dose intravenous

immunoglobulin (IVIG) combined with oral aspirin significantly

lowers the risk of CAL. Nonetheless, 10%–20% of children exhibit a

lack of response to IVIG therapy, a condition known as IVIG

resistance. Previous research has established that IVIG resistance

markedly increases the risk of CAL development (4, 5).

Consequently, early identification of IVIG resistance in children

with KD is essential for timely, more aggressive intervention.

Several scoring systems have been developed in previous studies

(5–8) to evaluate the risk of IVIG resistance and CAL in children

with KD, incorporating various clinical features and laboratory

parameters such as age, fever duration, and blood biomarkers.

These systems include the Kobayashi (5), Egami (6), Formosa (7),

and Sano (8) scores, as well as the San Diego scoring system (9).

However, due to genetic and environmental differences, these

scoring systems have demonstrated strong predictive value only

in specific populations, with inconsistent performance across

diverse groups, limiting their generalizability (10, 11). In addition

to these established systems, certain inflammatory markers and

combinations of laboratory parameters, such as the neutrophil-to-

lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR),

have also been proposed as predictors of IVIG resistance (12, 13). A

recent meta-analysis, however, revealed that the sensitivity and

specificity of pre-treatment NLR and PLR in predicting IVIG

resistance only were 58% and 73%, respectively, with an AUC of

0.72 (14). A multicenter study by Liu et al. suggested that the C-

reactive protein (CRP) to albumin ratio (CAR) before treatment

could potentially predict IVIG resistance (15). However, a

systematic review reported that CAR’s sensitivity for predicting
02
IVIG resistance was 0.65, specificity was 0.71, and the AUC was

only 0.70 (16). Thus, while pre-treatment CAR may offer some

predictive value, it is not yet a definitive biomarker for diagnosing

IVIG resistance.

Despite significant advancements, the predictive power of these

biomarkers remains suboptimal. One major limitation is that most

studies have focused solely on pre-treatment laboratory parameters,

failing to account for dynamic changes in these indicators. In

reality, inflammatory markers fluctuate throughout the disease

process, and single-point measurements may not adequately

reflect the child’s inflammatory status or provide sufficient clinical

insight for prediction. Laboratory parameters that vary before and

after IVIG treatment may offer a more robust approach to

identifying children with risk of IVIG resistance. Consequently, a

large-scale observational study was conducted to assess the

predictive value of laboratory parameters and their changes

before and after treatment for IVIG resistance in children with

KD. It is hypothesized that these laboratory parameters serve as

high-risk factors for IVIG resistance and that their fluctuations

before and after IVIG treatment enhance predictive accuracy for

these outcomes.
2 Methods

2.1 Patients and study design

This was a two-center, retrospective cohort study conducted in

China. The data from Hospital of Soochow University and Anhui

Provincial Children’s Hospital were enrolled in study. In our study

design, the data from Hospital of Soochow University were

analyzed for risk indicators screening, and the data from Anhui

Provincial Children’s Hospital were employed as validation cohort

for indicators validation. The development cohort is used to explore

and establish the prediction model, while the validation cohort

independently tests the performance of the model to ensure the

reliability and stability of the results.

Data were retrospectively analyzed from pediatric patients

diagnosed with KD and hospitalized for treatment at the
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Children’s Hospital of Soochow University between January 1,

2020, and January 1, 2024. The validation cohort consists of

children diagnosed with Kawasaki disease who were hospitalized

at Anhui Provincial Children’s Hospital between December 1, 2021,

and December 1, 2023. The inclusion criteria: pediatric patients

diagnosed with complete or incomplete Kawasaki Disease

according to the American Heart Association (AHA) criteria (17).

Exclusion criteria included: (1) children who had received

corticosteroids, other immunosuppressants, or blood products

within one month prior to the initial IVIG treatment; (2) children

who received non-standard IVIG treatment; (3) children who had

received IVIG treatment prior to admission; (4) children with

serious complications; (5) recurrent cases of KD; (6) children who

were afebrile at enrollment or had confirmed infections; (7)

children with immune deficiencies, chromosomal abnormalities,

or other severe immunological disorders; (8) children discharged

during the treatment or had missing data. According to the above

inclusion and exclusion criteria, eligible children will be included in

the final analysis. This study was conducted in accordance with the
Frontiers in Immunology 03
ethical standards as laid down in the Declaration of Helsinki and its

later amendments or comparable ethical standards. The electronic

medical records of hospital were scrutinized retrospectively to

obtaining data of pediatric patients with Kawasaki. This study

was approved by the Ethics Committees of the Children’s

Hospital of Soochow University (approval no. 2025cs010) and the

Ethics Committee of Anhui Provincial Children’s Hospital

(approval no. EYLL-2021-002).The written informed consents for

participation in this study was provided by the participants’ legal

guardians/next of kin.
2.2 Definitions

IVIG resistance was defined as the persistence or recurrence of

fever ≥38.0°C lasting for more than 36 hours after IVIG treatment

(17). Patients with confirmed KD received a total IVIG dose of 2 g/

kg and 30–50 mg/kg/day oral aspirin upon hospitalization. Aspirin

dosage was tapered to 3–5 mg/kg/day once blood routine tests and
FIGURE 1

Patient selection and study flowchart. Based on the inclusion and exclusion criteria, 1,796 patients from the Soochow cohort were included in the
analysis, and 636 children from the Anhui cohort were used for external validation.
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CRP levels normalized, with reassessment occurring 3–4 days after

fever resolution. All hospitalized patients with KD were treated

following the standard specifications and guidelines established by

the AHA (17). Fever resolution was defined as a temperature

<37.5°C maintained for 24 hours. Coronary artery diameter

measurements via echocardiography were used to calculate the Z-

score using cardio Z software. CAL was defined as a Z-score ≥2 in

any coronary segment, including the left main coronary artery

(LMCA), left anterior descending artery (LAD), left circumflex

artery (LCX), and proximal or middle segments of the right

coronary artery (RCA) (18).
2.3 Data collection

Baseline characteristics included demographic data (age, sex,

and weight), clinical manifestations at admission (e.g., cervical

lymphadenitis, rash, extremity changes), and fever duration prior

to admission. The diagnoses of incomplete KD or IVIG resistance

were evaluated before and after the first IVIG treatment,

respectively. Echocardiography was performed within two days of

diagnosis and repeated prior to discharge and within four weeks

after treatment. If severe complications occurred, additional

echocardiograms were conducted as needed. Laboratory data

included white blood cell (WBC) count, neutrophil count (NE
Frontiers in Immunology 04
count), lymphocyte count (LY count), platelet count, hematocrit

(HCT), hemoglobin concentration, eosinophil percentage (EO%),

lymphocyte percentage (LY%), neutrophil percentage (NE%), and

CRP levels. The original laboratory parameters were obtained from

whole blood samples (2.0ml) collected via venipuncture. According

to the specifications in the manual, the parameters were measured

using a fully automated hematology analyzer (Sysmex, XN-351) and

a fully automated biochemical analyzer (Beckman Coulter,

AU5800). In addition, some inflammatory markers were

calculated: Neutrophil-to-Lymphocyte Ratio (NLR, NLR =

Neutrophil count/Lymphocyte count), Platelet-to-Lymphocyte

Ratio (PLR, Platelet count/Lymphocyte count), Lymphocyte-to-

Monocyte Ratio (LMR, Lymphocyte count/Monocyte count), C-

reactive Protein-to-Lymphocyte Ratio (CLR, C-reactive protein/

Lymphocyte count), and Neutrophil-to-Platelet Ratio (NPR,

Neutrophil count/Platelet count). The systemic immune

inflammation index (SII) was calculated using the formula: SII =

platelet count × (NE count/LY count). All laboratory data of

hospitalized children were collected pre- and post-IVIG

treatment, with fractional changes (FC) calculated for each

variable. FC was calculated using the formula: FC = (Y–X)/X,

where X and Y denote values before and within 24 hours after

IVIG treatment, respectively.
2.4 Statistical analyses

Normally distributed data are presented as mean ± standard

deviation, with group differences assessed using t-tests. Skewed data

are presented as the median (interquartile range), and differences

between groups were analyzed with the nonparametric rank-sum

test. Categorical data are described by frequency, and differences

between groups were assessed using the c2 test or Fisher’s exact test.
The variance inflation factor (VIF) was used to assess

multicollinearity, and logistic regression (univariate and

multivariate) analyses were performed to identify risk variables.

Receiver Operating Characteristic (ROC) curves were generated to

determine the optimal threshold of significant parameters, with the

Area Under the Curve (AUC) calculated to evaluate the predictive

capacity of risk factors. Multivariable-adjusted Restricted Cubic

Spline (RCS) regression was applied to examine nonlinear

associations between predictive variables and outcomes. The

quantity of knots was established according to the minimal

Akaike Information Criterion (AIC). Variables were regrouped

according to inflection points, and outcome risk differences

between subgroups were assessed.

The children in the Soochow cohort were randomly divided

into a training set and an internal validation set at a ratio of 7:3. The

Anhui cohort was used as the external validation set, and the

variables with fractional change were selected as risk factors to

establish a nomogram for predicting IVIG resistance in Kawasaki

disease. The ROC curve of the model in the training set and the

validation set was drawn, and the AUC was calculated to evaluate

the predictive ability of the model. Bootstrap method was used to

draw the correction curve of 1000 resampling times to evaluate the
TABLE 1 Comparison of features and clinical manifestations between
groups.

Variables
IVIG-

responsive
(n=1656)

IVIG-
resistant
(n=140)

p-
value

Demographic characteristics

Age in months, median
(range)

22(12-38) 23.5(12-41) 0.705

Male, n (%) 972 (58.7) 84 (60.0) 0.832

Weight, kg (range) 12(10-15) 12(10-15.5) 0.189

Clinical characteristics

Cervical lymphadenitis, n
(%)

1477 (89.2) 128 (91.4) 0.495

Conjunctival injection, n
(%)

1484 (89.6) 121 (86.4) 0.303

Oral mucosal changes, n
(%)

1609 (97.2) 132 (94.3) 0.07

Skin rash, n (%) 1227 (74.1) 113 (80.7) 0.104

Extremity changes, n (%) 800 (48.3) 80 (57.1) 0.055

Complete KD, n (%) 1399 (84.5) 119 (85.0) 0.967

CAL, n (%) 372 (22.5) 75 (53.6) 0.004

Days of fever before
admission median
(range)

7 (6-8) 9 (7-10) <0.05
Data are presented as median (range) or number (percentage).
IVIG, Intravenous immunoglobulin; CAL, Coronary artery lesions; KD, Kawasaki disease.
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consistency of prediction probability and observation results, and

decision curve analysis (DCA) was used to evaluate the clinical

application value of the model. In addition, the nomogram also was

developed as a web risk calculation tool for clinical application. A P

value of <0.05 indicates a statistically significant difference. All

analyses were performed using R (version 4.4.3).
3 Results

3.1 Baseline characteristics

Children diagnosed with KD between January 2020 and January

2024 were screened based on inclusion and exclusion criteria. A

total of 1,845 children were identified, including 6 who received

non-standard IVIG treatment, 14 who had prior corticosteroid use

before initial IVIG administration, 6 who were discharged during

treatment, 10 who received their first IVIG dose before admission, 3

with severe non-cardiovascular complications, and 10 who were

readmitted for KD. None of the children were treated with

infliximab, cyclosporine, anavalin, cyclophosphamide, or plasma

exchange during hospitalization. Ultimately, 1,796 children were

included in the final analysis, consisting of 740 females (41.2%) and
Frontiers in Immunology 05
1,056 males (58.8%). The median age was 22 months (range 12–38

months), and median fever duration was 7 days (range 6–8 days)

prior to admission. Among them, 140 (7.8%) presented with IVIG-

resistant. In addition, among the 658 children in the external

validation cohort, 3 were discharged during treatment, 7 had

received IVIG treatment prior to admission, and 12 had missing

data, and thus were excluded. The detailed screening process is

illustrated in Figure 1.

Based on treatment response, children were categorized into

IVIG-responsive/IVIG-resistant groups. Baseline characteristics

between groups were compared (Table 1). Except for the presence

of CAL (P = 0.004) and the duration of fever prior to admission (P <

0.05), there were no significant differences in demographic or

clinical characteristics between the IVIG-responsive and IVIG-

resistant groups (P > 0.05).
3.2 Univariate and multivariate logistic
analysis of predictive variables for IVIG
resistance

Compared to the IVIG-responsive group, the IVIG-resistant

group showed higher levels of CRP, NE%, NLR, SII, CLR, NPR, and
TABLE 2 Laboratory values between groups before and after IVIG.

Characteristics

Pre-IVIG

P- value

Post-IVIG

P- value
IVIG-resistant

IVIG-
responsive

IVIG-resistant
IVIG-

responsive

WBC, (x109/L) 13.86(10.15, 18.6) 14.5(11.37, 18.55) 0.221
14.89

(9.43, 20.38)
8.61 (6.78,11.19) < 0.001

CRP (mg/L) 87.77(47.42,144.13) 65.4(38.12, 101.98) < 0.001 11.8(3.08, 26.15) 6.7(3.01, 14.29) < 0.001

HB (g/L) 111(101, 117) 111(105, 118) 0.117 104(95, 114) 110(103, 118) < 0.001

EO, % 0.17(0.03, 0.41) 0.2(0.07, 0.45) 0.03 0.12(0.06, 0.26) 0.25(0.14, 0.42) < 0.001

HCT 0.33(0.3, 0.35) 0.34(0.32, 0.36) 0.028 0.32(0.29, 0.35) 0.34(0.31, 0.36) < 0.001

NE, % 73.4(57.6, 83.75) 65.95(54.68, 76.3) < 0.001 49.4(35.43, 59.2) 32.3(23, 44.12) < 0.001

NE count, (x109/L) 9.77(6.28, 13.03) 9.27(6.65, 12.79) 0.559 7.17(4.34, 11.22) 2.63(1.74, 4.29) < 0.001

LY, % 18.75(10.75, 30.77) 24.7(16.4, 33.8) < 0.001 40.05(31, 53.05) 55.3(43.9, 64.3) < 0.001

LY count,(x109/L) 2.62(1.47, 4.06) 3.45(2.22, 4.98) < 0.001 5.58(3.9, 8.26) 4.53(3.31, 6.18) < 0.001

Platelet count, (x109/L) 295(234, 384) 338(274, 422) < 0.001 520(406.5, 600) 517(407, 591) 0.262

NLR 3.66(1.84, 7.46) 2.66(1.6, 4.62) < 0.001 1.23(0.66, 1.92) 0.58(0.36, 1) < 0.001

SII
1125.78 (603.04,

2164.06)
920.74 (529.28,

1553.1)
0.011

292.66 (170.54,
501.07)

620.91 (326.15,
999.07)

< 0.001

LMR 16.68 (6.3, 61.55) 16.37 (7.81, 47.04) 0.837 47.05 (16.51, 108.35) 17.92(10.58, 32.62) < 0.001

CLR 33.79 (13.24, 84.56) 18.57 (8.78, 37.35) < 0.001 1.75 (0.49, 6.7) 1.52 (0.58, 3.44) 0.151

NPR 0.03 (0.02, 0.05) 0.03 (0.02, 0.04) 0.004 0.01 (0.01, 0.02) 0 (0, 0.01) < 0.001

PLR 121.06(75.18, 195.15) 101.92 (69.44, 147.32) 0.003 106.96 (82.21, 145.74) 86.6 (65.15, 127.37) < 0.001
IVIG, Intravenous immunoglobulin; KD, Kawasaki disease; WBC, White blood cell count; CRP, C-reactive protein; HB, Hemoglobin; EO, Eosinophil percentage; HCT, Hematocrit; NE,
Neutrophil percentage; NE count, Neutrophil count; LY, Lymphocyte percentage; LY count, Lymphocyte count; NLR, Neutrophil-to-lymphocyte ratio; SII, Systemic immune-inflammation
index; LMR, Lymphocyte-to-monocyte ratio; CLR, C-reactive protein-to-lymphocyte ratio; NPR, Neutrophil-to-platelet ratio; PLR, Platelet-to-lymphocyte ratio.
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PLR levels, and lower levels of EO%, HCT, LY%, LY count, and

platelet count before IVIG treatment(P < 0.05) (Table 2). Post-IVIG

treatment, CRP, NE%, NLR, NPR, and PLR remained elevated in

the IVIG-resistant group, while Hb, EO%, HCT, NE%, NE count,

and LY% were lower compared to the IVIG-responsive group (P <

0.05). Additionally, WBC, LY count, and LMR levels were also

elevated in the IVIG-resistant group (P < 0.05).

Univariate regression analysis identified statistically significant

indicators before IVIG treatment, including CLR, PLR, PLT, LY

count, LY%, NE%, Hb, and EO% (P < 0.05). Post-IVIG treatment,

CLR, LMR, SII, PLR, NLR, PLT, HCT, and Hb were found to be

statistically significant (P < 0.05). In addition, we also analyzed the

fractional changes of variables before and after IVIG treatment. The

results showed that fractional change of WBC, Hb, CRP, NE%, NE

count, PLR and LMR had significant differences between the IVIG

resistant group and the IVIG responsive group. These variables

were subsequently included in multivariate logistic regression

analysis, followed by a collinearity test for all variables. After

adjusting for confounding factors such as age, sex, and body

weight, multivariate analysis demonstrated that pre-treatment

CLR and Hb, post-treatment CLR, LMR, NLR, and Hb, as well as

fractional changes in WBC, Hb, NE%, and NE count, were

significant independent predictors of IVIG resistance (P < 0.05).

Collinearity analysis confirmed that the VIF for all variables was less

than 5, indicating no significant collinearity among them

(Supplementary Table 1).
Frontiers in Immunology 06
3.3 Predictive value for IVIG resistance

To assess the value of risk factors identified through

multivariate regression analysis in predicting IVIG resistance,

ROC curves were plotted for these factors before and after IVIG

treatment, as well as their fractional changes (Table 3, Figure 2).

Figure 2A presents the ROC curve for pre-IVIG risk factors

predicting IVIG resistance. The optimal cutoff value for CLR

before IVIG is 50.26, yielding a sensitivity of 41.43% and a

specificity of 84.54% (AUC = 0.63; 95% CI, 0.581–0.688). The

combined AUC of the risk factors before IVIG treatment was 0.643,

with a sensitivity of 42.14% and a specificity of 83.45%. Figure 2B

shows the ROC curve for post-IVIG risk factors predicting IVIG

resistance. The optimal cutoff for LMR after IVIG is 34.789, with a

sensitivity of 60.71% and a specificity of 76.93% (AUC = 0.691; 95%

CI, 0.638–0.743). Similarly, the optimal cutoff for Hb after IVIG is

104.5, demonstrating a sensitivity of 89.55% and a specificity of 30%

(AUC = 0.59; 95% CI, 0.583–0.685). The combined AUC of the risk

factors after IVIG treatment was 0.7762, with a sensitivity of 75.71%

and a specificity of 71.25%. Figure 2C displays the ROC curves for

the FC predictive variables. WBC(FC) exhibited a threshold of

-0.151, with a sensitivity of 65.00% and a specificity of 75.85%

(AUC = 0.7677; 95% CI, 0.7267–0.8088), indicating strong

predictive performance. NE%(FC) demonstrated a threshold of

-0.419, achieving a sensitivity of 74.29% and a specificity of

63.22% (AUC = 0.6929; 95% CI, 0.6489–0.737), while NE count
TABLE 3 ROC analysis of predictor variables for IVIG resistance.

Variable Sensitivity Specificity AUC 95% CI Lower 95% CI Upper

Before IVIG

CLR 0.414 0.845 0.634 0.581 0.688

HB 0.785 0.321 0.54 0.487 0.593

Combined (Before) 0.421 0.835 0.643 0.591 0.696

After IVIG

CLR 0.279 0.902 0.537 0.477 0.596

LMR 0.607 0.769 0.691 0.638 0.743

HB 0.896 0.3 0.592 0.538 0.647

NLR 0.774 0.414 0.6 0.549 0.648

Combined (After) 0.757 0.713 0.776 0.736 0.817

Fractional change

WBC 0.65 0.759 0.768 0.727 0.809

NE% 0.743 0.632 0.693 0.649 0.737

NE count 0.764 0.71 0.782 0.743 0.820

HB 0.713 0.507 0.634 0.583 0.685

Combined (FC) 0.729 0.773 0.831 0.800 0.864
IVIG, Intravenous immunoglobulin; HB, Hemoglobin; CLR, C-reactive protein-to-lymphocyte ratio; LMR, Lymphocyte-to-monocyte ratio; NLR, Neutrophil-to-lymphocyte ratio; WBC, White
blood cell count; NE%, Neutrophil percentage; NE count, Neutrophil count; AUC, area under the curve; CI, confidence interval; FC, fractional changes.
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(FC) showed the strongest predictive capacity for IVIG resistance,

with a threshold of -0.5505, sensitivity of 76.43%, and specificity of

71.01% (AUC = 0.7818; 95% CI, 0.7432–0.8204). The combined

AUC of FC predictive variables was 0.8307, with a sensitivity of

72.86% and a specificity of 77.29%. In the external cohort, we

validated the combined predictive ability of risk factors before and

after IVIG treatment, as well as fractional changes (Figure 2D). For

the risk factors prior to IVIG treatment, the combined AUC in the

validation cohort was 0.6848, with a sensitivity of 65.48% and a

specificity of 66.89%. The combined AUC of the risk factors after

IVIG treatment was 0.7412, with a sensitivity of 65.48% and a

specificity of 74.39%. For the FC predictive variables, the combined

AUC reached 0.8564, showing a sensitivity of 75.0% and a

specificity of 83.45%. Overall, the combined predictive value of

the three types of variables (Pre-, Post, and FC) is generally

consistent with the above results.
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3.4 The detection of nonlinear
relationships

To further explore the relationships between clinical indicators

and IVIG resistance in KD, the aforementioned predictive variables

were analyzed using RCS analysis. Notably, all indicators exhibited

significant nonlinear associations with IVIG resistance risk (P <

0.001) (Figure 3, Supplementary Figure 1). Figures 3A–C shows the

nonlinear RCS curve between FC variables and IVIG resistance risk.

Among these, the OR value of NE count (FC) (Figure 3B) is greater

than 1 at values greater than -0.69, indicating that insufficient

decrease or even further increase in neutrophil count was

significantly associated with a higher risk of IVIG resistance.

Similarly, WBC (FC) (Figure 3C) showed a sharp increase in OR

when value >-0.373. NE% (FC) (Figure 3A) also showed a

significant nonlinear correlation. When NE% (FC)>-0.479, it
FIGURE 2

ROC curves for predicting IVIG resistance. (A) ROC analysis for pre-treatment variables, including CLR, Hb, and their combined, in predicting IVIG
resistance. (B) ROC analysis for post-treatment variables, including CLR, LMR, Hb, NLR, and their combined, in predicting IVIG resistance. (C) ROC
analysis for the fractional changes in WBC, NE%, NE count, and Hb, as well as their combined, in predicting IVIG resistance. (D) ROC analysis of
validation cohort for predicting IVIG resistance using combined variables (before, after, and FC). CLR, C-reactive protein-to-lymphocyte ratio; NE,
neutrophil; WBC, white blood cell count; PLT, platelet count; Hb, hemoglobin; LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil-to-lymphocyte
ratio; IVIG, intravenous immunoglobulin.
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indicates that the correlation between insufficient decrease or

continued increase in NE% and IVIG resistance is more

significant. Post-treatment variables also exhibited notable

nonlinear relationships with IVIG resistance (Figures 3D, E). Hb

(post-IVIG) showed an inverse relationship, with resistance risk

significantly increasing when Hb levels dropped below 111.16 g/L,

suggesting it as a potential marker for IVIG resistance (Figure 3D).

LMR (post-IVIG) demonstrated that OR increased gradually as

LMR exceeded the threshold of 18.5, with a decelerated rise beyond

150, though the risk continued to increase (Figure 3E). Figure 3F

displays the RCS curve for pre-treatment CLR in predicting IVIG

resistance. The curve indicated a significant increase in OR when

CLR exceeded 19.106, suggesting that elevated CLR before

treatment is associated with IVIG resistance, which aligns with its

previous ROC performance. Furthermore, variables were

categorized based on their inflection points derived from the RCS

analysis. As shown in Table 4, multivariate logistic regression

revealed significant differences in the risk of IVIG resistance

across the subgroups of each variable (P < 0.001).
3.5 Nomogram construction and validation

Based on the results of multivariate logistic regression analysis,

a nomogram model containing four variables (WBC(FC), NE%

(FC), NE count(FC), HB(FC)) was constructed to predict the risk of

IVIG resistance in KD. The predictive ability of each variable is

shown in Figure 4A, and corresponding scores are assigned. The
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total score is obtained by adding the scores of all variables, and the

prediction probability is derived based on the position of the total

score relative to the baseline reference value. Furthermore, in order

to facilitate the use of clinicians, this nomogram has been developed

into a web-based risk calculator as shown in Figure 4B (https://ivig-

resistance-prediction-model-fractional-change.shinyapps.io/

Kawasaki_nomogram/). The AUC values for the internal and

external validation sets were 0.813 (95% CI: 0.754–0.872) and

0.824 (95% CI: 0.779–0.869), respectively (Figures 5A, B),

indicating good predictive accuracy. This robust performance was

further corroborated by the sensitivity and specificity metrics, with

the internal set showing a sensitivity of 66.7% and a specificity of

84.6%, while the external set demonstrated a more balanced profile

with a sensitivity of 79.8% and a specificity of 75.0%. The calibration

curves demonstrated a good agreement between the actual and

predicted values of the model (Figures 5C, D), suggesting that the

model also exhibits good calibration. In addition, the DCA curve

shows the significant positive net benefit of the prediction model,

indicating that it has good clinical value in predicting IVIG

resistance (Figures 5E, F).

Besides, we compared our model with previous IVIG resistance

scoring systems. Supplementary Table 2 presents the analysis results

of the Egami, Sano, Kobayashi, and Formosa scoring systems in our

external validation set. The Egami score system, which exhibits the

best performance, has a sensitivity of 50.5%, specificity of 83.2%,

and AUC of 0.667. However, compared with these classic prediction

models, it can be found that the model in this study has more

balanced sensitivity, specificity, and higher AUC values.
FIGURE 3

RCS analysis of predictive variables for IVIG resistance. (A) Correlation of NE count (FC) with IVIG resistance. (B) Correlation of WBC (FC) with IVIG
resistance. (C) Correlation of NE% (FC) with IVIG resistance. (D) Correlation of Hb (Post-IVIG) with IVIG resistance. (E) Correlation of LMR (Post-IVIG)
with IVIG resistance. (F) Correlation of CLR (Pre-IVIG) with IVIG resistance. NE count, neutrophil count; WBC, white blood cell count; NE%,
neutrophil percentage; Hb, hemoglobin; LMR, lymphocyte-to-monocyte ratio; CLR, C-reactive protein-to-lymphocyte ratio; Pre-IVIG, before
intravenous immunoglobulin treatment; Post-IVIG, after intravenous immunoglobulin treatment; FC, fractional changes; IVIG, intravenous
immunoglobulin.
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4 Discussion

The immunopathogenesis and regulatory mechanisms of

inflammation in KD remain unclear. Previous studies have

suggested that the occurrences of IVIG resistance in KD were

associated with the intensity of the inflammatory response (19–

21). Similarly, the studies of Cho KH et al. (22) also reported the

correlation between fractional changes in some inflammatory

indicators and IVIG resistance. However, these fractional changes

with observed correlations have not yet been applied to KD-related

predictive models. Even its predictive value for IVIG resistance in

KD children also has not been evaluated. Therefore, this study

primarily investigates the predictive value of fluctuations in

inflammatory parameters before and after IVIG treatment for

IVIG resistance in children with KD. Our findings underscore the

variability and complexity of immune inflammation in KD,

emphasizing the importance of dynamic evaluation to enhance

the accuracy of clinical outcome predictions. To our knowledge, this

is the first study to demonstrate that fractional changes in leukocyte

counts, particularly the NE count, before and after IVIG treatment

exhibit strong predictive potential for IVIG resistance.
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Neutrophils contribute to host defense mechanisms through

processes such as chemotaxis, activation, degranulation, and

oxidative burst (23). However, in inflammatory diseases,

neutrophil functions can become excessively activated or

dysregulated, leading to tissue damage and pathological

inflammation. Recent research also highlights the significant role

of neutrophil-specific inflammatory subsets and neutrophil

extracellular traps (NETs) in KD progression (24). Consistent

with prior studies, our results also show that WBC and

neutrophils play an important role in the pathogenesis of

Kawasaki disease, particularly their predictive value for IVIG

resistance (25, 26). A recent meta-analysis of 114,000 children

with KD across 14 studies confirmed the significant correlation

between neutrophils and IVIG resistance prediction (27).

In contrast to these studies, our findings emphasize the

remarkable predictive capacity of fractional changes in WBC,

particularly in neutrophil counts, before and after treatment for

IVIG resistance. For instance, Guo et al. reported the AUC value of

WBC before treatment in predicting IVIG resistance was only 0.59

(28). In contrast, the AUC value for WBC (FC) reached 0.77 in our

study, similar to the predictive ability of the model constructed in

their study (AUC = 0.758). This significant difference may arise

from the fact that prior studies primarily relied on single time-point

measurements of clinical variables, which may not adequately

capture the dynamic nature of KD. In our study, WBC (FC) is

derived from two separate measurements, reflecting the disease

characteristics at two distinct time points. Thus, when constructing

prediction models for KD in future studies, fractional change

should be incorporated into clinical variables to improve the

predictive accuracy for IVIG resistance.

CLR reflects systemic inflammation, with elevated CRP

indicating an inflammatory state, while lymphocyte suppression

suggests immune dysfunction (29). CLR has previously been

identified as a prognostic biomarker in acute pancreatitis and as a

diagnostic and prognostic tool for dilated cardiomyopathy (30, 31).

Likewise, LMR is the ratio of lymphocytes to monocytes, where a

decrease in lymphocytes typically indicates an immunosuppressive

state, while an increase in monocytes reflects persistent

inflammatory activation (32). Over recent years, LMR has

demonstrated potential as a effective biomarker for the diagnosis

and prognosis of several malignancies and infectious diseases (32,

33). Research byWu et al. and Xu et al. have demonstrated CLR and

LMR as reliable biomarkers for differentiating KD from other febrile

illnesses (34, 35). Building on this foundation, the current study

evaluates their predictive value in KD. Multivariate logistic

regression identified pre-treatment CLR and post-treatment LMR

as independent predictors of IVIG resistance, with ROC analysis

confirming their predictive potential. Although the underlying

immunological mechanisms remain unclear, CLR and LMR, as

cost-effective and easily accessible biomarkers, warrant further

investigation in KD.

This study is the first to identify pre-treatment CLR and post-

treatment LMR as predictors of IVIG resistance in KD. However,

their predictive performance was not superior to WBC (FC) and NE
TABLE 4 Multivariate logistic regression regrouped according to the
inflection points of variables in the risk of IVIG resistance.

Inflection point OR (95% CI) P–value

CLR(Pre-IVIG)

< 19.11 1 Reference

≥ 19.11 2.11 (1.46, 3.09) <0.001

NE(FC)

< -0.48 1 Reference

≥ -0.48 2.39 (1.48, 3.95) <0.001

NE count(FC)

< -0.69 1 Reference

≥ -0.69 2.49 (1.30, 4.87) <0.001

WBC(FC)

< -0.37 1 Reference

≥ -0.37 2.56 (1.50, 4.51) <0.001

HB(Post-IVIG)

< 111.16 1 Reference

≥ 111.16 0.53 (0.35, 0.77) <0.001

LMR(Post-IVIG)

< 18.50 1 Reference

≥ 18.50 2.50 (1.70, 3.74) <0.001
IVIG, Intravenous immunoglobulin; Pre-IVIG, Before intravenous immunoglobulin
treatment; Post-IVIG, After intravenous immunoglobulin treatment; CLR, C-reactive
protein-to-lymphocyte ratio; NE, Neutrophil percentage; NE count, Neutrophil count;
WBC, White blood cell count; HB, Hemoglobin; LMR, Lymphocyte-to-monocyte ratio; FC,
fractional changes.
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count (FC). Numerous prior studies have explored molecular and

immunological markers for predicting IVIG resistance in KD, yet

their predictive performance has often been inconsistent or

unsatisfactory, limiting their clinical applicability (12, 13, 28). In

addition to genetic and environmental factors, the reliance on cross-

sectional indicators measured at a single time point remains a

significant limitation. Given the dynamic nature of inflammatory

indicators in KD, a single measurement may fail to accurately reflect

the child’s immune status or capture sufficient clinical features to

predict IVIG resistance. This limitation was also noted in Pang

et al.’s study (36), but their conclusion regarding the predictive
Frontiers in Immunology 10
value of fractional changes in parameters differed from ours. The

discrepancies could be attributed to their smaller sample size of 153

cases, which may have reduced statistical power and increased the

influence of random variability, potentially leading to

overestimation or underestimation of the true predictive

performance (AUC). Moreover, consistent with previous studies,

we also demonstrated a significant nonlinear relationship between

clinical parameters and risk of IVIG resistance (37, 38). Such non-

linear associations further complicate prediction efforts based on

single-time point measurements. As illustrated in Figure 3B, even

parameters with robust predictive capabilities may yield ineffective
FIGURE 4

The nomogram for predicting the risk of IVIG resistance in children with Kawasaki disease. (A) Composition of predictive nomogram. WBC(FC),
fractional change of white blood cell; NE%(FC), fractional change of neutrophil%; NE count(FC), fractional change of neutrophil count; HB(FC),
fractional change of hemoglobin concentration. When using a nomograph, the corresponding score is extracted from each risk factor. The total
score is obtained by adding the scores of all variables, and the prediction probability is derived based on the position of the total score relative to the
baseline reference value. (B) Web risk prediction calculator based on predictive nomogram.
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or opposite results before reaching a specific threshold or inflection

point, thus partly explaining the inconsistent predictive

performance of various biomarkers or models across children

with KD.
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The non - linear trends and inflection points observed in the NLR

and hemoglobin fractional change following IVIG administration

have significant implications for clinical decision - making and their

potential inclusion in risk stratification frameworks.
FIGURE 5

Performance evaluation of nomogram model. (A) ROC curve of the prediction model in internal validation set; (B) ROC curve of the prediction
model in external validation set. (C) The calibration curve of prediction model in internal validation set. (D) The calibration curve of prediction model
in external validation set. (E) Decision curve analysis for predicting IVIG resistance in internal validation set. (F) Decision curve analysis for predicting
IVIG resistance in external validation set.
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Regarding the non - linear trend of NLR, an initial increase

followed by a decrease or vice - versa may not be a simple linear

response to IVIG treatment. For instance, an early rise in NLR could

indicate an initial pro - inflammatory state triggered by the immune

modulation induced by IVIG. This might prompt clinicians to

closely monitor the patient for signs of worsening inflammation,

such as increased fever or organ dysfunction. If the NLR then shows

a non - linear decline, it could suggest a successful anti -

inflammatory effect of IVIG over time.

The inflection points in the hemoglobin fractional change also

carry clinical weight. A sharp decline in hemoglobin (FC) could be a

critical event associated with IVIG resistance or hemolysis, which can

be an adverse reaction to IVIG in some cases. Clinicians should be

alerted to this inflection point and immediately investigate the cause.

Furthermore, these non-linear trends and inflection points can be

incorporated into existing or new frameworks in terms of risk

stratification. For instance, patients with a more pronounced non-

linear increase in NLR or a very sharp decline in hemoglobin FC

could be classified as high-risk. This high-risk classification would

then guide more intensive monitoring, such as more frequent

laboratory tests and clinical assessments, and potentially more

aggressive treatment strategies. By integrating these dynamic

biomarkers into risk stratification, clinicians can better tailor their

management approaches to individual patients, optimizing treatment

outcomes and resource utilization. Therefore, it is essential to develop

prediction models with appropriate thresholds and dynamic risk

assessment in the future. Establishing appropriate thresholds can

enhance the predictive performance of model parameters.

Additionally, dynamic evaluation at multiple time points not only

offers more precise guidance for clinicians in crafting individualized

treatment strategies for patients with KD but also enables real-time

monitoring of patients’ inflammatory status, thereby optimizing the

timing of interventions for IVIG-resistant patients. For clinicians,

more attention should be paid to those children with risk factors of

IVIG resistance, and the risk of IVIG resistance should be evaluated

again after treatment. Notably, fractional changes in predictors before

and after treatment may offer superior predictive value for

IVIG resistance.

This study also has several limitations. First, as a retrospective

study, the findings may be subject to selection bias. Second,

although multivariate logistic regression models were used to

control confounding factors, our results may still be influenced by

unmeasured or unknown environmental variables. Third, it’s

important to note that our study is exclusively based on the

Chinese population. Given the well - documented ethnic and

geographical differences in disease prevalence, manifestations, and

genetic susceptibilities, there is significant uncertainty regarding the

applicability of our findings in non - Asian populations. Different

ethnic groups may have distinct genetic backgrounds, lifestyles, and

environmental exposures, all of which can potentially impact the

development, progression, and characteristics of the disease under

investigation. As a result, the conclusions drawn from our Chinese -

centric study may not be directly generalizable to other racial or

ethnic groups, and further research in diverse populations is

warranted to validate and extend our results. Fourth, genetic
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variability among individuals is unavoidable, and the values of the

same blood parameters may fluctuate differently in different

children. Future studies could consider carrying out prospective

cohort studies and identify the potential multiple subtypes of

children with Kawasaki disease through trajectory modeling. In

this study, we used Z ≥ 2 as the cut-off value to define CAL.

However, the 2017 AHA guidelines defined aneurysms (CAA) as

having a Z score of ≥fore and further classified them into small,

medium, and large categories based on size. In this study, by

combining Z ≥2.0 and Znd.0 into the category of CAL, we must

admit that the reported incidence of CAL in our study may have

been overestimated due to the inclusion of minor and often

transient expansions.
5 Conclusion

In conclusion, this study underscores the importance of

dynamic evaluation of inflammatory biomarkers in predicting

IVIG resistance. Specifically, fractional changes in WBC and

neutrophil counts before and after treatment were identified as

independent risk factors and effective predictors. Furthermore, the

observed nonlinear relationship between biomarkers and IVIG

resistance underscores the necessity of establishing appropriate

thresholds in evaluations. In the future, it is essential to develop a

prediction model with accurate thresholds and dynamic risk

assessments to improve the prediction ability of IVIG resistance.
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SUPPLEMENTARY FIGURE 1

RCS analysis of additional predictive variables for IVIG resistance.

(A) Correlation of Hb (Pre-IVIG) with IVIG resistance. (B) Correlation of CLR
(Post-IVIG) with IVIG resistance. (C) Correlation of NLR (Post-IVIG) with IVIG

resistance. (D) Correlation of Hb (FC) with IVIG resistance. Hb, hemoglobin;

CLR, C-reactive protein-to-lymphocyte ratio; NLR, neutrophil-to-
lymphocyte ratio; Pre-IVIG, before intravenous immunoglobulin treatment;

Post-IVIG, after intravenous immunoglobulin treatment; FC, fractional
changes; IVIG, intravenous immunoglobulin.
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