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Francisella tularensis, the causative agent of tularemia, is a Gram-negative

bacterium that infects neutrophils (polymorphonuclear leukocytes, PMNs) and

macrophages. Previous studies by our group and others demonstrate that F.

tularensis inhibits the respiratory burst, escapes the phagosome, replicates in the

cytosol, and significantly prolongs human neutrophil lifespan. However, the fate

of infected neutrophils and their bacterial cargo are unknown. We now

demonstrate that F. tularensis-infected neutrophils (iPMNs) interacted more

efficiently with primary human monocyte-derived macrophages (MDMs) than

aged, control PMNs despite their viabil ity and paucity of surface

phosphatidylserine and identified an important role for serum and C1q in this

process. Uptake by this mechanism supported bacterial growth in MDMs,

indicating that iPMNs can act as Trojan horses to spread infection.

Efferocytosis of apoptotic cells favors repolarization of macrophages from a

proinflammatory (M1) phenotype to a pro-resolution (M2) phenotype. In marked

contrast, the effects of iPMN were distinct, as these cells elicited an atypical MDM

phenotype notable for downregulation of both M1 and M2 surface markers that

was accompanied by sustained expression of indoleamine 2,3 dioxygenase and

suppressor of cytokine signaling 1 as well as low proinflammatory cytokine

secretion. Altogether, our data advance understanding of neutrophil-

macrophage interactions and reveal a potential new mechanism for F.

tularensis dissemination and immunomodulation within a host.
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1 Introduction

The innate immune system serves to identify, contain, and

eliminate microbes while also controlling the intensity and

duration of the inflammatory response (1). Neutrophils

(polymorphonuclear leukocytes, PMNs) are the most abundant

leukocytes in humans, migrate rapidly from the bloodstream to

sites of infection, and in this locale kill invading microbes via

phagocytosis, degranulation and toxic oxidant production. These

cells are turned over at a rate of 1011 cells/day in humans via a

tightly regulated constitutive apoptosis program that is typically

accelerated following phagocytosis of bacteria or opsonized

particles (2, 3). Efferocytosis is a process whereby macrophages

rapidly and efficiently engulf and degrade apoptotic cells that is

crucial for two primary reasons (4). First, it prevents accumulation of

cellular debris and the release of proinflammatory host and microbe

components from dying cells that can damage surrounding tissue or

exacerbate autoimmune diseases, such as cystic fibrosis and systemic

lupus erythematosus. Second, it reprograms macrophages from a

proinflammatory state to an anti-inflammatory phenotype that favors

resolution and tissue repair and is characterized by anti-inflammatory

cytokine secretion (5). Efferocytosis is rapid, efficient, and associated

with accumulation of “eat me” markers such as phosphatidylserine

(PS) and downregulation of “don’t eat me” markers such as CD31

and CD47 on apoptotic cell surfaces. Despite PS being well known as

the key mediator in efferocytosis in most instances, uptake of

apoptotic neutrophils by human monocyte-derived macrophages

(MDMs) is generally PS-independent and roles for integrins,

complement C1q and mannose-binding lectin (MBL), CD91, and/

or calreticulin (CRT) have been defined (6–15).

Francisella tularensis, is a Gram-negative, facultative

intracellular bacterium that is found throughout the Northern

Hemisphere and causes tularemia, a potentially fatal zoonotic

disease. Two subspecies of this bacterium, F. tularensis subspecies

tularensis (type A) and F. tularensis subspecies holarctica (type B),

account for nearly all human infections with this organism (16).

Humans can acquire tularemia via the bite of an infected arthropod

vector, direct contact with an infected animal, ingestion of infected

meat or contaminated water, or inhalation of aerosolized bacteria

(17, 18). F. tularensis infects and grows within several cell types in

vivo and in vitro including macrophages, neutrophils and epithelial

cells (17, 19, 20). Critical to virulence are an atypical LPS that does

not signal through Toll-like receptor 4 (TLR4), a surface capsule

that confers resistance to complement-mediated lysis, disruption of

phagocyte ROS production and phagosome maturation, and a type

VI secretion system (T6SS) that is essential for phagosome escape

and subsequent bacterial replication in host cell cytosol (21–26).

Particularly relevant here, F. tularensis significantly delays

neutrophil apoptosis via changes in neutrophil gene expression

that alter the abundance of apoptosis regulatory factors, sustain

mitochondrial integrity and reprogram metabolism (27–30). It is

established that delayed apoptosis is a hallmark of an ineffective and

dysregulated immune response that undermines host defense and

exacerbates disease (4, 31, 32), and although it is clear that PMN

lifespan is prolonged, the fate of infected neutrophils is unknown.
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Thus, we undertook this study to elucidate the fate of F. tularensis-

infected neutrophils and their bacterial cargo and hypothesized that

diminished apoptosis would undermine infected PMN clearance.
2 Results

2.1 Interaction of F. tularensis-infected
PMNs with human macrophages is
enhanced

Our published data demonstrate that F. tularensis significantly

delays human neutrophil apoptosis, as indicated by significantly

diminished and delayed PS externalization and nuclear condensation,

sustained expression of anti-apoptosis mediators, and delayed

processing and activation of caspases-8, 9 and 3 (27–29, 33, 34).

Because PMN apoptosis is a crucial aspect of both bacterial clearance

and inflammation regulation, we hypothesized that interactions with,

and uptake of, F. tularensis-infected PMN (iPMN) by primary human

MDMs would be impaired. To test this notion, neutrophils isolated

from healthy adult donors were aged in culture or infected with F.

tularensis for 24 h and then incubated with MDMmonolayers prior to

Hema-3 staining and light microscopy analysis. The data in

Figures 1A–C indicate that, in sharp contrast to what we predicted,

iPMNs interacted more efficiently with MDMs than their aged,

uninfected counterparts, as indicated by quantitation of the

percentage of MDMs interacting with neutrophils and the number of

PMNs per interacting macrophage.

As our Hema-3 staining data suggested that in most instances

iPMNs were internalized rather thanmerely tethered toMDM surfaces

(Figure 1A), we utilized differential staining to interrogate this further.

Specifically, aged or infected PMNs were added to MDM monolayers

at a ratio of 5 neutrophils per MDM and then incubated at 37°C for 2h

to allow for binding and engulfment. Subsequently, cell mixtures were

fixed but not permeabilized, and antibodies to the PMN surface marker

CD15 were added to identify neutrophils that were bound toMDMs or

partially ingested. After permeabilization, anti-MPO antibodies were

added to detect all PMNs (surface-associated and ingested). A

schematic of our staining regimen is shown in Supplementary Figure

S1. Confocal images representative of at least three independent

experiments are shown in Figure 1D, with quantitation in

Figures 1E, F. These data were independently validated using flow

cytometry. In this case, aged and infected neutrophils were pre-labeled

with Cell Trace Far Red, washed, and then incubated with MDMs. Live

cell mixtures were stained with FITC-conjugated anti-CD15 antibodies

to detect surface-exposed PMNs prior to flow cytometry analysis

(Figures 1G, H). This approach distinguished MDMs not interacting

with neutrophils (unassociated, lower left quadrant) from MDMs

containing only fully ingested neutrophils (upper left quadrant),

and MDMs with surface-tethered neutrophils or both fully ingested

and surface-tethered PMNs in the upper right quadrant. The results

of all three assays are concordant and demonstrate that when

directly compared, primary human macrophages interacted more

efficiently with F. tularensis-infected neutrophils than their aged,

uninfected counterparts.
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FIGURE 1

F. tularensis-infected neutrophils bind to and are ingested by human macrophages. (A–C) Neutrophils were added to monocyte-derived
macrophage (MDM) monolayers at a ratio of 5:1 after 24 h of ageing in culture (PMNs) or infection with F. tularensis (iPMNs) (A) Representative
Hema-3-stained images. Arrows and arrowheads indicate ingested and surface tethered neutrophils, respectively. Pooled data from three
independent experiments indicate the percentage of MDMs interacting with PMNs and iPMNs as the mean ± SD (n=3) (B) and the total number of
neutrophils per interacting macrophage (C). *p<0.05, **p<0.01 by Student’s t-test. (D–F) Representative confocal images (D) of differentially stained
cells show surface-exposed neutrophils as CD15+ (red) and MPO+ (green) whereas fully ingested PMNs are green only. DAPI-stained DNA is in blue.
(E) Quantitation of total MDM-associated PMNs and iPMNs. Data are the mean + SD (n=4). *p<0.05 by Student’s t-test. (F) Quantitation of engulfed
PMNs as a percentage of the total MDM-associated Data are the mean + SD (n=4). **p < 0.01 by Student’s t-test. (G) Representative flow cytometry
plots of MDMs incubated with CellTrace Far Red-labeled aged or infected neutrophils and then stained with anti-CD15-PE. MDMs in the lower left
quadrant are not interacting with neutrophils. Cells in the upper left quadrant contain ingested neutrophils only. Cells in the upper right quadrant
include MDMs with surface-tethered PMNs or a combination of surface tethered and fully-ingested neutrophils. (H) Quantitation of flow cytometry
data from 7 independent experiments indicates the percentage of MDMs not interacting with aged or infected PMNs (lower left quadrant) and the
percentage of MDMs associated neutrophils (tethered or ingested, sum of upper left and upper right quadrants). *p < 0.05, ****p < 0.0001 by
ANOVA with Tukey’s multi-comparison post-test.
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2.2 Mechanism of iPMN uptake by MDMs

Under our experimental conditions, themajority of aged PMNs are

PS-positive by 24 h, whereas infected PMNs are not (33)

(Supplementary Figure S2). As noted above, uptake of aged

neutrophils by human macrophages is generally not PS-dependent

and as such is not sensitive to inhibition by PS liposomes (6, 7). In

keeping with this, we demonstrate here that PS-liposomes had no effect

on MDM uptake of aged or infected PMNs (Figures 2A, B). Blocking

antibodies to the common b2 integrin subunit CD18 and CD36, both

of which have also been linked to efferocytosis (7, 8, 35), were also

without effect (Figures C–F). Next, we interrogated other surface
Frontiers in Immunology 04
molecules that might promote preferential binding and uptake of

iPMN by macrophages. CD31 and CD47 are established “don’t eat

me” signals on healthy cells (6, 36, 37). As judged by flow cytometry,

surface CD31 was abundant on freshly isolated cells, and declined

markedly by 24 h regardless of F. tularensis infection (Figure 2G). By

contrast, CD47 was significantly more abundant on iPMNs at both

assayed time points (Figure 2H). Other receptors linked to

phagocytosis were not differentially expressed (CD32, CD87) or were

slightly higher on aged neutrophils (CD35) (Supplementary Figure S3).

Thus, differences in the abundance of several receptors and don’t eat

me signals do not account for preferential interactions between MDMs

and F. tularensis-infected neutrophils.
FIGURE 2

Receptor blocking agents and don’t eat me signal abundance do not account for iPMN uptake. (A–F) Neither PS liposomes (A, B) nor blocking antibodies to
CD18 (C, D) or CD36 (E, F) impaired interactions of aged (PMN) or infected neutrophils (iPMN) with human macrophages. Results of three independent
experiments are shown for each condition. (G, H) Flow cytometry quantitation of CD31 (G) and CD47 (H) on aged and infected neutrophils at 2 and 24 h, as
indicated. Geometric mean intensity (GMI) is shown as the average ± SD for three independent experiments. *p<0.05 by Student’s t-test.
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2.3 Serum C1q is required for infected
neutrophil uptake by macrophages

The efferocytosis assays used in this study included autologous

donor serum. Thus, we interrogated next the role of serum

complement in iPMN binding and uptake. First, we tested the

serum dependence of these interactions. The representative images

(Figure 3A) and associated quantitative data demonstrate a
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significant and selective enhancing effect of fresh serum on the

percentage of MDMs that interacted with iPMNs (Figure 3B) and

the number of iPMNs per MDM (Figure 3C). Next, we interrogated

the role of specific serum components, focusing on C1q because of

its established role as a key regulator of efferocytosis (11, 14, 38).

Assays performed in the presence of C1q-depleted serum (C1q-

DPL) demonstrated that the absence of this complement

component significantly impaired both the percentage of MDMs
FIGURE 3

C1q plays a significant role in iPMN uptake. (A) Representative Hema-3-strained images of iPMN and PMN cocultured with MDMs in the presence of or
absence of autologous donor serum, C1q-DPL serum, or C1q-DPL serum with C1q added back. Arrows indicate MDM-iPMN interactions. (B) Percentage of
MDMs associated with PMN in the presence and absence of autologous donor serum. Data are the mean ± SD of three independent experiments. **p <
0.01, ***p < 0.001 by ANOVA with Tukey’s multiple comparisons post-test. (C) Number of PMN associated with each macrophage in the presence and
absence of donor serum. Data are the mean ± SD of three independent experiments. **p < 0.01, ****p < 0.0001 by ANOVA with Tukey’s multiple
comparisons post-test. (D) Percent of total MDMs counted associated with PMN in the presence of autologous donor serum, C1q-DPL serum, or C1q
addback to C1q-DPL serum. Data are the mean ± SD of three independent experiments. **p < 0.01, ***p < 0.001, ****p < 0.0001 by two-way ANOVA with
Tukey’s multiple comparisons post-test. (E) Number of PMN associated with each MDM in autologous donor serum, C1q-DPL serum, or C1q addback to
C1q-DPL serum shown as the mean ± SD of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 by two-way ANOVA with Tukey’s multiple
comparisons post-test.
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interacting with iPMNs and the number of iPMNs per macrophage

(Figures 3A, D, E). A critical role for C1q was validated by adding

back recombinant human C1q at 70 mg/mL, as recommended by

Complement Technologies, which rescued MDM-iPMN

interactions (Figures 3A, D, E). By contrast, an absence of serum

or C1q specifically did not significantly impair efferocytosis of aged

PMNs (Figures 3A–E).

CD91, also called low density lipoprotein receptor-related

protein 1 (LRP1), MBL2, and the “eat me” signal CRT can

associate with C1q and aid efferocytosis (11). To determine

whether any of these molecules colocalized with C1q at the

efferocytic synapse during iPMN uptake, we carried out

synchronized efferocytosis assays with confocal microscopy

analysis. Specifically, aged or infected PMNs were centrifuged

onto MDMs to synchronize binding and then incubated for 20

min at 37°C to allow engulfment prior to fixation, staining, and

microscopy. CRT appeared enriched specifically on efferosomes

containing iPMNs but neither MBL2 nor CD91 was enriched or

excluded from sites were PMNs engaged MDMs (Figure 4A).

Importantly, our data also indicate that both aged and infected

PMNs ingested by MDMs were C1q-positive but differed in

appearance, as C1q was diffusely distributed on aged neutrophils

but clustered on iPMNs (Figure 4A). To interrogate this further, we

used flow cytometry to quantify C1q on PMN surfaces. These data

indicate that C1q was more abundant on aged PMNs than on

F. tularensis-infected PMNs (Figure 4B). Thus, we suspect that the

surface clustering of C1q may be more important than its
Frontiers in Immunology 06
abundance as a driver of iPMN-MDM interactions. Taken

together, these data reinforce a critical role for C1q, alone or

together with CRT, in iPMN uptake.
2.4 Infected neutrophils mediate Trojan
Horse infection of macrophages

As F. tularensis evades killing and escapes the phagosome to

replicate in neutrophil cytosol (33), we hypothesized that iPMNs

may act as Trojan horses for infection of MDMs by this bacterium.

To test this hypothesis, we used immunofluorescence and phase

contrast microscopy to assess the fate of ingested neutrophils and

their bacterial cargo. At 30–60 min after uptake, phagosomes

containing PMN and iPMNs were readily apparent and appeared

intact (Figures 5A–C). By 2–6 h, F. tularensis escaped from enlarged/

swollen efferosomes into the cytosol and by 15–24 h had replicated to

high density in this locale (Figure 5C, Supplementary Figure S4).

Notably, iPMN remnants and traces of MPO were still apparent

inside MDMs 15–24 h after iPMN uptake, suggesting incomplete

degradation (Figure 5C, Supplementary Figure 54B), which contrasts

with dispersal and disappearance of MPO and PMN debris from

MDMs that ingested aged neutrophils (Supplementary Figure S4B).

Quantitation of colony forming units (CFU) demonstrated that

F. tularensis grew at a similar rate in MDMs when delivered directly by

phagocytosis or indirectly via an infected neutrophil (Figure 5D).

Notably, F. tularensis utilizes its T6SS to escape from phagosomes
FIGURE 4

C1q clusters more strongly on iPMNs despite heaver deposition on aged PMNs. (A) Representative confocal images of synchronized efferocytosis
stained to detect DNA (DAPI, blue) C1q (yellow), calreticulin (CRT, red), mannose-binding lectin (MBL2, purple), and CD91 (green). Arrows indicate
efferosomes and specifically mark C1q clusters on iPMNs inside macrophages. Arrowheads note CRT localization at the margin of iPMN efferosomes
in MDMs. (B) Flow cytometry quantitation of C1q deposition on PMNs shown as geometric mean intensity (GMI) Data are the mean ± SD of three
independent experiments. ***p < 0.001 by Student’s t-test.
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and reach its replicative niche (22, 23). FevR is a virulence regulator that

controls expression of genes in the Francisella Pathogenicity Island

(FPI) that encode the T6SS (39). In keeping with the critical role of the

T6SS, DfevR mutants are avirulent as they are trapped inside

phagosomes and unable to replicate in host cells in vitro or animal

models of infection (39, 40). However, as they retain expression of

bacterial lipoproteins, DfevR mutants resemble wild-type bacteria in

their ability to delay apoptosis and prolong neutrophil lifespan (41). We

repeated our efferocytosis assays using neutrophils infected with

isogenic DfevR organisms. Confocal analysis demonstrated that the

presence of mutant bacteria inside ingested PMNs 2 h after uptake. At

later time points, however, only digested bacterial debris scattered
Frontiers in Immunology 07
throughout MDMs was apparent (Supplementary Figure S4), similar

to the dispersal of MPO throughout the cytoplasm of MDMs after

ingestion of aged PMNs (Figures 5B, Supplementary Figure S4). Based

on these data, we conclude that virulence genes within the FevR regulon,

including the T6SS, are essential for Trojan Horse infection of MDMs.
2.5 Infected neutrophils induce a distinct
macrophage polarization state

The ability of apoptotic cells to reprogram macrophages from a

proinflammatory state to a phenotype that favors resolution of
FIGURE 5

iPMN are Trojan Horses for F tularensis infection of macrophages. (A) Representative light microscopy images of iPMNs after 1 h and 15 h coculture
with monocyte-derived macrophages. Phase contrast images are shown along with double staining to show MPO in green and F. tularensis in red.
Arrows indicate PMNs. (B, C) Representative confocal images show MDMs at 30 min – 15 h, as indicated, after uptake of aged or infected PMNs.
Merged images show DIC along with macrophage nuclei in blue, neutrophil MPO in red and F. tularensis in green. (D) Kinetics of F. tularensis growth
in macrophages when delivered indirectly by iPMNs or directly by phagocytosis. Data are the mean ± SD of three independent experiments.
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inflammation and wound healing has been extensively studied (6,

42), but effects of F. tularensis-infected neutrophils on this process

are unknown. To address this knowledge gap, we first established

conditions for M1 and M2 polarization of MDMs using LPS+IFNg
or IL-4, respectively, and validated the outcomes by flow cytometry

analysis of established surface markers (43–50). In each case,

unpolarized (untreated, M0) MDMs were analyzed in parallel

with their LPS + IFNg or IL-4-treated counterparts. In our hands,

the M1 markers CD38, CD86, CD64 and CD80 all significantly

increased on MDMs within 12 h of LPS+IFNg treatment

(Figures 6A–D), concordant with published data (46, 51). By

contrast, IL-4 significantly increased surface expression of the M2

markers CD200R and CD206, whereas MERTK was abundant on

both M0 and IL-4-treated MDMs and CD163 was expressed at low

levels under all tested conditions (Figures 6E–H). Next, we

compared the ability of aged and infected neutrophils to

repolarize LPS+IFNg-treated MDMs and included direct infection

with F. tularensis as an additional control. We now show that all

four M1 surface markers were strongly downregulated by 12 h after

direct infection with F. tularensis, and similar data were obtained

for iPMNs, though downregulation of CD64 was delayed

(Figures 7A–D). By contrast, aged PMNs elicited significant

downregulation of CD36 and CD86, but not CD64 or CD80

(Figures 7A–D). Analysis of M2 markers on these same cells

showed that CD200R, CD206, CD163 and MERTK remained low

on M1 macrophages after incubation with aged PMNs, iPMNs or

bacteria alone, whereas MERTK and CD163 increased selectively

after incubation with aged PMNs to levels that resembled the IL-4-

treated controls (Figures 7E–H).

As the data in Figure 7 suggest that aged and infected PMNs had

distinct effects on MDM polarization, we used western blotting and

ELISA to assess additional intracellular markers and secreted

cytokines. The data in Figure 8A show that indoleamine 2,3-

dioxygenase (IDO) and suppressor of cytokine signaling 1 (SOCS1)

were abundant in LPS+IFNg-treated M1 MDMs and cells directly

infected with F. tularensis, but were at or below the limit of detection

in unpolarized and IL-4-treated MDMs and appeared somewhat

diminished but not absent after incubation with aged or infected

neutrophils. On the other hand, transglutaminase-2 (TGM2) was

detected in all but one tested MDM sample. ELISA analysis of

secreted cytokines showed that in contrast to aged neutrophils,

neither direct F. tularensis infection nor uptake of iPMNs

significantly altered TNFa or MIP-1a secretion by M1

macrophages (Figures 8B, C). Unlike aged neutrophils, F. tularensis

and iPMNs also stimulated secretion of low levels of IL-18

(Figure 8D), whereas trace amounts of IL-1b were not significantly

increased over background (Figure 8E). Finally, we used dot blot

microarrays to profile cytokine secretion by unpolarized MDMs

before and after incubation with F. tularensis, iPMNs or their aged

counterparts and the data in Supplementary Figure S5 identify a

similar pattern as indicated by MIP-1a/MIP-1b secretion under all

tested conditions and low levels of TNFa, IL-1b and IL-18 secretion

in response to F. tularensis or iPMNs. Taken together, our data

indicate that iPMNs elicit a complex human macrophage phenotype

that supports bacterial growth and persistence.
Frontiers in Immunology 08
3 Discussion

The goal of this study was to elucidate the fate of F. tularensis-

infected PMNs. Ultimately, our data demonstrate that iPMN interact

more efficiently with MDMs than their aged, uninfected counterparts

and that these iPMNs act as Trojan horses, as F. tularensis escapes

from these compartments to replicate in macrophage cytosol in a

FevR-dependent manner with an efficiency similar to direct infection.

Trojan horse infection of human or murine macrophages has also

been documented for Chlamydia pneumoniae, Leishmania major,

Yersinia pestis, Brucella abortus andMycobacterium tuberculosis (52–

55). For each of these pathogens, iPMN-macrophage interactions

were strictly coupled to PS accumulation on dying neutrophil

surfaces (52–55). Thus, to our knowledge, uptake of live, infected

PMNs by macrophages has not previously been described andmay be

unique to F. tularensis.

In addition to delayed apoptosis, up to 20% of PMNs may lyse

within a few hours of F. tularensis infection in vivo, releasing DNA

coated with granule proteins as neutrophil extracellular traps (NETs)

(56). We do not observe NETs under our experimental conditions (33,

57). However, we utilize growth conditions that maximize F. tularensis

virulence factor expression, which may not always be achieved,

particularly in complex tissue microenvironments (58, 59). Of note,

multiple PMN fates are not without precedent, as accelerated apoptosis

that progresses to secondary necrosis, atypical necroptosis and vital

NET release have all been reported for neutrophils infected with

Staphylococcus aureus (60–62).

Although the exact mechanism of iPMN engulfment is yet to be

fully understood, we identified fresh serum and C1q as critical to

this process. At the same time, our data confirm that C1q is diffusely

distributed on apoptotic cells and reinforce evidence that C1q is

more abundant on apoptotic cells than their live counterparts (11,

63). Receptors for C1q implicated in efferocytosis include CD35,

CD11b/CD18 and CRT (11). We excluded roles for CD35 and

CD18 in our model and show that CRT was present at sites of iPMN

uptake. CRT is of particular interest as it can bind to cell surfaces in

the absence of PS. Additionally, C1q can also interact with MBL2 on

apoptotic cells whereas C1q and CRT can interact with CD91 on

macrophages (6, 11, 13, 15, 63–65). Plasminogen activator

inhibitor-1 can play a role in the engulfment of apoptotic

neutrophils by interacting with CRT and vitronectin (66), and

CD36, the vitronectin receptor, and thrombospondin have also

been implicated in this process (7, 67). Notably, blocking CD36 had

no effect in our system and although the other players have not yet

been excluded, roles for unknown novel players that may be specific

for live PMN uptake should also be considered in future work that is

of interest but beyond the scope of the current study.

Canonically, effective defense against infection consists of an

early proinflammatory phase that enhances microbe killing and a

late phase optimized for wound healing and restoration of

homeostasis (68). A variety of cytokines, inflammatory mediators

and microbial factors influence macrophage activation state, and it

is now appreciated that these cells are highly dynamic and exhibit a

spectrum of phenotypes that extends far beyond the original M1/

M2 paradigm (44, 69). Adding to this complexity is the fact that
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1632942
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Escobar et al. 10.3389/fimmu.2025.1632942
fetal bovine serum is more inflammatory than normal human

serum and evidence that commonly assayed surface markers are

modulated with distinct kinetics (43, 46, 70, 71). Nonetheless, it is

unequivocal that uptake of apoptotic cells is a key trigger for

termination of inflammation and repolarization of macrophages

to a wound healing phenotype in vivo and in vitro (6, 42, 72).

Direct infection of human monocytes and macrophages with

F. tularensis actively suppresses pro-inflammatory signaling pathways
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and diminishes secretion of key proinflammatory cytokines including

TNFa and IL-1 bymacrophages (73–76). Herein, we sought to develop

a deeper understanding of MDM polarization after direct and indirect

infection. We differentiated monocytes in normal human serum and

validated MDM responses to exogenous IL-4 and INFg plus LPS. With

these data in hand, we demonstrated that direct infection of

proinflammatory MDMs with F. tularensis elicited an unpolarized

surface phenotype, as indicated by marked downregulation of all eight
FIGURE 6

Validation of macrophage polarization. MDMs were left untreated (M0) or were stimulated for up to 48 h with IFNg + LPS or IL-4 to induce M1 or M2
polarization, respectively, prior to surface marker quantitation by flow cytometry. Graphs show geometric mean intensity (GMI) as the average ± SD
from 4 independent experiments. (A) CD38. (B) CD86. (C) CD64. (D) CD80. (E) CD200R. (F) CD206. (G) MERTK. (H) CD163. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001 by ANOVA with Tukey’s multiple comparisons post-test.
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M1 and M2 markers tested, and showed that this was accompanied by

upregulation of IDO and SOCS1. IDO and SOCS1 are induced by IFNg
and LPS and are commonly used as M1 markers (77–79). However,

their function is anti-inflammatory and immunosuppressive as IDO

inhibits T cell proliferation and activation and SOCS1 attenuates

cytokine signaling by inhibition of JAK, thereby preventing excessive

inflammation (77–79). Thus, it is noteworthy that IDO and SOCS1
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remained abundant after uptake of aged and infected PMNs but were

at or below the limit of detection in resting and IL-4-treated MDMs. In

our hands, aged PMNs stimulated upregulation of MERTK and

CD163, markers associated with an M2c wound healing phenotype

(80) whereas iPMNs resembled F. tularensis in their ability to stimulate

downregulation of bothM1 andM2 surface markers, albeit with slower

kinetics. Overall, these data are consistent with the stealth strategy of F.
FIGURE 7

Differential repolarization of M1 macrophages by aged and infected PMNs and direct F. tularensis infection. Surface markers of M1 and M2 polarized
MDMs and M1 macrophages that ingested F. tularensis, aged PMNs or iPMNs were analyzed at 12 and 48 h by flow cytometry. (A–D) Geometric
mean fluorescent intensity (GMI) of M1 surface markers CD38, CD86, CD64, and CD80, respectively as the mean ± SD (n=4). *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001 by two-way ANOVA with Tukey’s multiple comparisons post-test. (E, F) GMI of M2 surface markers CD200R, CD206,
MERTK and CD163, respectively, as the mean ± SD (n=4). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by two-way ANOVA with Tukey’s
multiple comparisons post-test.
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tularensis, limiting its detection and curtailing activation of potentially

protective inflammatory responses and defense mechanisms. Whether

evasion of TLR4 and upregulation of miR-155 or induction of IDO and

SOCS1 play greater roles in limiting cytokine secretion in this model

remains to be determined.

In summary, the results of this study demonstrate that F.

tularensis can use live human neutrophils as vehicles for Trojan

horse infection of macrophages and as such identify another potential

mechanism for spread of this bacterium throughout a host. Trojan

horse infection requires C1q, supports bacterial replication to high

density in MDM cytosol and elicits an atypical macrophage

phenotype characterized by downregulation of M1 and M2 surface

markers concomitant with upregulation of immunosuppressive IDO
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and SOCS1. As the effects of aged/apoptotic neutrophils were distinct

from those of iPMNs and direct F. tularensis infection, it will be of

interest in future work to determine the extent to which macrophage

polarization is driven by signals from replicating bacteria rather than

receptors engaged during phagocytosis.
4 Materials and methods

4.1 Cultivation of bacteria

Francisella tularensis subspecies holarctica Live Vaccine Strain

(LVS) and the isogenic DfevR mutant have been described (24, 33,
FIGURE 8

Differential effects of aged and infected PMNs on intracellular M1 markers and cytokine secretion. (A) Lysates of M0, M1 and M2 macrophages and
M1 macrophages that ingested aged or infected PMNs (upper left and lower left blots) or M1 macrophages directly infected with F. tularensis (upper
right) were probed to detect TGM2, IDO and SOCS1 with b-tubulin as the loading control. Data from three independent experiments are shown (n1-
n3). (B-E) Secretion of TNFa (B), MIP-1a (C), IL-18 (D) and IL-1b (E) were measured by ELISA. Data are the mean ± SD from three independent
experiments and were analyzed by two-way ANOVA with Tukey’s multiple comparisons post-test. *p < 0.05, **p < 0.01, ****p < 0.0001.
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40, 41). Bacteria were grown on Difco cystine heart agar (BD

Biosciences, Franklin Lakes, NJ) supplemented with 9%

defibrinated sheep’s blood (CHAB) (Hemostat Laboratories,

Dixon, CA) in a humidified, 37°C incubator with 5% CO2 in air

for 48 hours. Bacteria from CHAB plates were collected into 1 mL

PBS without divalent cations (Corning, Corning, NY)

supplemented with 1 mM D-glucose (Sigma-Aldrich, St. Louis,

MO) and washed twice by centrifugation. Bacteria were quantified

by measurement of absorbance at 600nm.
4.2 Ethics statement

Heparinized venous blood was acquired from healthy adult

volunteers who provided written informed consent in accordance

with protocols approved by the Institutional Review Board for

Human Subjects at the University of Missouri (#2031144 and

#2033122) and the University of Iowa (#201609850 and #200307026).
4.3 Isolation of neutrophils and monocytes
from human blood and macrophage
differentiation

Neutrophils in heparinized, venous blood from healthy adult

donors were isolated using established procedures (81). Briefly, the

majority of erythrocytes were sedimented from whole blood using

3% dextran (Pharmacosmos, Holbæk, Denmark). Next, neutrophils

were separated from mononuclear cells by centrifugation through

Ficoll-Hypaque gradients (Cytiva, Chicago, IL). Finally, the

neutrophil layer was collected, residual erythrocytes were

removed by brief hypotonic lysis, and the isolated neutrophils

were resuspended at 5 x 106 cells/mL in serum-free HEPES-

buffered RPMI-1640 medium (Gibco, Grand Island, NY)

supplemented with 2 mM L-Glutamine. This method routinely

yields >95% neutrophil purity. Additionally, the peripheral blood

mononuclear cell (PBMC) layer from the Ficoll-Hypaque

separation was collected, washed in RPMI-1640 medium, and

monocytes were purified using a StemCell Technologies

(Vancouver, Canada) Monocyte Enrichment Kit according to the

manufacturer’s instructions. Monocytes were counted on a

hemacytometer and seeded at 2x106 cells/mL in serum-free

HEPES-buffered RPMI-1640 medium with L-glutamine and 20%

autologous donor serum in screw-capped Teflon jars and then

cultured at 37°C in 5% CO2 for 5–7 days for differentiation into

MDMs, with feeding on day 4 (21, 82, 83). Replicate experiments

utilized macrophages and neutrophils from different donors.
4.4 Efferocytosis of neutrophils and
phagocytosis of bacteria

Freshly isolated human PMNs were aliquoted into 14mL sterile,

pyrogen-free polypropylene round bottom, snap-capped tubes and

then incubated in suspension for 24 h at 37°C in the presence or
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absence of F. tularensis at a multiplicity of infection (MOI) of 200:1.

MDMs were removed from Teflon jars, rinsed twice by

centrifugation and then plated into 8-well chamber slides

(Corning, Corning, NY) or UpCell 6-well cell culture plates

(Thermofisher Scientific Nunc, Rochester, NY) at 2x106 MDM/

mL in HEPES-buffered RPMI-1640 supplemented with L-

glutamine and 20% autologous donor serum (complete medium)

for microscopy or flow cytometry, respectively. After 24 h of aging

or infection, PMNs were collected, washed three times via

centrifugation to remove extracellular bacteria or debris, counted,

and added to washed MDM monolayers at a ratio of 5 PMN per

MDM in complete medium and incubated for 2h at 37°C unless

otherwise stated.
4.5 Hema-3 staining and light microscopy

Chamber slide wells were rinsed three times to remove unattached

PMNs. Thereafter, cell monolayers were stained with PROTOCOL

Hema-3 reagents (Fisher Scientific, Hampton, NH) according to the

manufacturer’s instructions. Cells were analyzed using a Zeiss Axioplan

2 light microscope (Carl Zeiss, Inc. Thornwood, NY) or a Leica DMi8

light microscope and LASX software v. 3.7.4.23463 (Leica

Microsystems, Buffalo Grove, IL). Representative images were

acquired using a 63x or 100x objective. The total number of

neutrophils interacting with or ingested by a minimum of 100

MDMs were counted in random fields of view in each of three

chamber slide wells for each condition and experiment.
4.6 Quantitation of efferocytosis

4.6.1 Confocal microscopy
At the end of the incubation period, chamber slide wells were

rinsed to remove unattached cells and monolayers were fixed by

incubation for 15 min in fresh 2% paraformaldehyde (PFA) in PBS

and then blocked 1 h at room temperature in microscopy blocking

buffer (PBS supplemented with 5 mg/mL BSA, 0.5 mg/mL NaN3,

and 10% horse serum, all from Sigma-Aldrich). Thereafter, cells

were stained with polyclonal anti-human CD15 antibodies (Cat.

No. BS-1702R, Cell Signaling Technology, Danvers, MA), diluted

1:100 in blocking buffer, for 1 h at room temperature and then

rinsed six times in PAB (PBS supplemented with 5 mg/mL BSA and

0.5 mg/mL NaN3). Next, cells were permeabilized with ice-cold 1:1

methanol:acetone for 5 min and then rinsed with PBS, followed by

staining with 1:100 dilution of anti-human MPO antibodies (Cat.

No. MAB3174, 392105, Cell Signaling Technology, Danvers, MA)

for 1 h at room temperature and then rinsed. Affinity purified F(ab’)

2 secondary antibodies conjugated to Alexa Fluor(AF)488 or AF647

(Jackson ImmunoResearch, West Grove, PA) were used at 1:200

dilution. After 1 h at room temperature, wells were rinsed with PAB,

chambers were removed, and coverslips were mounted to each slide

in Prolong Diamond mountant with DAPI (Invitrogen, Eugene,

OR). Stained cells were analyzed via confocal microscopy using a

Zeiss LSM510 with Zen Software (Carl Zeiss, Inc.) or a Leica
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Stellaris 5 microscope and LASX software 4.5.0.25531 (Leica

Microsystems). In each case, MDM-associated neutrophils were

counted and scored with MPO staining used to detect all

neutrophils and CD15-staining used to detect PMNs that were

surface associated or incompletely ingested. Once again, at least100

MDMs were counted per well for three wells/condition in

each experiment.

4.6.2 Flow cytometry
Aged or infected neutrophils at 8x106/mL were pre-labeled with

1 mM CellTrace Far Red (Invitrogen) diluted in PBS for 30 min at

37°C, washed twice with PBS, resuspended in medium, and added

toMDMmonolayers in UpCell dishes or chamber slides at a ratio of

5 or 20 neutrophils/MDM followed by incubation for 30–120 min at

37°C. Thereafter, non-adherent cells were washed away using warm

RPMI-1640 medium and remaining cells were harvested by

trypsinization. Collected cells were washed with medium and

then stained with phycoerythrin (PE)-conjugated anti-CD15

antibodies (Cat. No. IM1954U, Beckman Coulter) for 30 min on

ice, washed three times with FACS buffer (RPMI-1640

supplemented with 10% heat-inactivated FBS), and then analyzed

on an Accuri C6 flow cytometer (BD Biosciences, Sparks, MD).

Each data set was first gated on macrophages as determined by

forward and side scatter and then subdivided into three distinct

populations according to their CellTrace and CD15-PE fluorescence

intensities. Three thousand events were collected for each sample

and the data were analyzed using Accuri C6 software.
4.7 Efferosome markers

4.7.1 Flow cytometry of neutrophil surface
markers

Aged and infected PMNs were collected, adjusted to 1x106 in

100 mL total volume FACS buffer (PBS-/- with 2% FBS) and then

stained with 5 ml each of: anti-CD31-PE, anti-CD47-APC, anti-

CD32-PerCP/Cy5.5, anti-CD87-PE (all from BioLegend, San Diego,

CA) or anti-CD35-PE (from BD Biosciences, Franklin Lakes, NJ) on

ice for 20 min. After quenching with 1 mL 1:1 FBS/PBS and washing

with PBS by centrifugation, cells were resuspended in 400 mL PBS

and run on a CytoFlex V5B5R3 (Beckman Coulter, Brea, CA).

Debris was excluded by FSC-H/SSC-H gating followed by doublet

exclusion with SSC-A/SSC-H gating. In each case, a minimum of

10,000 events per sample were acquired in the single cell gate. Data

were analyzed using FlowJo V.10 software.

4.7.2 C1q microscopy
As indicated, additional efferocytosis experiments were

performed using C1q-deficient human or deficient serum

reconstituted with 70ug/mL of recombinant human C1q (both

from Complement Technology, Inc., Tyler, TX). Thereafter,

samples were stained with Hema-3 reagents and analyzed as

described above or were fixed with 4% PFA and blocked as

described above and then stained with primary antibodies: 1:50

anti-C1q(3R9/2) (Cat. No. MA1-83963), 1:50 anti-mannose-
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binding lectin-2 (MBL2) (Cat. No. PA5-106674, polyclonal), 1:50

anti-calreticulin (Cat. No. PA1-902A, polyclonal) (all from

Invitrogen), 1:25 anti-CD91 (also called LRP-1 Cluster II (Cat.

No. AF2368, polyclonal, Biotechne, Minneapolis, MN). Secondary

antibody staining was performed as described above. Cells were

analyzed using a Leica Stellaris 5 confocal microscope as

described above.
4.8 Trojan horse infection of macrophages

4.8.1 Microscopy
Efferocytosis assays were caried out as described above with

analysis at time points 2–24 h later . Processing for

immunofluorescence and confocal microscopy were carried out as

described above using 1:100 anti-human MPO mAb (R&D Systems,

Minneapolis, MN), and 1:5,000 anti-Francisella tularensis antiserum

(BD, Sparks, MD).

4.8.2 Quantitation of CFU
MDM monolayers were washed to remove non-adherent cells

and overlaid with either infected neutrophils (ratio 5:1) or F.

tularensis (MOI 100:1) in RPMI with 10% serum. Cells were

incubated for 2 h at 37°C in 5% CO2, then washed three times to

remove extracellular bacteria and unbound neutrophils, and fresh

RPMI with 10% serum was added. At 0-, 24-, and 36-hpi, 0.5%

saponin was added to each well. Lysates were serially diluted in

HBSS without divalent cations and aliquots were spotted onto

CHAB plates prior to incubation at 37°C as we described (83).

Viable bacteria were determined by counting CFU.
4.9 Macrophage polarization

After differentiation for 5–7 days, MDMs were left unpolarized

(M0) or were treated with 50 ng/mL recombinant human IFNg
(Peprotech, Cranbury, NJ) and 10 ng/mL LPS from Escherichia coli

0111:B4 (Invivogen, SanDiego, CA) in RPMI-1640 and 20% autologous

human serum for 36–48 h for M1-like polarization or 50 ng/mL of

recombinant human IL-4 (Peprotech) under the same conditions to

achieve M2 polarization. As indicated, PMN, iPMN or F. tularensis

were added to M1 polarized cells for 2 h to allow for uptake. After

rinsing to remove free cells or bacteria, MDMs were incubated for an

additional 12 h at 37°C to allow for repolarization prior to analysis.

4.9.1 Flow cytometry analysis of surface markers
Fcg receptors were blocked using Human BD Fc Block (BD

Pharmingen) for 10 min at room temperature according to

manufacturer instructions. Cells at 1 x106/mL were stained for

flow cytometry using 5 ml of each antibody in FACS buffer (2% FBS

in PBS without calcium and magnesium) for 30 min on ice. Flow

cytometry antibodies were from BioLegend: FITC anti-CD80

(#305206), PE/Cy7 anti-CD86 (#305421), PE/Dazzle anti-CD200R

(#329309), BV510 anti-CD38 (#356611), PerCP anti-CD163

(#333625), PE anti-MERtk (#367607), AF700 anti-CD206
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(#321131), BV750 anti-HLA-DR (#307671), and BV510 anti-CD64

(#305027). Samples were run on a Beckman Coulter Cytoflex R5-

V5-B3. Doublets were gated out using FSC/SSC parameters and

PMNs were excluded using Pacific Blue anti-CD66b (#305111).

FlowJo V10.7.1 software was used for data analysis.

4.9.2 Western blotting
Cell lysates were prepared as described (30, 33) and total protein

was quantified using Pierce BCA Protein Assay Kits (Thermo Fisher

Scientific) according to manufacturer instructions. Proteins in each

lysate were separated on NuPAGE 10% Bis-Tris Gels (Invitrogen,

Carlsbad, CA) using 20 mg total protein per lane. Blocked membranes

were probed with a 1:1,000 dilution each of anti-TGM2 (D11A6, Cat.

No. 3557T), anti-IDO (D5J4E Cat. No. 86630T) and anti-SOCS1

(E4K7Q, Cat. No. 68631T), all from Cell Signaling Technology. Blots

were then stripped and re-probed with 1:1,000 dilution of anti-b-
tubulin (T5201, Millipore Sigma). Horseradish peroxidase-

conjugated secondary antibodies (Cell Signaling Technology, Cat.

No. 7076S and 7074S) were used at 1:2,000. Band detection was

completed using Super Signal West Femto Maximum Sensitivity

Substrate (Thermo Fisher Scientific) and imaged using the Li-Cor

Odyssey XF and Image Studio Software.

4.9.3 Quantitation of cytokine secretion by ELISA
Supernatants were collected fromMDMmonolayers and clarified

by centrifugation. Cytokines were quantified using the following

ELISA kits according to manufacturer instructions: Human CCL3/

MIP-1a ELISA Kit (R&D Systems, #DMA00), Human TNFa
uncoated ELISA Kit (Invitrogen, #88-7346-88), Human IL-18

ELISA Kit (R&D Systems, # BMS267-2TEN), Human IL-1b ELISA

Kit (Invitrogen, # KHC0011).

4.9.4 Dot blots
MDMs were left unpolarized and untreated, were directly infected

with F. tularensis, or were allowed to ingest aged or infected PMNs for

2 h at which time MDMmonolayers were washed and then incubated

for 12 h at 37°C prior to collection of supernatant medium. Each

supernatant was clarified by centrifugation and then used to probe

Proteome Profiler Human Cytokine Array Kit A slides (R&D Systems)

according to the manufacturer’s instructions. Densitometry was

calculated using Fiji Image J, and the heat map was generated using

the pheatmap package in R.
4.10 Detection of surface PS

Equal numbers of aged and infected PMNs were mixed and then

stained with Annexin V-FITC (Invitrogen) to detect surface-exposed

PS as we described (30, 33). After fixation and permeabilization, cells

were stained with anti-F. tularensis antiserum and secondary F(ab’)2
antibodies conjugated to TRITC (Jackson ImmunoResearch) (33) and

images were obtained using a Zeiss Axioplan 2 as described above.
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4.11 Statistical analysis

All data are plotted as mean ± standard deviation (SD) from at

least three independent experiments using cells from different

donors. Data were analyzed using GraphPad Prism version 10

software with p < 0.05 indicating statistical significance.

Experiments with one control and one experimental group were

analyzed using Student’s t-test. Data from experiments with

multiple variables were analyzed using ANOVA with Tukey’s

multi-comparisons posttest. Details are provided in each

figure legend.
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