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Introduction: Cr(VI) is a heavy metal contaminant, can diffuse to ecosystems and 
harm aquatic animals. Gills, as a vital organ in direct contact with the aquatic 
environment, have become a key target tissue for assessing the toxicological 
effects of heavy metal pollution of water bodies due to their sensitivity to heavy 
metal exposure. However, 3the effects of Cr(VI) on the gill tissues in fish have 
been less studied. In this study, we revealed the multiple effects of chromium 
toxicity by assessing the oxidative damage, transcriptomic and metabolomic 
changes of Cr(VI) on gill tissues of Thymallus grubii. 

Methods: A total of 270 fishes were stratified into three experimental groups: 
control group, low-concentration exposure group (0.2 mg/L), and high-
concentration exposure group (1 mg/L). In this study, we revealed the multiple 
effects of chromium toxicity by assessing the oxidative damage, transcriptomic 
and metabolomic changes of Cr(VI) on gill tissues of Thymallus grubii. 

Results: Cr(VI) stress can lead to gill damage with significant reduction in gill filament 
thickness, significant thinning of gill lamellae, and congestion of epithelial blood 
vessels. Cr(VI) stress significant increases in H2O2 and MDA levels and significant 
decreases in antioxidant enzyme activity levels (SOD, GSH-Px, and T-AOC) and 
energy metabolism-related ATPase activity levels (Na+K+-ATPase, Ca2+-ATPase, and 
Mg2+-ATPase). Cr(VI) stress induced disturbances in gill arachidonic acid metabolism 
leading to the release of pro-inflammatory metabolites (e.g., thromboxane A2 and 
prostaglandin J2) accompanied by the accumulation of oxidised glutathione. 
However, the synthesis of metabolites with anti-inflammatory/antioxidant 
functions (e.g. GABA, quinidine and l-artitic acid) was reduced. Transcriptomics 
and metabolomic coanalyses revealed that Cr(VI) induced PPAR-g inactivation to 
deregulate COX-2, which disrupted arachidonic acid metabolic pathways, leading to 
01 frontiersin.org 

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1633174/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1633174/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1633174/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1633174/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1633174/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1633174/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1633174/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1633174&domain=pdf&date_stamp=2025-07-09
mailto:zhangyongquan@hrfri.ac.cn
https://doi.org/10.3389/fimmu.2025.1633174
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1633174
https://www.frontiersin.org/journals/immunology


Shang et al. 10.3389/fimmu.2025.1633174 

Frontiers in Immunology 
oxidative stress, apoptosis, and release of inflammatory factors. Disorders of 
arachidonic acid metabolism led to the release of proinflammatory metabolites 
(such as thromboxane A2 and prostaglandin J2), and decreased levels of 
reduced glutathione. 

Discussion: The effects of Cr(VI) exposure on gill gene expression and metabolism 
were analysed using RT-PCR, transcriptomic, and metabolomic approaches. In 
summary, we better understand the toxic effects of Cr(VI) on gill tissues of aquatic 
animals. Targeted activation of PPAR-g and supplementation with anti-
inflammatory metabolites such as GABA, quinidine and l- artitic acid may be 
potential intervention strategies to reverse Cr(VI) toxicity. 
KEYWORDS 

gill, metabolome, transcriptome, Cr(VI) stress, inflammatory responses 
1 Introduction 

Global water resources are increasingly polluted by heavy metals 
due to rapid industrial development and agricultural activities, 
seriously threatening the aquatic animal health and disrupting the 
balance of ecosystems (1). As a redox-active transition metal 
ubiquitous in industrial systems, chromium persists in natural 
ecosystems through multiple valence states, of which Cr3+ and Cr 
(VI)(Cr6+) are common ionic forms (2). Cr6+ has strong oxidative 
activity and chemical toxicity and can cause allergic dermatitis, 
neurotoxicity, genotoxicity, and cancers (3). Cr6+ enters cells in the 
chromate ionic state, crossing cell membranes through nonspecific 
phosphate or sulfate anion carriers, leading to mitochondrial damage 
and cellular DNA damage (4). Owing to human activities, the Cr6+ 

released from industrial production migrates to groundwater by 
entering surface water and soil (5). Hexavalent chromium salts are 
more soluble than Cr3+; thus,  Cr6+ is relatively more mobile. In 
aquatic environments, Cr6+ is present for longer periods of time and 
is more harmful to biological systems; therefore, Cr6+ is more toxic 
than Cr3+, which is considered one of the most harmful heavy metals 
(6). Fish is an important source of protein for humans, and 
enrichment of Cr6+ in contaminated fish tissue can be transferred 
to the human body and poses health risks. Therefore, the study of the 
effects of Cr6+ exposure on fish can provide a basis for the aquaculture 
industry to formulate aquatic product safety standards, and it is also 
an inevitable choice to safeguard human food safety and prevent and 
control environmental pollution. 

Studies have shown that chronic exposure of animals to Cr6+ 

leads to oxidative stress and significantly increases the expression of 
apoptotic genes; moreover, Cr6+ can affect the normal function of 
mitochondria, transmembrane potential, and antioxidant enzyme 
activity, resulting in mitochondrial damage, which triggers a 
cascade of caspase proteases leading to apoptotic cell death (7–9). 
In vitro cytotoxicity experiments have shown that Cr6+ ions enter 
the cell through nonspecific ion channels in the cell membrane and 
02 
generate large amounts of ROS during their reduction to the low­
valent form of chromium and that the continuous accumulation of 
ROS in cells causes DNA and cellular damage (10, 11). Cr6+ 

exposure was found to cause neurotoxicity and induce oxidative 
damage in zebrafish (12). Gills are important organs for gas 
exchange, osmoregulation and detoxification in fish (13). Gills, 
characterized by substantial surface area and acute responsiveness 
to aquatic environmental fluctuations, serve as primary target sites 
for toxic metal accumulation in aquatic organisms (14). Several 
studies have confirmed that heavy metal exposure leads to gill 
damage in fish, with altered morphology and pathology, energy and 
metabolic imbalances, and impaired antioxidant systems (15–17). 

Amur grayling (Thymallus grubii) is an important albino fish in 
China with high nutritional and economic values. T. grubii has become 
highly valuable as an economic species for cold Water aquaculture, 
possessing tasty meat, rich in unsaturated fatty acids, low cholesterol 
and high protein levels. However, due to environmental pollution and 
other anthropogenic disturbances, the population of T. grubii has 
declined sharply (18). In addition, understanding the response 
mechanism of T. grubii to heavy metal stress can help to provide 
scientific evidence for monitoring the ecological health of the 
watershed, and provide toxicological basis for the development of 
aquatic animal conservation strategies. In heavy metal exposure 
studies, transcriptomics analyses can comprehensively resolve the 
dynamics of gene expression in organisms under heavy metal stress. 
Metabolomics in heavy metal exposure studies can elucidate the details 
of metabolic processes that occur during environmental adaptation 
and provide a better understanding of these processes. However, the 
effects of Cr6+ stress on tissue, gill metabolism, and gene expression in 
T. grubii have not been reported. In the present study, we assessed the 
effects of chronic Cr6+ exposure on gill tissue structure, metabolism 
and gene expression in T. grubii. This study was to elucidate the effects 
of gill exposure to heavy metals on gene expression, transcriptomics 
and metabolomics to elucidate the contribution of Cr6+ to T. grubii­
induced gill toxicity and the possible underlying mechanisms. 
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2 Materials and methods 

2.1 Animals and diet 

This study was approved by the Ethics Committee for Animal 
Experiments of the Heilongjiang Fisheries Research Institute, 
Chinese Academy of Fisheries Sciences (20241125–007). The 
Bohai Experimental Station of the Heilongjiang Provincial 
Fisheries Research Institute provided the fish for this experiment. 
Fish were temporarily reared in the aquarium for 30 days to 
acclimatize to the environment. A total of 270 fish of uniform 
size were selected and allocated to nine aquaria (three groups), with 
three biological replicates established in each group. Control fish 
tanks were filled with tap water. In the aquarium for the low-
concentration exposure group (Lcr group: Cr6+ of 0.2 mg/L). In the 
aquarium for the high-concentration treatment group (Hcr group: 
Cr6+ of 1 mg/L). Cr6+ exposure levels refer to the results of previous 
studies and water resources ecosystem surveys (19–21). During the 
feeding experiment, the fish were handfed twice daily (at 8:30 a.m. 
and at 16:00 p.m.) to apparent satiation for 4 weeks. Experimental 
environment of fish: temperature, 10 ± 2°C; pH, 6.8 ± 0.44 dissolved 
oxygen, 5.57 ± 0.63 mg/L; ammonia concentration < 0.3 mg/L; 
nitrite concentration < 0.02 mg/L. Potassium dichromate solution 
was purchased from Merck, China (CAS: 7778-50-9, MDL: 
MFCD00011367, EC: 231-906-6). Each tank was replaced with 
25% water daily. 
2.2 Fish sampling 

After 24 h of starvation, the fish were anaesthetized with 20.0 
mg/L tricaine methanesulfonate (MS-222) at weeks 2 and 4 of the 
experiment. Eighteen fish per group were randomly selected and 
prepared for sampling. Fish were euthanized and gills, muscles, 
livers, and intestines were collected. The collected tissues were 
frozen in liquid nitrogen and transferred to a −80°C refrigerator. 
2.3 Chromium analysis 

Cr6+ levels in gills, liver, muscle, and intestines were only 
examined by the methods published in previous studies (22). First 
0.1 g of sample, 5.0 mL of nitric acid was mixed in an ablative tube 
and 3.0 mL of ultrapure water was added. Mineralization of the 
samples was carried out in a MarXpress microwave ablation system 
(North Carolina, USA). Cooling 0.5 mL of internal standard was 
Frontiers in Immunology 03 
added and the sample was diluted to 50.0 mL with ddH2O and the 
experiment was repeated 3 times. Cr6+ levels in gills, liver, muscle, 
and intestines were quantified using an Agilent 7500cx ICP-MS 
(Agilent Technologies, Santa Clara, CA, USA). Cr6+ levels in water 
tanks were determined by the same method (Table 1). 
2.4 Histopathological examination 

Gill samples were dehydrated in increasing concentrations of 
ethanol (50%, 70%, 80%, 90% and 100%), placed in xylene for 1 
minute, dried, and embedded in paraffin. Gill tissue samples were 
cut into thin slices of 2-6 mm thickness using a rotary slicer (Leica 
RM2235). Use haematoxylin and eosin and stain according to the 
manufacturer’s instructions. Observations were made using an 
Olympus BX53 research-grade biomicroscope (Olympus BX53, 
Japan), and gill sample changes were observed with cellSens 
software (cellSens 4.1) and photographed for preservation. 
2.5 Histological enzyme activity 

Assays of hydrogen peroxide (H2O2), superoxide dismutase 
(SOD), glutathione peroxidase (GSH-PX), total antioxidant 
capacity (T-AOC), catalase (CAT), and malondialdehyde (MDA) 
levels in the gills were performed according to the manufacturer’s 
instructions. The activities of Na+K+-ATPase, Ca2+-ATPase, and 
Mg2+-ATPase were determined with an ATPase Assay Kit (Kit No. 
A016-2-2). All kits were purchased from Nanjing Jiancheng 
Bioengineering Institute of China (Nanjing, China). 
2.6 Gill metabolome analysis 

The untargeted metabolomics assay was performed by LC-Bio 
(Hangzhou,  China)  with  the  following procedures: (a) 
homogenization of 18 fish gills in liquid nitrogen; (b) Metabolite 
enrichment was performed by methanol-buffer precipitation (50%, 
v/v). The extracted samples were subjected to random machine 
sequential testing, and QC samples were inserted before, during and 
after the samples as a repetitive assessment of the experimental 
technique. Detection of eluted metabolites in columns by high 
performance liquid chromatography (HPLC). The data were 
preprocessed using XCMS (XCMS-v4.7) software. Initial feature 
annotation via MetaX-driven database comparison (PlantCyc/ 
KEGG/HMDB). Identification of metabolites in product 
TABLE 1 Cr6+ levels in water (mg/L). 

Group Nominal concentration Actual Cr6+ concentration 
at 14 days 

Actual Cr6+ concentration 
at 28 days 

Control 0 0.004 ± 0.002 0.006 ± 0.001 

Lcr group 0.2 0.186 ± 0.074 0.201 ± 0.032 

Hcr group 1 0.996 ± 0.032 1.002 ± 0.044 
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secondary mass spectra using in-house libraries. MetaX software 
was used to perform univariate and multivariate analyses of the 
metabolomics data to identify metabolites that were enriched by 
differences between groups (dm). Differentially abundant features 
were identified when meeting all criteria: (a) Presence in ≥2 
biological replicates or relative abundance ≤50%; (b) Significant 
inter-group divergence (BH-corrected q < 0.05) via Wilcoxon rank-
sum test; (c) OPLS-DA variable importance projection (VIP) score 
≥1.0. KEGG pathway enrichment profiling was conducted using a 
hypergeometric distribution model. Functionally annotated terms 
with corrected P < 0.05 were designated as significantly enriched 
clusters for differentially expressed proteins. Gene set enrichment 
analysis was performed using GSEA (v4.1.0) and MSigDB software 
programs to determine whether a group of genes were differentially 
enriched in a specific KEGG pathway. 
2.7 Transcriptome analysis 

Gill tissue samples from three biological replicates per group 
were subjected to transcriptome sequencing through Hangzhou 
Lianchuan Biotechnology Company, Ltd (Hangzhou, China). Total 
RNA was extracted using TRIzol reagent (TaKaRa, Dalian, China), 
with RNA integrity verified by Bioanalyzer 2100 Bioanalyzer (RIN > 
8.0). First-strand cDNA synthesis was performed using 6-base 
random hexamer primers with mRNA as template. Second-strand 
cDNA was generated by adding reaction buffer, RNase H, dNTPs, 
and DNA polymerase. The products were purified with QIAquick 
PCR Purification Kit (Qiagen) and eluted in EB buffer. AMPure XP 
beads (Beckman Coulter) and USER enzyme (NEB) were employed 
for size selection and degradation of uracil-containing second-
strand cDNA, ensuring strand-specificity of the final library. PCR 
amplification was conducted using Phusion High-Fidelity DNA 
Polymerase (Thermo Scientific) with indexed primers. Sequencing 
was performed by LC-Bio Co., Ltd (Hangzhou, China) on Illumina 
NovaSeq 6000 platform. Then sequence quality was verified using 
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/ 
fastqc/ , 0.11.9). Genes differential expression analysis was 
performed by DESeq2 software between two different groups (and 
by dgeR between two samples). Differentially expressed genes 
(DEGs) were screened based on DESeq2, with significance 
thresholds set at |log2(fold change)| ≥ 1 and corrected p value < 
0.05. Volcano plots were generated to demonstrate the differential 
expression distributions by Gplot2, and a hierarchical clustering 
heatmap was visualized using the pheatmap to visualize 
hierarchically clustered heatmaps of DEGs. The genes with the 
parameter of false discovery rate (FDR) below 0.05 and absolute old 
change ≥ 2 were considered differentially expressed genes. The 
differentially expressed genes were then analyzed for GO function 
and KEGG pathway enrichment. 
Frontiers in Immunology 04
2.8 Gene ontology and enrichment 
exploration 

GO enrichment analysis of DEGs was performed using 
Wallenius non-central hypergeometric distribution. Pathway 
enrichment analysis was performed using the KEGG database to 
further assess significantly enriched metabolic or signaling 
pathways, with p value < 0.05 being significantly enriched for DGE. 
2.9 qRT-PCR validation 

Total RNA was isolated from frozen gills using the TRIzol 
Reagent Kit according to the instructions of the manufacturer and 
assessed for quality. Samples with A260/A280 RNA ≥ 1.8 were 
selected for cDNA synthesis according to the manufacturer’s 
instructions (Beijing Tiangen). The primers used are listed in 
Supplementary Table S1. Referring to the previous study by Lu 
et al. (23), specific primers were designed using the online tool 
Primer 3 plus (https://www.primer3plus.com/) based on the Amur 
grayling transcriptome sequence (PRJNA907151). qRT-PCR 
analysis was performed using the SYBR Premix Ex Taq II kit (Tli 
RNaseH Plus, Takara Bio, Japan) following the manufacturer’s 
thermal cycling parameters. The b actin served as an internal 
control to normalize the data. 2-DDCT method was used to 
calculate the relative expression of target genes (24). 
2.10 Statistical analysis 

All data are expressed as mean ± standard deviation (SD). One-
way statistical analysis of variance (ANOVA) was performed using 
SPSS 20.0 (SPSS, Chicago, IL, USA). All data were normally 
distributed and passed the equal variance test. Tukey’s multiple 
post hoc test, and for the same sampling intervals, different letters 
indicate that the differences are significant (p < 0.05). Graphical 
representation of the experimental data was performed using 
GraphPad Prism 9.0 (GraphPad Software, USA). 
3 Results 

3.1 Accumulation of Cr in tissues 

As shown in Figure 1, Cr6+ accumulated in the gills, liver and 
intestines of the fish at Days 14 and 28. The level of Cr6+ accumulation 
in fish increased in a concentration-dependent manner (P < 0.05). The  
accumulation level of Cr6+ in each tissue was in the order of 
intestine>liver>gill>muscle. Compared with those in the control 
group, the Cr6+ accumulation levels in the gill, liver, intestine and 
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muscle in the Hcr group were significantly increased (P < 0.05),

whereas Cr6+ accumulation in the muscle did not significantly differ 
between the Lcr and control groups (P > 0.05).  
 

3.2 Histological analysis of gill tissues using 
H&E-stained sections 

After 28 days, the gill filaments of the control group remained 
intact, the gill lamellae were neatly arranged, and complete 
physiological structures were observed (Figure 1E). Gill filament 
mitochondria-rich cells (MRCs) were partially vacuolated and gill 
filament thickness was significantly reduced in the Lcr group 
compared to the control group (Figure 1F). Compared with those 
of the control group, the Hcr group gill filaments of MRCs were 
heavily vacuolated, the gill filament thickness was significantly 
reduced, gill lamellae were significantly thinner, and epithelium 
vascular congestion was observed (Figure 1G). 
Frontiers in Immunology 05 
3.3 Exposure to Cr induces changes in 
enzyme activity 

To investigate whether exposure to Cr6+ causes gill damage, we 
examined the levels of MDA and H2O2 in gill tissue (Figures 2A, B). 
Compared with the control group, H2O2 levels were significantly 
greater in both the Lcr and Hcr groups (P < 0.05). Compared with 
those in the control group, the MDA levels were significantly 
greater in the Hcr group (P < 0.05). However, there was no 
significant difference in the MDA levels between the control and 
Lcr groups (P > 0.05). 

We further measured changes in gill enzyme activity indicators 
using assay kits (Figures 2C-E). Compared with those in the control 
group, the Na+K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase 
activities decreased with increasing Cr6+ levels (P < 0.05). 
Compared with those in the control group (Figures 2F-I), the 
SOD, GSH-PX, and T-AOC activities increased but then 
decreased with increasing Cr6+ concentration (P < 0.05).
FIGURE 1 

After 14 and 28 days, different levels of Cr6+ accumulated in gills, liver, muscle and intestine of the T. grubii (A-D). The data are expressed as the means ± S.D 
(n = 6). Bars with different letters are significantly different (P < 0.05)  according  to Tukey’s  test  for  the same sampling interval.  Gill  tissue  changes  in  T. grubii 
after 28 days of Cr6+ exposure (E-G). (E) H&E staining in the control group; scale bars = 100 µm. (F) H&E staining in the Lcr group; scale bars = 100 µm. (G) 
H&E staining in the Hcr group; scale bars = 50 µm 100 µm. GF (gill filaments), GL (gill lamellae), MRC (mitochondria-rich cell). 
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However, the CAT activity did not significantly differ between the 
groups (P > 0.05). 
 

3.4 Metabolomics analysis of the effects of 
Cr6+ exposure on gill metabolism 

Metabolomics was used to further clarify the negative effects of 
chronic exposure to Cr6+ on T. grubii gill tissue. The OPLS-DA results 
revealed significant separation between each Cr6+ treatment group and 
the control group, suggesting that Cr6+ significantly interfered with the 
metabolic profile of gill tissues (Figures 3A-C). A permutation test 
chart was constructed to indicate the degree of model fit.  The Q2 values  
were all <R2 values, and the intercepts of the Q2 values on the y-axis 
were all <0 (Figures 3D-F), indicating that the OPLS-DA model was 
not overfitted. Bar charts were constructed to display the number of 
differentially abundant metabolites (Figure 3G). Supplementary Figure 
S1. shows heat maps of the top 30 metabolites with the highest 
differential abundance in the Lcr and C groups. Supplementary 
Figure S2. shows heatmaps of the top 30 differentially abundant 
metabolites in the Hcr and C groups. Supplementary Figure S3. 
shows heat maps of the top 30 metabolites with the highest 
differential abundance in the Hcr, Lcr, and C groups. 

Enrichment analyses of the KEGG pathway were performed on the 
differential metabolites (Figures 3H-J). Linoleic acid metabolism, 
biosynthesis of plant hormones, alpha-linolenic acid metabolism, 
biosynthesis of plant secondary metabolites, and the sulfur relay 
system were the five pathways most significantly enriched in the C 
Vs. Lcr group (Figure 3H). The serotonergic synapse, neuroactive 
ligand–receptor interaction, biosynthesis of alkaloids derived from the 
shikimate pathway, asthma, and arachidonic acid metabolism 
pathways were the five pathways most significantly enriched in the C 
Frontiers in Immunology 06
Vs. Hcr group (Figure 3I). The biosynthesis of alkaloids derived from 
the shikimate pathway, glycerophospholipid metabolism, ether lipid 
metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and 
choline metabolism in cancer were the five pathways most significantly 
enriched in the Hcr Vs. Lcr group (Figure 3J). 
3.5 Transcriptomic analysis of the effect of 
Cr6+ exposure on gene expression in fish 
gills 

The levels of DEGs between  the different  treatment groups are

shown in Figure 4, with 107 genes up-regulated and 95 genes down-
regulated between the Lcr and C groups after Cr6+ exposure, and 379 
genes were up-regulated and 638 genes were down-regulated between 
the Hcr and C groups. There were 85 genes upregulated and 302 genes 
downregulated between the Lcr and Hcr groups. Figures 4B-D show 
volcano plot and heatmap. 
3.6 GO analysis and KEGG pathway 
enrichment based on DEGs 

The results obtained from GO analysis showed that positive 
regulation of oxidative stress-induced neuron intrinsic apoptotic 
signaling pathway, Parkin-FBXW7-Cul1 ubiquitin ligase complex, 
positive regulation of epidermal growth factor-activated receptor 
activity, regulation of autophagy of mitochondrion, and positive 
regulation of ERK1 and ERK2 cascade were the five most 
significantly enriched terms in the C and Lcr groups (Figure 5A). 
The sterol biosynthetic process, parkin-cholesterol biosynthetic 
process, steroid metabolic process, tRNA aminoacylation for 
FIGURE 2 

Changes in the gill enzyme activity indices of T. grubii after 14 and 28 days of treatment with different concentrations (0.2 and 1 mg/L) of Cr6+ stress. 
(A) H2O2; (B) MDA; (C) Na+K+-ATPase; (D) Ca2+-ATPase; (E) Mg2+-ATPase; (F) SOD; (G) CAT; (H) GSH-Px; (I): T-AOC. The data are expressed as the 
means ± SDs (n=6). Bars with different letters are significantly different (P < 0.05) according to Tukey’s test for the same sampling interval. 
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protein translation, and endoplasmic reticulum were the five most 
significantly enriched terms in the C and Hcr groups (Figure 5B). The 
regulation of dendrite development, dendrite cytoplasm, positive 
regulation of axon extension, cyclin-dependent protein serine/ 
threonine kinase activity, and solute: proton antiporter activity 
Frontiers in Immunology 07 
were the five most significantly enriched terms in the Lcr and Hcr 
groups (Figure 5C). Supplementary Figure S4. shows the clusters to 
which each enriched terms in the comparison group belongs. 

This study used the KEGG database to annotate the enrichment 
pathway of DEGs (Figures 5D-F). The galactose metabolism, steroid 
FIGURE 3
 

Quality analysis of metabolomics data and KEGG enrichment analysis (n=6). OPLS-DA score plots for metabolites in the C, Lcr and Hcr groups (A–
 
C). OPLS-DA permutation test for the positive and negative ion modes (D) C vs. Lcr; (E) C vs. Hcr; (F) Lcr vs. Hcr). Changes in the total amount of
 
differential metabolites between the two groups (G) KEGG enrichment analysis between the two groups (H) C vs. Lcr; (I) C vs. Hcr; (J) Lcr vs. Hcr).
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FIGURE 4
 

The results of mRNA sequencing. Differentially expressed genes (A), volcano plots (B, C) and heatmaps (D) of the DEGs (P < 0.05). n = 3.
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biosynthesis, terpenoid backbone biosynthesis, selenocompound 
metabolism, and biosynthesis of unsaturated fatty acids were the 
five most significantly enriched signal pathway in the C and Lcr 
groups. The steroid biosynthesis, aminoacyl-tRNA biosynthesis, fatty 
acid biosynthesis, proteasome, and pyruvate metabolism were the five 
most significantly enriched signal pathway in the C and Hcr groups. 
In addition, signaling pathways such as selenocompound 
metabolism, aflatoxin biosynthesis, glutathione metabolism, and 
protein processing in endoplasmic reticulum were similarly 
significantly enriched. The aminoacyl-tRNA biosynthesis, arginine 
and proline metabolism, glycine, serine and threonine metabolism, 
Frontiers in Immunology 09
diterpenoid biosynthesis, and glycerophospholipid metabolism were 
the five most significantly enriched signal pathway in the Lcr and 
Hcr groups. 
3.7 Cr6+ induces changes in the expression 
of key genes in gills 

To further explore the effects of Cr6+-induced oxidative stress 
on the expression regulation of genes in gill tissues, we validated the 
key genes by qRT–PCR (Figure 6). Compared with those in the 
FIGURE 6 

Cr6+ induces changes in the expression of key genes in gills. The data are expressed as the means ± S.Ds. (n = 3). The levels of peroxisome 
proliferator activated receptor (PPAR)-g, Cyclooxygenase-2 (COX-2), interleukin 10 (IL-10), transforming growth factor-b (TGF-b), Nuclear factor kB 
(NF-kB), interleukin 8 (IL-8), 70-kDa heat shock protein (Hsp70), cysteinyl aspartate specific proteinase 3 (Caspase-3), cysteinyl aspartate specific 
proteinase 9 (Caspase-9), and Glutathione peroxidase 4 (GPx4) were detected. Bars with different letters are significantly different (P < 0.05) 
according to Tukey’s test for the same sampling interval. 
FIGURE 5 

GO enrichment analysis of transcriptomic genes in gills. (A) C vs. Lcr; (B) C vs. Hcr; (C) Lcr vs. Hcr). KEGG enrichment analysis of transcriptomic 
genes in gills. (D) C vs. Lcr; (E) C vs. Hcr; (F) Lcr vs. Hcr). 
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FIGURE 8 

Heatmap for gene and metabolite correlation analysis. 
FIGURE 7 

RT–PCR was used to validate transcriptomic gene expression. Comparison of genes for RNA-Seq and qRT–PCR (A) C vs. Lcr; (B) C vs. Hcr). 
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control group, the expression levels of IL-10 and GPx4 were 
significantly lower, and those of NF-kB, IL-8, and Caspase-9 were 
significantly greater in the Lcr group (P < 0.05). Compared with 
those in the control group, the expression levels of PPAR-g, IL-10, 
TGF-b and GPx4 were significantly lower, and those of COX-2, NF­
kB, IL-8, HSP70, Caspase-3, and  Caspase-9 were significantly 
greater in the Hcr group (P < 0.05). 

As shown in Figure 7, we selected 10 genes for gill qRT-PCR to 
verified the reliability and reproducibility of RNA-Seq. The results 
showed that the upregulation and downregulation trends of the 
genes in the qRT-PCR results were consistent with the RNA-Seq 
results, suggesting that the transcriptome sequencing data 
were reliable. 

Figure 8 shows a heatmap for gene and metabolite correlation 
analysis. Correlation analysis in a clustered heatmap revealed that 
PPAR-g, IL-10, TGF-b and GPx4 were negatively correlated with the 
key metabolites cinchonidine, quinidine, quinine, 5-hydroxy-L­
tryptophan, thromboxane A2 and prostaglandin J2 and positively 
correlated with 5,6-DHET, 14R,15S-EpETrE, g-aminobutyric acid, 
leukotriene D4, L-aspartic acid, GABA, L- valine, L-tyrosine, and 
vanillin, whereas COX-2, NF-kB,  IL-8, HSP70, Caspase-3, and

Caspase-9 were inversely correlated with the above metabolites. 
4 Discussion 

Aquatic ecosystems are at risk of multiple heavy metal exposures 
due to increased industrial wastewater discharges and agricultural 
pollution, of which Cr6+ is a representative persistent pollutant with 
significant toxic effects on aquatic animals through water column 
enrichment (1). As a key organ for respiration and ion exchange in 
fish, the gill is a primary target organ for heavy metal bioaccumulation 
(25). Therefore, a systematic analysis of the metabolic network 
remodeling of gill tissues under heavy metal exposure is highly 
valuable for revealing species-specific detoxification mechanisms and 
constructing ecological risk threshold models. Hexavalent chromium 
(CrVI), as a redox-active transition metal, induces ROS-mediated 
oxidative stress cascades through Fenton-like reactions, specifically 
depleting reduced glutathione (GSH) while elevating oxidized 
glutathione (GSSG) ratios (26). In this study, Cr6+ accumulated 
significantly in all tissues and organs with increasing exposure time. 
In the present study, Cr6+ accumulated significantly in all tissues and 
organs with increasing exposure time. Gills were in direct contact with 
water and were the primary target organ for Cr6+ enrichment. Intestine 
and liver had high metabolic activities so the Cr6+ accumulation was 
higher (19, 27). The main reasons for the significantly higher 
accumulation of Cr6+ in the intestine than in other organs may be 
twofold: firstly, the relatively limited absorption efficiency of Cr6+ in the 
intestine leads to the prolonged retention of Cr6+ in the intestinal 
lumen; secondly, cadmium is able to be transported and redistributed 
through the trans-organ interactions network (liver-intestinal axis, 
muscle-intestinal axis, brain-intestinal axis, etc.), which has the 
intestinal as its core, and ultimately, it forms a high-concentration 
accumulation in the intestinal tract (17, 28, 29). Two levels of Cr6+ 

caused damage to the gills of the fish, with the Hcr group being the 
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most severely damaged. We found that Cr6+ can cause gill tissue 
damage mainly through vacuolization of MRC cells, congestion of 
epithelial vessels and a significant  reduction in gill  filament thickness. 
Previous studies have shown that Cr6+ exposure can lead to oxidative 
stress in fish through the liver-intestinal axis, resulting in liver damage 
and gut flora disruption (17). MDA and H2O2 are key indicators used 
to measure whether tissues are suffering from oxidative damage (30). 
The present experimental data revealed that Cr6+ exposure induced gill 
damage, and the concentrations of MDA and H2O2 in gill tissues were 
significantly and positively correlated with the dose of Cr6+ exposure. 
Although Cr6+ exposure led to a significant increase in H2O2 levels, 
CAT activity did not change significantly, probably because the 
organism had entered an irreversible stage of damage due to chronic 
Cr6+ stress, which is similar to the results of previous studies (20, 31). 
SOD, GSH-Px, and T-AOC levels tended to increase but then 
decreased with increasing Cr6+ content, possibly because T. grubii 
can adapt to low concentrations of Cr6+ by regulating its metabolism. 
However, when the Cr6+ concentration exceeded the tolerance 
threshold, the fish could not adapt to Cr6+ stress through their own 
metabolism, and the antioxidant defense system was imbalanced, 
which was similar to the findings of our previous study (17). 

Owing to industrial pollution and emissions from agricultural 
activities, Cr6+ enters water bodies through soil infiltration, seriously 
threatening the survival of aquatic organisms. Cr6+ can accumulate in 
aquatic animals to produce toxic effects. In this study, we used a 
nontargeted metabolomics system to analyze the effects of Cr6+ on 
the metabolic regulatory network of gill tissues in T. grubii, aiming  to  
elucidate the molecular toxicological mechanisms involved in the 
induction of oxidative stress, imbalance of lipid metabolism, and 
cellular inflammatory responses and to provide a theoretical basis for 
the risk assessment of Cr6+ contamination in aquatic ecosystems. In 
our study, Cr6+ exposure significantly elevated the metabolites 
thromboxane A2 and prostaglandin J2. The arachidonic acid 
metabolic pathway, serotonergic synapses, and neuroactive ligand– 
receptor interactions are central hubs for the regulation of 
inflammation, neurotransmitter systems, and cellular homeostasis. 
Studies have reported that heavy metal exposure can produce an 
inflammatory response through the metabolism of arachidonic acid 
to produce excess thromboxane A2 (32, 33). Maria is similar to our 
results in that activated microglia produce large amounts of PGs after 
neuronal injury. whereas Prostaglandin J2, the most toxic component 
of the PGs family, may contribute to many neurodegenerative 
disorders, PPARg activation is associated with anti-inflammatory 
and neuroprotective signaling (34). In addition, cadmium exposure 
can also lead to significant downregulation of 5,6-DHET and 
14R,15S-EpETrE metabolites in rats (35), which is similar to our 
findings that Cr6+ exposure leads to significant downregulation of 
these two metabolites. Heavy metals interfere with serotonergic 
synapses and GAD, reduce g-aminobutyric acid (GABA) synthesis, 
lead to neuroexcitotoxicity, and can interact with arachidonic acid 
metabolism (36, 37).  Leukotriene D4 alleviates inflammatory 
responses by activating the phospholipase C/Ca2+/protein kinase C 
pathway (38). L-Aspartic acid is another important amino acid that 
serves as an intermediate in the tricarboxylic acid (TCA) and urea 
cycles, attenuating external oxidative stress-induced tissue damage 
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and inflammatory responses (39). Gamma-aminobutyric acid 
(GABA) is also an important amino acid with antioxidant 
properties that regulates lipid metabolism (40). In our study, 
chronic Cr6+ exposure resulted in significant increases in the levels 
of 5-hydroxy-L-tryptophan, thromboxane A2, and prostaglandin J2 
and significant decreases in the levels of 5,6-DHET, 14R,15S-EpETrE, 
GABA, leukotriene D4, L-aspartic acid, and GABA. This suggests that 
Cr6+ exposure leads to arachidonic acid metabolism disruption and 
toxic action, whereas elevated levels of 5,6-DHET may be adaptive 
responses produced by the organism. In our study, the biosynthesis of 
alkaloids derived from the shikimate pathway was significantly 
altered, and 5-hydroxy-L-tryptophan, cinchonidine, quinidine, and 
quinine were significantly elevated, whereas L-alanine, L-tyrosine, 
and vanillin levels were significantly reduced. Cinchonidine protects 
against cisplatin-induced oxidative stress by activating the PI3K/AKT 
pathway (41). In contrast, some drugs, such as quinine and quinidine, 
have indirect antioxidant effects, thereby mitigating oxidative damage 
(42, 43). L-Valine promotes fish growth, improves antioxidant 
capacity and alleviates endoplasmic reticulum stress (44). Thus, the 
present study demonstrated that chronic Cr6+ exposure leads to 
disturbances in arachidonic acid metabolism and amino acid 
metabolism, induces oxidative damage to gill tissues, and regulates 
redox levels through metabolic reprogramming. 

Fish gill tissue is an important osmoregulatory organ (45). When 
gill tissue is damaged, its osmoregulatory capacity is disrupted, 
directly affecting ATPase activity and leading to electrolyte 
imbalance (46). In the present study, we found that Cr6+ exposure 
resulted that steroid biosynthesis, fatty acid biosynthesis, 
biosynthesis of unsaturated fatty acids, aflatoxin biosynthesis, and 
lutathione metabolism signaling pathways were significantly altered. 
In addition, elevated expression of HSP70, which functions as 
oxidative stress biomarker, indicated that the cells were in a state 
of oxidative damage. Studies have shown that heavy metals and 
physiological stress can induce significant expression of stress 
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proteins such as HSP70 and promote apoptosis by catalyzing 
Caspase-3 and caspase-9 (47, 48). The experimental data revealed 
that chronic Cr6+ exposure significantly upregulated the expression 
of HSP70, activated the apoptotic factors Caspase-3 and Caspase-9 in 
gill tissues, and inhibited the expression of the key antioxidant 
regulator GPx4, suggesting that Cr6+ exposure mediates structural 
damage in gill tissues. The peroxisome proliferator-activated 
receptor (PPAR) family, classified within the ligand-activated 
nuclear receptor superfamily, comprises three functionally distinct 
isoforms designated as a, b/d, and g subtypes (49).These nuclear 
receptors play important roles in metabolism, cell differentiation and 
inflammatory processes. PPARg has been shown to be a key factor in 
the regulation of lipid metabolism and adipocyte differentiation, and 
increasing evidence suggests that PPARg exerts anti-inflammatory 
and neuroprotective functions by regulating the transcription of 
inflammatory genes (50, 51). In addition, previous studies have 
found that Cr6+ can cause severe oxidative damage to tissues and 
organs throughout the body via the blood circulation (52). Alwaili 
et al. found that Cr6+ exposure inhibits PPARg expression levels and 
mediates inflammatory responses in the mouse heart (53). Jin et al. 
found that Cr6+ exposure inhibited PPARg expression levels and 
mediated apoptosis in chicken pancreas (54). Notably, Cr6+ 

exposure can lead to blood-brain barrier damage and brain-
hepatic axis neurotoxicity in zebrafish and snakehead fish (28). 
The results of the present study showed that chronic Cr6+ exposure 
resulted in significant inhibition of PPARg, accompanied by 
decreases in the expression levels of its downstream anti-
inflammatory mediators TGF-b and IL-10. Moreover,  Cr6+ 

promotes the expression of COX-2 and induces the release of the 
proinflammatory cytokine IL-8 via the NF-kB pathway, which 
ultimately triggers a cascading inflammatory response. Low PPAR-
g expression deregulates COX-2 inhibition and activates the NF-kB 
signaling pathway to promote inflammatory progression (55). COX­
2 synthesizes and promotes the formation of thromboxane A2 and 
FIGURE 9 

Mechanism of Cr6+ causing gill metabolic disorders. 
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prostaglandin E2, leading to disorders of arachidonic acid 
metabolism and causing inflammation and nerve damage (56, 57). 
Cinchonine inhibits PPARg expression, downregulates fatty acid 
synthesis, and modulates inflammatory responses (58). IL-10 and 
TGF-b1 achieve anti-inflammatory effects through transcriptional 
silencing of pro-inflammatory cytokines and constitutive inhibition 
of NF-kB nuclear translocation, thereby attenuating inflammation-

driven tissue damage (59, 60). IL-8 can be activated by the NF-kB 
pathway to promote inflammation (61). These findings are similar to 
those in our study, where correlation analyses revealed that PPAR-g 
was negatively correlated with cinchonidine, quinidine, quinidine, 5­
hydroxy-1-tryptophan, thromboxane A2, and prostaglandin J2, 
whereas the anti-inflammatory factors IL-10, TGF-b, and GPx4 
were downregulated, and proinflammatory factors were 
upregulated. However, COX-2 showed the opposite trends of 
correlation with the above metabolites. GABA exerts anxiolytic 
effects as a neurotransmitter while inhibiting the release of 
proinflammatory factors and regulating lipid metabolism by 
enhancing PPAR-g (6, 62). In the present study, we analyzed the 
adverse effects of Cr6+ exposure on gill tissues by integrating 
transcriptomics and metabolomics. We found that Cr6+ exposure 
significantly led to increased glutathione depletion, resulting in 
decreased GPX4 expression levels. In addition, Cr6+ exposure 
significantly inhibited the expression level of PPAR-g, a key factor 
in lipid metabolism, and induced lipid metabolism disorders, which 
further activated the NF-kB pro-inflammatory signaling pathway to 
aggravate the release of inflammatory factors and triggered the 
Caspase-3 cascade reaction to trigger apoptosis. In this study, we 
confirmed the mechanism of action of Cr6+ exposure in inducing gill 
toxicity in Thymallus grubii. Cr6+ accumulated in tissues such as 
intestine, liver and gill, and these results highlight the multi organ 
distribution pattern of Cr6+. Based on these results, we will 
systematically investigate the cross-organ interaction network of 
Cr6+ to elucidate the mechanism of Cr6+ induced oxidative stress 
cascade in aquatic animals. 
5 Conclusion 

In conclusion, this study elucidates for the first time the 
mechanism of gill tissue damage caused by Cr6+ in aquatic 
organisms. The data suggest that Cr6+ exposure disrupts the 
arachidonic acid metabolic pathway by inactivating PPAR-g to 
deregulate COX-2, leading to oxidative stress and inflammatory 
responses. Disturbances in arachidonic acid metabolism led to the 
release of proinflammatory mediators such as thromboxane A2 and 
prostaglandin J2, which are accompanied by the accumulation of 
oxidized glutathione. PPAR-g activity inhibition leads to blocked 
synthesis of metabolites with anti-inflammatory/antioxidant 
functions, such as GABA, quinidine, and L-aspartic acid. Therefore, 
targeted activation of PPAR-g combined with COX-2 inhibitors could 
be a potential intervention strategy to reverse Cr6+ toxicity (Figure 9). 
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