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Immune microenvironment
regulation and clinical
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Metastatic liver cancer (MLC) remains a leading cause of cancer-related mortality
due to the liver's unique immunotolerant microenvironment and high
vascularization. Key mechanisms involve KC-mediated fibronectin deposition,
neutrophil extracellular traps (NETs), and MDSC-driven T-cell exhaustion.
Clinically, therapeutic strategies targeting the tumor microenvironment (TME)
such as CSFI1R inhibition, CCR2/CCR5 blockade, and CD40 agonism show
promise in preclinical and early-phase trials, especially when combined with
immunotherapy. However, challenges remain in overcoming systemic
immunosuppression. This review summarizes the dual roles of hepatic immune
cells including Kupffer cells (KCs), neutrophils, and myeloid-derived suppressor
cells (MDSCs) in either suppressing or promoting metastatic colonization. We
elucidate how the liver's immunological balance, governed by innate and
adaptive responses, shifts toward immunosuppression during metastasis,
fostering a pro-tumor niche. This synthesis of immunological insights
underscores the potential of TME-modulating therapies to improve outcomes
in MLC.
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1 Introduction

Metastatic liver cancer (MLC) is a secondary malignancy arising from both
gastrointestinal and non-gastrointestinal primary tumors. Gastrointestinal-derived
metastases, though originating in the digestive tract, frequently disseminate to distant
organs via hematogenous routes (1, 2). Due to the liver’s unique anatomical position and
portal circulation, it serves as the predominant site for metastatic seeding in gastrointestinal
cancers (3). MLC significantly contributes to cancer-related mortality (4, 5), with hepatic
metastases conferring poor prognoses across malignancies, including breast, renal, and
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lung cancers. Notably, 25% of newly diagnosed CRC patients and
40%-50% with advanced CRC develop liver metastases (6).

The liver’s high metastatic susceptibility stems from its dual
blood supply and hemodynamic architecture, which promote
tumor cell homing (7). Beyond vascular mechanisms, the hepatic
microenvironment critically supports metastatic colonization,
making therapeutic targeting of the tumor microenvironment
(TME) a key research focus (8, 9). This review summarizes the
roles of hepatic immune cells, including Kupffer cells (KCs),
neutrophils, and myeloid-derived suppressor cells (MDSCs), in
either suppressing or promoting metastatic colonization. By
synthesizing hepatic immune responses, microenvironmental
dynamics, and clinical evidence, we explore TME modulation as a
potential strategy for MLC prevention and therapy.

2 The unique hepatic immune
microenvironment dictates the fate of
metastatic cancer cells

2.1 Innate immune responses in the liver

The liver’s immune system is uniquely adapted to maintain
tolerance to portal vein-derived antigens under homeostasis (10,
11), yet it can mount robust immune responses against acute threats
like metastatic invasion (12). Upon entering the liver, cancer cells
encounter a specialized cellular milieu that orchestrates antigen
presentation, pathogen recognition, and targeted elimination (13).
Natural killer (NK) cells dominate the hepatic lymphocyte
population (14), playing a pivotal role in immune surveillance.
Unlike adaptive immune cells, NK cells detect targets lacking MHC-
I—a common evasion strategy employed by tumors and pathogens
(15, 16). The liver also harbors invariant natural killer T (iNKT)
cells, a unique subset derived from thymic CD4 CD8" precursors
that mature into CD4"CD8" effectors (17, 18). These cells express
chemokine receptors (CCR5/CXCR3) and patrol liver sinusoids via
CD1d-dependent interactions with liver sinusoidal endothelial cells
(LSECs) and macrophages, enabling rapid anti-tumor responses
(19, 20). However, during metastatic progression, iNKT cells exhibit
functional impairment (21). Studies have shown that tumor-
induced immunosuppressive cytokines, such as IL - 10 and TGF-
B, downregulate their cytotoxic capacity and IFN-y production.
Additionally, the altered expression of CD1d and co-stimulatory
molecules on antigen-presenting cells in the metastatic liver
microenvironment diminishes iNKT cell activation (22, 23). This
dysfunction facilitates immune evasion by metastatic cells and
contributes to the establishment of an immunosuppressive niche.
Beyond the resident Kupffer cells (KCs), the liver recruits
CCR2"Ly6C" monocytes from the bone marrow during
inflammation (24). These monocytes are significantly upregulated
in pathological states of the liver, and studies in CCR2”" mice have
demonstrated that their absence mitigates hepatic inflammation
(25). Neutrophils are also actively recruited to sites of hepatic
inflammation (26). These cells express adhesion molecules such
as CD44, Siglec-9 (27), Siglec-10 (28), and very late antigen-4 (VLA
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- 4) (29), which mediate their adherence to vascular adhesion
molecules on LSECs.

2.2 Adaptive immune responses in the liver

The liver maintains a delicate immunological equilibrium,
balancing tolerance to dietary and microbial antigens with
defense against pathogens and malignancies. This balance is
orchestrated by hepatic antigen-presenting cells (APCs), which
under steady-state conditions drive tolerogenic T cell responses,
facilitating transplantation tolerance and chronic viral infections
such as HBV and HCV (30, 31). LSECs function as tolerogenic
APCs by expressing PD-L1 and inducing T cell exhaustion,
suppressing Thl differentiation while favoring IL - 4" Th2
polarization. Meanwhile, KCs that resident liver macrophages
exhibit low MHC II and co-stimulatory molecule (B7 - 1/2)
expression, thereby limiting T cell activation and fostering
immunosuppression via PD-L1 and cytokine secretion (32).
However, upon stimulation with inflammatory cues such as TLR
ligands, cytokines, and PolyI:C, KCs transition to an immunogenic
phenotype, upregulating MHC II and activating iNKT cells,
suggesting the existence of functionally distinct KC subsets (33, 34).

Hepatic dendritic cells (DCs), including CD11b", CDllchigh,
CDI1c", myeloid DCs (mDCs), and plasmacytoid DCs (pDCs),
generally suppress T cell activation. In mice, subsets like
CD11c"CD8" and CD11¢"NK1.1" DCs also exist but remain poorly
characterized (32, 35). Hepatic mDCs and pDCs secrete IL - 10 and are
regulated by macrophage colony-stimulating factor (M-CSF), which
enhances IL - 10 while suppressing IL - 12 (36). pDCs also produce IL -
27 and IDO, promoting Treg expansion and immunosuppression (37,
38). Their low Delta4/Jagged]l Notch ligand ratio biases toward Th2
differentiation and CD4" T cell apoptosis, reinforced by Treg-mediated
inhibition and PD-L1-PD-1 signaling (39). Lipid-poor DCs tend to be
tolerogenic; however, CD11c"CD8" DCs elicit strong Th1 responses via
IL - 12 and TNF-o, while CD11¢"NK1.1" DCs exhibit cytolytic activity
and stimulate T cell immunity. Hepatocytes also present antigens via
MHC II, contributing to antiviral defense, though their antitumor role
remains uncertain (40). Hepatic stellate cells (HSCs), residing in the
space of Disse, act as APCs and play a significant immunomodulatory
role in the hepatic immune microenvironment. They express immune
checkpoint molecules such as PD-L1 and secrete immunosuppressive
mediators including IL - 6, IL - 10, and TGF-f, which collectively
promote the expansion of regulatory T cells (Tregs) and contribute to
the exhaustion of effector T cells (41-44). In addition, HSCs can express
indoleamine 2,3-dioxygenase (IDO), further suppressing T cell
proliferation and cytokine production through tryptophan depletion
and kynurenine accumulation, thereby reinforcing immune tolerance
(45, 46). Through CD44-dependent signaling, HSCs also convert
recruited monocytes into myeloid-derived suppressor cells (MDSCs),
exacerbating local immunosuppression and facilitating metastatic
colonization (47). Overall, hepatic antigen presentation often favors
immunosuppression, shaped by the dynamic interplay of tolerogenic
and immunogenic signals within the hepatic microenvironment

(Figure 1).
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FIGURE 1

Immune microenvironment in metastatic liver cancer.

3 Pro-metastatic tumor
microenvironment of the liver

3.1 Role of Kupffer cells in cancer cell
metastasis

KCs, the liver’s resident macrophages, regulate cholesterol
metabolism, pathogen clearance, and immune responses (48, 49).
Originating from yolk sac-derived progenitors, KCs are replenished
by bone marrow-derived precursors during hepatic injury or
infection (50). They detect pathogens via diverse receptors,
secreting cytokines to initiate innate immune responses (33, 51).
KCs facilitate metastasis by forming a pre-metastatic niche. In
pancreatic cancer, KCs internalize tumor-derived exosomes
containing macrophage migration inhibitory factor, triggering
TGF-B secretion and hepatic stellate cell (HSC)-mediated
fibronectin production, promoting metastatic cell adhesion (52).
Circulating tumor cells bind fibronectin via Talin-1, enhancing
colonization (53). KCs exhibit dual roles in metastasis: early
cytolysis versus later pro-tumor support. Depleting KCs increases
metastatic burden, suggesting initial tumoricidal activity (54-56).
KCs phagocytose tumor cells via Dectin-2 or other receptors,
though post-internalization viability remains unclear (57).
Cytotoxic NO, NK cell activation, and TNF-o secretion further
limit early metastasis (58, 59). However, KC-derived cytokines may
aid surviving tumor cells post-extravasation. Myeloid cell
recruitment complicates KC-specific roles, as depletion strategies
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often affect other phagocytes. Thus, early-phase studies are critical
to delineate KC contributions (57).

3.2 Role of neutrophils in cancer cell
metastasis

One of the earliest pathological responses to hepatic cancer cell
infiltration is neutrophil recruitment (60, 61). Normally, neutrophils
migrate to inflamed sites by rolling along vascular endothelium via
low-affinity binding to P-/E-selectins, followed by integrin-mediated
firm adhesion and arrest, primarily in post-sinusoidal venules, though
CD44-hyaluronan interactions are not involved in hepatic sinusoids
(62). Tumor-associated neutrophils (TANs), like Kupffer cells, exhibit
dual pro- and anti-metastatic roles (63). In colorectal liver metastases
(CRLM), neutrophils promote progression, with elevated neutrophil-
to-lymphocyte ratio (NLR) correlating with worse outcomes, though
absolute neutrophil counts yield conflicting data (64). Higher
neutrophil numbers generally predict poorer prognosis (65).
Experimental models reveal neutrophils facilitate multiple metastatic
steps (66). In pancreatic cancer GEMMs, they aid pre-metastatic niche
formation, while neutrophil extracellular traps (NETs) enhance early
cancer cell retention by physically ensnaring circulating tumor cells
within the hepatic vasculature. Mechanistically, NETs release high-
mobility group box 1 (HMGBI), which activates TLR9 signaling in
tumor cells, promoting their proliferation and metastatic competency
(67, 68). Moreover, NET-associated proteases such as neutrophil
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elastase and matrix metalloproteinase 9 (MMP9) degrade extracellular
matrix (ECM) components, thereby facilitating tissue invasion and the
establishment of a pro-metastatic niche (69, 70). Post-colonization,
neutrophils accelerate growth via fibroblast growth factor 2 (FGF2),
with FGF2 inhibition reducing metastatic burden (71). Neutrophils
also modulate CD8" T cell responses in metastatic liver cancer (MLC)
and exhibit heterogeneous N1/N2 phenotypes regulated by TGF-f3
and IGF1, influencing pro- or anti-tumor effects (72, 73). Notably,
transforming growth factor-f (TGE-f), secreted by metastatic tumor
cells and Kupffer cells within the liver, is a key immunosuppressive
cytokine that drives the polarization of neutrophils toward a pro-
tumor phenotype (74, 75). TGF-B signaling inhibits neutrophil
cytotoxicity and reactive oxygen species (ROS) production, while
promoting the expression of matrix metalloproteinases MMP - 9
and vascular endothelial growth factor (VEGF) (76-79), thereby
enhancing tumor angiogenesis and extracellular matrix remodeling.
Moreover, TGF-B suppresses neutrophil-mediated stimulation of
CDS8" T cell responses, further contributing to immune evasion in
the metastatic tumor microenvironment (80, 81). In addition, IGF1
has been shown to further modulate the polarization of neutrophils,
especially in liver metastasis, acting as a significant driver of the
neutrophil polarization in this organ (82, 83). Thus, neutrophils drive
metastasis at multiple stages, with TGF-f3 and IGF1 synergistically
enhancing their pro-metastatic functions in liver metastases.

3.3 Recruitment of monocytes/
macrophages and myeloid-derived
suppressor cells to metastatic sites

Bone marrow-derived cells, including monocytic MDSCs (M-
MDSCs) and granulocytic MDSCs (G-MDSCs), are recruited to the
liver, facilitating metastatic expansion (84-86). In colorectal liver
metastasis, macrophage infiltration is predominantly mediated by
CCL9 and CCL15, which recruit CCR1" macrophages, whereas
granulocytic MDSCs are recruited via CCR2 (87, 88). Tumor-
associated macrophages (TAMs) promote MLC growth, and their
depletion reduces metastatic foci. Chemotactic factors drive
macrophage recruitment, and blocking these signals attenuates
metastasis. Kitamura et al. (89) identified CCL9 and CCL15 as
CRC-secreted chemokines recruiting CCR1" macrophages; CCR1
inhibition impairs infiltration and suppresses metastasis.

TAMs support metastasis via immune-dependent and
independent mechanisms (90). They promote angiogenesis via
VEGEFRI, responding to tumor-derived VEGF and complement
factors. CRC cells produce C5a, binding macrophage C5aR to
enhance recruitment and M2 polarization, fostering metastasis.
Conversely, C5aR ablation reduces M2 accumulation and metastatic
burden (91, 92). In pancreatic cancer, macrophages secrete granulin,
activating hepatic stellate cells (HSCs) to produce ECM and support
metastasis. Lim et al. (93) found macrophage depletion upregulated
S100A8/S100A9 and downregulated ANGPTL7 in cancer cells,
altering metastatic potential. SI00A8/A9 silencing reduced MLC
formation, while ANGPTL? overexpression suppressed it, indicating
macrophage-mediated tumor reprogramming. Hypoxia in metastases
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enhances macrophage pro-metastatic functions (94). In HCC, hypoxia
and necrosis induce HIF - 1oe and TLR4 in macrophages, boosting IL -
1B production, ECM deposition, and metastasis (95). Cirrhotic mice
show increased metastasis with reduced NO, while high-fat diet
(HFD)-fed mice exhibit non-alcoholic fatty liver disease (NAFLD)-
linked metastasis and M2 macrophage infiltration. NLRC4 deficiency
abrogates HFD effects, and NAFLD-associated IL - 1f3 promotes HCC
metastasis (96). Distinguishing resident from monocyte-derived
macrophages is critical for therapy (97). Tumor secretomes
homogenize macrophage populations toward pro-tumor phenotypes
(98, 99), though ontogeny influences function, as CSF1R blockade
affects brain microglia differently (100).

MDSCs suppress innate and adaptive immunity in metastasis (101,
102). M-MDSCs are often associated with immunosuppressive functions
and T-cell inhibition, primarily through the production of arginase-1
and IDO, which impair T-cell function and promote Treg expansion
(103). These M-MDSC:s are frequently localized at the tumor stroma or
the tumor periphery, where they interact with KCs and other stromal
cells to suppress effector immune responses (104, 105). In contrast, G-
MDSCs, which are typically characterized by the expression of Ly6G,
mediate their immunosuppressive effects through neutrophil
extracellular trap (NET) formation (106, 107). This mechanism
facilitates the entrapment of circulating tumor cells in the hepatic
vasculature and promotes tumor cell adhesion. Additionally, the
release of HMGB1 by NETSs activates TLR9 signaling in tumor cells,
enhancing their metastatic potential (108). G-MDSCs are predominantly
localized to microvascular niches within the hepatic sinusoids during
early metastatic colonization, where they exert their pro-metastatic
functions by altering the extracellular matrix (ECM) and promoting
angiogenesis (109, 110). Recruited via LSEC/KC/HSC chemokines, their
hepatic accumulation in female mice is estrogen-dependent and TNFR2-
mediated (111). Tumor-derived VEGF induces macrophage CXCLI,
recruiting MDSCs (112). STAT3 activation via sphingosine-1-phosphate
receptor 1 (SIPR1) drives IL - 6-mediated MDSC accumulation (113),
though signals preventing their maturation remain unclear (114).
MDSCs are identified by CD11b, Ly6G, and Ly6C, but marker
overlap with TAMs/TANs complicates characterization (115) (Table 1).

3.4 Metabolic constraints of the tumor
microenvironment impair immune effector
functions

The immunosuppressive TME in metastatic liver cancer is not only
shaped by cellular interactions but also by profound metabolic
reprogramming that impairs cytotoxic immune responses (116, 117).
Tumor cells consume glucose at a high rate through aerobic glycolysis
(the Warburg effect), leading to glucose depletion in the hepatic niche
(118, 119). Since both NK cells and cytotoxic CD8" T cells rely on
glucose-driven oxidative phosphorylation and aerobic glycolysis to
sustain their effector functions, nutrient scarcity results in cellular
exhaustion and reduced cytokine secretion (IFN-y, TNF-ar) (120, 121).
Additionally, lactate—a byproduct of tumor glycolysis—is exported via
MCT4 into the extracellular space (122, 123). Its accumulation acidifies
the TME and is taken up by immune cells, causing intracellular acidosis
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TABLE 1 Key immune cell populations in the hepatic metastatic niche and their functional roles.

Subsets

Cell Type

Pro-Metastatic Mechanisms

Anti-Metastatic
Mechanisms

Clinical Targeting

Kupffer
Cells (KCs)

Resident (yolk sac-

fib tin; cytoki t
derived), BM-derived ronectin; cytoline suppor

post-extravasation.

N1 (anti-tumor), N2

Pre-metastatic niche formation via TGF-f/

NETs enhance colonization; FGF2-driven

Strategies

Early-phase tumor phagocytosis
(Dectin-2), NO/TNF-a secretion, NK
cell activation

CSF1R inhibitors
(pexidartinib), CD40 agonists

Limited direct cytotoxicity; N1 CXCR2/CXCR4 inhibition

Neutrophils ( ¢ ) wih: NLR at ith . phenotype inhibits metastasis under (BL - 8040), NET di "
ro-tumor rowth; correlates with poor prognosis - s isruption
P 8 poor prog TGF- blockade P
TAMs (M1/M2), M1 ph ts ph i CCR2/CCRS5 ant: ist
Monocytes S+( N ) CCL9/CCL15-CCRI recruitment; VEGFR1 3 p enotype e?(er S phagocytic N antagonists
CCR2"Ly6C . K i L activity; TLR activation may restore (maraviroc), CCL2/CXCL12
/Macrophages | . angiogenesis; C5aR-mediated M2 polarization . . .
inflammatory monocytes antitumor function axis blockade
PMN-MDSC. STAT3/IL-6-dri ion; SIPR1-
+ S+ . / . riven expans?on o . . CXCR4 inhibitors, PD - 1/
MDSCs (CD11b"Ly6G"), M- mediated immunosuppression; estrogen- None identified in metastasis CTLA-4 combo thera
MDSCs (CD11b"Ly6C") dependent recruitment 24
INKT Cells CD4'CD8" Rarely pro-tumor; may promote fibrosis via CD1d-dependent cytotoxicity; IFN-y o-GalCer analogs to activate

double-positive HSC interaction

that disrupts signaling pathways such as NFAT and mTOR, thereby
suppressing IFN-y production in NK and T cells (124). Moreover,
hypoxia, a hallmark of the liver metastatic TME, stabilizes HIF - 1ot in
NK and T cells, shifting their metabolism toward anaerobic pathways
and impairing mitochondrial function, proliferation, and cytolytic
activity (120, 125). Collectively, these metabolic stressors within the
TME undermine the survival and effector potency of immune cells,
further favoring metastatic colonization.

4 Clinical trials targeting TAMs and
MDSCs

TAMs and MDSCs critically sustain the immunotolerant milieu of
metastatic liver cancer (MLC), making them prime therapeutic targets
(126, 127). The CSF1/CSFIR axis regulates macrophage differentiation,
recruitment, and survival. CSFIR inhibitors reduce CD68"/CD163"
macrophage infiltration in normal liver tissue. In colorectal cancer
(CRC) models, CSFIR blockade elevates cytotoxic T cells while
suppressing FoxP3" Tregs (128). Though limited as monotherapy
(129), CSFIR inhibition synergizes with PD - 1/PD-L1 inhibitors or
chemotherapy. A phase I trial (NCT02777710) combining durvalumab
(PD-L1 inhibitor) and pexidartinib (CSF1R inhibitor) in advanced CRC/
pancreatic cancer showed 21% achieving stable disease =2 months (130).
This limited efficacy of CSFIR blockade as monotherapy may stem from
compensatory mechanisms that sustain TAM survival and function
(131, 132). In particular, GM-CSF and G-CSF signaling pathways can
support macrophage viability and polarization in the absence of CSFIR
signaling, enabling the persistence of pro-tumoral macrophage
populations despite CSFIR inhibition (133, 134). Additionally, tumors
may circumvent CSFIR blockade by recruiting alternative
immunosuppressive cell types, including tumor-associated neutrophils
(TANs), MDSCs, and tolerogenic dendritic cells, which collectively
reinforce an immunosuppressive microenvironment (135). These
compensatory pathways highlight the need for combination therapies
that simultaneously target multiple immunoregulatory axes within the
tumor microenvironment.
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secretion against MHC-I targets iNKT cells (phase I/II trials)

Disrupting TAM/MDSC recruitment offers another strategy. CCL2,
CXCL12, and CCL5 mediate hepatic infiltration by these cells (136,
137). In CRC models, CCL2 correlates with MLC progression. CCR2
knockout mice exhibit reduced TAMs, increased CD8"/CD4" T cells,
and improved survival (138). Clinically, the CCR2 antagonist CCX872
plus FOLFIRINOX improved survival in metastatic pancreatic cancer,
with ~33% alive at 18 months (139). An ongoing trial (NCT03184870)
is testing the CCR2/CCR5 antagonist BMS - 813160 with chemo/
immunotherapy in metastatic pancreatic/CRC. The CXCL12/CXCR4
axis also recruits immunosuppressive cells to the liver (140). In CRC
models, CXCR4 inhibition reduced MLC/MDSC accumulation (141)
and enhanced PD - 1 blockade efficacy, elevating CD8" T cell/Treg
ratios and tumor regression (142). A trial combining the CXCR4
inhibitor BL - 8040 with FOLFIRI/pembrolizumab in refractory
pancreatic cancer yielded 4 partial responses among 15 patients
(143). Further trials (NCT02907099) will clarify its role in MLC.

The CCL5/CCRS5 axis drives metastasis by mobilizing MDSCs and
polarizing M2 macrophages (144, 145). In CRLM, CCR5" tumors
exhibit elevated Treg: CTL ratios and PD - 1/CTLA-4 (146).
Preclinical data show CCL5 boosts TAM-derived MMPs, accelerating
progression, while maraviroc (CCR5 inhibitor) reprograms TAMs to an
antitumoral phenotype. A phase I trial (MARACON) in CCR5" mCRC
saw 3/11 patients respond post-chemotherapy (147). Ongoing studies
(NCT03274804, NCT03631407) are testing CCR5/PD-1 co-blockade in
MSS mCRC. Reprogramming TAMs toward antitumor states is another
approach. CD47-SIRPo signaling inhibits macrophage phagocytosis,
and CD47 upregulation helps tumors evade immunity (148). In models,
CD47 inhibition reduced MLC (149), prompting phase I trials of CD47
blockers alone (NCT04257617, NCT03763149) or combined
(NCT02953782). CD40 agonists activate macrophages via T cell-
dependent/independent pathways, inducing IFN production and
ECM remodeling (150). A phase Ib trial combining gemcitabine/nab-
paclitaxel/CD40 agonist + nivolumab in metastatic pancreatic cancer
achieved a 58% response rate (151). Other agents promoting MI
polarization include TLR agonists, PI3Ky inhibitors, and HDAC
inhibitors (152-154). The liver’s immunotolerant microenvironment
is shaped by bone marrow/lymphoid-derived immunosuppressive cells,
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fostering metastasis and impairing systemic immunity. Overcoming this
requires multimodal strategies, with current research focusing on
enhancing immunotherapy efficacy in MLC.

5 Conclusion

Metastatic liver cancer (MLC) represents a formidable clinical
challenge, where the liver’s unique immunotolerant microenvironment
actively facilitates tumor colonization and progression. Our review
highlights the dual roles of hepatic immune cells - initially serving as a
defense barrier but ultimately being co-opted to support metastatic
growth through multiple mechanisms. Kupffer cells transition from
tumoricidal effectors to pro-metastatic facilitators, while recruited
neutrophils and MDSCs establish immunosuppressive networks via
NETosis, cytokine secretion, and metabolic competition. These cellular
interactions create a self-reinforcing niche that promotes immune
evasion and treatment resistance.

To overcome these challenges, future therapeutic strategies must
integrate TME-modulating agents with immunotherapy and
chemotherapy, guided by comprehensive immune profiling.
Emphasis should be placed on identifying predictive biomarkers and
understanding spatiotemporal immune evolution during metastasis.
By elucidating the complex immunobiology of liver metastasis, this
review highlights the potential of combinatorial approaches to
transform MLC treatment and improve patient outcomes.
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