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Immune microenvironment
regulation and clinical
immunotherapy strategies
of metastatic liver cancer
Dan Liu, Mingzhu Li, Ying Liang, Fang Xu, Runtian Li
and Yang Sun*

Department of Biology, College of Basic Medicine, Heilongjiang University of Chinese Medicine,
Harbin, China
Metastatic liver cancer (MLC) remains a leading cause of cancer-related mortality

due to the liver’s unique immunotolerant microenvironment and high

vascularization. Key mechanisms involve KC-mediated fibronectin deposition,

neutrophil extracellular traps (NETs), and MDSC-driven T-cell exhaustion.

Clinically, therapeutic strategies targeting the tumor microenvironment (TME)

such as CSF1R inhibition, CCR2/CCR5 blockade, and CD40 agonism show

promise in preclinical and early-phase trials, especially when combined with

immunotherapy. However, challenges remain in overcoming systemic

immunosuppression. This review summarizes the dual roles of hepatic immune

cells including Kupffer cells (KCs), neutrophils, and myeloid-derived suppressor

cells (MDSCs) in either suppressing or promoting metastatic colonization. We

elucidate how the liver’s immunological balance, governed by innate and

adaptive responses, shifts toward immunosuppression during metastasis,

fostering a pro-tumor niche. This synthesis of immunological insights

underscores the potential of TME-modulating therapies to improve outcomes

in MLC.
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1 Introduction

Metastatic liver cancer (MLC) is a secondary malignancy arising from both

gastrointestinal and non-gastrointestinal primary tumors. Gastrointestinal-derived

metastases, though originating in the digestive tract, frequently disseminate to distant

organs via hematogenous routes (1, 2). Due to the liver’s unique anatomical position and

portal circulation, it serves as the predominant site for metastatic seeding in gastrointestinal

cancers (3). MLC significantly contributes to cancer-related mortality (4, 5), with hepatic

metastases conferring poor prognoses across malignancies, including breast, renal, and
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lung cancers. Notably, 25% of newly diagnosed CRC patients and

40%–50% with advanced CRC develop liver metastases (6).

The liver’s high metastatic susceptibility stems from its dual

blood supply and hemodynamic architecture, which promote

tumor cell homing (7). Beyond vascular mechanisms, the hepatic

microenvironment critically supports metastatic colonization,

making therapeutic targeting of the tumor microenvironment

(TME) a key research focus (8, 9). This review summarizes the

roles of hepatic immune cells, including Kupffer cells (KCs),

neutrophils, and myeloid-derived suppressor cells (MDSCs), in

either suppressing or promoting metastatic colonization. By

synthesizing hepatic immune responses, microenvironmental

dynamics, and clinical evidence, we explore TME modulation as a

potential strategy for MLC prevention and therapy.
2 The unique hepatic immune
microenvironment dictates the fate of
metastatic cancer cells

2.1 Innate immune responses in the liver

The liver’s immune system is uniquely adapted to maintain

tolerance to portal vein-derived antigens under homeostasis (10,

11), yet it can mount robust immune responses against acute threats

like metastatic invasion (12). Upon entering the liver, cancer cells

encounter a specialized cellular milieu that orchestrates antigen

presentation, pathogen recognition, and targeted elimination (13).

Natural killer (NK) cells dominate the hepatic lymphocyte

population (14), playing a pivotal role in immune surveillance.

Unlike adaptive immune cells, NK cells detect targets lacking MHC-

I—a common evasion strategy employed by tumors and pathogens

(15, 16). The liver also harbors invariant natural killer T (iNKT)

cells, a unique subset derived from thymic CD4-CD8- precursors

that mature into CD4+CD8+ effectors (17, 18). These cells express

chemokine receptors (CCR5/CXCR3) and patrol liver sinusoids via

CD1d-dependent interactions with liver sinusoidal endothelial cells

(LSECs) and macrophages, enabling rapid anti-tumor responses

(19, 20). However, during metastatic progression, iNKT cells exhibit

functional impairment (21). Studies have shown that tumor-

induced immunosuppressive cytokines, such as IL - 10 and TGF-

b, downregulate their cytotoxic capacity and IFN-g production.

Additionally, the altered expression of CD1d and co-stimulatory

molecules on antigen-presenting cells in the metastatic liver

microenvironment diminishes iNKT cell activation (22, 23). This

dysfunction facilitates immune evasion by metastatic cells and

contributes to the establishment of an immunosuppressive niche.

Beyond the resident Kupffer cells (KCs), the liver recruits

CCR2+Ly6C+ monocytes from the bone marrow during

inflammation (24). These monocytes are significantly upregulated

in pathological states of the liver, and studies in CCR2-/- mice have

demonstrated that their absence mitigates hepatic inflammation

(25). Neutrophils are also actively recruited to sites of hepatic

inflammation (26). These cells express adhesion molecules such

as CD44, Siglec-9 (27), Siglec-10 (28), and very late antigen-4 (VLA
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- 4) (29), which mediate their adherence to vascular adhesion

molecules on LSECs.
2.2 Adaptive immune responses in the liver

The liver maintains a delicate immunological equilibrium,

balancing tolerance to dietary and microbial antigens with

defense against pathogens and malignancies. This balance is

orchestrated by hepatic antigen-presenting cells (APCs), which

under steady-state conditions drive tolerogenic T cell responses,

facilitating transplantation tolerance and chronic viral infections

such as HBV and HCV (30, 31). LSECs function as tolerogenic

APCs by expressing PD-L1 and inducing T cell exhaustion,

suppressing Th1 differentiation while favoring IL - 4+ Th2

polarization. Meanwhile, KCs that resident liver macrophages

exhibit low MHC II and co-stimulatory molecule (B7 - 1/2)

expression, thereby limiting T cell activation and fostering

immunosuppression via PD-L1 and cytokine secretion (32).

However, upon stimulation with inflammatory cues such as TLR

ligands, cytokines, and PolyI:C, KCs transition to an immunogenic

phenotype, upregulating MHC II and activating iNKT cells,

suggesting the existence of functionally distinct KC subsets (33, 34).

Hepatic dendritic cells (DCs), including CD11b+, CD11chigh,

CD1c+, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs),

generally suppress T cell activation. In mice, subsets like

CD11c+CD8+ and CD11c+NK1.1+ DCs also exist but remain poorly

characterized (32, 35). Hepatic mDCs and pDCs secrete IL - 10 and are

regulated by macrophage colony-stimulating factor (M-CSF), which

enhances IL - 10 while suppressing IL - 12 (36). pDCs also produce IL -

27 and IDO, promoting Treg expansion and immunosuppression (37,

38). Their low Delta4/Jagged1 Notch ligand ratio biases toward Th2

differentiation and CD4+ T cell apoptosis, reinforced by Treg-mediated

inhibition and PD-L1–PD-1 signaling (39). Lipid-poor DCs tend to be

tolerogenic; however, CD11c+CD8+ DCs elicit strong Th1 responses via

IL - 12 and TNF-a, while CD11c+NK1.1+ DCs exhibit cytolytic activity
and stimulate T cell immunity. Hepatocytes also present antigens via

MHC II, contributing to antiviral defense, though their antitumor role

remains uncertain (40). Hepatic stellate cells (HSCs), residing in the

space of Disse, act as APCs and play a significant immunomodulatory

role in the hepatic immune microenvironment. They express immune

checkpoint molecules such as PD-L1 and secrete immunosuppressive

mediators including IL - 6, IL - 10, and TGF-b, which collectively

promote the expansion of regulatory T cells (Tregs) and contribute to

the exhaustion of effector T cells (41–44). In addition, HSCs can express

indoleamine 2,3-dioxygenase (IDO), further suppressing T cell

proliferation and cytokine production through tryptophan depletion

and kynurenine accumulation, thereby reinforcing immune tolerance

(45, 46). Through CD44-dependent signaling, HSCs also convert

recruited monocytes into myeloid-derived suppressor cells (MDSCs),

exacerbating local immunosuppression and facilitating metastatic

colonization (47). Overall, hepatic antigen presentation often favors

immunosuppression, shaped by the dynamic interplay of tolerogenic

and immunogenic signals within the hepatic microenvironment

(Figure 1).
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3 Pro-metastatic tumor
microenvironment of the liver

3.1 Role of Kupffer cells in cancer cell
metastasis

KCs, the liver’s resident macrophages, regulate cholesterol

metabolism, pathogen clearance, and immune responses (48, 49).

Originating from yolk sac-derived progenitors, KCs are replenished

by bone marrow-derived precursors during hepatic injury or

infection (50). They detect pathogens via diverse receptors,

secreting cytokines to initiate innate immune responses (33, 51).

KCs facilitate metastasis by forming a pre-metastatic niche. In

pancreatic cancer, KCs internalize tumor-derived exosomes

containing macrophage migration inhibitory factor, triggering

TGF-b secretion and hepatic stellate cell (HSC)-mediated

fibronectin production, promoting metastatic cell adhesion (52).

Circulating tumor cells bind fibronectin via Talin-1, enhancing

colonization (53). KCs exhibit dual roles in metastasis: early

cytolysis versus later pro-tumor support. Depleting KCs increases

metastatic burden, suggesting initial tumoricidal activity (54–56).

KCs phagocytose tumor cells via Dectin-2 or other receptors,

though post-internalization viability remains unclear (57).

Cytotoxic NO, NK cell activation, and TNF-a secretion further

limit early metastasis (58, 59). However, KC-derived cytokines may

aid surviving tumor cells post-extravasation. Myeloid cell

recruitment complicates KC-specific roles, as depletion strategies
Frontiers in Immunology 03
often affect other phagocytes. Thus, early-phase studies are critical

to delineate KC contributions (57).
3.2 Role of neutrophils in cancer cell
metastasis

One of the earliest pathological responses to hepatic cancer cell

infiltration is neutrophil recruitment (60, 61). Normally, neutrophils

migrate to inflamed sites by rolling along vascular endothelium via

low-affinity binding to P-/E-selectins, followed by integrin-mediated

firm adhesion and arrest, primarily in post-sinusoidal venules, though

CD44-hyaluronan interactions are not involved in hepatic sinusoids

(62). Tumor-associated neutrophils (TANs), like Kupffer cells, exhibit

dual pro- and anti-metastatic roles (63). In colorectal liver metastases

(CRLM), neutrophils promote progression, with elevated neutrophil-

to-lymphocyte ratio (NLR) correlating with worse outcomes, though

absolute neutrophil counts yield conflicting data (64). Higher

neutrophil numbers generally predict poorer prognosis (65).

Experimental models reveal neutrophils facilitate multiple metastatic

steps (66). In pancreatic cancer GEMMs, they aid pre-metastatic niche

formation, while neutrophil extracellular traps (NETs) enhance early

cancer cell retention by physically ensnaring circulating tumor cells

within the hepatic vasculature. Mechanistically, NETs release high-

mobility group box 1 (HMGB1), which activates TLR9 signaling in

tumor cells, promoting their proliferation and metastatic competency

(67, 68). Moreover, NET-associated proteases such as neutrophil
FIGURE 1

Immune microenvironment in metastatic liver cancer.
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elastase andmatrix metalloproteinase 9 (MMP9) degrade extracellular

matrix (ECM) components, thereby facilitating tissue invasion and the

establishment of a pro-metastatic niche (69, 70). Post-colonization,

neutrophils accelerate growth via fibroblast growth factor 2 (FGF2),

with FGF2 inhibition reducing metastatic burden (71). Neutrophils

also modulate CD8+ T cell responses in metastatic liver cancer (MLC)

and exhibit heterogeneous N1/N2 phenotypes regulated by TGF-b
and IGF1, influencing pro- or anti-tumor effects (72, 73). Notably,

transforming growth factor-b (TGF-b), secreted by metastatic tumor

cells and Kupffer cells within the liver, is a key immunosuppressive

cytokine that drives the polarization of neutrophils toward a pro-

tumor phenotype (74, 75). TGF-b signaling inhibits neutrophil

cytotoxicity and reactive oxygen species (ROS) production, while

promoting the expression of matrix metalloproteinases MMP - 9

and vascular endothelial growth factor (VEGF) (76–79), thereby

enhancing tumor angiogenesis and extracellular matrix remodeling.

Moreover, TGF-b suppresses neutrophil-mediated stimulation of

CD8+ T cell responses, further contributing to immune evasion in

the metastatic tumor microenvironment (80, 81). In addition, IGF1

has been shown to further modulate the polarization of neutrophils,

especially in liver metastasis, acting as a significant driver of the

neutrophil polarization in this organ (82, 83). Thus, neutrophils drive

metastasis at multiple stages, with TGF-b and IGF1 synergistically

enhancing their pro-metastatic functions in liver metastases.
3.3 Recruitment of monocytes/
macrophages and myeloid-derived
suppressor cells to metastatic sites

Bone marrow-derived cells, including monocytic MDSCs (M-

MDSCs) and granulocytic MDSCs (G-MDSCs), are recruited to the

liver, facilitating metastatic expansion (84–86). In colorectal liver

metastasis, macrophage infiltration is predominantly mediated by

CCL9 and CCL15, which recruit CCR1+ macrophages, whereas

granulocytic MDSCs are recruited via CCR2 (87, 88). Tumor-

associated macrophages (TAMs) promote MLC growth, and their

depletion reduces metastatic foci. Chemotactic factors drive

macrophage recruitment, and blocking these signals attenuates

metastasis. Kitamura et al. (89) identified CCL9 and CCL15 as

CRC-secreted chemokines recruiting CCR1+ macrophages; CCR1

inhibition impairs infiltration and suppresses metastasis.

TAMs support metastasis via immune-dependent and

independent mechanisms (90). They promote angiogenesis via

VEGFR1, responding to tumor-derived VEGF and complement

factors. CRC cells produce C5a, binding macrophage C5aR to

enhance recruitment and M2 polarization, fostering metastasis.

Conversely, C5aR ablation reduces M2 accumulation and metastatic

burden (91, 92). In pancreatic cancer, macrophages secrete granulin,

activating hepatic stellate cells (HSCs) to produce ECM and support

metastasis. Lim et al. (93) found macrophage depletion upregulated

S100A8/S100A9 and downregulated ANGPTL7 in cancer cells,

altering metastatic potential. S100A8/A9 silencing reduced MLC

formation, while ANGPTL7 overexpression suppressed it, indicating

macrophage-mediated tumor reprogramming. Hypoxia in metastases
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enhances macrophage pro-metastatic functions (94). In HCC, hypoxia

and necrosis induce HIF - 1a and TLR4 in macrophages, boosting IL -

1b production, ECM deposition, and metastasis (95). Cirrhotic mice

show increased metastasis with reduced NO, while high-fat diet

(HFD)-fed mice exhibit non-alcoholic fatty liver disease (NAFLD)-

linked metastasis and M2 macrophage infiltration. NLRC4 deficiency

abrogates HFD effects, and NAFLD-associated IL - 1b promotes HCC

metastasis (96). Distinguishing resident from monocyte-derived

macrophages is critical for therapy (97). Tumor secretomes

homogenize macrophage populations toward pro-tumor phenotypes

(98, 99), though ontogeny influences function, as CSF1R blockade

affects brain microglia differently (100).

MDSCs suppress innate and adaptive immunity in metastasis (101,

102).M-MDSCs are often associated with immunosuppressive functions

and T-cell inhibition, primarily through the production of arginase-1

and IDO, which impair T-cell function and promote Treg expansion

(103). These M-MDSCs are frequently localized at the tumor stroma or

the tumor periphery, where they interact with KCs and other stromal

cells to suppress effector immune responses (104, 105). In contrast, G-

MDSCs, which are typically characterized by the expression of Ly6G,

mediate their immunosuppressive effects through neutrophil

extracellular trap (NET) formation (106, 107). This mechanism

facilitates the entrapment of circulating tumor cells in the hepatic

vasculature and promotes tumor cell adhesion. Additionally, the

release of HMGB1 by NETs activates TLR9 signaling in tumor cells,

enhancing theirmetastatic potential (108). G-MDSCs are predominantly

localized to microvascular niches within the hepatic sinusoids during

early metastatic colonization, where they exert their pro-metastatic

functions by altering the extracellular matrix (ECM) and promoting

angiogenesis (109, 110). Recruited via LSEC/KC/HSC chemokines, their

hepatic accumulation in femalemice is estrogen-dependent and TNFR2-

mediated (111). Tumor-derived VEGF induces macrophage CXCL1,

recruitingMDSCs (112). STAT3 activation via sphingosine-1-phosphate

receptor 1 (S1PR1) drives IL - 6-mediated MDSC accumulation (113),

though signals preventing their maturation remain unclear (114).

MDSCs are identified by CD11b, Ly6G, and Ly6C, but marker

overlap with TAMs/TANs complicates characterization (115) (Table 1).
3.4 Metabolic constraints of the tumor
microenvironment impair immune effector
functions

The immunosuppressive TME in metastatic liver cancer is not only

shaped by cellular interactions but also by profound metabolic

reprogramming that impairs cytotoxic immune responses (116, 117).

Tumor cells consume glucose at a high rate through aerobic glycolysis

(the Warburg effect), leading to glucose depletion in the hepatic niche

(118, 119). Since both NK cells and cytotoxic CD8+ T cells rely on

glucose-driven oxidative phosphorylation and aerobic glycolysis to

sustain their effector functions, nutrient scarcity results in cellular

exhaustion and reduced cytokine secretion (IFN-g, TNF-a) (120, 121).
Additionally, lactate—a byproduct of tumor glycolysis—is exported via

MCT4 into the extracellular space (122, 123). Its accumulation acidifies

the TME and is taken up by immune cells, causing intracellular acidosis
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that disrupts signaling pathways such as NFAT and mTOR, thereby

suppressing IFN-g production in NK and T cells (124). Moreover,

hypoxia, a hallmark of the liver metastatic TME, stabilizes HIF - 1a in

NK and T cells, shifting their metabolism toward anaerobic pathways

and impairing mitochondrial function, proliferation, and cytolytic

activity (120, 125). Collectively, these metabolic stressors within the

TME undermine the survival and effector potency of immune cells,

further favoring metastatic colonization.
4 Clinical trials targeting TAMs and
MDSCs

TAMs and MDSCs critically sustain the immunotolerant milieu of

metastatic liver cancer (MLC), making them prime therapeutic targets

(126, 127). The CSF1/CSF1R axis regulates macrophage differentiation,

recruitment, and survival. CSF1R inhibitors reduce CD68+/CD163+

macrophage infiltration in normal liver tissue. In colorectal cancer

(CRC) models, CSF1R blockade elevates cytotoxic T cells while

suppressing FoxP3+ Tregs (128). Though limited as monotherapy

(129), CSF1R inhibition synergizes with PD - 1/PD-L1 inhibitors or

chemotherapy. A phase I trial (NCT02777710) combining durvalumab

(PD-L1 inhibitor) and pexidartinib (CSF1R inhibitor) in advanced CRC/

pancreatic cancer showed 21% achieving stable disease ≥2months (130).

This limited efficacy of CSF1R blockade as monotherapymay stem from

compensatory mechanisms that sustain TAM survival and function

(131, 132). In particular, GM-CSF and G-CSF signaling pathways can

support macrophage viability and polarization in the absence of CSF1R

signaling, enabling the persistence of pro-tumoral macrophage

populations despite CSF1R inhibition (133, 134). Additionally, tumors

may circumvent CSF1R blockade by recruiting alternative

immunosuppressive cell types, including tumor-associated neutrophils

(TANs), MDSCs, and tolerogenic dendritic cells, which collectively

reinforce an immunosuppressive microenvironment (135). These

compensatory pathways highlight the need for combination therapies

that simultaneously target multiple immunoregulatory axes within the

tumor microenvironment.
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Disrupting TAM/MDSC recruitment offers another strategy. CCL2,

CXCL12, and CCL5 mediate hepatic infiltration by these cells (136,

137). In CRC models, CCL2 correlates with MLC progression. CCR2

knockout mice exhibit reduced TAMs, increased CD8+/CD4+ T cells,

and improved survival (138). Clinically, the CCR2 antagonist CCX872

plus FOLFIRINOX improved survival in metastatic pancreatic cancer,

with ~33% alive at 18 months (139). An ongoing trial (NCT03184870)

is testing the CCR2/CCR5 antagonist BMS - 813160 with chemo/

immunotherapy in metastatic pancreatic/CRC. The CXCL12/CXCR4

axis also recruits immunosuppressive cells to the liver (140). In CRC

models, CXCR4 inhibition reduced MLC/MDSC accumulation (141)

and enhanced PD - 1 blockade efficacy, elevating CD8+ T cell/Treg

ratios and tumor regression (142). A trial combining the CXCR4

inhibitor BL - 8040 with FOLFIRI/pembrolizumab in refractory

pancreatic cancer yielded 4 partial responses among 15 patients

(143). Further trials (NCT02907099) will clarify its role in MLC.

The CCL5/CCR5 axis drives metastasis by mobilizing MDSCs and

polarizing M2 macrophages (144, 145). In CRLM, CCR5+ tumors

exhibit elevated Treg: CTL ratios and PD - 1/CTLA-4 (146).

Preclinical data show CCL5 boosts TAM-derived MMPs, accelerating

progression, while maraviroc (CCR5 inhibitor) reprograms TAMs to an

antitumoral phenotype. A phase I trial (MARACON) in CCR5+ mCRC

saw 3/11 patients respond post-chemotherapy (147). Ongoing studies

(NCT03274804, NCT03631407) are testing CCR5/PD-1 co-blockade in

MSSmCRC. Reprogramming TAMs toward antitumor states is another

approach. CD47-SIRPa signaling inhibits macrophage phagocytosis,

and CD47 upregulation helps tumors evade immunity (148). In models,

CD47 inhibition reduced MLC (149), prompting phase I trials of CD47

blockers alone (NCT04257617, NCT03763149) or combined

(NCT02953782). CD40 agonists activate macrophages via T cell-

dependent/independent pathways, inducing IFN production and

ECM remodeling (150). A phase Ib trial combining gemcitabine/nab-

paclitaxel/CD40 agonist ± nivolumab in metastatic pancreatic cancer

achieved a 58% response rate (151). Other agents promoting M1

polarization include TLR agonists, PI3Kg inhibitors, and HDAC

inhibitors (152–154). The liver’s immunotolerant microenvironment

is shaped by bone marrow/lymphoid-derived immunosuppressive cells,
TABLE 1 Key immune cell populations in the hepatic metastatic niche and their functional roles.

Cell Type Subsets Pro-Metastatic Mechanisms
Anti-Metastatic
Mechanisms

Clinical Targeting
Strategies

Kupffer
Cells (KCs)

Resident (yolk sac-
derived), BM-derived

Pre-metastatic niche formation via TGF-b/
fibronectin; cytokine support
post-extravasation.

Early-phase tumor phagocytosis
(Dectin-2), NO/TNF-a secretion, NK
cell activation

CSF1R inhibitors
(pexidartinib), CD40 agonists

Neutrophils
N1 (anti-tumor), N2
(pro-tumor)

NETs enhance colonization; FGF2-driven
growth; NLR correlates with poor prognosis

Limited direct cytotoxicity; N1
phenotype inhibits metastasis under
TGF-b blockade

CXCR2/CXCR4 inhibition
(BL - 8040), NET disruption

Monocytes
/Macrophages

TAMs (M1/M2),
CCR2+Ly6C+

inflammatory monocytes

CCL9/CCL15-CCR1 recruitment; VEGFR1
angiogenesis; C5aR-mediated M2 polarization

M1 phenotype exerts phagocytic
activity; TLR activation may restore
antitumor function

CCR2/CCR5 antagonists
(maraviroc), CCL2/CXCL12
axis blockade

MDSCs
PMN-MDSCs
(CD11b+Ly6G+), M-
MDSCs (CD11b+Ly6C+)

STAT3/IL-6-driven expansion; S1PR1-
mediated immunosuppression; estrogen-
dependent recruitment

None identified in metastasis
CXCR4 inhibitors, PD - 1/
CTLA-4 combo therapy

iNKT Cells
CD4+CD8+

double-positive
Rarely pro-tumor; may promote fibrosis via
HSC interaction

CD1d-dependent cytotoxicity; IFN-g
secretion against MHC-I- targets

a-GalCer analogs to activate
iNKT cells (phase I/II trials)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1633315
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1633315
fosteringmetastasis and impairing systemic immunity. Overcoming this

requires multimodal strategies, with current research focusing on

enhancing immunotherapy efficacy in MLC.
5 Conclusion

Metastatic liver cancer (MLC) represents a formidable clinical

challenge, where the liver’s unique immunotolerant microenvironment

actively facilitates tumor colonization and progression. Our review

highlights the dual roles of hepatic immune cells - initially serving as a

defense barrier but ultimately being co-opted to support metastatic

growth through multiple mechanisms. Kupffer cells transition from

tumoricidal effectors to pro-metastatic facilitators, while recruited

neutrophils and MDSCs establish immunosuppressive networks via

NETosis, cytokine secretion, and metabolic competition. These cellular

interactions create a self-reinforcing niche that promotes immune

evasion and treatment resistance.

To overcome these challenges, future therapeutic strategies must

integrate TME-modulating agents with immunotherapy and

chemotherapy, guided by comprehensive immune profiling.

Emphasis should be placed on identifying predictive biomarkers and

understanding spatiotemporal immune evolution during metastasis.

By elucidating the complex immunobiology of liver metastasis, this

review highlights the potential of combinatorial approaches to

transform MLC treatment and improve patient outcomes.
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