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Introduction: Immune cells form defined pro- and anti-inflammatory regions
around a pathogen during an innate immune response. These include, in Toll-like
receptor (TLR)-2-induced inflammation, a core region containing the pathogen,
an adjacent pro-inflammatory (Pl) region and a surrounding anti-inflammatory
(Al) region. Interventions targeting specific immune cells or signaling pathways
disrupt this architecture and affect the resolution of inflammation. Here, we
investigated, which changes in the inflammatory architecture may favor an
increased resolution of inflammation.

Methods: Immune cell networks and defined inflammatory regions were detected
by high content imaging in an inflammation model induced by the TLR2 agonist
zymosan. Resolution of inflammation was determined using thermal hypersensitivity.
Results: Elimination of neutrophil recruitment using antibody depletion or GPR40-
deficient mice had little effect on formation of the inflammatory structure or
resolution of inflammation, as determined by the duration and strength of thermal
hypersensitivity. High content imaging and FACS analysis showed that other
phagocyting immune cells compensated for the loss of neutrophils in pathogen
phagocytosis. In contrast, G2A-deficient mice, which exhibit enhanced resolution of
zymosan-induced hypersensitivity, have reduced macrophage recruitment and
polarization as well as a shift in the inflammatory architecture towards anti-
inflammation. Importantly, the reduction of Ml-like macrophage polarization
without reduction of macrophage numbers by the JAK1/2 inhibitor baricitinib was
not sufficient to alter the inflammatory structure or resolution of inflammation.
Discussion: Combined with previously published results in the same
infammation model, we find that a strong decrease or increase of the PI
region negatively affects resolution of inflammation, whereas a moderate
decrease of 30-50% is associated with in part strongly enhanced resolution of
TLR2-mediated inflammation.
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1 Introduction

During inflammation, immune cells form different
microenvironments that represent the functions they perform in
these areas. In the recent years, especially the tumor
microenvironment has been the subject of extensive research,
which has led to a good understanding of the cells involved, their
interactions and the molecules involved in the formation and
maintenance of this microenvironment (1, 2). This research has
been able to take advantage of the fact that tumors are often relatively
easily distinguished from surrounding healthy tissue. The formation
and maintenance of microenvironments in other inflammatory
responses is much less understood due to the high mobility of
pathogens and their often diffuse and undetectable distribution. A
potential solution to this problem is the use of immobilized
pathogens that can used as reference point within the tissue to
define their microenvironment. This approach allows immune cell
networks to be delineated and mapped relative to the reference point,
providing a comprehensive understanding of the immune response
within the tissue (3). Zymosan is a commonly used inducer of Toll-
like receptor 2 (TLR2)-mediated local inflammation, that is arrested
at the site of injection due to its particulate structure. Using
fluorescently labeled zymosan, its localization can be precisely
determined and the position of immune cells relative to the
zymosan can be defined (3-7). TLR2-mediated immune responses
are relevant, since TLR2 is nearly ubiquitously expressed in immune
and non-immune cells, initiating acute innate immune responses
directed against a wide range of pathogens including gram-positive
bacteria, protozoa and viruses and thereby allowing to induce an
inflammation in a wide range of tissues (8, 9).

To determine the microenvironments in this inflammation
model high-content immunohistochemistry is especially useful. It
is capable of visualizing an unlimited number of antibodies on the
same tissue sample and allows single-cell phenotyping and
bioinformatics analysis of the number, phenotype and localization
of the involved immune cells (3, 10, 11). This technology has been
shown to help identifying the mechanism of action of drugs (4) as
well as predicting patient prognosis (12, 13) and therapy resistance
(14). Moreover, it allowed the identification of the inflammatory
architecture of zymosan-induced inflammation, showing a core
region containing the pathogen, neutrophils and M1-like
macrophages. This core region is surrounded by a pro-
inflammatory (PI) region dominated by M1I-like macrophages,
which in turn is surrounded by an anti-inflammatory (AI) region,
which is characterized by the presence of M2-like macrophages
(3-5). These three regions form within 24 hours after zymosan
injection and persist until zymosan removal is complete (3).

Interventions targeting the immune response in this model showed
distinct effects on the inflammatory architecture, whereby the likelihood
of two cell types to be direct neighbors can be used to define a relative
distance (3-5). For example, treatment with the non-steroidal-anti-
inflammatory drug (NSAID) meloxicam reduced proinflammatory
responses leading to shrinkage of the PI region, as determined by the
relative distance between zymosan and M2-like macrophages (4). In
contrast, genetic depletion of mast cells, which fulfill an anti-
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inflammatory role in the zymosan model, caused expansion of the PI
region (5). Importantly, the pharmacological or genetic interventions
tested so far for their influence on the inflammatory regions also
impaired resolution of inflammation, regardless of whether they
caused the PI region to shrink (meloxicam, eosinophil depletion)
(3, 4) or to expand (mast cell depletion) (5).

Here, we aimed to test the hypothesis that the PI region is
indicative of effects on the resolution of a TLR2-mediated
inflammation and to investigate how a strong interference with
the immune response, which does not alter the resolution of
inflammation, affects the inflammatory regions. Therefore, we
depleted neutrophils, which are the dominant immune cell type
in the inflamed tissue during the onset of zymosan-induced
inflammation (6, 15, 16), but do not affect the resolution of
zymosan-induced inflammation when depleted (15). In addition,
we used G2A knockout mice to test the effect of a resolution-
promoting intervention on the inflammatory structure during the
zymosan-induced inflammation. In these mice, macrophage
migration to the core region is impaired, resulting in a selective
decrease in the number of M1-like macrophages (7, 17).

2 Material and methods

2.1 Mice

Male C57BL/6 mice (6-8 weeks) were provided by Janvier
(Le Genest, France). GPR40 knockout mice with C57BL/6N
background (6-8 weeks) were previously described (7, 18). Frozen
paw tissue from previously published experimentation with G2A
knockout mice (The Jackson Laboratory, Bar Harbor, ME) were
used for MELC analyses (7). Mice were treated according to the
International Association for the Study of Pain guidelines. All the
ethics guidelines for investigations in conscious animals were
observed and the procedures were approved by the local ethics
committee (Regierungsprasidium Darmstadt). All animals had free
access to water and food. The room temperature (23 + 0,5 °C) and
light (7:00 am and 7:00 pm) were controlled. The animals were
randomized for the experiments. Inflammation was induced by
injection of 10 pl Zymosan A (3mg/ml in PBS, Merck, Darmstadt,
Germany) subcutaneously into the plantar side of one hind paw.
For neutrophil depletion, 500 pg Ly6G antibody clone 1A8
InVivoPlus " from Bio X Cell (Dartmouth, NH) was injected
intraperitoneal (i.p.) 24 hours before the zymosan injection. The
same amount of 500 ug rat IgG2a. isotype clone 2A3 (Bio X Cell,
Dartmouth, NH) was used as control and was injected 24 hours
before zymosan injection as well. Baricitinib was administered
orally (10 mg/kg body weight in carboxymethyl cellulose (CMC).

2.2 Thermal hypersensitivity and edema
formation

In all behavioral tests the experimenter was unware of the
treatment of the animals. The edema measurements were done at
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the indicated times after zymosan injection in one hind paw. Edema
volumes were measured with a 37140 plethysmometer from Ugo
Basile (IITC Life Science, Woodland Hills, CA) by immersion of the
mouse hind paw (19). The zymosan-induced thermal hypersensitivity
was determined with the Hargreaves test using an IITC Plantar
Analgesia Meter (Hargreaves test; IITC Life Science, Woodland Hills,
CA, USA) and the maximal temperature was at 32°C with a cut off
time at 20 seconds.

2.3 Resolution scores

To score the effect of interventions on the resolution of
zymosan-induced hypersensitivity published data (3-7) were
reanalyzed for the time points 24, 48 and 72 hour after zymosan
injection. A first scoring (Score 1) was applied to significant (Two
Way ANOVA, Bonferroni post hoc test) changes in the paw
withdrawal latency (PWL) compared to the respective control
mice. It was scored with 1 when the intervention increased PWL
toward baseline, 0 when there was no change and -1 when the PWL
decreased. A second score (Score 2) was calculated in case the PWL
returned to baseline earlier in the intervention group than the
control group an additional score of +2 was applied per day (One
Way ANOVA, Bonferroni post hoc test). In case the PWL returned
to baseline earlier in the control group score of -2 was applied per
day. Both scores were added to generate the final resolution score.

2.4 Multi-epitope-ligand-carthography

Multi-epitope-ligand cartography (MELC) is an automated
immunohistological imaging method that can be used to visualize
high numbers of antibodies on the same sample (3, 10). Briefly,
10 pm tissue sections on silanized coverslips were fixed with 4%
paraformaldehyde in PBS for 10 minutes, permeabilized with 0.1%
Triton X-100 in PBS for 10 min, and blocked with 3% bovine serum
albumin (all from Merck, Darmstadt, Germany) in PBS for 1 hour.
Tissue samples were imaged using a DMi8 microscope (Leica
Microsystems, Wetzlar, Germany) and a HC PL FLUOTAR L
20x/0,040 CORR PH1 objective with a cooled sSCMOS camera
(2048 x 2048 pixels). The sample was then incubated with up to
3 antibodies, each labeled with different bleachable fluorescence-
tags, and washed with PBS. Phase-contrast and fluorescence images
were collected, the fluorescence signals were bleached and post-
bleaching images were recorded. The process was repeated until all
antibodies were imaged. For data analysis, the post-bleaching
images were subtracted from the following fluorescence image.
The antibodies used on the MELC system are listed in the
Supporting Data S1.

2.5 Image analysis

All grayscale antibody channel images were edited with Image]J
v1.53q (National Institutes of Health [NIH], Bethesda, MD, USA)
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to remove background fluorescence, noise and artifacts for the
analyses. CellProfiler (v4.2.1) is an open-source software for
analyzing cell images. It was used to create a cell mask and
lightning corrections (20). CellProfiler is necessary for additional
illumination correction and the generation of a cell mask for single-
cell segmentation using the propidium iodide (cell nuclei) and
CD45 (cluster of differentiation). The cell mask was imported in
histoCAT (v1.7.3) (11) with the corresponding antibody channel
images. All images, except images used for single-cell mask
generation, were z-score normalized and used for Barnes-Hut
t-SNE (BH t-SNE) (21) and PhenoGraph analysis (22) in
histoCAT. PhenoGraph defines cell clusters based on single-cell
mask and marker colocalization (k set between 15 and 30). BH t-
SNE scatter plot was overlaid with a colored PhenoGraph cluster
map and clusters were classified as cell types based on their marker
expression. To calculate the relative number of cells per cell type,
the number of objects per cluster was normalized to the total
number of objects in the cell mask. The z-score normalized
images were exported to FlowJo software v10.8.1. Pairwise
interactions between cell phenotypes were calculated for each cell
and their neighbors in a distance of four pixel and were imported
into Cytoscape (v3.8.2) to produce dual-centered neighborhood
networks showing relative distances to the defined centers (23).

2.6 FACS analysis

Cell isolation and preparation from blood and paws was done as
described previously (1, 9, 19). Briefly, inflamed paws were cut into
<1 mm” pieces and incubated for 45 minutes at 37°C in 500 pl lysis
buffer (3 mg/ml Collagenase (from Clostridium histolyticum Typ
IA, Merck, Darmstadt, Germany) in RPMI 1640 medium). Lysis
was stopped by addition of 5 ml 10% FBS in DMEM. The cells were
passed through a cell strainer (70 pm) and incubated in erythrocyte
lysis (ACK) buffer for 5 minutes at room temperature. The
cells were centrifuged, fixed and then permeabilized at 4°C
for 10 minutes using the BD Cytofix/Cytoperm Fixation/
Permeabilization Kit (BD Biosciences, Heidelberg, Germany).
Unspecific binding was blocked by incubation with 60 pl of 2%
Fc-blocking reagent Mouse BD Fc Bloc (BD Pharmingen, NJ, USA)
in PBS for 10 minutes at 4°C. Antibodies (Supplementary Table S1)
were incubated for 20 minutes at 4°C. Samples were acquired with a
flow cytometry system (FACSymphony A5 Cell Analyzer; BD
Biosciences, Heidelberg, Germany) and analyzed by using FlowJo
software v10 (BD Biosciences, Heidelberg, Germany). Unstained
controls and fluorescence minus one (FMO) controls were used to
establish the gating strategy. Cell fragments and cell clusterings
were excluded based with FCS/SSC gating based on the particle
sizes. Additional Live dead staining was not included. According to
this gating strategy the signals considered as live, single cells
comprised around 60% of all signals after isolation of cells from
paws. To detect phagocyting cells pH-sensitive pHrodoTM Red
Zymosan A BioParticles conjugate (Invitrogen, Eugene, Oregon,
USA) was used for injection and cells isolated from an inflamed paw
injected with unlabeled zymosan were used as FMO control.
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2.7 RNA sequencing

Bone marrow cells were isolated from femur and tibia from the
hind legs of wild type and GPR40-knockout mice. The cells were
passed through a cell strainer (70 um), incubated in erythrocyte lysis
(ACK) buffer for 5 minutes at room temperature, centrifuged,
washed and resuspended in PBS-0,5% BSA. Unspecific binding
was blocked by incubation with 60 ul of 2% Fc-blocking reagent
Mouse BD Fc Bloc on ice. FACS sorting was performed using a
FACS Diva (BD Biosciences) based on granularity and Ly6G"&"
expression (anti-Ly6G APC-cy7 (1A8)). RNA isolation, sequencing,
quantification of mapped reads and differential transcript expression
analysis was done by GenXPro GmbH (Frankfurt, Germany).
Pathway analysis of the results was done using EnrichR (24, 25)
and String (26) mRNA Sequencing data are available in the GUDe
database (https://gude.uni-frankfurt.de/handle/gude/591).

2.8 Statistical analysis

Statistically significance was calculated using one-way or two-
way analysis of variance (ANOVA) by GraphPad Prism v9.0.1. For
post hoc analysis Bonferroni correction for multiple comparisons
was used. Comparisons between two groups were performed by
unpaired two-tailed Student’s t-test with Welsch’s correction.

3 Results

3.1 Neutrophil depletion does not affect
the Pl region or resolution of TLR2-
mediated inflammation

Previously it was shown that neutrophil depletion using the anti-
Ly6G/Ly6C antibody clone GR1 strongly decreased zymosan-
induced edema formation without affecting extent or resolution of
hypersensitivity (15). Here we used the more specific anti-Ly6G
antibody clone 1A8, which reduced the number of neutrophils by
>90% in blood and inflamed paws 24 hours after zymosan injection
(Figures 1A, B and Supplementary Figure S2A, B). Notably, we
used the anti-Ly6G/Ly6C antibody GR1 for FACS and
immunohistochemical detection of neutrophils. This antibody
recognizes neutrophils without interference from the 1A8 antibody,
which was used for neutrophil depletion (Supplementary Figure
S3A). In agreement with previous results (15), the zymosan-
induced edema formation was strongly decreased in the depleted
mice (Figure 1C) whereas onset and resolution of zymosan-induced
thermal hypersensitivity were not affected by neutrophil depletion
(Figure 1D). To determine the effect of neutrophil depletion on the
inflammatory architecture, the high-content imaging technology
MELC was used with an established panel of 29 antibodies
recognizing immune cells and non-immune cells (Supplementary
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Table S1) (3-5, 27). For single cell phenotyping, cluster analysis,
quantification and neighborhood analysis the previously established
workflow was used (Figure 1E) (3-5). Visual fields for MELC imaging
were selected to cover the zymosan-containing region (approximately
30% of the total image) and the neighboring areas. MELC analysis of
paws 24 hours after zymosan injection confirmed a reduction of the
neutrophil number in the tissue by >90% (Figures 1F, G and
Supplementary Figure S3B). Neutrophil depletion did not change
the number of cells in clusters representing eosinophils and dendritic
cells (DCs) in the observed areas of the inflamed paws (Figures 1H, I)
whereas the total number of macrophages significantly increased
(Figure 1J). Further bioinformatics analysis of the MELC data showed
that cell clusters representing M1-like macrophages (Siglec F/F4-
807/CD86"/CD2067) and MO macrophages (Siglec F7/F4-80%/
CD86"/CD206") were responsible for this increase, while the
number of M2-like macrophages (Siglec F/F4-80%/CD86/CD206")
did not change (Figures 1K-M). As reported previously, no innate
lymphoid cells, B cells, T cells and NK cells were detected in this area
of the tissue during this phase of the zymosan-induced inflammation
(3, 4).

To determine the effect of neutrophil depletion on the
inflammatory structure, the likelihood of cells neighboring each
other was compared to randomized cell distributions (15). For
visualization of the neighborhood of zymosan, linear distance maps
of the relative distance between zymosan and the identified cell
clusters were generated based on scores ranging from 0 (direct
neighbors) to 2 (no neighbors). Based on these scores, the relative
distance between zymosan and M2-like macrophages can be used to
define the size of the PI region (3-5). Importantly, neutrophil
depletion did not change the size of the PI region (Figures 2A-
C). Neutrophil depletion also led to surprisingly small effects on the
relative distance to zymosan for most of the other immune cell types
(Figures 2A, B). Only CD86/CD206 double positive MO
macrophages showed a significant decrease in their relative
distance to zymosan (Figures 2A, B), suggesting a reduced
pressure of the microenvironment in the PI region on
macrophages to polarize toward M1-like macrophages. Also the
dual-centered network visualization, which combines the cellular
neighborhoods of zymosan and M2-like macrophages, and allows a
clearer presentation of the distribution of the immune cells in the
tissue, showed, with the exception of the MO macrophages, no
relevant changes in the network localization of the different cell
types (Figure 2D). One of the major functions of neutrophils in
inflammation is the removal of pathogens by phagocytosis.
Therefore, we determined which cell types are involved in
zymosan phagocytosis in our model using pHrodo-zymosan,
whose pH-sensitive fluorescent label is activated upon
internalization into lysosomes. FACS analysis showed that the
number of pHrodo-zymosan®™ immune cells did not change after
neutrophil depletion (Figure 2E), with an increased proportion of
pHrodo-zymosan™ macrophages (Figure 2F; Supplementary Figures
S4A, B). This increase in phagocytic macrophages was not detected
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FIGURE 1

Neutrophil depletion decreases edema formation but not thermal hypersensitivity. (A, B) FACS-analysis of neutrophils in blood (panel A) and paws
(panel B) 24 hours after zymosan injection in mice having received IgG2a. (500 ug, i.p.) or anti-Ly6G (500 g, i.p.) antibodies. Data are shown as
mean + SEM (n=5-6); multiple unpaired t-test ** P<0.01, **** P<0.0001. (C, D) Edema formation (Panel C) and thermal hypersensitivity (panel D) of
mice injected with IgG2a or anti-Ly6G antibodies. Data are shown as mean + SEM (n=6); Two-way ANOVA, Bonferroni * P<0.05, ** P<0.01.

(E) Workflow for the bioinformatics analysis of the MELC images. (F) Representative images of cell clusters for neutrophils and M1-like macrophages
in regard to zymosan in paws 24 hours after zymosan injection in mice treated with IgG2a.- or anti-Ly6G-antibodies. Red dotted lines depict the
border of the core region. (G-M) Quantification of MELC data 24 hours after zymosan injection for the number of neutrophils (G), eosinophils (H),
DCs (1), all macrophages (J), MO-like macrophages (K), M1-like macrophages (L) and M2-like macrophages (M) in mice treated with IgG2a- or anti-
Ly6G-antibodies. Data are shown as mean with SEM (n=5); unpaired t-test * P<0.05, ** P<0.01, *** P<0.001.
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FIGURE 2

= Eosinophils
= Neutrophils

= Macrophages
= Dendritic cells

Neutrophil-depletion does not alter the relative size of the Pl region. (A, B) Zymosan centered relative distance mapping (panel A) and histogram
(panel B) for various immune cell types in mice treated with IgG2o or anti-Ly6G antibodies 24 hours after zymosan injection. Data shown as mean
(n=5) + SEM; multiple unpaired t-test; ** P<0.01, *** P<0.001. (C) Representative images of clusters for zymosan, M1-like and M2-like macrophages
in paws 24 hours after zymosan injection in mice treated with IgG2o.- or anti-Ly6G-antibodies. Red dotted lines depict the border of the core region
(D) Dual-centered network visualization of the combined cellular neighborhoods of zymosan and M2-like macrophages in paws from mice treated
with IgG2a: or anti-Ly6G antibodies 24 hours after zymosan injection. (E, F) FACS analysis of all pHrodo™ CD45* cells (panel E) and percentage of
pHrodo* cell types (panel F) in IgG2a. and Anti-Ly6G pretreated mice 4 hours after zymosan injection. Data are shown as mean of n = 4-5; unpaired

T-test, ns, not significant.

in MELC analysis (Supplementary Figures SSA-D), which might be
due to the incomplete coverage of the core region in the field of
visions. Since the timely pathogen clearance was unaffected in
neutrophil-depleted mice as reflected by the normal resolution of
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zymosan-induced thermal hypersensitivity, it can be speculated that
the phagocytic capacity of macrophages and other phagocytic
immune cells, which is otherwise used to clear apoptotic
neutrophils, can be redirected toward phagocytosis of zymosan.
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3.2 GPR40 deficiency does not affect the
size of the PI region or thermal
hyperalgesia

Notably, neutrophil depletion results in their phagocytosis by
macrophages, which might alter the course of inflammation.
Therefore, GPR40 (FFAR1) knockout mice were tested as a
second model to interfere with neutrophil functions. The G
protein-coupled receptor (GPCR) GPR40 is highly expressed in
neutrophils and positively regulates neutrophil functionality
(28-30). FACS analysis showed that although neutrophil numbers
were upregulated in the blood of GPR40 knockout mice (Figure 3A;
Supplementary Figure S6A), neutrophil recruitment to zymosan-
injected paws was reduced in the GPR40 knockout mice
(Figure 3B). Analogous to the findings in the antibody-mediated
neutrophil depletion model, FACS analysis also showed increased
numbers of macrophages in the inflamed paw (Figure 3C),
suggesting a similar compensatory mechanism. As seen in the
antibody-mediated neutrophil depletion model, the edema
formation was strongly reduced in GPR40 knockout mice
(Figure 3D) while the resolution of the zymosan-induced thermal
hypersensitivity was not altered (Figure 3E). To investigate the
mechanisms underlying the decreased neutrophil recruitment in
GPR40 knockout mice, we determined the mRNA expression levels
by RNAseq of neutrophils isolated from the bone marrow of wild
type and GPR40 knockout mice. Pathway analyses using the
EnrichR and String databases showed a prominent decrease in the
expression of genes associated with the tubulin cytoskeleton,
including the downregulation of tubulin-o-1c and the kinesins
Kif4, Kifll, Kifl5 and Kif22 (Figure 3F; Supplementary Figure
S6B and S9). Since the tubulin cytoskeleton is required for
endosomal transport involved in receptor transport to the
plasmamembrane (31), we performed FACS analysis of
neutrophils isolated from the blood to study the expression of
10 chemokine and integrin receptors, that mediate neutrophil
recruitment to inflamed tissue. We found a significant
downregulation of CD44, CD49d, CXCR1 and CXCR4
(Figure 3G; Supplementary Figure S4A), which have been shown
to mediate bone marrow egress of neutrophils, neutrophil adhesion
to endothelial cells, neutrophil tissue recruitment and endothelial
transmigration of neutrophils (32-36). Thus, the data show that loss
of GRP40 abolishes neutrophil recruitment during zymosan-
induced inflammation, which appears to be based on a
multifactorial perturbation of cytoskeletal functions and receptor
surface expression.

MELC analysis of the inflamed paws confirmed the nearly
complete absence of neutrophils 24 hours after zymosan injection
(Figures 4A, B). Notably, the difference in the neutrophil numbers
between the MELC and the FACS analyses shown in Figure 3B can
be attributed to the presence of contaminating blood in the tissue
preparations used for the FACS analysis. Fittingly, this was not an
issue after antibody-mediated neutrophil depletion, since the blood
was also depleted of neutrophils. As seen for antibody-mediated
neutrophil depletion an increase of cells in clusters representing
MI-like macrophages was observed (Figure 4C), suggesting a
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compensatory upregulation similar to the results for antibody-
mediated neutrophil depletion. The number of M2-like
macrophages, all macrophages and DCs did not change
(Figures 4D-F), while the number of eosinophils decreased by
approximately 50% (Figure 4G), suggesting a previously unknown
role for GPR40 in their recruitment to the inflamed tissue. Most
importantly, the neighborhood analysis showed only a minor shift
of M2-like macrophages toward the zymosan, which did not reach
significance (Figures 4H, I). Taken together, the data show that
neutrophil depletion, either mediated by antibodies or due to
GPR40-deficiency, does not significantly affect the size of the PI
region as defined by the relative distance between zymosan and M2-
like macrophages. Accordingly, also the resolution of the zymosan-
induced thermal hypersensitivity was not affected.

3.3 G2A-deficiency decreases the Pl region
and enhances resolution of hyperalgesia

The GPCR G2A (GPR132) is expressed on macrophages and
mediates efferocytosis of apoptotic neutrophils by increasing
chemotaxis toward apoptotic “find-me” signals (37-40).
Accordingly, G2A deficiency causes reduced macrophage
migration to the zymosan-containing core region, thereby
reducing the M1-like macrophage numbers in this area, which
results in an enhanced resolution of inflammation (7). To
determine the effect of the G2A-deficiency on the PI region, we
performed MELC analyses using inflamed paws from wild type and
G2A-deficient mice 24 hours after zymosan injection. Consistent
with previous publications (7, 38, 39), MELC analysis showed in
G2A knockout mice a significant decrease of the number of
macrophages in the observed area (Figure 5A). Also, the number
of Ml-like (Figure 5B) and M2-like macrophages decreased
(Figure 5C). Interestingly, the number of CD206/CD86 double
positive M0 macrophages increased, suggesting an overall
decreased polarization pressure on macrophages by their
microenvironment (Figure 5D). To investigate the effect of the
locally altered recruitment and polarization of macrophages on the
regional structure of the inflammation, we performed a
neighborhood analysis. We found an increased likelihood of M2-
like macrophages to neighbor zymosan whereby the relative
distance between zymosan and M2-like macrophages decreased
by 50% (Figures 5E, F). Thus, in G2A deficient mice, the strongly
enhanced resolution of inflammation (7) is accompanied by
decreased numbers and polarization of macrophages as well as
shrinkage of the PI region by 50%.

3.4 Baricitinib shifts macrophage
polarization without altering the Pl region
or resolution of zymosan-induced
hyperalgesia

Since G2A-deficiency increased the resolution of inflammation
and was accompanied by decreased M1-like macrophage numbers,
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FIGURE 3

Neutrophil recruitment is abolished in GPR40-knockout mice. (A-C) FACS-analysis of neutrophils (Ly6G* F4-80 °) (panel A, B) and macrophages
(F4-80") (panel C) in blood (panel A) and paws (panel B, C) of wild type and GPR40-knockout mice 24 hours after zymosan injection. Data are
shown as mean + SEM (n=5-6). Student s t-test, ** P< 0.01, *** P< 0.001. (D, E) Zymosan-induced edema formation (panel D) and thermal
hypersensitivity (panel E) in wild type (WT) and GPR40-knockout mice. Data are shown as mean + (n=6). Two-way ANOVA/Bonferroni, *** P<0.001.
(F) String analysis for molecular function of mMRNA expression levels in bone marrow neutrophils from naive wild type and GPR40-knockout mice.
Strength is the ratio between annotated number of proteins and the expected annotated number in a random network of the same size. False
discovery rate (FDR) is color coded and gene count is depicted as circle size. (G) FACS analysis of integrins and chemokines expression on
neutrophils in the blood of untreated wild type and GPR40-knockout mice. Data shown as mean + (n=5). Two tailed Students T-test * P <0.05; ** P
<0.01.
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The relative size of the Pl region does not change in GPR40-knockout mice. (A) Representative images of cell clusters for neutrophils and M1-like
macrophages in regard to zymosan in paws 24 hours after zymosan injection in wild type and GPR40-knockout mice. (B-G) MELC-analysis of the
number of neutrophils (B), M1-like macrophages (C), M2-like macrophages (D), all macrophages (E), DCs (F) and eosinophils (G) in paws from wild
type and GPR40-knockout mice 24 hours after zymosan injection. Data are shown as the mean + SEM (n=5); unpaired t-test * P<0.05, ** P<0.01.
(H) Zymosan-centered relative distance analysis of paws 24 hours after zymosan injection in wild type (control) and GPR40-knockout mice. Data
shown as mean (n=5 mice). + SEM. () Dual-centered network visualization of the cellular neighborhoods of zymosan and M2-like macrophages 24
hours after zymosan injection in wild type (control) and GPR40-knockout mice.
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The number of M1-like macrophages and the relative size of the Pl region decreases in G2A knockout mice. (A-D) MELC-analysis of the numbers of
all macrophages (A) M1-like macrophages (B), M2-like macrophages (C) and M0-like macrophages (D) in paws from wild type and G2A-knockout
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we investigated whether inhibition of MI-like macrophage
polarization is sufficient to decrease the PI region and to promote
the resolution of inflammation. Therefore, we used the
immunosuppressive Janus kinase (JAK) 1/2 inhibitor baricitinib,
which blocks among others the M1-like promoting cytokines IL-6
and INFy (41). MELC analysis showed that baricitinib treatment
abolished M1-like macrophage polarization and caused an increase
of the number of the CD86/CD206 double-positive MO
macrophages (Figures 6A-D). Notably, neither the number of
M2-like macrophages nor the total number of macrophages was
altered (Figures 6E, F). Similarly, there was no significant effect on
the number of DCs, eosinophils, neutrophils or mast cells seen in
the observed inflammatory area (Supplementary Figures S7A-D).
Neighborhood and network analyses showed a shift of MO
macrophages toward the zymosan, which is likely due to the
reduced polarization of M0 macrophages toward M1-like
macrophages, which are thereby reduced in their numbers
(Figures 6G, H). Most importantly, the neighborhood analysis
showed no change in the likelihood of zymosan and M2-like
macrophages being neighbors, demonstrating that the treatment
does not alter the size of the PI region (Figures 6G, H and
Supplementary Figure S7E). Finally, baricitinib treatment had no
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effect on the resolution of thermal hypersensitivity (Figure 6I),
demonstrating that preventing the polarization of M1-like
macrophages alone is not sufficient to promote the resolution
of inflammation.

3.5 Localization of M2-like macrophages
mirror changes in the resolution of
zymosan-induced hyperalgesia

Next, we calculated the effect of the 4 different interventions
presented in this study and reevaluated the data from previously
published data for eosinophil depletion (3), meloxicam treatment (4),
mast cell deficiency (5) and TP knockout mice (6) for the relative size
of the PI region as determined by the likelihood of zymosan and M2-
like macrophages. These values were plotted against a score
describing the resolution of inflammation, which was calculated by
scoring the change in time required for the zymosan-induced
hypersensitivity to return to baseline as well as the change in paw
withdrawal latency as compared to the respective control treatments.

We found that a small reduction of the size of the PI region of
less than 30%, as seen in GPR40 knockout mice, after neutrophil
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depletion and after baricitinib treatment, correlates with a normal

resolution of inflammation (Figure 7A; Supplementary Table S8). In

contrast, strong changes of the size of the PI region, as observed for

eosinophil depletion and meloxicam treatment (>65% decrease of
the PI region) (3, 4) or in mast cell-deficient mice (50% increase of
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the PI region) (5), were associated with a delayed resolution of

inflammation (Figure 7A). The only interventions leading to
improved resolution of inflammation, were the G2A- and TP-
knockout, which showed a decrease of 50-60% for the PI region
(Figure 7A). Notably, no dependence of the resolution score on the
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number of M1-like or M2-like macrophages in the observed area
was seen (Figures 7B, C). In summary, the data show that the size of
the PI region mirrors pro- and anti-inflammatory effects of
interventions, whereby small or no effects on the size of the PI
region do not affect resolution of a TLR2-mediated inflammation. A
moderate decrease of the size of the PI region is associated with
promotion of resolution while stronger changes are associated with
a reduced resolution. These effects mirrored the net effect on the
immune response and was not clearly associated with changes in
macrophage subtypes.

4 Discussion

During TLR2-mediated zymosan-induced innate inflammation
three major inflammatory regions can be distinguished. These
include the pathogen-containing core region, which is encircled by
a PI region dominated by M1-like macrophages and an outer Al
region containing M2-like macrophages (3-5). The boundaries of the
central PI are defined on one side by the presence the pathogen and
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on the other side by the presence of M2-like macrophages (3-5).
Because of its location between the core and Al regions, its size is
influenced by the balance between the pro- and anti-inflammatory
responses from the other two regions. The size of the PI region
therefore reflects the net effect of an intervention targeting one or
more components of the immune response. However, it is important
to note that, unlike an epidermis, for example, the PI region is not a
permanent structure with specific resident cells and stable borders.
Rather, PI regions constantly migrate within tissue as they follow the
shrinking core region. Similarly, repositioning the PI region shifts the
Al region into areas previously occupied by the PI region. Therefore,
it is expected that proinflammatory and anti-inflammatory mediators
released in either region will directly or indirectly influence the shape
and functionality of the other interconnected regions. consequently,
the PI region, in particular, cannot be studied as an individual entity
but rather must be interpreted in the context of the entire
inflammatory architecture.

Importantly, although the size PI region is defined by the
relative distance between zymosan and M2-like macrophages, the
M1- or M2-like macrophages numbers did not correlate with the
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size of the PI region or the resolution of inflammation. For example,
while eosinophil depletion delayed and G2A-deficiency promoted
resolution, both interventions caused a similar decrease in the
number of M1- and M2-like macrophage phenotypes. Also,
abolishing M1-like macrophage polarization by baricitinib
treatment did not affect resolution of inflammation, since MO
macrophages appear to be able to compensate for the loss of M1-
like macrophages. Compensatory mechanisms also mitigate the
impact of neutrophil depletion or GPR40 deficiency, underscoring
the adaptable nature of the involved immune cell networks. This
capacity enables effective responses to evolving conditions and
external stimuli. However, one limitation of this study is that it is
not possible to achieve a comprehensive description of gene
expression patterns in various macrophage subpopulations using
antibody-based high-content imaging technology. Therefore, the
macrophages were separated into only three basic subpopulations
(MO, M1-like, and M2-like macrophages), which does not fully
represent the biological complexity of macrophages.

The dependence of the PI region on the pro- and anti-
inflammatory responses of the neighboring core and Al regions,
allows it to reflect the net effect of the interventions on the immune
response. In this regard, major disturbances in the immune
response lead to strong reduction or increase of the size of the PI
region, which as consequence negatively impacts resolution of
inflammation. This was observed during meloxicam treatment,
which reduced strongly the PI region by inhibiting prostanoid
synthesis, and also in eosinophil depletion and mast cell
deficiency (3-5). The general suppression of the pro-
inflammatory response in pathogen-induced inflammation is
unfavorable for resolution of the inflammation, since resolution is
directly dependent on the removal of pathogens and cell debris
from apoptotic and necrotic cells (42, 43). Indeed, meloxicam
treatment (4) and eosinophil depletion (3) reduced zymosan
phagocytosis, causing a delayed resolution of inflammation.
Conversely, mast cell deficiency increased the size of the PI
region, suggesting a reduced anti-inflammatory response.
However, this also led to decreased efferocytosis (27) and
consequently negatively impacting resolution of inflammation (5).
Therefore, it seems logical that a limited reduction in the pro-
inflammatory response that does not interfere with pathogen
clearance may promote resolution of inflammation by
accelerating tissue regeneration processes. In line with this
hypothesis, G2A-deficiency, which has been shown to promote
resolution of inflammation, exhibited a 50% reduction in the PI
region. However, further research with other pro-resolution
modulators, such as specialized pro-resolving mediators (e.g.
lipoxins, resolvins) or EP4 agonists (44) is needed to determine
whether such moderate reduction in the PI region is indicative of
the effects of resolution-promoting modulators.

The identification of the underlying mechanisms that mediate
the effect of an intervention on the size of the PI region is
complicated by the dependence on the balance and context-
specific relevance of all pro- and anti-inflammatory mediators. In
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this regard, some pharmaceutical agents target specific
inflammatory mediators that possess both multifaceted and
occasionally contradictory functions within the inflammatory
system. Meloxicam, for instance, inhibits the generation of several
prostanoids, which can exhibit both pro- and anti-inflammatory
functions (45). Accordingly, prostaglandin (PG) E, has been found
to inhibit eosinophil migration, while PGD, promotes it (46, 47).
Also, PGE, is known to polarize macrophages toward M2-like
phenotypes, while the prostanoids thromboxane (TX) A2 and
PGD, promote MI-like polarization (6, 48). Since PGE,, PGD,
and TXB2 are all synthesized during zymosan-induced
inflammation, the functional relevance of these prostanoids
depends on the tissue location of their synthesis as well the
balance between each other and also with other inflammatory
mediators, such as cytokines and chemokines. Similarly, the
immunosuppressant JAK1/2 inhibitor baricitinib blocks signaling
pathways connected to a diverse array of receptors and mediators.
These include proinflammatory mediators such as IL-6 and IFNY, as
well as anti-inflammatory mediators, such as IL-4 and IL-10, which
play a role in the zymosan model (3, 5, 27, 41). Therefore, the
overall effect of baricitinib is observed, as some effects may be
obscured by compensatory or redundant mechanisms.

In addition, most drug targets are expressed in multiple cell
types affecting them in various ways. In this regard, GPR40 is
expressed in neutrophils, endothelial cells and macrophages,
evoking cell type-specific responses, such as enhanced neutrophil
function, improved endothelial barrier function and M2-like
macrophage polarization (28, 30, 49-51). The most dramatic
effect observed in GPR40 knockout mice is a complete lack of
neutrophil recruitment to the inflamed paw. Additionally, an
increased polarization of macrophages toward M1-like
phenotypes was seen. However, it is difficult to determine
whether the increase in MIl-like macrophages is due to an
increased number of macrophages in the proinflammatory
microenvironment of the core region or an GPR40-mediated
intracellular effect on macrophage polarization (50, 51). Thus, the
in vivo relevance of the various cellular functions in the different cell
types, which are regulated by GPR40 in this specific inflammation
model is still unclear.

In regard to the effect of neutrophil depletion on eosinophil
functionality we showed previously that eosinophils play an
important role in structuring the inflammatory answer to zymosan.
Antibody-mediated eosinophil depletion strongly altered the
inflammatory architecture so that a clear distinction between the PI
and AI regions was no longer detectable. This led to decreased
phagocytosis by macrophages, decreased polarization toward M2-
like macrophage phenotypes and increased neutrophil recruitment
(3). In the light of the small alterations of the inflammatory
architecture in both models for neutrophil depletion, there is no
strong indication for a significant effect on eosinophil functionality.
Antibody-mediated neutrophil depletion did not significantly alter
the eosinophil numbers, their localization or the percentage of
eosinophil phagocytizing pHrodo-zymosan. In GPR40 deficient
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mice the number of eosinophils even decreased in the inflamed paw
in GPR40-deficient mice whereby their general localization did not
change. Also, in both models there were only minor effects on the
inflammatory structure after neutrophil depletion.

Taken together, the characterization of the immune cell
networks underlying the inflammatory architecture allows the
identification of the impact of cells on the cellular network
beyond their immediate cellular neighborhood, allowing a deeper
understanding of the underlying pathomechanisms and mode of
action of drugs. Conveniently, the same imaging datasets used to
determine the inflammatory architecture can be used to gain
mechanistic insights into the quantitative and qualitative effects
on other cells, as well as to unravel compensatory mechanisms or
effects on phagocytosis and efferocytosis, allowing new insights into
the cellular networks that form the different regions and the control
of the balance and interaction of these regions.
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