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Background: As a result of climate change, dairy cows even in confinement systems
are exposed to high ambient temperatures and environmental factors inducing heat
stress. However, there are indications that chronic heat stress with reduced feed
intake initially stimulates a systemic inflammatory response and progressively
reduces the immunocompetence. This finally increases the disease susceptibility.
This study aimed to elucidate the effects of chronic heat stress or equivalent reduced
feed intake via pair-feeding at thermoneutrality on the daily hematological profile,
leukocyte NF-xB p65 signaling pathway, immune function, and metabolism in
peripheral blood mononuclear cells (PBMC) of dairy cows.

Methods: Primiparous, mid-lactating Holstein cows (n = 30) were assigned to
heat-stressed (HS; temperature-humidity index (THI) 76, 28°C, relative humidity
(RH) 50%), control (CON; THI 60, 16°C, RH 69%), or pair-fed (PF; THI 60, 16°C, RH
69%) group for 7 days.

Results: HS cows showed a lower number of erythrocytes, platelets,
lymphocytes, hemoglobin, hematocrit, and iron concentration and increased
endotoxin concentration compared to PF cows. The presence of NF-kB p65 in
the nucleus of leukocytes was lower in HS than in the two other groups on day 5,
while it was higher in HS cows on day 6. Furthermore, on day 6, RNA sequencing
of PBMC showed an enrichment of higher expressed genes in pathways of
platelet activation, coagulation cascade, leukocyte transendothelial migration,
and focal adhesion in HS cows compared to both non-heat-stressed groups.
However, T cell receptor signaling pathway, intestinal immune network for IgA
production, antigen processing and presentation, and metabolic processes were
expressed lower in HS compared to CON cows.

Conclusion: The results suggest that heat stress induces dynamic changes of the
red blood cell and lymphocyte profiles but only transiently activating the
leukocytic NF-kB p65 signaling pathway while suppressing T cell signaling,
both likely in response to the increased circulating endotoxin concentration.
The activation of platelets and the coagulation cascade were likely due to heat-
stress-induced microvascular injuries, altered hematocrit, or vasodilatation.
Altered blood coagulation and immune responses need to be considered in
the management of heat-stressed dairy cows.
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1 Introduction

Climate change is expected to enhance the frequency of extreme
weather events such as heat waves in the coming years (1). High
ambient temperatures and humidity during summer months are a
thermal threat not only for humanity (2) but also for farm animals,
jeopardizing their well-being and welfare (3). Under these climatic
conditions, animals adapt to environmental heat by decreasing
internal heat production and increasing heat loss (4). Particularly,
dairy cows are prone to heat stress and lose their ability to disperse
endogenously produced heat when exceeding the thermoneutral
zone (5).

The blood circulation facilitates the heat transfer from the
internal organs to the outer surface by directing the blood flow
toward the skin and promoting vasodilatation (6-8). Another
strategy is minimizing endogenous heat production by reducing
feed intake, which, however, also alters the milk quantity and
quality (9, 10). Furthermore, there is rising evidence that heat
stress has multiple negative effects on the physiological
performance of blood cells as indicated by a lower red blood cell
(RBC) count (11) and hematocrit level (11, 12), potentially reducing
the total oxygen binding capacity (13). Dairy cows exposed to high
ambient temperatures in the summer also had a lower number of
lymphocytes than in winter time, indicating an altered immune
function during heat stress (14). The causes for the reduced
lymphocyte number could be attributed to a reduction of
lymphocyte proliferation and DNA synthesis rate (15). An
impaired immune system facilitates the susceptibility of animals
to inflammatory processes (16-19), the incidence of diseases (e.g.,
laminitis, mastitis, metritis) (20-23), and metabolic dysfunctions
(e.g., displaced abomasum, acidosis) (24, 25) during heat stress.

On the molecular level, the heat-stress-mediated impaired
immune function is characterized by the activation of various
signal transduction pathways altering the gene expression of
immune cell mediators and cytokines without signs of an infection
(26-28). Tt is assumed that a summary of metabolic stress and heat
stress stimulate the inflammatory response and that these challenging
events may progressively reduce the immunocompetence and
increase the susceptibility to inflammation (27). Among the
stressed tissues is the intestinal tract, which, as a “leaky gut” (29),
allows toxic particles and bacteria to infiltrate the organism during
heat stress (30). The bacterial particles are captured by heat shock
proteins or by lipopolysaccharide-binding protein (LBP) and present
to the soluble or membrane-bound CD14 receptor on monocytes or
macrophages (31). This activates the translocation of nuclear factor
kappa-light-chain-enhancer of activated B cells p65 (NF-xB p65)
from the cytosol to the nucleus. Macrophages and monocytes in the
gut receive signals via toll-like receptors (TLR) 2 and 4, thereby
promoting the production of pro-inflammatory cytokines, e.g., tumor
necrosis factor oo (TNFa), interleukin-1f, and interferon y (INFy)
(32). In an earlier study, we could detect very early signs of
inflammation in the systemic circulation and the local mesenteric
lymph nodes of heat-stressed (HS) dairy cows that were exposed to 28
°C for 7 days (33). These HS cows showed higher plasma
haptoglobin, TNFa, and INFy concentrations and a higher
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abundance of TNFA and INFG mRNA as well as a tendency for
higher TLR2 protein expression in mesenteric lymph nodes (33).
However, limited information is available on a potential direct
induction of the CD14/TLR2/4/NF-kB p65 signaling in blood
leukocytes to heat stress and reduced feed intake in lactating cows.

In this study, we hypothesize that heat stress stimulates the gene
expression of pro-inflammatory cytokines in blood monocytes via
the NF-xB p65 translocation to the nucleus contributing to
disturbed immunity. In order to consider potential indirect
metabolic stress effects, we utilized pair-feeding as an additional
control group to mimic a reduced nutrient availability but under
thermoneutral conditions to distinguish between heat and
metabolic insults. Furthermore, we utilized a holistic approach to
study the immune and metabolic function in isolated peripheral
blood mononuclear cells (PBMC) by RNA sequencing to provide
new insights into the molecular mechanism of cows when coping
with heat stress. Therefore, our objective was to elucidate the effects
of chronic HS and PF at thermoneutrality on the daily white and red
blood cell count, pro-inflammatory cytokine gene expression in
leukocytes and CD14" cells, nuclear protein expression of NF-kB
p65 in leukocytes, and RNAseq of PBMC at two time points (1 day
and 6 days of treatment) in primiparous lactating dairy cows.

2 Materials and methods
2.1 Animal selection and treatment

The present study was part of a larger project described earlier
(33). Briefly, 30 primiparous, non-pregnant German Holstein cows
(169 * 48 days in milk (DIM)) were evenly allocated to heat-
stressed (HS, n = 10), control (CON, n = 10), or pair-fed group (PF,
n = 10). All cows were adapted to the climate chamber at
thermoneutral conditions (permanent 16°C and temperature-
humidity index (THI) = 60) for 6 days and received a total mixed
ratio ad libitum twice daily at 0730 h and 1730 h (adaptation phase)
(33). In the experimental phase, HS cows were kept for seven days at
28°C with 51% + 2% relative humidity (RH), resulting in a THI of
76 with ad libitum feeding and water access. The CON group was
exposed for seven days to 16°C with 69% + 2% RH and a THI of 60
with ad libitum feeding. The PF cows, as the second control group
to mimic metabolic stress, were exposed for seven days to 16°C with
69% + 2% RH and a THI of 60. In order to ensure isoenergetic and
isonutritive feeding of HS and PF cows, the feed intake of HS cows
was calculated as a percentage of the daily mean feed intake per
kilogram of body weight (33). In the climate chambers, the day-
night rhythm was given by a light cycle ranging from 0600 to 1900
h. The cows were milked at 0700 h and 1730 h daily. The animal
studies were approved by the ethics committee of the State
Government in Mecklenburg-West Pomerania, Germany (LALLF
M-V/TSD/7221.3-1.1-60/19). The studies were conducted in
accordance with the local legislation and institutional
requirements. Written informed consent was obtained from the
owners for the participation of their animals in this study. All
methods were in compliance with the ARRIVE guidelines (34).
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2.2 Blood sampling and PBMC isolation

At 1 day before the start of the experimental phase, the cows
were equipped with an indwelling jugular catheter (Cavafix, B.
Braun, Melsungen, Germany). Blood samples were taken after
feeding in the morning according to the following scheme: 0 h, 6
h, day 1, day 2, day 3, day 4, day 5, day 6, and day 7, each into 9-mL
monovettes (Sarstedt, Niimbrecht, Germany) containing EDTA or
into 9-mL serum tubes and immediately cooled on ice. After
collection, the EDTA blood samples were centrifuged at 0.7 x g
for 20 min at 4°C. The serum samples were kept at 4°C overnight
and centrifuged using the same conditions. The plasma and serum
samples were aliquoted and stored at -80°C until further analysis.
On day 1 and day 6, additional 4-mL blood samples were subjected
to PBMC isolation utilizing a Histopaque 1077 gradient (Sigma-
Aldrich, Schnelldorf, Germany) (35). The isolated PBMC were
frozen in liquid nitrogen and stored at -80°C before further analysis.

2.3 Complete blood count

Whole-blood samples from EDTA-coated tubes were
instantaneously subjected to a complete blood count using a
hematology analyzer VetScan HM5 (Scil Animal Care Company,
Vierheim, Germany). The total white blood cell count (WBC),
WBC differential counts for neutrophils, eosinophils, basophils,
lymphocytes, and monocytes, as well as the red blood count
(RBC), hematocrit value (HCT), hemoglobin concentration
(HGB), mean corpuscular volume (MCV), mean corpuscular
hemoglobin (MCH), mean corpuscular hemoglobin concentration
(MCHC), and RBC distribution width (RDW) were analyzed. In
addition, platelet indices were analyzed, including the platelet
count, mean platelet volume (MPV), platelet distribution width
(PDW), and plateletcrit (PCT).

2.4 Serum metabolites

In serum samples, total iron concentrations were measured
spectrophotometrically and potentiometrically (ABX Pentra C400
clinical chemistry analyzer; HORIBA Europe GmbH, Oberursel,
Germany) using a commercial kit (A11A01-637; HORIBA ABX
SAS, Montpellier, France). Serum LPS-binding protein (LBP)
concentrations were measured by a commercially available ELISA
(HK503, Hyltec Biotech). The intra- and inter-assay coefficients of
variation were 7.2% and 15.5%, respectively.

2.5 Endotoxin

Circulating Gram-negative bacterial endotoxin concentrations
were determined by a limulus amebocyte lysate (LAL) chromogenic
endpoint assay using serum samples (HIT302, Hycult Biotech, Uden,
Netherlands) according to manufacturer’s instructions. The assay was
performed using certified endotoxin-free and depryogenated
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consumables in a sterile bench. The standards and samples were
diluted in glass tubes incubated for 4 h at 200°C. The control standard
endotoxin was diluted 1:10 with endotoxin-free water for serial
dilutions, with final standard concentrations of 10, 4, 1.6, 0.64,
0.26, 0.10, and 0.04 EU/mL and blank. The samples were diluted
1:10 and assessed in duplicates on a 96-well plate. A reconstituted
LAL reagent was prepared according to the individual kit certificate.
The samples and standard (50 pL) were mixed with 50 uL LAL
reagent, sealed, and incubated at room temperature for 20 min.
Subsequently, the absorption was measured every 5 min at 405 nm
until the difference between 10 and 4 EU/mL was <10%. Finally, 50
uL of stop solution was added, and the sample mixture was measured
at 405 nm in a plate reader (Tecan infinite 200, Mannedorf,
Switzerland). The final sample’s endotoxin concentration was
calculated against the absorbance of the standards in a linear
regression model including the elimination of the background
signal from the blank. Serum samples of the same experimental
day were measured on the same plate. The intra- and inter-assay
coefficients of variation were 6.0% and 17.3%., respectively.

2.6 Immunofluorescence staining for
nuclear NF-xB p65

The protocol for measuring the presence of NF-xB in the
nucleus was adapted from Selkirk et al. (36). For each sampling
time point (except for 6 h), duplicates of 50 uL of whole blood were
incubated with 500 pL VersaLyse (Beckman Coulter, Krefeld,
Germany) for 20 min. The samples were centrifuged for 5 min at
250 x g, and the supernatant was discarded. The cell pellets were
washed with 500 pL PBS (Gibco Life Technologies, Carlsbad, CA,
USA) and centrifuged for 5 min at 150 x g, and the supernatant was
discarded. For nuclei isolation, BD CycleTest Plus DNA reagent kit
was used according to the manufacturer’s instructions (BD
Bioscience, Franklin Lakes, NJ, USA). In brief, the cell pellet was
re-suspended in 500 uL of citrate buffer and centrifuged for 5 min at
300 x g, the supernatant was discarded, and the washing with citrate
buffer was repeated. Thereafter, 125 pL of solution A was added and
incubated 10 min in the dark, following the incubation with 100 pL
of solution B for 10 min in the dark. Isolated nuclei were stained
with 1.1 uL NF-kB p65 antibody (C22B4, rabbit monoclonal
antibody, Cell Signaling Technology, Denvers, MA, USA), and
the duplicate treated without primary antibody served as the
negative control. After 30 min of incubation, 2.2 puL goat anti-
rabbit AlexaFlour488 (1:10; Invitrogen, Thermo Fisher Scientific)
was added and incubated for 30 min at 4°C. Solution C (100 uL) was
added and incubated for 10 min at 4°C. The samples were
quantified on a Gallios flow cytometer (Beckman Coulter) and
analyzed using Kaluza software (Beckman Coulter). For the intra-
nuclear NF-xB analysis, double-gating on a forward vs. side scatter
dot plot and FL2 PI staining were used to analyze 10,000 cells. Flow
cytometry immunofluorescence acquisition was performed within 1
h of staining. To calculate the NF-xB p65 fluorescence intensity, the
fluorescence intensity of the negative control was subtracted from
each NF-kB p65-stained sample.
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2.7 Immunofluorescence staining for
HSP70

For each sampling time point, 100 pL of whole blood was
incubated for 20 min with 1,000 pL VersaLyse (Beckman Coulter).
The samples were centrifuged for 5 min at 250 x g, and the supernatant
was discarded. The cell pellets were washed twice with 700 uL 1x PBS
(Gibceo Life Technologies). Subsequently, the cell pellet was dissolved in
100 pL PBS and frozen in ice-cold methanol (VWR International,
Darmstadt, Germany) for further analysis. Methanol-fixed cells were
washed twice with 1x PBS. For staining, duplicates of each time point
were prepared to either stain with HSP70 (SMQ-SMC-100B, mouse
monoclonal antibody, Biozol, Sontheim an der Brenz, Germany) or
without antibody as negative control and incubated overnight at 4°C.
On the next day, the cells were washed with 1x PBS, and duplicates
were stained with rabbit anti-mouse AlexaFlour488 antibody (1:1,000,
Thermo Fisher Scientific, Waltham, MA, USA) with incubation for 1 h
at 4°C. Thereafter, the cells were washed with 1x PBS, resuspended in
500 pL 1x PBS containing Hoechst 33342 (0.5 uM final concentration,
Invitrogen, ThermoFisher), and incubated for 20 min at 4°C. The
samples were quantified on a Gallios flow cytometer (Beckman
Coulter) and analyzed using Kaluza software (Beckman Coulter).
The mean fluorescence intensity of the negative control was
subtracted from each HSP70-stained.

2.8 PrimeFlow® RNA assay

The PrimeFlow® RNA assay (Invitrogen, Thermo Fisher
Scientific) was performed daily on blood samples following the
manufacturer’s protocol divided over 2 days. All buffers were
included in the PrimeFlow " RNA assay kit, and specific target
probe sets for bTNFA:A488 and bIL1B:A647 (target set 1) and bIL6:
A488 and bIFNG:A647 (target set 2) were designed and purchased
from Thermo Fisher Scientific. Cell surface staining was performed in
duplicate each by incubating 100 pL blood with 10 puL CD14:
AlexaFluor700 (MCA1568A700, BioRad, Hercules, CA, USA) for 30
min at 4°C. Subsequently, the cells were fixed for 30 min at 4°C. After
permeabilization, the cells were incubated for a second time with
fixation buffer for 1 h at room temperature in the dark. Then, the cells
were incubated for the hybridization with the appropriate target probe
sets for 2 h at 40°C. The samples were kept overnight at 4°C in the dark.
On the following day, pre-amplification and amplification of the
hybridization were performed twice for 1.5 h at 40°C with the pre-
amplification mix and subsequently the amplification mix. Next, the
cells were incubated with the label probe set for 1 h at 40°C and
quantified thereafter on a flow cytometer (Gallios, Beckman Coulter).
The analysis was performed with Kaluza software (Beckman Coulter)
based on total cell count and percentage of CD14" cell surface staining.

2.9 Transcriptome analysis by RNA
sequencing

Isolated PBMC obtained on days 1 and 6 were utilized to extract
RNA by utilizing the NucleoSpin RNA mini kit (Macherey-Nagel,
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Diiren, Germany) with an additional DNase digestion step (37).
The extracted RNA was tested for genomic DNA contamination by
performing PCR (38). RNA concentration was measured with a
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific), and
quality was verified by using a Qubit 2.0 fluorometer (Thermo
Fisher Scientific). RNA integrity was evaluated by utilizing the
Bioanalyzer 2100 (Agilent Technologies, Boblingen, Germany)
with mean RIN values of 8.36 (min 7.6 and max 9.3).
Subsequently, a stranded library preparation protocol for RNA
sequencing was applied (TruSeq mRNA sample prep Kkit,
Mumina, San Diego, CA, USA) using indices for multiplexing
and polyA selection to focus on polyadenylated RNA (in the
majority mRNA). The RNAseq libraries were checked for quality
on the Bioanalyzer 2100 and subjected to paired-end sequencing (2
x 100 bp) using the Illumina HiSeq 2500 system (Illumina).

2.10 Bioinformatic analysis

The CASAVA (Illumina) software was used for demultiplexing
of reads. Scripts written in Linux [including command from the
samtools suite (39)] and R were applied for data processing. For
quality control, read alignment, and transcript quantification, we
used the nf-core/rnaseq -r 3.4 pipeline. This included removing
adapters and low-quality bases with Cutadapt version 3.4. The reads
were aligned to the bovine reference genome ARC-UCD 1.2 with
Ensembl reference annotation version 105 using STAR version
2.6.1d. In the nf-core/rnaseq pipeline, the option to use Salmon
version 1.5.2 was selected to establish expression counts at the gene
level. Differential expression analysis was performed with DESeq2
version 1.26.0 (40), with a threshold for significance of adjusted P
(Padj) <0.05.

2.11 Functional enrichment analysis

The Database for Annotation, Visualization, and Integrated
Discovery (DAVID, version 6.8 with updates from December 2021)
was utilized to investigate enriched biological themes and cluster
analysis (41). The unique list of differentially expressed genes with
ensemble gene ID (g < 0.05) was submitted as gene list and Bos
taurus database as background. The cutoff value for multiple
enrichment testing determined via the Benjamin-Hochberg
algorithm was 0.05. Only the results from Gene Ontology (GO)
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were selected for functional annotation categories
(https://david.ncifcrf.gov/tools.jsp).

2.12 Statistical analysis

Daily measurements on the same animal were analyzed by
repeated-measurement ANOVA using the MIXED procedure of
SAS (Version 9.4, SAS Institute Inc., Cary, NC, USA). Based on
Akaike’s Information Criteria (AIC), the autoregressive type or
compound symmetry for the block diagonal residual covariance
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matrix was chosen. The model contained the fixed effects of
treatment (HS, CON, PF), time (experimental day), the
interaction (treatment x time), and days in milk which served as
covariate. Least squares means (LSM) and their standard errors (SE)
were computed for each fixed effect in the ANOVA model.
Additionally, differences of these LSM were tested using the
Tukey-Kramer procedure. The SLICE statement of PROC
MIXED was used to perform a partitioned analysis of the LSM
for the interaction treatment x time. Results were considered as
statistically significant at P <0.05 and tendencies at 0.05 < P <0.09.

3 Results
3.1 Complete blood count

As shown in Table 1, the number of erythrocytes was
significantly lower in HS than PF cows on day 7 (P < 0.05). The
hemoglobin concentration (P = 0.07) and hematocrit (P = 0.09)
parameters tended to be lower in HS than PF cows on day 7.
Furthermore, there was a significant treatment x day interaction for
the number of erythrocytes (P < 0.01), hemoglobin concentration
(P < 0.01), and hematocrit (P < 0.001). In addition, the RDW was
significantly lower in HS than PF cows on day 0, 6 h, and day 2 (P <
0.05, respectively) and significantly lower in HS and CON than PF
cows between days 4 to 7 (P < 0.05, respectively). No group
differences were observed for the MCV, MCH, and MCHC values.

For the platelet parameters, neither the platelet count,
percentage of platelet counts, MPV, or plateletcrit reached the
overall significance level for treatment (Table 1). However, the
percentage of platelet counts and plateletcrit tended to be lower in
HS than PF cows on day 6 (P < 0.08), yet the MPV was (P < 0.05) or
tended to be (P = 0.08) lower in HS than PF cows on days 6 and 7,
respectively. In addition, the PDW was significantly lower in HS
than PF cows on days 4 and 6 (P < 0.05, respectively) and was
significantly higher in PF than CON cows on day 0, 6 h, and days 6
and 7 (P < 0.05).

The number of blood lymphocytes in HS cows was (P < 0.05) or
tended to be (P = 0.08) lower than in PF cows between days 3 and 7
(Table 2). During the same time, the number of lymphocytes was or
tended to be higher in PF compared to CON cows (P < 0.05,
respectively). In addition, there was a significant treatment x day
interaction for lymphocytes (P < 0.05) and a tendency for the
eosinophils (P = 0.08) and the percentage of neutrophils (P = 0.094).
However, no differences were found among the groups for the
percentage and the number of leukocytes, monocytes, neutrophils,
eosinophils, and basophils.

3.2 Serum iron, endotoxin, and LBP

The HS cows tended to have lower serum iron concentrations
than PF or CON cows (P < 0.1), but on day 7, the serum iron
concentration was significantly lower in HS than CON and PF cows
(P < 0.05; Table 1). The serum endotoxin concentration was not
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significantly different between groups but higher in HS than PF
cows on day 1 and tending to be higher in HS than CON cows on
days 2 and 7 (P < 0.09, respectively; Figure 1A). Furthermore, PF
cows showed higher endotoxin concentrations in comparison to
CON cows on days 6 and 7. However, the concentration of the
acute-phase protein LBP was not affected by treatment (Figure 1B).

3.3 Nucleic NF-kB p65 abundance

To evaluate if the temporary higher endotoxin concentrations
in HS cows triggered NF-xB p65 translocation into the nucleus of
leukocytes, fluorescence double-labeling and subsequent flow
cytometry analyses were performed (Figure 2A). The portion of
NF-kB p65 positively stained nuclei did not differ by treatment or
time (Figure 2B). However, the mean fluorescence intensity (FI) of
NF-kB p65 labeling was significantly lower in HS than CON and PF
cows on day 5 (P < 0.05), whereas on day 6, it was significantly
higher in HS than CON and PF cows (P < 0.05, Figure 2C).
Interestingly, heat stress did not affect the leukocytic HSP70
protein expression as determined by fluorescence intensity
(Supplementary Figure S2).

3.4 Cytokine mRNA abundances

Next, we analyzed the mRNA abundances of inflammatory
cytokines and mediators in CD14" monocytes and total leukocytes.
The PrimeFlow analysis revealed no differences in the TNFA and IL1B
(Figures 3A-F) or IL6 and INFG (Supplementary Figures S1B-D)
abundances in CD14" cells or total leukocytes between the groups
(P > 0.05). However, PF cows tended to have more leukocytic IL1B
mRNA than CON cows on day 7 (P = 0.07; Figure 3F). Furthermore,
the IL6 and ILIB (P < 0.05) and TNFA (P = 0.054) mRNA
abundances in leukocytes changed over time (Figures 3D, F,
Supplementary Figure S1C).

3.5 RNAseq

To study further the cellular pathway activations of the adaptive
and innate immune response on the mRNA level, RN Aseq analysis
in PBMC (including T cells, B cells, monocytes, dendritic cells, and
natural killer cells) sampled on days 1 and 6 was conducted.
Demultiplexing and filtering yielded 80-100 million reads per
PBMC sample. Approximately 90% were mapped to the bovine
genome. The result of the Sparse Partial Least Squares-Discriminant
Analysis (sPLS-DA) on day 6 revealed a discrimination between the
gene expression of each group and explained 18% of the variation
by component 1 and 16% of the variation by component 2
(Figure 4). It is worth noting that on day 1, almost no difference
on gene expression was found between cow groups, and only KLRF2
was 23-fold more highly expressed in HS than CON cows (g <
0.001; Supplementary Table S1). However, the transcriptome
analysis on day 6 revealed 305 differentially expressed genes
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TABLE 1 Red blood cell count and serum iron concentration in heat-stressed (HS), control (CON), or pair-fed (PF) dairy cows (n = 10 cows per group).

Parameter

Treatment

SEM?

Treatment

P-value

Day

Treatment X day

Erythrocytes, x10'2 cells HS 6.97 693 693 6.91 691 6.85 6.74 6.79 6.47b 0.18 0.497 <0.01 <0.01
CON 6.98 6.99 7.08 7.00 7.02 7.09 6.85 7.00 6.81a,b 0.18
PF 7.03 6.82 6.92 712 7.20 7.39 723 7.19 7.09a 0.18
HGB, g/dL HS 9.48 9.37 9.40 9.20 9.19 9.14 9.06 9.12 8.74B 0.27 0.618 0.079 <0.01
CON 9.49 9.52 9.56 9.32 9.40 9.53 9.29 9.34 9.19A,B 0.27
PF 9.43 9.28 9.24 9.54 9.58 9.87 9.63 9.63 9.59A 0.27
HCT, % HS 30.55 30.44 30.69 30.44 30.19 30.33 29.93 29.83 28.81B 0.86 0.563 <0.01 <0.001
CON 30.57 30.57 30.78 30.50 30.76 30.93 29.94 30.70 29.79A,B 0.86
PF 30.57 29.73 30.00 31.19 31.72 32.96 3231 31.87 31.39A 0.87
Fe, umol/l HS 25.0 24.7 239 22.5B 22.0B 203 18.0B 18.5B 13.8b 2.5 0.094 <0.001 0.263
CON 25.0 27.7 29.0 25.0A,B 29.0A 233 25.7A 24.3A.B 24.1a 2.5
PF 28.0 269 273 29.3A 25.7A.B 24.6 24.4A.B 26.3A 23.7a 25
RDW, % HS 22.38b 22.58b 22.58 22.44b 22.79 22.82b 22.64b 22.64b 22.86b 0.48 <0.05 <0.001 <0.01
CON 2295ab | 22.96ab 22.90 22.87a,b 22.95 22.84b 23.19b 22.86b 22.98b 0.48
PF 24.12a 24.23a 23.90 24.45a 24.61 24.87a 24.94a 25.09a 24.97a 0.48
MCV, fl HS 44.25 44.25 44.66 44.46 43.97 44.38 44.59 44.40 44.81 1.23 0.935 <0.05 <0.05
CON 43.91 43.71 43.52 43.63 44.04 43.85 43.86 43.87 44.08 1.24
PF 43.55 43.65 42.36 43.97 44.18 44.59 44.60 44.41 44.22 1.24
MCH, pg HS 13.68 13.58 13.67 13.40 13.35 13.40 13.53 13.46 13.51 0.35 0.976 <0.05 0.915
CON 13.60 13.67 13.52 13.34 13.44 13.47 13.62 13.35 13.52 0.35
PF 13.44 13.68 13.33 13.36 13.29 13.40 13.33 13.38 13.55 0.35
MCHC, g/dL HS 31.01 30.76 30.67 30.26 30.44 30.17 30.28 30.40 30.33 0.35 0.512 <0.001 0.680
CON 31.01 31.19 31.07 30.54 30.56 30.83 31.03 30.36 30.84 0.35
PF 30.92 31.35 30.79 30.54 30.18 30.01 29.85 30.24 30.59 0.35
Platelet count, HS 238.0 2312 203.9 2152 215.8 2132 218.6 206.3 209.3 16.8 0.643 0.900 <0.05
x10” cells
CON 199.3 203.1 207.8 197.4 195.5 201.7 207.8 207.2 201.2 16.8
(Continued)
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TABLE 1 Continued

P-value
Parameter Treatment SEM? Treatment Day Treatment X day

PF 209.5 203.0 201.4 2183 216.7 211.0 216.2 242.0 242.8 16.9

Platelet count, % HS 0.15 0.14 0.15 0.13 0.13 0.13 0.13 0.12B 0.13 0.01 0.559 0.889 <0.01
CON 0.12 0.13 0.13 0.12 0.12 0.12 0.13 0.13A,B 0.12 0.01
PF 0.13 0.13 0.12 0.14 0.13 0.13 0.13 0.16A 0.15 0.01

PCT, % HS 0.15 0.14 0.15 0.13 0.13 0.13 0.13 0.12B 0.13 0.01 0.559 0.889 <0.01
CON 0.12 0.13 0.13 0.12 0.12 0.12 0.13 0.13A,B 0.12 0.01
PF 0.13 0.13 0.12 0.14 0.14 0.13 0.13 0.16A 0.15 0.01

MPV, fl HS 6.17 6.05 629 6.15 6.12 6.10 6.13 5.97b 5.97B 0.11 0.196 0.844 <0.05
CON 6.07 6.11 6.06 6.10 6.02 6.04 6.05 6.07b 5.99A,B 0.11
PF 625 6.29 6.12 630 6.28 637 6.14 6.47a 631A 0.11

PDW, % HS 30.59ab | 30.21ab | 3133 30.49 30.43 29.72b 29.95 29.76b | 30.13ab 0.57 <0.05 0913 <0.05
CON 29.57b  30.00b 29.76 30.31 29.86 | 305ab | 29.89 30.00b 29.80b 0.58
PE 31.8a 32.03a 3114 31.53 31.56 32.05a 31.24 3222a 32.01a 0.58

Within day, different lowercase letters indicate significant difference between groups (P < 0.05), and different capital letters indicate 0.05 < P < 0.09.
Fe, iron; fl, femtoliter; HCT, hematocrit; HGB, hemoglobin; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; MPV, mean platelet volume; PDW, platelet distribution width; PCT, plateletcrit;

RBC, red blood cell count; RDW, red blood cell distribution width.

“Pooled SEM for each treatment.
All data are given as LSM + SEM.
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TABLE 2 White blood cell count in heat-stressed (HS), control (CON), and pair-fed (PF) dairy cows (n = 10 cows per group).

P-value
Parameter Treatment SEM? Treatment Day Treatment X day

Lymphocytes, x10° cells/] HS 5.05 5.22 5.02 5.16 5.08b 54lab  536ab  528AB 4.63B 030 0.101 <0.05 <0.05
CON 5.06 525 520 520 5.04b 491b 4.76b 4.80B 4.69B 0.30
PF 5.63 5.56 5.65 5.70 6.14a 6.02a 5.94a 5.75A 5.60A 0.30

Leukocytes, x10° cells/] HS 8.91 9.47 8.88 9.38 9.59 10.01 9.85 9.61 833 0.58 0300 <0.001 0.816
CON 8.95 9.76 9.19 9.49 9.23 10.25 9.53 8.79 8.46 0.58
PF 10.53 10.59 10.42 9.88 1031 1055 10.46 9.92 9.50 0.58

Monocytes, x10 cells/] HS 0.17 0.24 021 032 031 031 022 022 027 0.10 0.597 0.087 0475
CON 029 0.36 025 025 0.19 043 038 0.24 0.17 0.10
PF 037 027 0.28 028 0.44 0.55 035 039 029 0.10

Neutrophils, x10° cells/] HS 342 3.79 339 3.65 3.89 3.94 3.94 3.73 3.11 0.44 0.953 <0.05 0.438
CON 3.38 3.90 3.52 3.80 3.77 4.64 4.16 347 337 0.44
PF 412 439 4.17 3.60 343 3.67 3.81 341 335 0.44

Eosinophils, x10° cells/] HS 021 0.18 021 0.20 025 028 027 031 026 0.04 0.486 <0.05 0.080
CON 0.18 0.19 0.17 020 0.19 022 020 023 0.19 0.04
PF 0.28 030 027 024 024 025 028 029 021 0.04

Basophils, x10° cells/l HS 0.05 0.05 0.05 0.05 0.06 0.07 0.07 0.07 0.06 0.01 0.408 0.063 0.380
CON 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.04 0.01
PF 0.07 0.07 0.06 0.06 0.05 0.06 0.07 0.08 0.06 0.01

Lymphocytes, % HS 57.08 55.50 57.03 55.14 53.36 54.69 49.64 56.12 55.88 2.82 0.711 0.150 0.230
CON 57.26 55.91 56.94 55.64 54.64 49.31 53.31 55.19 56.80 2.83
PF 54.79 52,92 54.88 58.02 59.88 57.02 57.25 58.28 59.25 2.84

Monocytes, % HS 1.90 2.54 225 324 3.05 291 221 2.10 324 0.92 0.663 0.170 0413
CON 2.88 326 250 2.54 1.9 422 4.02 2.57 1.98 0.92
PF 3.40 261 272 2.90 4.13 5.24 333 3.83 2.93 0.93

Neutrophils, % HS 38.03 39.51 37.59 38.84 40.42 38.88 3891 37.59 36.93 2.60 0527 0.560 0.094

(Continued)
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TABLE 2 Continued

P-value
Parameter Treatment SEM?® Treatment Day Treatment x day

CON 37.24 38.21 38.11 39.13 40.55 43.76 41.99 39.01 38.42 2.60
PF 38.40 41.00 39.19 36.02 33.13 34.81 36.03 34.11 35.04 261

Eosinophils, % HS 2.40 1.97 251 2.19 254 2.84 271 3.43 3.18 051 0.762 <0.01 0.132
CON 2.15 213 1.98 220 2.14 2.17 213 2.63 230 051
PF 274 2.81 261 2.50 231 243 2.76 3.02 222 051

Basophils, %S HS 0.61 0.52 0.64 0.58 0.66 0.72 0.72 0.80 0.77 0.13 0.574 <0.01 0.334
CON 0.48 047 048 051 0.47 051 051 0.60 0.49 0.13
PF 0.68 0.66 0.60 0.61 0.53 0.52 0.66 0.80 0.61 0.13

Within day, different lowercase letters indicate significant difference (P < 0.05) between groups, and different capital letters indicate 0.05 < P < 0.09.

*Pooled SEM for each treatment.

All data are given as LSM + SEM.
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Changes in (A) serum endotoxin and (B) serum LPS-binding protein (LBP) concentrations in heat-stressed (HS), control (CON), and pair-fed (PF) dairy
cows. During the 7-day experimental phase, HS cows (red) were kept at an ambient temperature of 28 °C (THI 76), and PF (blue) and CON (black)
cows were exposed to 16°C and THI 60 for 7 days. Serum endotoxin concentrations fluctuate dynamically and are or tended to be greater in HS
than PF cows on days 1 and 2. n = 10 cows per group. All data are given as LSM + SEM. Different lowercase letters indicate P < 0.05, and different

uppercase letters indicate 0.05 < P < 0.09

between HS and CON cows (q < 0.05, Supplementary Table S2).
Among these, 63 genes were more highly expressed and 242 genes
were expressed lower in HS compared to CON cows
(Supplementary Table S2). Comparing HS to PF cows, the
transcriptomic analysis showed 879 differentially expressed genes
(g < 0.05, Supplementary Table S3). In the HS group, 501 genes

were more highly expressed and 378 genes were expressed lower
than in the PF group (g < 0.05, Supplementary Table S3). The top
five genes that were most significantly expressed higher in HS
compared to CON cows were RBPMS2 (2.3-fold), GJA10 (2.0-fold),
P2PX1 (1.9-fold), CDKNIA (1.8-fold), and CROT (1.7-fold),
whereas COL5A3 (-3.2-fold), FMO2 (-2.6-fold), SCNI11A (-1.6-
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FIGURE 2

Flow cytometry analysis of nuclear factor kappa-light-chain-enhancer of activated B cells p65 (NF-kB p65) positive blood leukocytes intensity
displayed a dynamic response, decreasing on day 5 in heat-stressed (HS) cows and subsequently rising on day 6 in comparison to the control (CON)
and pair-fed (PF) cows. (A) Representative fluorescence microscopy picture of nuclei (red) and NF-kB p65 (green) staining and overlay. Bars
represent 10 um. (B) Portion of NF-kB p65 positive leukocytes and (C) mean fluorescence intensity (FI) of NF-kB p65 in heat-stressed (HS, red),
control (CON, black) feeding, and pair-fed (PF, blue) dairy cows. n = 10 cows per group. All data are given as LSM + SEM. Different lowercase letters

indicate P < 0.05
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FIGURE 3
TNFA and IL1B mRNA abundance in blood leukocytes of heat-stressed (HS, red), control (CON, black), and pair-fed (PF, blue) cows by PrimeFlow
RNA assay. The leukocytes were stained with antibodies for CD14, fixed, permeabilized, and hybridized with gene probes to label TNFA and IL1B
mMRNA. (A) Representative fluorescence microscopy picture of TNFA:A488 gene probe staining and hybridization series. (B) Representative
fluorescence histogram for TNFA (FLL INT) and IL1B (FL6 INT) co-hybridization. Percentage of TNFA mRNA abundance in (C) CD14" cells and (D) in
leukocytes. Percentage of IL1B mRNA abundance in (E) CD14" cells and (F) in leukocytes. n = 10 cows per group. All data are given as LSM + SEM.
Different uppercase letters indicate trends 0.05 < P < 0.09.

fold), MS4A14 (-1.6-fold), and LRRC63 (-1.5-fold) were expressed
significantly lower in HS than CON cows (g < 0.05; Supplementary
Table S2). Comparing HS with PF cows, the five highest
upregulated genes in HS cow were P2PXI (2.4-fold), RBPMS2
(2.3-fold), CROT (1.9-fold), CDKNIA (1.8-fold), and MAP2 (1.6-
fold), while HBA (-3.3-fold), MTUSI (-2.5-fold), TENM4 (-2.2-
fold), COL5A3 (-1.9-fold), and MYOM3 (-1.9-fold) were the genes
with the lowest expression in HS than PF cows (Supplementary
Table S3).
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3.6 Functional enrichment analysis

The functional pathway analysis in DAVID showed an
enrichment of genes with higher expression of HS compared to
CON cows in the following pathways: platelet activation, regulation
of actin cytoskeleton, leukocyte transendothelial migration, focal
adhesion, tight junction, oxytocin signaling pathway, cGMP-PKG
signaling pathway, reactive oxygen species, thermogenesis, and
endocrine resistance, whereas pathways related to terpenoid

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1633453
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Koch et al.
[ ]
10 [ ] °
L o o °
®
® o
o O . [ J ® o
g ] °
k<l ° Treatment
g Y [ ] ® s
§ L ® con
8 [ ] ® ®
o @ ®
-10
L]
20 °
20 -10 0 10
PC1: 18% variance
FIGURE 4

Sparse partial least squares-discriminant analysis (sPLS-DA) explains

18% of the variation 1 and 16% of the variation 2 (heat-stressed (HS;

red), control (CON; green) and pair-fed (PF; blue) dairy cows) after 6
days of treatment.

backbone biosynthesis, lysine degradation, and other metabolic
pathways were enriched with genes that were expressed lower in
HS compared to CON cows (Figure 5, Supplementary Table S4).
The comparison of HS vs. PF cows revealed pathways enriched for
genes encoding for platelet activation, complement and coagulation
cascades, focal adhesion, ECM receptor, fluid shear stress and

Terpenoid backbone biosynthesis
Epstein-Barr virus infection
Lysine degradation

Metabolic pathways
Endocrine resistance
Thermogenesis

Reactive oxygen species
cGMP-PKG signaling pathway
Amyotrophic lateral sclerosis
Huntington disease
Proteoglycans in cancer

KEGG pathways

Oxytocin signaling pathway

Tight junction

Focal adhesion

Leukocyte transendothelial migration
Bladder cancer

Regulation of actin cytoskeleton
Vascular smooth muscle contraction
Platelet activation

o

FIGURE 5

10.3389/fimmu.2025.1633453

atherosclerosis, Rapl signaling, phospholipase D signaling,
regulation of actin cytoskeleton, and adherents junction, whereas
genes with a lower expression were enriched in pathways regulating
cell cycle, DNA replication, base excision repair, intestinal immune
network for IgA production, lysine degradation, homologous
recombination, antigen processing and presentation, and T cell
receptor signaling (Figure 6, Supplementary Table S5).

4 Discussion

The primary objective of this study was to uncover the adaptive
hematological and molecular mechanisms in blood and PBMC of
heat-stressed dairy cows. In order to consider nutritional effects
associated with the reduction in feed intake during heat stress, we
used pair-feeding as an additional control besides ad libitum feeding
at thermoneutrality to mimic the reduced nutrient availability
under thermoneutral conditions and thus to distinguish between
heat and nutritional stresses.

4.1 Impact of chronic heat stress on
hematology profile, endotoxin, and LBP

In our study, heat stress had a stronger impact on the number of

erythrocytes, hemoglobin, and hematocrit. The RBC, although still
in the normal range with 6-8 x 10° cells/uL, decreased after 7 days

expression [l tower [l higher

HS vs CON cows

Y

differently expressed genes.

30

o

20
fold enrichment

KEGG pathway enrichment analysis of MRNAs of PBMC after 6 days of heat-stressed (HS) and control (CON) dairy cows. The fold enrichment was
determined as the ratio between the number of target genes assigned to a specific pathway and the total number of genes annotated to that
pathway in the KEGG database. The bar chart indicates the fold enrichment of the top 15 pathways.
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KEGG pathway enrichment analysis of mRNAs of PBMC after 6 days of heat-stressed (HS) and pair-fed (PF) dairy cows. The fold enrichment was
determined as the ratio between the number of target genes assigned to a specific pathway and the total number of genes annotated to that
pathway in the KEGG database. The bar chart indicates the fold enrichment of the top 15 pathways.

of heat stress and showed a trend toward lower hemoglobin and
hematocrit in HS than in PF cows, suggesting the onset of
normochromic normocytic anemia with unaltered MCH, MCHC,
and MCV. Very limited information is available for heat stress
effects on RBC-related parameters in mid-lactating cows. One study
reported lower RBC, hematocrit, and RDW prepartum in summer-
calving cows compared to winter-calving cows (11). In our study,
lower serum iron concentrations were found in HS cows compared
to both ambient temperature groups. These results are consistent
with a previous study showing that lower hemoglobin
concentrations and hematocrit were associated with lower serum
iron concentrations in HS calves (42). In both studies, the decrease
in erythrocytes, hemoglobin, and hematocrit was explained by a
reduction in cellular oxygen demand and to reduce heat production
due to oxidative metabolism (43). Different mechanisms are
possible to explain the lower erythrocyte number occurring
during heat stress. The lower RBC might be caused by a
hemodilution effect, as more water is taken up and transported
into the circulation to increase heat dissipation (11). Earlier findings
from this heat stress trial reported a significant increase in water
uptake per kilogram of dry matter intake after 2 days in HS
compared to CON cows and after 5 days when compared to PF
cows (33). Another mechanism might be that autoinflammation
and subsequent hemolysis may reduce the lifespan of erythrocyte.
The causes of autoinflammation are related to increased reactive
radical formation and toxin activation (44). Furthermore, the
accumulation of reactive oxygen species might damage the
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erythrocyte membrane and induce erythrocyte deformation,
leading to erythrocyte dysfunction and removal from the blood
circulation (45). Hypoxic episodes in the splanchnic area and
diminished gut barrier function with ingress of toxic particles are
likely to occur during heat stress (7, 46) and might enhance the
hemolysis of erythrocytes. The lower erythrocyte number was found
to be associated with lower serum iron concentration during heat
stress, suggesting the disturbance of iron homeostasis accompanied
with reduced iron availability for erythrocyte production (47).
Under conditions of anemia in humans, iron is sequestered in
ferritin within macrophages of the reticuloendothelial system,
resulting in the reduced availability of iron-bound transferrin for
erythropoiesis (48). However, this issue needs further research to
elucidate the cellular mechanism in erythrocytes of heat-stressed
dairy cows.

Interestingly, HS cows tended to have lower relative platelet and
PCT and significantly lower MPV and PDW on day 6 compared to
PF, but not CON cows. Different studies have reported that
moderate and severe heat stress causes microvascular injuries of
the epithelium, dominantly found in gut, kidney, and lungs (49, 50).
Platelets and leukocytes adhere to the vascular endothelium and
activate the coagulation pathway during severe heat stress (50). In
our study with moderate heat stress, the temporary decline in the
relative number of circulating platelets might be linked to the
sealing of microvascular injuries in HS cows. However, it is not
entirely clear why these differences did not occur between HS and
CON cows, and thus it merits future research.
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Our data showed that 7 days of persistent heat stress was
associated with a dynamic lymphocyte response. Specifically, the
absolute number of blood lymphocytes in HS cows decreased in a
time-dependent manner and was lower than in PF cows but was not
different from CON cows. This phenomenon started to occur after 3
days of heat stress and persisted until the end of the period,
indicating that under conditions of long-, but not short-, term
heat stress the number of lymphocytes declines. Previous results
have shown a tendency for lower lymphocyte numbers in the
prepartum and postpartum period in summer-calving cows to
winter-calving cows (11). In buiatrics, a decline in the number of
leukocytes is usually associated with stress, fear, exercise, or
parturition, leading to lymphocytopenia (51). Possibly, the lower
number of blood lymphocytes observed in HS compared to PF cows
may be explained by heat-stress-induced lymphocytopenia, but this
assumption needs to be proven in future investigations.

A lower leukocyte number in the blood circulation is associated
with endotoxemia and inflammation (11). The presence of
endotoxin in the systemic circulation might be the cause for a
low-grade inflammation during mild heat stress as mentioned
earlier. Daily endotoxin measurements revealed an initial increase
of endotoxin after 1 day of heat stress, a decline between days 3 and
5, and a re-increase until 7 days of heat stress, indicating the
dynamic adaptational processes of HS cows to maintain immune
homeostasis. Interestingly, 7 days of pair-feeding increased the
serum endotoxin concentrations in comparison to ad libitum
feeding, suggesting that the reduction in feed intake is a sufficient
criterion for the increase in endotoxin concentration. A previous
study in pigs showed that both pair-feeding and heat stress
increased the serum endotoxin levels after a short-term
environmental challenge (12 h) compared to CON pigs (52).
Pearce et al. (2015) related their results to a reduced gut integrity
and/or liver capacity to detoxify endotoxin molecules (52). In
dairy cows, a 60% reduction in feed intake for 5 days relative to
ad libitum feeding increased the gut permeability, as indicated by
increased plasma LBP and Cr concentrations upon oral Cr
administration (53). An expected increase of the LBP, as observed
after 14 days of heat stress in dairy cows (54), was not found in the
present study, which might be due to individual differences among
the animals.

4.2 Leukocytic NF-kB p65 signaling during
chronic heat stress

To analyze how heat stress affects the response of the immune
system, we studied the effect of chronic heat stress on the daily
leukocytic NF-xB p65 and HSP70 presence potentially regulating
the gene expression of pro-inflammatory cytokines. Our results
showed a first drop of the mean NF-kB p65 FI on day 5 and a
subsequent rise in HS cows compared to both control groups kept
under thermoneutral conditions, indicating dynamic changes and a
temporary higher NF-kB p65 presence in the nucleus, although the
total number of NF-kB p65" cells were maintained. Interestingly,
HSP70 was not altered during heat stress, indicating that HSP70
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does not appear to be involved in the regulation of NF-kB p65
translocation, which was not expected. The activation of the CD14/
TLR2/4 pathways leads to the translocation of NF-xB p65 from the
cytosol to the nucleus, a condition known to initiate, among others,
the gene expression of pro-inflammatory cytokines (55). In this
study, we measured in leukocytes and CD14" cells concomitantly
the gene expression of TNFA, IFNG, IL1B, and IL6. Unfortunately,
the variation in gene expression among animals was enormous;
therefore, we could not find significant differences between groups.
The limited number of animals may be one reason for this. Thus,
future experiments should be conducted with a larger sample size of
animals to gain a more comprehensive understanding of the
cytokine expression in CD14" positive cells. However, in an
earlier study using the same number of animal, we showed that
heat stress induced an increase in plasma TNFa and IFNy
concentrations and TNFA mRNA abundance in the PBMC of HS
cows (33), suggesting differences between the transcriptional and
protein expression levels or a different origin of pro-inflammatory
cytokines than from circulating leukocytes and CD14" cells.

The transient activation of NF-kB p65 signaling was not found
parallel in time with increased blood endotoxin concentration
triggering the TLR2/4 pathways. However, other pathways, e.g.,
Notch, MAPK, and JAK-STAT, also influence NF-xB p65
activation and the transcription of cytokines, which may lead to
higher plasma TNFo and IFNY concentrations (56-59), particularly
at the beginning of heat stress (33). Further research is required to
gain detailed insight into the complex immune signaling system of
heat-stressed dairy cows.

4.3 Adaptation of molecular, immune, and
coagulation pathways to heat stress

We examined the immunological response in PBMC using
RNA sequencing to improve our understanding of the molecular
regulatory mechanism after short-term (24 h) and long-term (6
days) heat stress. Surprisingly, 24 h of heat stress did not alter the
gene expression pattern in comparison to both control groups.
Significant differences were found between the treatment groups
after 6 days of chronic heat stress. The most prominent signaling
pathway upregulated in HS than in both control groups was the
activation of platelets in conjunction with vascular smooth
muscle contraction, complement and coagulation cascade, and
focal adhesion (Table 3). In line with this finding, earlier
studies in different species described that heat stress leads to
endothelial microvascular injuries, thrombosis, fibrinolysis, and
inflammation, resulting in disseminated intravascular coagulation
and compromised blood supply to organs (50, 60, 61). The
microvascular injury might be caused by fluid sheer stress due to
the increasing blood flow from the gut toward the skin as an attempt
to minimize heat load (61). An activated endothelium attracts
platelets, monocytes, and neutrophils which can initiate and
amplify coagulation (50). For the activation of platelets, different
sets of genes belonging to hemostasis were more highly expressed in
HS cows (1): vasoconstriction (VASP) (2), platelet activation
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(PTGRI1, GNAS, P2X1, ITGA2, and ITGA2B), and (3) coagulation
cascade with clot formation (VWF, F2RL3, F2, GP5, and GPIBA).
The required platelets for this process might also explain the
tendency for the lower relative platelet count on day 6 of heat
stress. An activated coagulation cascade including coagulation
factors and fibrinogens was evidenced in the plasma proteome of
lactating dairy cows sampled in summer compared to winter, which
agrees with our findings (62). Furthermore, our enrichment analysis
revealed the activation of leukocyte transendothelial migration
during 6 days of heat stress. In PBMC, genes related to docking
structure (VASP, VCL, and ACT) and F11 receptor (FIIR) were
found to be more highly expressed during heat stress. The F11
receptor is involved in T cell and neutrophil transmigration (63).
The data imply leukocyte transendothelial migration via
chemoattractants, e.g., pro-inflammatory cytokines (64) that may
guide these immune cells to their destination. Recently published
data from the same animals revealed higher plasma TNFo.and IFNy
concentrations after 7 days of heat stress in comparison to CON
and/or PF cows, suggesting an increased level of chemoattractants
(33), which, in turn, supports our RNAseq data. However, future
research needs to be intensified to prove altered coagulation by
testing clotting time and platelet aggregation tests in HS cows under
practical conditions.

Among the pathways less activated in HS cows in comparison
to both control groups were metabolic pathways (Table 3). Immune
cells are able to sense metabolic stress and adapt adequately to new
nutritional situations (65). Heat stress seems to affect the protein
metabolism by the reduced expression of genes involved in lysine
degradation (SUV39H1, ALDH3A2, EZH2, and HYKK). The altered
mRNA expression of these genes could be caused by altered plasma
lysine concentrations, which, unfortunately, were not analyzed in
this study. Recently, we observed no difference in plasma lysine
concentration between HS and PF cows (66), suggesting that
plasma lysine concentrations did not affect the lysine degrading
pathways in PBMC. Rather, the reduced expression of genes
involved in lysine degradation seems to spare lysine for cellular
protein synthesis.

Moreover, heat stress negatively affects the lipid metabolism of
PBMC by reducing the mRNA expression of ACAT2, CROT,
MAPK14, SCL25A17, and SCD. Several studies reported reduced
plasma non-esterified fatty acids (NEFA) concentration under
thermal stress (67, 68). There is increasing evidence that NEFA
does not seem to be a desirable fuel for a heat-stressed organism,

10.3389/fimmu.2025.1633453

potentially to prevent metabolic heat production via 3-oxidation in
the mitochondria (66, 69).

Surprisingly, we did not find any enrichment of immune-
response-related pathways in PBMC of HS cows in comparison to
both control groups. However, only the comparison between HS
and PF cows revealed a lower expression of genes involved in the T
cell receptor signaling pathway (CD28, ICOS, CD8A, and
LOC100296565 (T cell receptor alpha variable 18), LOC100300510
(T cell receptor beta-1 chain C region)), antigen processing and
presentation (CD8A, LOC100296565, LOC100300510, HSPAS8, and
NFYA), and the intestinal immune network for IgA production
(CD28, ICOS, LOC100296565, LOC100300510, and AICDA) in HS
cows. The genes CD28 and Inducible T Cell Costimulator (ICOS)
belong to the same T cell surface receptor family. ICOS encodes an
important T cell enhancer and is responsible for differentiation,
proliferation, and cytokine production, mediates the interaction
between T and B cells, and promotes antigen secretion by B cells
(70). It is known that the differentiation of T cells into memory and
effector cells is supported by metabolic pathways (71). A small
portion of T cells differentiates into memory T cells that is primed
by fatty acid oxidation and mitochondrial metabolism to sustain the
energetic requirements (71). The lower activity of the lipid
metabolism could provide fewer fatty acids to promote T cell
differentiation, which could partially explain the inactivated T cell
receptor signaling pathway of PBMC containing T cells and
immune suppression during heat stress. Zachut et al. (2020)
showed that summer-calving cows had less CD8" cytotoxic T
cells and CD335" natural killer cells than winter-calving cows
(11), which could also be a cause of lower proliferation capacity
during heat stress (15). As a limitation of our study, we did not
differentiate the PBMC population into B cells, T cells, and
cytotoxic or natural killer cells. More research is required to
distinguish between the different cell types and their function
during heat stress to identify potential targets for the
development of new treatment strategies.

5 Conclusion

In conclusion, chronic heat stress in mid-lactating, non-
pregnant dairy cows induced dynamic changes of the blood
profile by reducing erythrocytes, hemoglobin, hematocrit, serum
iron concentration, platelets, and number of lymphocytes,

TABLE 3 Summary of common major effects in heat-stressed cows either compared to control or pair-fed cows after 7 days of treatment.

Platelet activation to repair endothelial microvascular injuries caused potentially by fluid sheer stress
Coagulation cascade with clot formation (severe heat stress: thrombosis and fibrinolysis)

Leukocyte transendothelial migration

Adaptive metabolic mechanism to reduced feed and nutrient uptake or absorption

Expression Pathway Implications
Higher Activation of platelets

Complement and coagulation cascade

Focal adhesion

Vascular smooth muscle contraction Vasoconstriction
Lower Metabolic pathways
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suggesting the onset of normochromic normocytic anemia. Heat
stress and high serum endotoxin concentrations might be
transiently associated with NF-kB p65 signaling in peripheral
blood leukocytes by enhancing the presence of NF-xB p65 in the
nucleus. On the transcriptome level, the present study revealed an
indication on the activation of vasoconstriction, platelet activation,
and coagulation cascade with concomitant leukocyte migration in
PBMC during heat stress. The latter was potentially caused by
microvascular injuries and fluid sheer stress due to altered blood
circulation from the splanchnic area toward the skin. Moreover,
specific immune pathways related to T cell receptor signaling
pathway, antigen processing and presentation, and intestinal
immune network for IgA production and metabolic pathways
related to lysine degradation and lipid metabolism were
downregulated, which implies immunosuppression and metabolic
adaptation of lymphocytes to lower nutrient availability during high
ambient temperatures. The activation of blood coagulation and
the onset of immunosuppression need to be studied in detail in
future experiments in order to develop practical guidelines for
veterinarians to maintain animal health during summer months.
Furthermore, our present study emphasizes the importance of
management tools mitigating heat stress on farms by applying
cooling (e.g., shade, ventilation, and sprinklers), ensuring a
sufficient water supply, and implementing nutritional
interventions (e.g., electrolyte and feed additive supplementations,
feeding during cooler periods of the day).
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