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Chronic Diseases, Bengbu Medical University, Bengbu, Anhui, China, 4Anhui Province Key Laboratory
of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University,
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Background and aim: Immunosenescence involves age-related immune decline

and chronic inflammation, with the spleen serving as a critical hub for immune

dysregulation. While gut microbiota influences systemic immunity, its specific

role and the potential existence of a gut-spleen axis in mediating splenic aging

remains unclear. Therefore, we investigated whether metformin, a microbiota-

modulating geroprotective drug, alleviates splenic immunosenescence in aged

mice, specifically exploring the link between gut microbiota remodeling and

splenic immune rejuvenation.

Methods: Aged C57BL/6 mice (15-month-old) received oral metformin

(300 mg/kg/day) or vehicle for 5 months. Systemic toxicity and metabolism

were monitored. Splenic immune subsets were analyzed using flow cytometry

and immunohistochemistry. Gut microbiota composition (16S rRNA sequencing),

cytokine levels (RT-qPCR), and functional pathways were assessed.

Results: Metformin caused no hepatorenal toxicity or weight changes. Treated

mice exhibited increased cytotoxic T cells (Tc) and macrophages in the spleen,

with reduced Th/Tc ratios and M1/M2 polarization. Pro-inflammatory cytokines

(Ifng, Il17a, Il1b, Il6) decreased, while anti-inflammatory markers (Arg1, Tgfb1)

rose. Gut microbiota showed enriched Akkermansia, Muribaculum, and

Duncaniella, but reduced Lactobacillus. Akkermansia/Muribaculum negatively

correlated with pro-inflammatory cytokines, whereas Lactobacillus and

Lachnospiraceae linked to pro-inflammatory responses. Functional prediction

analysis based on 16S rRNA sequencing data indicated upregulation of bile acid

metabolism and oxidative phosphorylation pathways.

Conclusion: Metformin reshapes the gut microbiota, which is associated with

mitigation of age-associated splenic immune dysregulation, favoring anti-

inflammatory macrophage polarization and cytotoxic T cell expansion.

Critically, our findings establish the gut-spleen axis as a key mediator of splenic

immunosenescence and a novel therapeutic target, which positions metformin
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as a promisingmicrobiota-directed geroprotective agent. Future research should

prioritize mechanistic dissection of gut-spleen communication and clinical

validation of metformin’s geroprotective efficacy in human populations.
KEYWORDS

metformin, gut microbiota, immunosenescence, microbiome-immune crosstalk, gut-
spleen axis
Introduction

The progressive decline in immune function with advancing

age, termed immunosenescence, is a hallmark of aging that

significantly increases susceptibility to infections, diminishes

vaccine efficacy, and elevates risks of chronic inflammatory

diseases and malignancies (1–4). This phenomenon is

characterized by a complex interplay of cellular and molecular

alterations across both innate and adaptive immune systems.

Among lymphoid organs, the spleen serves as a critical hub for

systemic immune surveillance, orchestrating responses to blood-

borne pathogens and maintaining immune homeostasis (5). In aged

individuals, the spleen undergoes profound structural and

functional remodeling, marked by atrophy of white pulp

compartments (e.g., periarteriolar lymphoid sheaths and germinal

centers), skewed lymphocyte subset ratios, and accumulation of

senescent immune cells (6). These changes collectively contribute to

impaired antigen presentation, reduced lymphocyte proliferation,

and dysregulated cytokine production, culminating in

compromised host defense and heightened systemic inflammation

(inflammaging) (7, 8). While extensive research has focused on

intrinsic immune cell aging mechanisms, emerging evidence

highlights the gut microbiota as a pivotal extrinsic modulator of

systemic immunity, particularly in the context of aging (9).

The gut microbiota, a dynamic ecosystem of trillions of

microorganisms, engages in bidirectional crosstalk with the host

immune system through metabolite production, pathogen-

associated molecular pattern (PAMP) signaling, and direct

microbial-host cell interactions (10, 11). Age-related dysbiosis,

characterized by reduced microbial diversity, depletion of

beneficial taxa (e.g., Bifidobacterium, Lactobacillus), and

expansion of pathobionts (e.g., Enterobacteriaceae), has been

impl ica ted in exacerbat ing immunosenescence (12) .

Mechanistically, gut-derived microbial metabolites such as short-

chain fatty acids (SCFAs), secondary bile acids (SBAs), and

tryptophan derivatives exert systemic immunomodulatory effects

by influencing hematopoietic stem cell differentiation, T-cell

polarization, and macrophage function (13, 14). Conversely,

translocation of pro-inflammatory bacterial components (e.g.,

lipopolysaccharides) through a “leaky” aged intestinal barrier may

fuel chronic low-grade inflammation (15). Notably, the spleen,

despite lacking direct anatomical continuity with the gut, receives
02
substantial microbial signals via circulating metabolites and

immune cells primed in gut-associated lymphoid tissues (GALT)

(16). This gut-spleen axis positions the microbiota as a potential

therapeutic target to rejuvenate aged splenic immunity.

Metformin, a first-line oral antidiabetic drug, has garnered

increasing attention for its pleiotropic anti-aging and

immunomodulatory properties beyond glycemic control (17, 18).

Preclinical studies demonstrate that metformin extends health span

in model organisms, attenuates age-related chronic inflammation,

and enhances vaccine responses in elderly populations (19–21).

While its direct effects on immune cells, such as AMP-activated

protein kinase (AMPK)-mediated suppression of NLRP3

inflammasome activation and promotion of autophagy, are well-

documented (22, 23), recent evidence suggests that metformin’s

systemic benefits may be partially mediated through gut microbiota

modulation (24). Metformin treatment consistently enriches SCFA-

producing bacteria and reduces proteobacterial loads in diabetic

and aged models (24, 25). These microbial shifts correlate with

improved intestinal barrier integrity and attenuated systemic

inflammation (24, 26).

However, critical knowledge gaps persist regarding whether

metformin-induced microbiota remodeling can functionally

restore immune microenvironments in aged lymphoid organs,

particularly the spleen—a question with profound implications

for developing microbiota-targeted therapies against

immunosenescence. Given that age-related microbiota alterations

differ qualitatively from those in metabolic disorders, it remains

unclear whether metformin exerts consistent or divergent microbial

modulatory effects in geriatric populations. Addressing these

questions is essential to evaluate metformin’s translational

potential as a geroprotective agent targeting both metabolic and

immune aging. This study aims to delineate the tripartite

relationship between metformin, gut microbiota, and splenic

immune microenvironment in aged mice.
Methods

Animals and experimental design

Using the online RNASeqPower Sample Size Calculator

(https://rodrigo-arcoverde.shinyapps.io/rnaseq_power_calc/), a
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sample size of n = 11 was determined to achieve 89.03% statistical

power (a = 0.05). This sample size ensures both statistical validity

for 16S rRNA sequencing and compliance with animal ethics

requirements. Therefore, a total of 22 specific pathogen-free (SPF)

healthy male C57BL/6 mice (15-month-old, weighing 30.46 ±

3.05g) were obtained from Chang Zhou Cavens Laboratory

Animal Ltd. The mice were housed under standardized

conditions (12-hour light/dark cycle, 22 ± 1°C, 50-60% humidity)

with ad libitum access to water and a standard chow diet. Mice were

randomly divided into two groups: (1) Control group (CON, n =

11): administered vehicle (sterile water) via oral gavage daily; (2)

Metformin-treated group (TEST, n = 11): administered metformin

(Sangon biotech, Shanghai, China) dissolved in sterile water at 300

mg/kg body weight/day via oral gavage for 5 months. Body weight

was monitored weekly. All experimental procedures were approved

by the Animal Care Ethics Committee of Bengbu Medical

University. The Animal Ethical Approval number was 2020-050.
Sample collection and processing

At 20 months of age, fecal samples were collected and stored at

-80°C for microbiota analysis. After specimen collection, the mice

were fasted for 6 hours and euthanized by CO2 asphyxiation.

Euthanasia was induced using a small animal gas anesthesia

system (Yuyan Scientific Instrument Co., Ltd, Shanghai, China).

Animals were placed in a sealed chamber, and compressed CO2 was

introduced at a flow rate of 30% of the chamber volume per minute.

Once deep anesthesia was confirmed by the absence of a pedal reflex

(toe pinch) and respiratory arrest, mice were promptly removed

from the chamber. Terminal blood collection was performed via

cardiac puncture while the animals remained under deep

anesthesia. Death was confirmed following blood collection by

cervical dislocation or exsanguination. Blood was centrifuged

(3,000 × g, 15min, 4°C) for isolate serum, and stored at -80°C for

biochemical analysis. Spleens were aseptically excised, weighed, and

divided into three portions for distinct processing protocols. For

RNA real-time quantitative polymerase chain reaction (RT-qPCR)

analysis, tissues were either processed immediately or flash-frozen

in liquid nitrogen followed by storage at -80°C. For flow cytometric

analysis, spleen tissues were mechanically dissociated by pressing

through a 45-mm nylon mesh using a syringe plunger. The resulting

cell suspensions underwent purification through Percoll gradient

centrifugation (Solarbio, Beijing, China). For histological

processing, spleens were post-fixed in 4% PFA for 12 hours at

4°C, then cryoprotected by immersion in 30% sucrose solution

(prepared in 0.01 M PBS, pH 7.4) for 24 hours at 4°C. Tissues were

embedded in optimal cutting temperature (OCT) compound

(Tissue-Tek, Miles, Elkart, IN) and sectioned into 6-mm slices

using a cryostat (Leica CM1900, Bannockburn, IL). Sections were

mounted on poly-L-lysine-coated slides and stored at -80°C until

further processing for staining.
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Serum biochemical analysis

Hepatic, renal, and metabolic parameters were quantified using

commercial assay kits: alanine aminotransferase (ALT), aspartate

aminotransferase (AST), total bilirubin (TBIL), cholinesterase

(CHE), creatinine (CRE), urea (UREA), albumin (ALB), globulin

(GLB), creatine kinase (CK), and lactate dehydrogenase (LDH) (all

from Ortho-clinical diagnostics, inc., NY, USA). Measurements

were performed on a VITROS 5600 Integrated System (Ortho-

clinical diagnostics, inc.) following manufacturer protocols.
16S rRNA gene sequencing and microbiota
analysis

Fecal DNA was extracted using the QIAamp DNA Stool Mini

Kit (QIAGEN, Hilden, Germany). The 16S rRNA gene was

amplified with primers 27F (5’-AGRGTTYGATYMTGGCTCAG-

3 ’) and 1492R (5 ’-RGYTACCTTGTTACGACTT-3 ’) and

sequenced on an Illumina NovaSeq 6000 platform (2 × 250 bp).

Raw reads were processed in QIIME2 (v2021.11) using DADA2 for

denoising and amplicon sequence variant (ASV) clustering.

Taxonomic assignment was performed against the SILVA

(v138) database.

Bioinformatic analysis of the gut microbiota was carried out

using the Majorbio Cloud platform (https://cloud.majorbio.com).

Rarefaction curves were calculated with Mothur v1.30.1. Alpha

diversities (Chao1 and Shannon) were analyzed with R-3.3.1 (stat)

package. Hierarchical clustering and principal coordinate analysis

(PCoA) were analyzed with R-3.3.1 (vegan) based on Bray-curtis

dissimilarity. ANOSIM analysis was used to confirm statistically

significant separation between groups. Beta diversity difference

analysis performed with python-2.7 package and Wilcoxon rank-

sum test. The linear discriminant analysis (LDA) effect size (LEfSe)

(http://huttenhower.sph.harvard.edu/LEfSe) was performed to

identify the significantly abundant taxa of bacteria between the

two groups (LDA score > 2, p<0.05).

Putative functional profiles for Clusters of Orthologous Groups

(COG) categories and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways were inferred from 16S rRNA gene amplicon

sequences using PICRUSt2 (Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States, version

2.5.2). The PICRUSt2 workflow involved placing ASVs into a

reference phylogenetic tree, followed by hidden-state prediction of

gene family copy numbers for KEGG orthologs (KOs) and COG

categories. The predicted copy numbers were then multiplied by

ASV abundance counts to generate metagenome predictions. For

KEGG pathways, differential abundance testing for pathways was

performed via ANCOM-BC2 (QIIME2 plugin). Differentially

abundant KEGG pathways (Pathway Level 3) were filtered using a

Benjamini-Hochberg-adjusted p-value threshold of ≤ 0.05. Only

pathways meeting this criterion were included. All significantly
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enriched pathways were systematically curated by cross-referencing

them with established prokaryotic metabolic capabilities using

MetaCyc’s bacterial pathway database (https://metacyc.org/) and

literature evidence. Pathways with only eukaryotic associations were

excluded from biological interpretation. COG category abundances

were normalized as relative abundances per sample.

Correlation analyses were performed using R-3.3.1, python-2.7

package. In the correlation analysis between gut microbiota

composition and clinical factors, dominant bacterial genera were

operationally defined as the top 10 most abundant genera at the

genus level based on mean relative abundance across all samples.

This selection criterion ensured inclusion of taxa with the highest

biological relevance to community structure. Correlations were

assessed using Spearman’s rank correlation coefficient (r), a non-

parametric method chosen for its robustness against non-normally

distributed data and ability to capture monotonic relationships.

Statistical significance (p-values) was derived from the Spearman

test statistic, with the null hypothesis of no correlation rejected at

p<0.05. To mitigate false discovery risks inherent in multiple

hypothesis testing, all p-values underwent rigorous adjustment via

the Benjamini-Hochberg false discovery rate (FDR) correction

procedure. This approach controlled the expected proportion of

false positives among significant results at a = 0.05. The final

significance threshold for correlations was FDR-adjusted p<0.05,

with correlation strength and direction visualized in heatmaps.
Flow cytometry

Single-cell suspensions were stained with fluorochrome-

conjugated antibodies and corresponding isotype-matched controls

(detailed in Table 1). Briefly, antibody cocktails containing isotype

controls and specific antibodies, at manufacturer-recommended

concentrations, were added to 200 μL aliquots of cell suspension.

Following 30-minute incubation at room temperature with light

protection, cells underwent two successive washes with 5 mL

phosphate-buffered saline (PBS) using centrifugation (400 ×g,

5min). Washed cells were fixed in 2% paraformaldehyde (PFA) in

PBS (pH 7.4) for subsequent analysis. Flow cytometry acquisition was

performed using a flow cytometer (RaiseCare Biotechnology Co.,

Ltd., Qingdao, China) with standardized voltage settings. Data

analysis was conducted using Raiseflower software (v2.1.3,

RaiseCare Biotechnology). For the flow cytometry gating strategy,

gates defining positive populations were established based on

fluorescence thresholds set using isotype-matched control

antibodies (Supplementary Figure S1). The hierarchical gating

approach first selected singlet events via FSC-A/FSC-H.

Subpopulations were subsequently gated using lineage-defining

markers: CD3+ for T cells, with CD4+ and CD8+ subsets

(Supplementary Figure S1A); CD3-B220+ for B cells and CD3-

NK1.1+ for NK cells (Supplementary Figure S1B); and CD45+Ly-

6G+ for neutrophils and CD45+F4/80+ for macrophages

(Supplementary Figure S1C). Macrophage subsets were further

classified as CD68+CD86+ (M1) and CD68+CD163+ (M2) based on

established polarization markers (Supplementary Figure S1D).
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Immunohistochemical fluorescence

The immunofluorescence (IHF) assay was conducted following

established protocols (21, 22). Briefly, frozen spleen sections fixed in

4% paraformaldehyde (PFA/PBS) were incubated with primary

antibodies (see Table 1 for specifications) at 4 °C for 16–18 hours

in a humidified chamber. Following three 5-minute washes with

0.01 M PBS (pH 7.4), sections were incubated with corresponding

fluorescein-conjugated secondary antibodies (refer to Table 1 for

dilutions) for 1 hour at room temperature under light-protected

conditions. After subsequent PBS washes, slides were mounted

using ProLong™ Gold Antifade Mountant containing DAPI

nuclear counterstain (Thermo Fisher Scientific, Waltham, MA,

USA) and sealed with nail polish. Fluorescence imaging was

performed using an Axio Observer Z1 inverted microscope

equipped with ApoTome.2 structured illumination (Carl Zeiss

AG, Oberkochen, Germany). All images were acquired with

consistent exposure settings using ZEN Blue 3.1 software (Zeiss).
RNA extraction and RT-qPCR

Total RNA was isolated from murine spleen tissues using

TRIzol™ Reagent (Thermo Fisher Scientific, Carlsbad, CA, USA)

following the manufacturer’s protocol. RNA integrity was verified

using an Agilent 2100 Bioanalyzer with RNA Integrity Numbers

(RIN) > 7.0, and quantification was performed using a NanoDrop

2000 spectrophotometer (Thermo Fisher Scientific) with A260/

A280 ratios between 1.8 and 2.0. First-strand cDNA synthesis was

conducted using the BeyoRT™ II First Strand cDNA Synthesis Kit

with gDNA Eraser (Beyotime Biotechnology, Shanghai, China),

starting with 1 mg total RNA input. Quantitative PCR amplification

was performed in triplicate reactions using BeyoFast™ SYBR Green

qPCR Mix (Beyotime Biotechnology) on an Applied Biosystems

7500 Real-Time PCR System (Thermo Fisher Scientific). Primer

sequences are detailed in Table 2. We specifically selected qPCR

targets to profile polarized immune pathways relevant to

microbiome-immune crosstalk. These targets represent key T

helper subsets: Th1 (Ifng), Th2 (Il4 and Il10), Th17 (Il17a), and

Treg (Foxp3); and macrophage polarization states: M1 (Il1b and Il6)

and M2 (Arg1 and Tgfb1). This selection of canonical cytokine

genes reflects functional axes known to be altered in gut-microbiota

interactions (27, 28). Although markers such as Il21, Cxcl13, Il2, or

NF-kB pathway components could provide supplementary insights,

our focused panel aligns directly with the study’s core hypothesis

centered on T cell and macrophage polarization. Gene expression

quantification was calculated using the comparative 2−DDCt method

with normalization to the Gapdh reference gene (29).
Statistical analysis

Data are presented as mean ± SD. Group comparisons were

performed using unpaired Student’s t-test or Wilcoxon rank-sum

test for parametric and non-parametric data, respectively. Multiple
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TABLE 1 Antibodies used in this study.

Antigen
Host Species and
Clone

Cat. # or
Lot#

RRID Conjugation Source
Used
concentration

Methods

CD3 rat monoclonal 12-0032-82 AB_2811741 PE

Invitrogen

0.25 mg/test

FCM

F4/80 rat monoclonal 11-4801-82 AB_2637191 FITC 0.5 mg/test

CD4 rat monoclonal 11-0041-82 AB_464892 FITC 0.25 mg/test

CD45 rat monoclonal A15395 AB_2534409 APC-Cyanine7 0.125 mg/test

B220 rat monoclonal 17-0452-82 AB_469395 APC 0.125 mg/test

Ly-6G rat monoclonal 17-9668-82 AB_2573307 APC 0.125 mg/test

CD68 rat monoclonal MA5-16676 AB_2538170 FITC 0.25 mg/test

CD86 rat monoclonal 17-0862-82 AB_469419 APC 0.125 mg/test

CD163 rat monoclonal 12-1631-82 AB_2716924 PE 0.25 mg/test

IgG2a kappa Isotype
Control

rat 17-4321-81 AB_470181 APC 0.125 mg/test

IgG2a kappa rat 47-4321-82 AB_1271997
APC-eFluor™
780

0.25 mg/test

IgG2b kappa Isotype
Control

rat 12-4031-82 AB_470042 PE 0.25 mg/test

IgG2b kappa Isotype
Control

rat 11-4321-80 AB_1834375 FITC 0.25 mg/test

CD3 rat monoclonal 14-0032-82 AB_467053

Invitrogen 1:200 IHF

CD19 mouse monoclonal 14-0199-82 AB_467151

Ly-6G rabbit polyclonal PA5-141170 AB_2932621

F4/80 rabbit monoclonal MA5-16363 AB_2537882

CD68
rat
Monoclonal

14-0681-82 AB_2572857

Arg1 rabbit polyclonal PA5-29645 AB_2547120

CD86 rabbit polyclonal PA5-79007 AB_2746123

NK1.1 mouse monoclonal MA1-70100 AB_2296673

CD45 rat monoclonal 14-0451-82 AB_467251

Rat IgG (H+L) goat polyclonal 31629 AB_228240 FITC

Rat IgG (H+L) goat polyclonal A-21434 AB_2535855
Alexa Fluor™
555

Mouse IgG (H+L) goat polyclonal 62-6511 AB_2533946 FITC

Mouse IgG (H+L) goat polyclonal A-11032 AB_2534091
Alexa Fluor™
594

Rabbit IgG (H+L) goat polyclonal A-11008 AB_143165
Alexa Fluor™
488

Rabbit IgG (H+L) donkey polyclonal A-21207 AB_141637
Alexa Fluor™
594
F
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testing corrections were applied via the Benjamini-Hochberg

method. Correlations between microbiota and immune

parameters were assessed using Spearman’s rank correlation.

Statistical significance was set at p<0.05. All analyses were

performed in GraphPad Prism v9.3.1 or R v4.1.2.
Results

Effects of long-term metformin treatment
on body weight and serum biochemical
parameters in aged mice

As summarized in Table 3, the baseline body weight of 15-

month-old mice did not differ significantly between the control

(30.43 ± 2.85g) and metformin-treated (30.50 ± 3.37g) groups

(unpaired t-test, p=0.96, n = 11). After 5 months of oral

metformin administration (300 mg/kg/day), body weights

remained comparable between groups (34.15 ± 3.38g vs. 32.70 ±

4.10g; p=0.38, n = 11), indicating no treatment-related effects on

growth or systemic metabolism.

Serum analyses revealed no treatment-related toxicity across

hepatic, renal, or cardiac systems. Hepatic function markers,

including alanine aminotransferase (ALT: 51.18 ± 30.13 U/L vs.

51.82 ± 21.10 U/L; p=0.95, n = 11) and aspartate aminotransferase

(AST: 132.09 ± 95.85 U/L vs. 133.45 ± 75.99 U/L; p=0.97, n = 11),

showed no significant differences. The AST/ALT ratio (3.82 ± 3.49 vs.

3.07 ± 2.06; p=0.52, n = 11), total bilirubin (TBIL: 3.44 ± 1.24 mmol/L

vs. 3.24 ± 1.51 mmol/L; p=0.71, n = 11), and cholinesterase (CHE:

3111.82 ± 1187.19 U/L vs. 2403.76 ± 1098.53 U/L; p=0.15, n = 11)

remained unaffected. Renal function parameters, creatinine (CRE:

23.45 ± 6.64 mmol/L vs. 28.18 ± 8.77 mmol/L; p=0.18, n = 11) and urea

(UREA: 12.96 ± 1.88 mmol/L vs. 12.22 ± 1.20 mmol/L; p=0.29,

n = 11), also exhibited no statistically significant changes. Protein

metabolism markers, albumin (ALB: 26.62 ± 9.13 g/L vs. 23.87 ± 4.40

g/L; p=0.41, n = 11), globulin (GLB: 26.57 ± 4.04 g/L vs. 25.93 ± 4.05

g/L; p=0.70, n = 11), and the albumin/globulin ratio (A/G: 1.04 ± 0.46

vs. 0.94 ± 0.23; p=0.54, n = 11), were similarly unaltered. Cardiac and
Frontiers in Immunology 06
muscle injury markers, creatine kinase (CK: 1343.00 ± 999.57 U/L vs.

1437.36 ± 1126.96 U/L; p=0.83, n = 11) and lactate dehydrogenase

(LDH: 839.55 ± 231.24 U/L vs. 913.82 ± 336.69 U/L; p=0.54, n = 11),

showed no treatment-associated elevations. Collectively, these data

demonstrate that prolonged metformin treatment at the tested

dosage does not induce systemic toxicity or clinically significant

perturbations in metabolic or organ function in aged mice.
TABLE 2 Primers used in this study.

Gene Forward primer 5′ - 3′ Reverse primer 5′ - 3′

Il1b CACTACAGGCTCCGAGATGAACAAC TGTCGTTGCTTGGTTCTCCTTGTAC

Il6 CTCCCAACAGACCTGTCTATAC CCATTGCACAACTCTTTTCTCA

Ifng CTTGAAAGACAATCAGGCCATC CTTGGCAATACTCATGAATGCA

Il17a GAGCTTCATCTGTGTCTCTGAT GCCAAGGGAGTTAAAGACTTTG

Il4 TACCAGGAGCCATATCCACGGATG TGTGGTGTTCTTCGTTGCTGTGAG

Il10 TTCTTTCAAACAAAGGACCAGC GCAACCCAAGTAACCCTTAAAG

Foxp3 GGCAGAGAGGTATTGAGGGTG CTTTCTTCTGTCTGGAGTGGC

Tgfb1 ACTGGAGTTGTACGGCAGTG GGGGCTGATCCCGTTGATTT

Arg1 CATATCTGCCAAAGACATCGTG GACATCAAAGCTCAGGTGAATC

Gapdh AATGTGTCCGTCGTGGATCTGA AGTGTAGCCCAAGATGCCCTTC
TABLE 3 Effects of long-term metformin treatment on body weight and
serum biochemical parameters in aged mice.

Parameter CON (n = 11) TEST (n = 11) p value

Body weight (g) (before
treatment)

30.43 ± 2.85 30.50 ± 3.37 0.96

Body weight (g) (after
treatment)

34.15 ± 3.38 32.70 ± 4.10 0.38

ALT (U/L) 51.18 ± 30.13 51.82 ± 21.10 0.95

AST (U/L) 132.09 ± 95.85 133.45 ± 75.99 0.97

AST/ALT 3.82 ± 3.49 3.07 ± 2.06 0.52

CHE (U/L) 3111.82 ± 1187.19 2403.76 ± 1098.53 0.15

TBIL (mmol/L) 3.44 ± 1.24 3.24 ± 1.51 0.71

ALB (g/L) 26.62 ± 9.13 23.87 ± 4.40 0.41

GLB (g/L) 26.57 ± 4.04 25.93 ± 4.05 0.70

A/G 1.04 ± 0.46 0.94 ± 0.23 0.54

CRE (mmol/L) 23.45 ± 6.64 28.18 ± 8.77 0.18

UREA (mmol/L) 12.96 ± 1.88 12.22 ± 1.20 0.29

CK (U/L) 1343.00 ± 999.57 1437.36 ± 1126.96 0.83

LDH (U/L) 839.55 ± 231.24 913.82 ± 336.69 0.54
fro
ALT, alanine aminotransferase; AST, aspartate aminotransferase; CHE, cholinesterase; TBIL,
total bilirubin; ALB, albumin; GLB, globulin; A/G, albumin-to-globulin ratio; CRE, creatinine;
UREA, blood urea nitrogen; CK, creatine kinase; LDH, lactate dehydrogenase. Data presented
as mean ± SD. Statistical analyses were conducted using the unpaired t-test for normally
distributed data (body weight) and the Mann-Whitney U test for non-normally distributed
biochemical parameters. No significant differences were observed between groups for any
parameter (p > 0.05).
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The diversities of the gut microbiota

To delineate the tripartite relationship between long-term

metformin treatment, gut microbiota, and splenic immune

microenvironment in aged mice, 16S rRNA gene sequencing was

employed to investigate metformin-induced alterations in gut

microbiota composition. Supplementary Tables S1 and S2 showed

the post-processed 16S-count at ASV- and genus-level, respectively.

The rarefaction curves in Figure 1A reached plateaus as sequencing

depth increased, indicating adequate coverage for capturing species

diversity. This asymptotic pattern demonstrated sufficient

sequencing depth for downstream analyses. Hierarchical

clustering analysis using Bray-Curtis dissimilarity revealed

distinct microbial composition-based segregation between two

groups (Figure 1B). To assess the taxonomic richness and

evenness of the gut microbiota community, we performed alpha

diversity analysis. The Chao1 and Shannon indices were used to

evaluate sequencing depth adequacy and quantify species diversity,

respectively. The Chao1 index showed no significant difference

between the two groups (Supplementary Figure S2A, p > 0.05). In

contrast, the Shannon index revealed significantly higher diversity

in the metformin-treated group (Supplementary Figure S2B,

p<0.05). This indicates that while sequencing depth was

comparable between groups, the metformin-treated group

exhibited greater species diversity. Subsequently, beta diversity

analysis was used to measure differences in community

composition between the two groups. The dendrogram topology

showed tighter clustering of biological replicates, reflecting high

intra-group similarity. Color-coding according to experimental

conditions confirmed metformin-treated samples (TEST, green)

formed a distinct clade separate from controls (CON, red).

Principal coordinates analysis (PCoA) based on Bray-Curtis

dissimilarity revealed significant b-diversity patterns between

control and treatment groups (Figures 1C, D). The two-

dimensional ordination plot illustrated distinct clustering

patterns, where sample proximity reflected similarity in microbial

community composition (Figure 1C). ANOSIM analysis confirmed

statistically significant separation between groups (Figure 1D,

R=0.48, p=0.001), with inter-group distances substantially

exceeding intra-group variations.
Modulation of the gut microbiota by
metformin

Metformin-induced gut microbiota modulation was

characterized through amplicon sequence variant (ASV)

distribution analysis and taxonomic profiling. Venn diagram

analysis revealed group-specific ASV patterns, with 1,790 ASVs

identified across cohorts, comprising 669 control-exclusive (CON)

and 568 metformin-exclusive (TEST) variants, while 553 ASVs

(30.9% of total) were shared (Figure 2A). QIIME2-processed data

(DADA2 denoising, 99% identity clustering) demonstrated

phylum-level restructuring, where CON microbiota was
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dominated by Firmicutes (73.55 ± 7.37%), Bacteroidetes (18.73 ±

5.18%), and Proteobacteria (4.18 ± 2.93%), collectively representing

96.45% of community composition. In Metformin treatment group

(TEST), the above three microbial communities still dominate, with

proportions of 51.82 ± 14.48%, 31.18 ± 13.44%, and 7.82 ± 5.78%,

respectively. Metformin treatment also significantly increased

Verrucomicrobia abundance from 0.26% to 7.31%, establishing a

four-phylum dominance pattern (Figures 2B, D).

Genus-level analysis (threshold: relative abundance >2%,

prevalence >80% samples) identified differential taxa through

ANCOM-BC2. Metformin-treated mice exhibited increased

proportions of Muribaculum (Fold Change, FC=3.08),

Akkermansia (FC=37.58), Escherichia (FC=50.70), Helicobacter

(FC=4.58), Duncaniella (FC=2.02), and Allobaculum (FC=2.95).

Conversely, Lactobacillus (FC=0.25), unclassified Lachnospiraceae

(FC=0.33), Desulfovibrio (FC=0.33), and Mucispirillum (FC=0.27)

were significantly decreased (p<0.05, Figures 2C, D). The above

results were further validated by Wilcoxon rank-sum test (p<0.05,

Figure 2E). For microbiome visualization, the ANCOM-BC2 results

with a heatmap showing relative abundances of differentially

abundant genera were shown in Supplementary Figure S3.

These findings suggest that metformin can modulate the

intestinal microbiota composition in mice.
Species differences and marker species
analysis

To identify differentially abundant bacterial taxa, linear

discriminant analysis effect size (LefSe) was applied with a

logarithmic LDA score threshold of 2.0 and a significance level of

a = 0.05. Taxonomic cladograms from phylum to species level are

shown in Figure 3A. At the genus level, the control group was

dominated by Lactobacillus in class Firmicutes; Desulfovibrio in

class Deltaproteobacteria; Eisenbergiella and unclassified_f:

Lachnospiraceae in class Clostridia; and Ileibacterium in class

Erysipelotrichia. The Metformin-treated group exhibited higher

abundances of Parasutterella and Turicimonas in class

Betaproteobacteria; Parabacteroides, Bacteroides, Duncaniella and

Muribaculum in class Bacteroidia; Helicobacter in class

Epsilonproteobacteria; Escherichia in class Gammaproteobacteria;

and Akkermansia in class Verrucomicrobiae (Figures 3B and

Supplementary Table S3, LDA score > 2, p<0.05, Kruskal-Wallis

test with Benjamini-Hochberg correction).
Microbial functional prediction of gut
microbiota in metformin-treated mice

To investigate the functional impact of metformin treatment on

the gut microbiota of aged mice, Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States 2

(PICRUSt2) was employed to predict clusters of orthologous

groups (COGs) and metabolic pathways using Kyoto

Encyclopedia of Genes and Genomes (KEGG). Significant
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variations in COG functional categories were observed for

Replication, recombination and repair; Inorganic ion transport

and metabolism; Posttranslational modification, protein turnover,

chaperones; Signal transduction mechanisms; Lipid transport and

metabolism (adjusted p<0.05, Benjamini-Hochberg correction;

Figures 4A, B).
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To ensure clarity in distinguishing biologically relevant

prokaryotic pathways from eukaryotic hits that may arise from

database limitations, we systematically curated all significantly

enriched KEGG pathways by cross-referencing them with

established prokaryotic metabolic capabilities using MetaCyc’s

bacterial pathway database. Pathways with functions exclusive to
FIGURE 1

The diversities of the gut microbiota. (A) Rarefaction curve; (B) Hierarchical clustering analysis. Metformin-treated samples (TEST, green) formed a
distinct clade separate from controls (CON, red); (C) PCoA analysis. CON, control group; TEST, Metformin-treated group; (D) Beta diversity
difference analysis (R=0.48, ***p<0.001, Wilcoxon rank-sum test).
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FIGURE 2

Modulation of the gut microbiota by metformin. (A) Venn diagram of ASV; (B and C) Bar diagram at phylum level (B) and genus level (C); (D) Circos
diagram at phylum level (left) and genus level (right). (E) Differentially abundant genera between CON and TEST groups were compared by Wilcoxon
rank-sum test (*p<0.05, **p<0.01, ***p<0.001). CON, control group; TEST, Metformin-treated group.
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eukaryotic organisms were explicitly flagged as ‘non-bacterial’ in

Table 4 and excluded from biological interpretation. KEGG

pathway analysis at Pathway Level 3 revealed significant

alterations in microbial functionality, primarily associated with

metabolism and biosynthesis, such as Secondary bile acid

biosynthesis, Lipoic acid metabolism, beta-Lactam resistance,

Mismatch repair , RNA transport , Lipopolysaccharide

biosynthesis, and Phosphonate and phosphinate metabolism

(adjusted p<0.05; Figure 5A). Among the top 30 differentially

abundant pathways, notable differences were detected in

metabolic and biosynthetic processes such as Secondary bile acid
Frontiers in Immunology 10
biosynthesis, Lipopolysaccharide biosynthesis, Vitamin B6

metabolism, beta-Alanine metabolism, and Arginine and proline

metabolism (adjusted p<0.05; Figure 5B, Supplementary Table S4).

Additionally, pathways potentially linked to aging, including

Mismatch repair and Oxidative phosphorylation (30, 31), were

enriched in the metformin-treated group (Figure 5B,

Supplementary Table S4).

Having established that metformin induces significant

alterations in gut microbiota structure and metabolic potential,

we next evaluated whether these microbial shifts associate with

modulations in the splenic immune microenvironment.
FIGURE 3

Analysis of species differences. Linear discriminant analysis (LDA) effect size (LEfSe) was used with LDA > 2, a = 0.05 (Kruskal-Wallis test with
Benjamini-Hochberg correction) to analyze the differences between the control (CON) and the Metformin-treated (TEST) groups. (A) The
phylogenetic tree shows species differences across taxonomic levels, highlighting microbial communities significantly enriched in specific groups
(colored nodes) versus those with no significant difference/impact (yellow nodes). (B) The bar chart displays LDA scores indicating effect sizes for
differentially abundant taxa.
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Effect of long-term metformin treatment
on splenic immune cell populations in
aged mice

To evaluate the impact of prolonged metformin treatment on

splenic immune cell dynamics, FCM (Figures 6A, Supplementary

Figure S1) was employed. Immune cell subsets were defined as

follows: total T cells (CD3+), helper T cells (Th, CD3+CD4+),

cytotoxic T cells (Tc, CD3+CD8+), B cells (CD3-B220+), natural

killer cells (NK, CD3-NK1.1+), neutrophils (NEUT, CD45+Ly-6G+),

macrophages (MAC, CD45+F4/80+), M1 macrophages (M1,

CD68+CD86+), and M2 macrophages (M2, CD68+CD163+).

Statistical analysis (Figure 6B) revealed that in the metformin-

treated (TEST) group compared to control (CON), the percentage

of Tc cells increased significantly from 5.67 ± 2.79% to 10.34 ±

4.06% (p<0.01, n = 11). Macrophage proportions also rose from

3.45 ± 0.87% to 5.52 ± 0.82% (p<0.05, n = 11). The Th/Tc (CD4/

CD8) ratio decreased markedly (2.13 ± 0.51 vs. 1.31 ± 0.31; p<0.01,

n = 11). Additionally, M1 macrophages decreased from 18.49 ±

6.23% to 11.33 ± 3.72% (p<0.01, n = 11), while M2 macrophages

increased from 4.81 ± 2.77% to 9.32 ± 3.26% (p<0.01, n = 11).
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Consequently, the M1/M2 ratio declined from 4.63 ± 2.09 to 1.28 ±

0.44 (p<0.01, n = 11).

To further validate FCM results, immunohistochemical

fluorescence (IHF) was performed. As shown in Figure 7A, CD3+

total T, CD3+CD4+ Th, CD3+CD8+ Tc, CD3-CD19+ B, CD3-NK1.1+

NK, CD45+Ly-6G+ NEUT, CD45+F4/80+ MAC, CD68+CCR7+ M1,

and CD68+Arg1+ M2 were quantified in the CON and TEST groups.

Statistical analysis (Figure 7B) indicated that in the CON group, cell

densities (cells/mm²) were as follows: T cells (383.33 ± 88.65), Th cells

(230.00 ± 51.72), Tc cells (108.00 ± 16.92), B cells (748.33 ± 113.70),

NK cells (168.92 ± 35.85), NEUT (184.83 ± 63.85), MAC (203.83 ±

34.38), M1 (102.17 ± 17.24), andM2 (40.67 ± 6.95). In the TEST group,

these values were 435.33 ± 66.95 (T cells), 230.00 ± 41.84 (Th cells),

174.17 ± 26.78 (Tc cells), 835.00 ± 169.64 (B cells), 174.50 ± 59.74 (NK

cells), 256.67 ± 82.66 (NEUT), 384.67 ± 47.26 (MAC), 76.50 ± 9.22

(M1), and 115.33 ± 14.25 (M2). Comparisons between groups

demonstrated significant increases in Tc cells, macrophages, and M2

macrophages in the TEST group (p<0.01, n = 6), whileM1macrophage

numbers and the M1/M2 ratio were reduced (p<0.05 or 0.01, n = 6).

No significant differences were observed in other cell populations (p >

0.05, n = 6).
FIGURE 4

Microbial functional prediction of gut microbiota using PICRUSt2 analysis. (A) COG function classification. (B) Difference between groups. *adjusted
p<0.05, Wilcoxon rank-sum test with Benjamini-Hochberg correction. L, Replication, recombination and repair; P, Inorganic ion transport and
metabolism; O, Posttranslational modification, protein turnover, chaperones; T, Signal transduction mechanisms; I, Lipid transport and metabolism.
CON, control group; TEST, Metformin-treated group.
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Effects of long-term metformin treatment
on the mRNA expression of immune cell
subsets in aged mouse spleen

To further investigate the impact of long-term metformin

treatment on immune cell differentiation in the spleen of aged

mice, reverse transcription quantitative polymerase chain reaction

(RT-qPCR) was used to assess mRNA levels of Th1-, Th2-, Th17-,

Treg-, M1-, and M2-associated cytokines or markers. As shown in

Figure 8, the mRNA levels of cytokines or markers of Th1 (Infg),

Th17 (Il17a), and M1 (I11b and Il6) were significantly higher in

CON group compared to the TEST group (all p<0.01, n = 11). In

contrast, mRNA levels of Th2 (Il4 and Il10), and M2 (Arg1 and

Tgfb1) were markedly reduced in the TEST group (all p<0.01, n =

11). Notably, no significant difference was observed in Foxp3

expression, a Treg-specific marker, between the two groups (p >

0.05, n = 11).
Correlation between gut microbiota
composition and splenic immune cell
profiles in aged mice

To investigate the relationship between splenic immune cell

subsets and gut microbial composition in aged mice, we analyzed

the correlation between the relative abundance of dominant gut

bacterial genera and immune cell subsets in the spleen. As

illustrated in Figure 9, the top 10 bacterial genera at the genus

level showed distinct correlation patterns with immune parameters.

As shown in Figure 9A and Supplementary Table S5,

Lactobacillus exhibited significant negative correlations with Tc

cells (cytotoxic T cells), macrophages (MAC), and M2

macrophages, while showing positive correlations with the CD4/

CD8 ratio and M1/M2 ratio. Allobaculum was exclusively positively

correlated with macrophages. Duncaniella negatively correlated

with total T cells and CD4/CD8 ratio, but positively with MAC.

Unclassified Muribaculaceae negatively associated with total T cells

and Th cells (helper T cells), yet positively with MAC. Unclassified

Lachnospiraceae demonstrated negative correlations with Tc cells,

MAC, and M2 macrophages, but positive correlations with CD4/

CD8 ratio, M1 macrophages, and M1/M2 ratio. Akkermansia and

Muribaculum showed reciprocal correlation patterns: Akkermansia

negatively correlated with CD4/CD8 ratio, M1 macrophages, and

M1/M2 ratio, but positively with Tc cells, MAC, and M2

macrophages; Muribaculum showed negative correlations with

CD4/CD8 ratio and M1/M2 ratio, but positive correlations with

MAC and M2 macrophages.

Furthermore, correlations between microbial abundance and

cytokine/marker mRNA levels were analyzed. As shown in

Figure 9B and Supplementary Table S6, Lactobacillus and

Unclassified Lachnospiraceae were negatively associated with anti-

inflammatory markers (Il4, Il10, Arg1, and Tgfb1) and positively

correlated with pro-inflammatory cytokines (Ifng, Il17a, Il6, and

Il1b). Conversely, Akkermansia andMuribaculum showed opposite
TABLE 4 Taxonomic distribution characteristics of KEGG signaling
pathway.

KEGG pathway
Taxonomic
distribution

Secondary bile acid biosynthesis Cross-kingdom

Lipoic acid metabolism Bacterial

Mismatch repair Cross-kingdom

beta-Lactam resistance Cross-kingdom

Terpenoid backbone biosynthesis Non-bacterial

Carbon fixation in photosynthetic organisms Cross-kingdom

D-Glutamine and D-glutamate metabolism Cross-kingdom

Epithelial cell signaling in Helicobacter pylori
infection

Non-bacterial

Biosynthesis of various secondary metabolites -
part 2

Cross-kingdom

Huntington disease Non-bacterial

Pentose phosphate pathway Cross-kingdom

Vitamin B6 metabolism Cross-kingdom

Monobactam biosynthesis Cross-kingdom

RNA transport Cross-kingdom

Longevity regulating pathway Non-bacterial

Metabolic pathways Cross-kingdom

Synthesis and degradation of ketone bodies Non-bacterial

Folate biosynthesis Cross-kingdom

Lipopolysaccharide biosynthesis Cross-kingdom

Methane metabolism Cross-kingdom

Ubiquinone and other terpenoid-quinone
biosynthesis

Cross-kingdom

Phosphonate and phosphinate metabolism Cross-kingdom

Carbon metabolism Cross-kingdom

Ribosome Cross-kingdom

Oxidative phosphorylation Cross-kingdom

Glycine, serine and threonine metabolism Cross-kingdom

Arginine and proline metabolism Cross-kingdom

beta-Alanine metabolism Cross-kingdom

Prolactin signaling pathway Non-bacterial

FoxO signaling pathway Non-bacterial
Bacterial, Bacterial signal pathway; Non-bacterial, Non-bacterial signaling pathway; Cross-
kingdom, Both reported in prokaryotic and eukaryotic pathways.
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trends, positively correlating with anti-inflammatory markers (Il4,

Il10, Arg1, and Tgfb1) and negatively with pro-inflammatory

cytokines (Ifng, Il17a, Il6, and Il1b). Duncaniella and Unclassified

Muribaculaceae exhibited mixed profiles: Duncaniella negatively

associated with Il17a, Il6, and Il1b but positively with Arg1, while

Unclassified Muribaculaceae only showed a negative correlation

with Il1b.

These correlation results suggest that higher abundances of

Lactobacillus and unclassified Lachnospiraceae are associated with a

pro-inflammatory state, whereas Akkermansia and Muribaculum

are linked to anti-inflammatory responses.
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Discussion

This study provides compelling evidence that long-term

metformin administration ameliorates age-related splenic immune

modulation in mice, primarily through gut microbiota modulation.

By integrating microbiome and immune profiling, we delineate a

tripartite relationship between metformin, gut microbial

communities, and splenic immune microenvironment, offering

novel insights into the gut-spleen axis in immunosenescence.

Our data reveal that metformin counteracts these changes by

enhancing cytotoxic T cell (Tc) and macrophage populations while
FIGURE 5

KEGG pathway analysis using PICRUSt2. (A) Heatmap of KEGG pathways (Level 3). (B) Differentially abundant pathways between groups. *adjusted
p<0.05, Wilcoxon rank-sum test with Benjamini-Hochberg correction. CON, control group; TEST, Metformin-treated group.
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suppressing pro-inflammatory M1 polarization. The increased Tc

proportion aligns with prior studies showing metformin’s ability to

augment CD8+ T cell responses in cancer and infection models,

potentially via AMPK-mediated metabolic reprogramming (32, 33).

Concurrently, the shift from M1 to M2 macrophages underscores

metformin’s anti-inflammatory role, consistent with its known

inhibition of NLRP3 inflammasome activation (34). Together,
Frontiers in Immunology 14
these findings highlight metformin’s capacity to enhance adaptive

immunity (via Tc expansion) and resolve inflammation (via

macrophage repolarization) in the aged spleen.

A key novelty of this study lies in linking metformin-induced

gut microbiota changes to splenic immune remodeling. The

enrichment of Akkermansia muciniphila, a mucin-degrading

bacterium associated with improved gut barrier integrity,
FIGURE 6

Effect of long-term metformin treatment on splenic immune cell populations in aged mice: FCM analysis. (A) Representative images of FCM;
(B) Quantitative analysis of the indicated cells. Data represent the mean ± SD (n = 11). **p<0.01 (Student’s t-test). CON, control group; TEST,
metformin-treated group.
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correlates with reduced systemic inflammation and enhanced SCFA

production, which may promote T cell differentiation and

macrophage homeostasis (35). Conversely, the proportion

reduction of Lactobacillus, which is traditionally viewed as a

beneficial genus (36), was unexpected in our model. This might

indicate strain-specific effects or context-dependency, potentially
Frontiers in Immunology 15
explaining the observed negative correlation with anti-

inflammatory markers and association with Th17 responses in

aged hosts. The rise in Muribaculum and Duncaniella, both

linked to carbohydrate metabolism (37, 38), aligns with

metformin’s ability to enhance microbial butyrate synthesis, a

known regulator of Treg/Th17 balance (39, 40). Notably, the
FIGURE 7

Effect of long-term metformin treatment on splenic immune cell populations in aged mice: IHF analysis. (A) Representative images of IHF;
(B) Quantitative analysis of the indicated cells. Data represent the mean ± SD (n = 6). *p<0.05, **p<0.01 (Student’s t-test). CON, control group; TEST,
metformin-treated group.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1633486
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ding et al. 10.3389/fimmu.2025.1633486
divergent correlations between microbial taxa and immune

parameters (e.g., Akkermansia with anti-inflammatory cytokines

vs. Lactobacillus with pro-inflammatory markers) suggest complex

taxon-specific roles in immunosenescence. This dichotomy could

potentially arise from functional redundancy within microbial
Frontiers in Immunology 16
communit ies or context-dependent interact ions with

host immunity.

Importantly, the key microbial shifts observed in our aged

mouse model following metformin treatment—specifically the

enrichment of Akkermansia and Escherichia, alongside the
FIGURE 8

Effect of long-term metformin treatment on the mRNA expression in aged mouse spleen. Quantitative analysis of the indicated mRNA expression in
control group (CON) and metformin-treated group (TEST). Data represent the mean ± SD (n = 11). **p<0.01 (Student’s t-test).
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reduction in certain Lactobacillus species—resonate strongly with

findings from human metformin studies. For instance, large-scale

integrated analyses of human gut metagenomes consistently report

metformin-induced increases in Akkermansia muciniphila

abundance across diverse populations (41–43). For instance,

metformin consistently increases Akkermansia muciniphila

abundance in humans, aligning with our correlation between

Akkermansia enrichment and anti-inflammatory splenic M2

macrophages. Similarly, the rise in Escherichia noted in our mice

mirrors observations in metformin-treated T2D patients, where

increased Escherichia coli abundance has been mechanistically

linked to gastrointestinal side effects but also potentially to
Frontiers in Immunology 17
microbial agmatine production (42, 44). Recent human studies

further indicate that metformin’s inhibition of the microbial

enzyme agmatinase elevates agmatine levels (44), a metabolite

implicated in enhancing host fatty acid oxidation—a process

potentially underpinning the Tc cell metabolic fitness observed in

our splenic phenotype. Moreover, akin to our correlation linking

Muribaculum to improved metabolic indices, human studies show

metformin enriches mucin-degrading and SCFA-producing taxa

(including related members of the Muribaculaceae family),

contributing to improved glucose homeostasis and immune

modulation (41, 45). These conserved microbial signatures across

species, with increases in Akkermansia and Escherichia and a
FIGURE 9

Correlation between gut microbiota composition and splenic immune cell profiles. Heatmaps of the correlation between the top 10 bacterial genera
at the genus level and the immune cell subsets (A) or cytokine/marker mRNA levels (B). Correlations were quantified by Spearman’s r and tested for
significance (Benjamini-Hochberg FDR-adjusted p<0.05). Color intensity reflects correlation strength and direction. Red squares represent a negative
correlation, while blue squares represent a positive correlation. *p<0.05, **p<0.01, ***p<0.001. CD8_T, cytotoxic T cells; CD4_T, helper T cells;
CD4_CD8, CD4/CD8 ratio;NK, Natural killer cells; NEUT, Neutrophil; MAC, macrophages; M1_M, M1 macrophages; M2_M, M2 macrophages;
M1_M2, M1/M2 ratio.
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decrease in Lactobacillus, underscore the translatability of gut

m i c r o b i o t a -med i a t e d me ch an i sm s i n me t f o rm in ’ s

immunometabolic actions, reinforcing the relevance of our

murine model to human pathophysiology.

PICRUSt2-predicted functional alterations further support a

microbiota-driven mechanism. The enrichment of oxidative

phosphorylation pathways mirrors metformin’s mitochondrial

effects (46), suggesting a symbiotic relationship between host and

microbial metabolism. Enhanced bile acid metabolism, particularly

involving SBAs, functions as a critical communication pathway

between the gut microbiota and the host (47). SBAs like deoxycholic

acid (DCA) and lithocholic acid (LCA), generated via microbial

biotransformation, act as potent signaling molecules activating host

receptors (FXR, TGR5) expressed in systemic tissues including the

spleen liver, and brain (48–50). TGR5 activation triggers cAMP-

PKA signaling, promoting NLRP3 inflammasome degradation and

suppressing IL-1b release (51, 52). For example, microbial DCA

alleviates inflammation via TGR5-cAMP-PKA-NLRP3 pathways

(53), while impaired TGR5 exacerbates inflammation (54). Thus,

SBAs serve as essential microbial-host messengers, bridging gut

microbiota activity with systemic immunity through FXR/TGR5-

dependent NLRP3 regulation (55–57). This axis represents a key

mechanism for immune-metabolic balance. Conversely,

downregulation of mismatch repair pathways might reflect

reduced genomic instability (58).

Our findings complement multi-omics studies linking gut

microbiota shifts to systemic aging outcomes (59–63). While

prior work focused on liver, brain, or metabolism, our study

specifically maps metformin-induced microbial remodeling

(enrichment of Akkermansia, Muribaculum; reduction of

Lactobacillus) to a defined splenic immune phenotype (enhanced

Tc, M2 polarization) within aging. Furthermore, metformin directly

reprograms bacterial metabolism via the phosphotransferase system

(PTS) and Crp, leading to agmatine accumulation (64). Bacterium-

derived agmatine is essential for metformin’s induction of host FAO

(64)—a metabolic shift regulated by factors like NHR-49/PPARa
that provides energy and signaling molecules potentially driving the

observed splenic immunophenotypes, including increased Tc

activity and anti-inflammatory macrophage polarization (64–66).

While our findings align with metformin’s documented anti-

inflammatory properties, some observations diverge from earlier

studies. For example, metformin’s failure to upregulate Foxp3 (a

Treg marker) contrasts with its reported induction of Tregs in

adipose tissue (67), potentially due to tissue-specific epigenetic

regulation or differential microbiota in aged vs. obese models.

Similarly, the lack of change in B cell populations contradicts

metformin’s reported enhancement of humoral immunity in

vaccination models (19). This discrepancy likely stems from

fundamental age-related B cell alterations: immunosenescence

involves reduced naïve B cell output, accumulation of exhausted/

age-associated B cells (ABCs), impaired germinal center formation,

and diminished antigen responsiveness (68, 69)—all consistent with

our baseline immunosenescent phenotype. Metformin’s

documented B cell effects occur predominantly in young/adult

models with intact B cell receptor signaling and functional Tfh
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cells, mechanisms compromised in aging (70, 71). Furthermore, our

correlation analysis revealed no significant links between

metformin-altered taxa and splenic B cells (Figure 9), suggesting

the microbiome-immune axis in aging may preferentially modulate

T cell/macrophage pathways.

Critically, our findings suggest that metformin’s splenic

immunomodulation may be mediated through the gut-spleen

axis. The enrichment of Akkermansia and Muribaculum

correlates with increased anti-inflammatory M2-macrophages,

aligning with evidence that Akkermansia-derived extracellular

vesicles (EVs) enter circulation, directly modulating splenic

immune cells (72, 73). Reduced Lactobacillus abundance might

modulate splenic immunity through alterations in bile acid

metabolism (74, 75). Metformin inhibits bile acid reabsorption,

which increases distal gut bile acids (76, 77) and elevates circulating

conjugated bile acids. These bile acids act as FXR antagonists to

suppress splenic Th17 differentiation (78, 79).

The gut-spleen crosstalk may explain the Lachnospiraceae

reduction despite its butyrogenic potential. Metformin suppresses

some butyrate producers (e.g., Fecalibacterium) yet enriches others

like Duncaniella (39), potentially favoring acetate production.

Acetate can enhance splenic Tc cytotoxicity via histone

deacetylase inhibition (45, 80). Additionally, metformin’s

inhibition of microbial agmatinase elevates agmatine (44), a

metabolite suppressing macrophage polarization and T cell

responses (81, 82). Although correlative data alone cannot

definitively establish functional crosstalk, our integrated dataset

supports this hypothesis.

Consequently, this study has several limitations warrant

consideration. First, while our correlation analyses and functional

predictions suggest that metformin-induced microbiota alterations

may contribute to splenic immune remodeling, it is important to

emphasize that these associations do not establish causality. Although

FMT studies in diabetic models have established a causal role for the

microbiota in mediating metformin’s metabolic effects (83), its role in

immune aging remains unexplored. Future studies should employ

fecal microbiota transplantation (FMT) frommetformin-treated aged

mice into untreated counterparts or germ-free recipients. These

experiments are essential to directly determine if microbiota

transfer recapitulates the observed immune benefits. Additionally,

integrating metabolite profiling (e.g., of SCFAs and bile acids) in

follow-up studies is recommended to identify the mediators linking

microbial changes to splenic immunity.

Second, the study’s exclusive use of male mice is a recognized

limitation, as sexual dimorphism influences both gut microbiota

composition and immune aging trajectories. Therefore, our findings

may not generalize to females. Future work should include female

cohorts to evaluate sex-specific effects of metformin on the gut-spleen

axis, particularly given hormonal impacts on immunometabolism.

Third, mechanisms linking specific taxa (e.g., Akkermansia) to

splenic Tc cells remain unclear. Single-cell RNA sequencing of gut-

derived immune cells could elucidate migratory patterns and

transcriptional programs.

Fourth, this study exclusively utilized aged mice as both

treatment and control groups, precluding direct comparisons with
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young adult immune and microbial profiles. While this design

robustly demonstrates metformin’s effects within an aging context,

it cannot delineate whether observed improvements represent

restoration toward a youthful state or establishment of a novel

compensatory equilibrium. We mitigated this constraint by

contextualizing our aged control data against established

benchmarks for murine immunosenescence and age-related

dysbiosis from seminal literature (12, 84–86). Nevertheless, future

investigations should incorporate young adult controls to

definitively ascertain metformin’s capacity to reverse—rather than

merely attenuate—aging-associated decline.

Fifth, although we documented metformin-induced changes in

immune cell frequencies and cytokine profiles, we did not

functionally challenge the immune system through vaccination or

pathogen exposure. Thus, it remains unknown whether the

remodeling of the splenic immune landscape translates to

enhanced functional immunity, such as improved antibody

responses or pathogen clearance. Future studies incorporating

such functional assays will be crucial to fully ascertain the

p h y s i o l o g i c a l r e l e v a n c e o f m e t f o rm i n -m e d i a t e d

immunomodulation in aging.

Sixth, immunosenescence involves a coordinated decline in both

central (thymic) and peripheral immunity (87). Our study focused on

the spleen and thus did not evaluate the potential impact of metformin

on thymic integrity or naïve T cell egress. Therefore, it remains unclear

whether the expansion of splenic cytotoxic T cells originates from

enhanced thymopoiesis, peripheral expansion, or altered survival.

Future investigations including analysis of thymic architecture, T-

cell receptor excision circles (TRECs) (88), and detailed phenotyping

of recent thymic emigrants (89) would help delineate the relative

contributions of central versus peripheral mechanisms.

Seventh, our findings are specific to the splenic immune

microenvironment. Given the anatomical and functional

specialization of lymphoid organs (90, 91), metformin’s effects

may differ in lymph nodes (e.g., mesenteric vs. peripheral) or gut-

associated lymphoid tissue (GALT). Whether the microbiota-

driven immunomodulation we report is confined to the spleen or

represents a broader systemic effect remains to be determined.

Future comparative analyses of multiple lymphoid sites will be

essential to map the full anatomical scope of the gut–immune axis

influenced by metformin.

Eighth, in line with the observed changes in total T cell

populations, a key limitation is the lack of high-resolution

phenotyping of T cell differentiation states. Immunosenescence

entails not only changes in total CD4+ or CD8+ T cell numbers

but also a fundamental shift in subset composition—specifically, the

attrition of naïve T cells (Tn) and the accumulation of memory and

senescent-like effector cells (1, 92). Without analyzing markers,

such as CD45RA, CD44, CCR7 and CD62L, to distinguish Tn,

central memory (Tcm), effector memory (Tem), and terminally

differentiated effector (Temra) subsets (93–95), we cannot

definitively characterize the metformin-expanded Tc population.

Future multi-parameter flow cytometric analyses are necessary to

determine whether this expansion reflects rejuvenation of the naïve
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repertoire, preferential expansion of a memory subset, or altered T

cell survival.

Finally, translating these findings to humans requires validation in

elderly cohorts, particularly given inter-species microbiota differences.

From a translational perspective, our data position metformin

as a dual-purpose agent targeting metabolic and immune aging. The

gut microbiota shifts, particularly Akkermansia enrichment,

resemble calorie restriction (CR) effects (96), suggesting

metformin may mimic CR pharmacologically.

The gut-spleen axis opens avenues for combinational therapies,

such as metformin with probiotics (e.g., Akkermansia muciniphila

formulations) or prebiotics targeting Muribaculum-associated

pathways, to synergistically enhance immune resilience in the

elderly. This could allow dose reduction to minimize side effects.

The axis also provides a biomarker framework (e.g., circulating

microbial metabolites, splenic immune cell profiles via imaging) for

monitoring efficacy.

However, important translational challenges must be

acknowledged. Murine models exhibit fundamental differences

from humans in gut microbiota composition, immune aging

patterns, and metformin pharmacokinetics. These interspecies

disparities necessitate caution when extrapolating our findings to

human aging. Refer to the method of dose conversion between

experimental animals and humans in preclinical and clinical stages

of drug development (97), the metformin dose used (300 mg/kg/

day) translates to a human equivalent dose (HED) of ~24.3 mg/kg

(~1,460 mg/day for 60kg adult), within the standard clinical range,

supporting pharmacological relevance but necessitating

human validation.

To bridge the translational gap, we propose: 1) Longitudinal

metformin trials in elderly with paired fecal metagenomics and

immune profiling; 2) Correlative analyses of existing cohorts (e.g.,

NHANES) examining metformin use, gut microbiota signatures,

and age-related immune markers; and 3) FMT studies from

metformin-treated elderly donors to germ-free mice to validate

causal microbiota-immune relationships. Such approaches would

help determine whether the gut-spleen axis observed here is

conserved in human aging and whether microbiota-directed

signatures could serve as biomarkers for metformin ’s

geroprotective efficacy.
Conclusion

In summary, this study demonstrates that metformin reshapes

the gut microbiota, which is associated with mitigation of age-

associated splenic immune dysregulation, favoring anti-

inflammatory macrophage polarization and cytotoxic T cell

expansion. These findings establish the gut-spleen axis as a novel

therapeutic target and position metformin as a promising

microbiota-directed geroprotective agent. Future research should

prioritize mechanistic dissection of gut-spleen communication and

clinical validation of metformin’s geroprotective efficacy in

human populations.
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SUPPLEMENTARY FIGURE 1

Gating strategy for identification of immune cell populations by FCM. (A)
Splenic immune cells were gated based on FSC-A/SSC-A, followed by

selection of single cells using FSC-A/FSC-H. T cells were identified as
CD3+, with further subdivision into CD4+ and CD8+ subsets. (B) B cells

(CD3-B220+) and NK cells (CD3-NK1.1+) were identified among CD3-

lymphoid cells. (C) CD45+Ly-6G+ population was defined as neutrophils
and CD45+F4/80+ as macrophages. (D) CD68+ macrophages were further

classified into M1 (CD68+CD86+) and M2 (CD68+CD163+) phenotypes.
Fluorescence thresholds were established using isotype-matched

control antibodies.

SUPPLEMENTARY FIGURE 2

Metformin treatment increases microbial diversity. Alpha diversity indices
comparing control group (CON) and metformin-treated group (TEST). (A)
Chao1 index (assessing sequencing depth), showing no significant difference
(p > 0.05), Wilcoxon rank-sum test (n = 11). (B) Shannon index (assessing

species diversity), showing a significant increase in the metformin group
(*p<0.05), Wilcoxon rank-sum test (n = 11).

SUPPLEMENTARY FIGURE 3

Differential genus abundance (ANCOM-BC2) and relative abundance

heatmap. CON, control group; TEST, metformin-treated group.

SUPPLEMENTARY TABLE 1

The post-processed 16S-count at ASV-level.

SUPPLEMENTARY TABLE 2

The post-processed 16S-count at genus-level.

SUPPLEMENTARY TABLE 3

LEfSe analysis identifies bacterial taxa with differential abundance between
CON and TEST groups. The table lists taxonomic units from phylum to genus

level with a Linear Discriminant Analysis (LDA) score > 2.0 and a Benjamini-
Hochberg corrected p-value < 0.05 (Kruskal-Wallis test). The group column

indicates the group (CON or TEST) in which the taxon is significantly enriched.

The Mean column represents the average relative abundance (log-
transformed), the LDA value indicates the effect size (magnitude of the

difference), and the P_value is the corrected significance value. CON,
control group; TEST, metformin-treated group.

SUPPLEMENTARY TABLE 4

Differential Abundance of predicted KEGG pathways between TEST and CON

groups. Predictions are based on KEGG pathway abundances derived from
the COG functional annotations within PICRUSt2. Calculated as CON-Mean

(%)/TEST-Mean(%). Values > 1 indicate higher predicted abundance in the
CON group; values < 1 indicate higher predicted abundance in the TEST

group. Statistical Analysis includes 95% confidence intervals (Lower ci, Upper
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ci), effect size (Effect size), raw p-value (P-value), and corrected p-value to
account for multiple hypothesis testing. Pathways are typically considered

significantly different if corrected p-value < 0.05. CON, control group; TEST,
metformin-treated group.

SUPPLEMENTARY TABLE 5

Spearman’s correlation between gut microbiota genera and immune cell

profiles. This table presents Spearman’s rank correlation coefficients (r) and
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Benjamini-Hochberg-adjusted p-values for associations between gut
microbiota genera (rows) and immune cell populations (columns).

SUPPLEMENTARY TABLE 6

Spearman’s correlation between gut microbiota genera and cytokine/marker

mRNA levels. This table presents Spearman’s rank correlation coefficients (r)
and Benjamini-Hochberg-adjusted p-values for associations between gut

microbiota genera (rows) and cytokine/marker mRNA levels (columns).
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