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Copper is an essential trace element in the human body, involved in various

biological processes, including cell metabolism, nerve development, and

immune function. Its homeostasis is vital for maintaining normal cellular

functions, and disruptions in copper homeostasis can lead to a wide range of

diseases. Cuproptosis is a copper ion–dependent form of programmed cell

death that leads to abnormal oligomerization of lipoylated proteins and

dysfunction of iron-sulfur cluster proteins in the mitochondrial tricarboxylic

acid (TCA) cycle, thereby triggering intracellular oxidative stress and

proteotoxic stress. In this review, we have delved into the mechanisms of

copper metabolism and cuproptosis, as well as their roles in several liver

diseases, including Wilson disease (WD), alcoholic liver disease (ALD), non-

alcoholic fatty liver disease (NAFLD), acute liver injury (ALI), and hepatocellular

carcinoma (HCC), as well as their therapeutic potential.
KEYWORDS

copper metabolism, cuproptosis, Wilson disease, alcoholic liver disease, non-alcoholic
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1 Introduction

Copper is an essential trace element in the human body. Although its concentration in

the body is relatively low, it plays a crucial role in many important biological functions,

such as cell metabolism, nerve development, and immune function (1). In recent years, the

crucial role of copper homeostasis in human health has increasingly drawn attention. The

concentration of copper ions within cells must be maintained at a precise homeostatic level,

which is vital for normal cellular physiological functions. Under physiological conditions,

copper ion absorption, distribution, storage, and excretion are strictly controlled. However,

if copper homeostasis is disturbed, cells may experience a cascade of metabolic disorders,

leading to various diseases.
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Programmed cell death (PCD) is an essential process for

maintaining tissue stability and developmental equilibrium.

Under normal physiological cycles or various pathological

conditions, organisms initiate different mechanisms of PCD to

maintain homeostasis. The abnormal regulation of these

mechanisms can trigger the development of various diseases. To

date, several PCDs have been identified, such as apoptosis,

necroptosis and ferroptosis, etc (2). Each type of PCD follows its

unique mechanisms, contributing to the regulation of cell fate, and

thus playing crucial roles in maintaining tissue homeostasis,

immune responses, and disease progression.

In 2022, Tsvetkov et al. reported that elesclomol, a CI, could

trigger a novel copper-dependent PCD, leading to the demise of

ABC1 cells (3). This type of PCD is unique and cannot be reversed by

inhibiting caspase-3 (apoptosis), necroptosis-1 (necroptosis), or

ferrostatin-1 (ferroptosis). Consequently, this new mechanism of

PCD has been termed cuproptosis. Cells undergoing cuproptosis

display a spectrum of unique morphological alterations characterized

by the shrinkage of mitochondria, reduction of the inner

mitochondrial membrane, and the formation of large vacuoles; the

endoplasmic reticulum becomes loosely structured and disordered;

and the cell membrane ruptures (4). The excessive accumulation of

copper within cells severely disrupts a series of copper-dependent

metabolic processes, including key stages in the tricarboxylic acid

(TCA) cycle and mitochondrial electron transfer chain (mtETC) (5).

The aberrant progression of these metabolic activities ultimately

disrupts the cell membrane’s integrity, causing the leakage of

intracellular substances and resulting in cuproptosis. Cuproptosis

plays a crucial role in various diseases, such as cancers, cardiovascular

diseases, and pulmonary diseases (6–8). Moreover, as an

immunogenic form of PCD, modulating cuproptotic regulators and

cuproptosis is one of the key strategies to regulate immune cell

infiltration and impact the prognosis of cancer patients (9–11).

Given the critical role of the liver in copper metabolism, research

on copper homeostasis in various liver diseases has advanced

significantly in recent years (12). However, the underlying

mechanisms still require further exploration by scientific researchers

to be fully elucidated. In this manuscript, we focus on the mechanisms

of copper metabolism and cuproptosis, and explore their roles in

various liver diseases, including Wilson disease (WD), alcoholic liver

disease (ALD), non-alcoholic fatty liver disease (NAFLD), acute liver

injury (ALI), and hepatocellular carcinoma (HCC).
2 Copper metabolism

Copper is a vital trace element for the human body, typically

acquired through diet. These food sources supply the body with the

required copper levels to support essential functions, such as

angiogenesis, neuroregulation, and energy metabolism, etc (1).

Copper is primarily obtained from food as copper ions (Cu+ and

Cu2+), and is absorbed by intestinal epithelial cells (IECs) (13).

Here, Cu2+ is reduced by six transmembrane epithelial antigen of

the prostate (STEAP) and duodenal cytochrome b (DCYTB), and

subsequently, the absorption of Cu+ is facilitated by copper
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transport protein 1 (CTR1), which is situated on the surface of

IECs (14–16). The absorption of copper is regulated by multiple

factors. IECs secrete the intestinal mucus layer, which serves as a

physical barrier for the small intestine and also regulates the

absorption of nutrients (17). Mucins within the mucus layer are

important regulators of copper absorption, modulating the

solubility and diffusion rate of copper ions via their copper-

binding sites (18). The trace element zinc also regulates copper

absorption. Zinc can bind to mucins, and exhibiting a higher

binding affinity than copper (19). Excessive zinc can

competitively inhibit copper absorption. In addition, recent

research has indicated that zinc transporter 1 (ZnT1) has the

capability to directly transport Cu2+ (20). Conditional knockout

of ZnT1 in IECs can lead to a decrease in intracellular Cu2+ levels.

Copper absorbed by IECs can serve as a cofactor for enzymes to

modulate the intracellular redox state, thereby sustaining the cells’

functionality and homeostasis. Additionally, it can be transported

out of the cells via the ATP7A transporter (21). Copper in the

bloodstream is transported by binding to companion proteins and

delivered to target cells throughout the body (22). Similar to IECs,

the process of copper entering target cells is also mediated by CTR1.

The liver is essential for copper metabolism. Copper that enters

the bloodstream travels to the liver via the portal vein and

subsequently enters hepatocytes through CTR1. In the liver,

copper is incorporated into ceruloplasmin (CP), which is secreted

by the liver and serves as the primary copper carrier protein. CP has

a relatively short half-life, with fully copper-loaded CP (holo-CP)

having a half-life of 4–5 days, while copper-free CP (apo-CP) has a

half-life of approximately 5 hours. This dynamic regulation allows

CP levels to fluctuate in response to changes in the hepatic copper

pool, thereby maintaining systemic copper homeostasis. ATP7B is a

transmembrane copper-transporting ATPase primarily expressed

in the liver and is vital for maintaining overall copper balance in the

body (23). ATP7B transports cytosolic copper ions to the Golgi

apparatus, where they are loaded onto the precursor of CP to form

functional CP, which is then secreted into the bloodstream (24).

Additionally, when hepatic copper levels are elevated, ATP7B

facilitates secrete excess copper into the bile for excretion, thereby

maintaining copper homeostasis (Figure 1) (25).

In the bloodstream, copper ions transported to target cells by

carrier proteins such as albumin and CP. At the surface of target

cells, Cu²+ is reduced by STEAP and DCYTB (14, 15), and

subsequently transported into the cell via CTR1 (26). Upon

entering the cells, the storage, distribution, and efflux of copper

ions are tightly regulated by various mechanisms. Metallothionein

1/2 (MT-1/2), which are rich in cysteine, can bind copper ions

through their thiol groups (-SH), thereby mediating the storage of

copper within cells (27). Moreover, copper ions can also be

transported to specific target proteins via distinct chaperone

proteins to exert their biological functions. For example,

cytochrome c oxidase 17 (COX17) can transport copper to

cytochrome c oxidase (CCO), participating in mitochondrial

function and oxidative phosphorylation (28); copper chaperone

for superoxide dismutase (CCS) can deliver copper ions to

superoxide dismutase 1 (SOD1), thereby enhancing its
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antioxidant activity against reactive oxygen species (ROS) (29);

antioxidant 1 copper chaperone (ATOX1) can shuttle copper to

ATP7A or ATP7B, thereby aiding in the synthesis of CP and other

copper-requiring enzymes, or promoting copper efflux to preserve

intracellular copper homeostasis (Figure 2) (30–32). These

processes collectively form an intricate regulatory network of

intracellular copper metabolism, ensuring the rational distribution

and utilization of copper ions, thereby maintaining normal cellular

physiological functions.
3 Cuproptosis

Intracellular copper ion levels must be meticulously controlled

to remain within a precise homeostatic range (33). When these

levels surpass the physiological threshold, copper ions can exert

toxic effects. Over four decades ago, biologists found that excess

copper could cause cell death (34). Patients with WD stand at the

forefront of copper biology and have provided key insights into cell

death (35). They accumulate excess copper, leading to extensive

hepatocyte death (36). The link between copper dysregulation and

cell death is crucial in rare diseases like WD and also has significant

implications for more common conditions, including cancer.

However, the exact molecular mechanisms remain to be fully

understood. Copper ionophores (CIs) are lipophilic molecules

capable of reversibly binding to copper. They can traverse the

plasma and mitochondrial membranes, delivering copper ions to

specific intracellular locations (37). CIs are widely used in the study

of intracellular copper transport and the elucidation of related

mechanisms. The most commonly used CIs are Disulfiram (DSF)

and Elesclomol (ES). DSF was initially employed for alcohol

abstinence therapy but was later discovered to function as a CI,

inducing copper-dependent antitumor effects (38). ES, originally

developed by Synta Pharmaceuticals, was initially believed to induce

tumor cell apoptosis through oxidative stress (39). Subsequent

research revealed that ES serves as a CI, transporting Cu2+ into

the mitochondria. The reduction of Cu2+ within the mitochondria

enhances the production of ROS, thereby contributing to its

antitumor mechanisms (40). With the in-depth research on CIs,

in 2019, Tsvetkov et al. reported that by replacing glucose with

galactose to alter cellular metabolism and increase mitochondrial

respiration (Hi-mito state), tumor cells could acquire resistance to

proteasome inhibitors. Intriguingly, in this metabolic state, cells

become more sensitive to ES (41, 42). Further analysis revealed that

the mitochondrial reductase ferredoxin 1 (FDX1) is a direct target

of ES, leading to a unique form of copper-dependent PCD (41, 42).

Subsequently, in 2022, they further elucidated that this PCD results

from copper binding to lipoylated components within the

mitochondria. Specifically, within the cell, particularly in the

mitochondria, excess copper leads to abnormal aggregation of

lipoylated proteins, disrupts iron-sulfur (Fe-S) cluster proteins

involved in mitochondrial respiration, triggers proteotoxic stress

responses, and results in cell death (3). Notably, this cell death

pathway is resistant to inhibition by established PCDs inhibitors,

and it has been termed cuproptosis (3).
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Mitochondria are a critical target for cuproptosis. Tsvetkov et al.

reported that cells highly dependent on mitochondrial respiration

exhibit significantly greater sensitivity to CIs than those primarily

relying on glycolysis (3). In addition, mitochondrial antioxidants and

mitochondrial function inhibitors can both reduce this sensitivity.

Furthermore, inhibiting key enzymes in cellular aerobic glycolysis,

such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), can

also increase the sensitivity to cuproptosis (43). Cuproptosis cells

exhibit morphological features similar to apoptosis cells, including

mitochondrial atrophy, plasma membrane rupture, and chromatin

disruption (44). However, the underlying mechanisms are entirely

different. Mechanistically, cuproptosis is initiated by the

oligomerization of lipoylated components within the mitochondrial,

rather than through the activation of caspase proteins.

Lipoylation is a conserved post-translational modification that

regulates protein function by covalently attaching lipoic acid to lysine

residues (45). To date, all known lipoylated proteins are key metabolic

enzymes involved in the TCA cycle, such as dihydrolipoyl transacetylase

(DLAT), dihydrolipoyllysine-residue succinyltransferase (DLST),

pyruvate dehydrogenase complex component X (PDHX), and glycine

cleavage system protein H (GCSH) (45). The lipoylated proteins are

indispensable for the enzymatic activities of the energy metabolism

complexes. However, the lipoic acid molecule contains two thiol groups

(-SH), so proteins modified by lipoylation will also carry thiol groups,

which endows themwith a high affinity for copper ions (46, 47). Copper

ions binding to thiol groups can induce thiol-dependent oligomerization

of lipoylated proteins, leading to proteotoxic stress and culminating in

cuproptosis (3, 48).

The primary regulators of protein lipoylation are lipoyltransferase

1/2 (LIPT1/2) and lipoic acid synthase (LIAS). LIPT2 can transfer the

octanoyl group from acyl-carrier protein to GCSH, which serves as a

precursor for lipoic acid synthesis (49). LIAS, which contains an Fe-S

cluster, is a crucial enzyme in lipoic acid synthesis that inserts two

sulfur atoms into carbons 6 and 8 of the octanoyl group to form

complete lipoic acid (50). Subsequently, LIPT1 transfers lipoic acid

from GCSH to the lysine residues of target proteins, completing the

lipoylation modification (47, 51). In current studies, DLAT, LIPT1

and LIAS are implicated in positively regulating cuproptosis, with

their expression levels being closely related to cuproptosis activity (3,

52–54). In contrast, the direct role of LIPT2 in cuproptosis is still

unclear. However, given its essential function in lipoylation, LIPT2

may exert an indirect influence on cuproptosis by modulating the

lipoylation pathway.

FDX1 is another pivotal regulator of cuproptosis. FDX1 is a

small protein from the ferredoxin family and contains an Fe-S

cluster (55). It serves as an electron donor and participates in the

biosynthesis of steroids, heme, and Fe-S clusters. FDX1 can interact

with ES-Cu to facilitate the reduction of Cu2+ and release Cu+ into

the mitochondrial matrix (41). This reduction reaction significantly

amplifies the cytotoxicity of copper ions. Notably, copper overload

can suppress FDX1 activity, leading to a decrease in the synthesis of

Fe-S cluster proteins. Moreover, Cu+ can directly bind to Fe-S

clusters, which in turn disrupt their synthesis and function (3). In

addition, FDX1 is an upstream regulator in the lipoylation pathway.

Dreishpoon et al. reported that FDX1 can directly interact with
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LIAS, acting as an electron donor to facilitate the synthesis of lipoic

acid, rather than indirectly regulating it through modulation of Fe-S

clusters (Figure 3) (56). The loss of FDX1 function, by affecting

protein lipoylation, leads to the suppression of mitochondrial

respiration, particularly under low-glucose conditions.
4 Abnormal copper metabolism and
liver disease

The liver plays a central role in copper metabolism, including

absorption, storage, transportation and excretion. Disruptions in these

processes are linked to various liver diseases and can greatly affect

immune responses and inflammation within the liver (57). Copper

homeostasis finely regulates liver immunity. It is essential for immune

cell function and host defense, but its imbalance can cause excessive

immune activation and inflammation. Copper deficiency weakens the

immune response to infections and damaged cell clearance, worsening

liver injury (58–60). Conversely, excess copper can overactivate

immune cells like Kupffer cells, T cells, and B cells, enhancing
Frontiers in Immunology 05
inflammation (7, 61). Cuproptosis, as an immunogenic PCD, leads

to the release of damage-associated molecular patterns (DAMPs),

promotes inflammation and the infiltration of immune cells, and

aggravates hepatocyte damage (12, 62, 63). In addition, immune

system abnormalities can disrupt copper metabolism by altering

copper transporter and binding protein expression and activity (64).

The complex interplay between copper metabolism and the immune

system highlights their importance in liver diseases. Overall, damage to

one or more stages of copper metabolism in the liver can lead to copper

metabolism disorders, which in turn cause abnormal liver immunity

and aggravate hepatocyte damage. In the following sections, we will

discuss the role of abnormal copper metabolism inWD, ALD, NAFLD,

ALI and HCC.
4.1 Abnormal copper metabolism in Wilson
disease

Menkes disease (MD) and WD are genetic disorders associated

with copper metabolism, characterized by mutations in the ATP7A
FIGURE 2

Copper Transport and Cellular Functions. (a) Copper absorption. Copper uptake in enterocytes is mediated by the CTR1 transporter, while ATPase
copper transporter 7A (ATP7A) facilitates its efflux into the portal circulation. (b) Copper distribution. In hepatocytes, copper plays a critical role in
antioxidant defense (e.g., by binding to superoxide dismutase, SOD) and supports mitochondrial energy production. The copper chaperones CCS
and cytochrome c oxidase copper chaperone 17 (COX17) deliver Cu+ to specific targets: CCS directs copper to cytosolic SOD1, enhancing free
radical scavenging; COX17 transports copper to mitochondrial COX, aiding ATP synthesis. Intracellular copper shuttling is regulated by ATOX1, which
distributes copper to: The nucleus; ATPB in the trans-Golgi network. (c) Copper sequestration. Excess copper binds to MT1/2 or GSH and is stored
in the cytosol to prevent oxidative damage. (d) Copper export. Finally, copper enters the bloodstream and is delivered to other tissues and organs.
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or ATP7B genes, respectively. MD arises from ATP7A gene

mutations, which leads to a reduction in functional ATP7A in

IECs and severe systemic copper deficiency (65). The main

symptoms of MD include neurological deterioration and growth

retardation, with relatively mild liver symptoms. Copper deficiency

also leads to reduced synthesis of copper-dependent enzymes like

CP. In contrast, WD is caused by ATP7B gene mutations. Since

ATP7B is involved in CP synthesis and copper excretion, its

missense mutations often result in copper accumulation within

the liver, causing severe hepatotoxicity and systemic symptoms

(66). In WD patients, the hepatic copper concentration can be more

than 10 times the normal level (67). Meanwhile, the reduction of

holo-CP in the circulation leads to a shortened half-life of CP,

resulting in not only excessive copper but also excessive iron in the

liver of WD patients, which in turn causes iron-induced Fenton

reactions and iron-related lipid peroxidation (68). Compared with

copper, the presence of a certain level of CP means that iron

accumulation is not a primary feature of WD.

In WD patients, the absence of ATP7B expression in IECs

leaves copper absorption unaffected. Additionally, the transfer of
Frontiers in Immunology 06
copper from IECs to the liver is also not influenced by ATP7B

mutations (69). This allows copper to easily accumulate in large

amounts in the livers, subsequently triggering a series of

pathological changes. Mitochondrial alterations often manifest in

the early stages, such as the separation and expansion of the

mitochondrial membrane, deformation, swelling, and the

appearance of vacuoles in mitochondrial (70). Similar structural

changes can also be observed in ATP7B-/- rats (71, 72). As the

disease advances, defects in the mtETC become increasingly

pronounced, particularly in complex IV (73, 74). This leads to a

diminished capacity for ATP production, thereby compromising

cellular energy metabolism. Conversely, the Fenton reactions and

ROS damage associated with copper and iron overload tend to

occur at a later stage. The change in the glutathione (GSH)/

glutathione disulfide (GSSG) ratio occurs at a later stage,

reflecting a decline in antioxidant capacity (75).

Restricting copper intake in the diet can be somewhat helpful

for patients with WD, but the current evidence is not sufficient to

support a treatment plan based on dietary restrictions (76). At

present, the treatment of WD mainly relies on copper chelators
FIGURE 3

Mechanism of cuproptosis. Cuproptosis is triggered by excessive intracellular copper accumulation, which occurs either via SLC31A1-mediated
uptake or through copper ionophores. Elevated copper levels promote ROS generation via the Fenton reaction, leading to DNA damage. Copper
ionophores (e.g., elesclomol) facilitate copper transport into cells, where it binds to lipoylated enzymes in the mitochondrial TCA cycle, such as
DLAT. This interaction causes protein aggregation and disrupts iron-sulfur cluster stability. The FDX1/LIAS pathway, which regulates protein
lipoylation, further contributes to mitochondrial dysfunction. Collectively, these disruptions induce proteotoxic stress, culminating in cell death.
Inhibitors targeting ferroptosis (Fer-1), necroptosis (Nec-1), or oxidative stress (NAC) do not prevent this form of cell death.
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(CCs) and zinc salts (77). CCs can specifically bind to copper ions to

form stable complex, which promotes the excretion of copper (78).

D-penicillamine and trientine are first-line drugs for WD. D-

penicillamine is the earliest used CC. It is an amino acid

containing a thiol group, which can remove copper bound to

albumin in the circulation and excrete it through urine (78). The

side effects of D-penicillamine mainly include nephrotoxicity and

bone marrow suppression, etc (79). Trientine is an alternative for

patients who cannot tolerate D-penicillamine (80, 81). Another CC,

tetrathiomolybdate (TTM), has also demonstrated potential in

treating WD. In a phase II clinical trial, bis-choline TTM was

found to rapidly reduce the levels of non-CP-bound copper in

patients, and improve neurological symptoms and liver function

(82). Zinc salts are another first-line treatment option for WD. As

mentioned, zinc can competitively inhibit the absorption of copper

(19). Li et al. reported that ZnT1 is involved in transporting both

zinc and copper and is essential for zinc’s ability to inhibit copper

absorption. ZnT1 has a unique inter-subunit disulfide bond that

aids in the transport of Cu2+, and Zn2+ and Cu2+ share a major

binding site on ZnT1 (83). Therefore, ZnT1 may be a potential

target for zinc-based therapeutic approaches in treating WD.
4.2 Abnormal copper metabolism in
alcohol liver disease

The liver is the core organ for ethanol metabolism. As a result,

long-term alcohol consumption can easily lead to liver damage, a

prevalent form of hepatic injury. Copper is an important fungicide

in organic viticulture and also an important catalyst in the wine-

making process (84). Copper significantly contributes to the

progression of ALD. Lin et al. reported that dietary copper can

improve the intestinal barrier integrity and hepatic injury in ALD

model mice (85). Dietary copper supplementation can increase the

expression of hypoxia-inducible factor-1a (HIF-1a) in the small

intestine, thereby enhancing intestinal barrier stability through the

upregulation of P-glycoprotein and tight junction proteins (86).

Additionally, copper supplementation can also increase the levels of

GPX1 and occludin, ameliorate oxidative stress, and mitigate

ethanol-induced damage to the small intestine (85). Conversely,

some studies have reported that copper can increase the liver

damage caused by alcohol (87, 88). Monooxygenase DBH-like 1

(MOXD1) is closely related to the transport of copper into cells

(89). A bioinformatics analysis has revealed that MOXD1 is a key

gene in ALD, and inhibiting MOXD1 can improve inflammation in

ALD mice (90). Hou et al. reported that the livers of ALD model

mice exhibited significant infiltration of M1 macrophages, a notable

decline in FDX1 expression, and a pronounced upsurge in CTR1

expression. They also pinpointed five potential biomarkers

associated with M1 macrophages, ferroptosis, and cuproptosis in

patients with alcoholic hepatitis: LUM, ALDOA, THBS2, COL3A1,

and TIMP1 (91). In another study, bioinformatics analysis revealed

that three cuproptosis-related genes (CRGs)—DLAT, GLS, and

CDKN2A—are closely associated with ALD (92). Their expression

were markedly elevated in both ALD patients and ALDmodel mice.
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GLS and CDKN2A exhibit a correlation with the p53 pathway,

which can increase cellular sensitivity to cuproptosis through

multiple pathways, such as inhibiting glycolysis, enhancing

mitochondrial function and Fe-S cluster biogenesis, and

inhibiting the SLC7A11-glutathione peroxidase 4 (GPX4)-GSH

pathway to reduce GSH levels (93–95). In addition, the CRGs are

associated with the hepatic infiltration of macrophages and CD8+ T

cells, and may activate the complement pathway, thereby

amplifying intrahepatic inflammation (92). Overall, copper

significantly impacts ALD pathogenesis via multiple pathways.
4.3 Abnormal copper metabolism in non-
alcoholic fatty liver disease

NAFLD is a highly prevalent liver disease. Its core pathological

feature is the excessive lipid accumulation within hepatocytes,

which primarily results from overconsumption of dietary fats,

excessive fatty acid influx, and elevated de novo lipogenesis (96).

The long-term lipid accumulation leads to mitochondrial oxidative

stress. If left uncontrolled, this chronic damage can progressively

develop into non-alcoholic steatohepatitis (NASH), and further

induce fibrosis and HCC (97). NAFLD is closely associated with

metabolic abnormalities. Patients typically have obesity, insulin

resistance, or metabolic dysfunction (98). As the prevalence of

these metabolic-related diseases increases, the incidence of

NAFLD has also risen significantly, with approximately 38% of

individuals affected by NAFLD (99). To emphasize the importance

of metabolic dysfunction, NAFLD is also termed metabolic

dysfunction-associated fatty liver disease (MAFLD) (100).

Dysregulated copper metabolism is strongly associated with

NAFLD and may intensify its pathological progression (101).

Abnormal copper homeostasis, including both elevated and

deficient copper, can cause liver injury and exacerbate NAFLD

progression (102). A study reported that serum copper levels

correlate positively with NAFLD prevalence and the progression

of fibrosis, with overweight women under the age of 60 having a

higher susceptibility (103). In contrast, another study reported that

elevated blood copper levels significantly protect male NAFLD

patients, and this protective effect increases with the severity of

NAFLD. In women, however, this protective effect is only observed

in mild liver disease (104). A meta-analysis revealed that hepatic

copper levels in NAFLD patients are significantly reduced.

However, there is no significant correlation between serum

copper levels, CP levels, and NAFLD (105). These contradictory

results are closely tied to the complex pathogenesis of NAFLD and

are also closely associated with the multifaceted physiological

functions of copper. Copper can influence the progression of

NAFLD through various pathways, such as regulating lipid

metabolism, iron metabolism, mitochondrial function, oxidative

stress, and cuproptosis. Jiang et al. reported that oral copper oxide

nanoparticles cause copper accumulation in the liver, resulting in

disordered hepatocyte arrangement, lipid vacuolation, and hepatic

fibrosis (106). Mechanistically, CuO NPs increase bile acid (BA)

reabsorption, disrupting BA homeostasis. This leads to BA
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accumulation and induces NAFLD. The expression of the pregnane

X receptor (PXR) in the liver was significantly upregulated,

correlating with BA accumulation and promoting lipid synthesis

(106, 107). Additionally, Liu et al. reported that copper can induce

inflammatory responses in the mouse liver by activating the

mitogen-activated protein kinase (MAPK) and nuclear factor-

kappa B (NF-kB) pathways, leading to hepatic dysfunction (108).

Copper deficiency can reduce the expression of ferroportin, thereby

affecting hepatic iron metabolism, causing hepatic iron deposition

and promoting liver fibrosis (109). Copper deficiency can also lead

to increased ROS, thereby exacerbating the pathological progression

of NAFLD (110). In addition, copper deficiency can affect the key

enzyme in fructose metabolism, such as ketohexokinase, while high

fructose intake can impair copper absorption, leading to copper

deficiency (111). The copper-fructose interaction can exacerbate

NAFLD through multiple pathways, including promoting hepatic

iron overload, mitochondrial dysfunction, and abnormal gut

function (112).

Copper also affects various metabolic disorders that contribute

to the development of NAFLD/MAFLD. For example, copper and

zinc compete for binding to ZnT1 and mucins, which means that

elevated copper levels can suppress zinc absorption (19, 20). Zinc is

an important cofactor for insulin synthesis and secretion, and zinc

deficiency can exacerbate insulin resistance (113). In addition, high

levels of copper can also promote oxidative stress through the

Fenton reaction, damage pancreatic b cells, and thereby promote

insulin resistance (114). Additionally, copper serves as a cofactor for

enzymes involved in lipid metabolism such as semicarbazide-

sensitive amine oxidase (SSAO) and amine oxidase copper-

containing 3 (AOC3) (115, 116). Abnormal levels of copper can

lead to dysregulation of lipid metabolism and increased fat

accumulation, thereby heightening the risk of obesity (117).

At present, studies exploring cuproptosis in NAFLD remain

relatively few, and its mechanisms remain to be elucidated. Xu et al.

reported that overexpression of the LIAS gene in leptin receptor-

deficient mice significantly enhances the mitochondrial antioxidant

capacity in the liver, reduces the levels of inflammatory factors, and

alleviates the progression of NAFLD/NASH (118). Zhao et al.

identified that FDX1 is closely associated with the progression

from NASH to HCC. FDX1 expression is significantly increased

in areas of hepatocyte steatosis but is markedly decreased in HCC.

Targeting FDX1 may help prevent the malignant progression of

NAFLD (119). However, another bioinformatics analysis did not

identify FDX1 as a CRG associated with NAFLD. In their study,

FDX1 showed no significant difference, whereas NFE2L2, DLD, and

POLD1 were identified as key CRGs and were closely related to the

immune microenvironment (120). This further highlights the

dynamic changes of FDX1 in the NAFLD-NASH-HCC

progression, but this still requires more research for validation.

Another bioinformatics analysis showed that six CRGs changed

significantly in NAFLD. NFE2L2, LIAS, and ATP7B were

significantly downregulated, while DLD, DLAT, and PDHB were

highly upregulated (121). In summary, copper ions regulate the

progression of NAFLD through various pathways, and the
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abnormal changes in their levels may exacerbate the pathological

process of NAFLD.
4.4 Abnormal copper metabolism in acute
liver injury

ALI is the extensive death of hepatocytes and inflammation that

occur within a short period of time, leading to acute liver

impairment. Common causes of ALI include hepatic ischemia-

reperfusion (HIR), drug overdose, excessive alcohol consumption,

heavy metal poisoning, autoimmune hepatitis, and viral hepatitis

(122). Studies have reported that excessive copper intake or

exposure can directly cause ALI (88, 123, 124). Other factors can

also cause abnormal copper levels in the liver, affecting

mitochondrial function within hepatocytes and pathways like

oxidative stress and cuproptosis, thereby exacerbating ALI.

HIR is often accompanied by various PCDs, including

cuproptosis (125). Inhibitors of cuproptosis have been shown to

improve liver injury, whereas inducers can exacerbate it.

Bioinformatics analysis has identified some characteristic CRGs

that are highly expressed in HIRI (126). Acetaminophen (APAP) is

frequently used as an antipyretic and anti-inflammatory drug.

However, APAP exhibits a relatively limited therapeutic window,

with overdose being a critical contributor to ALI. Guo et al. reported

that after APAP treatment, the copper content in the liver is

significantly increased (127). Bioinformatics analysis identified

four CRGs that are closely associated with acetaminophen-

induced liver injury (AILI): PDHA1, SDHB, NDUFB2, and

NDUFB6. Their expression is markedly reduced in AILI and is

correlated with the infiltration of M1 macrophages (127). Luo et al.

reported that in concanavalin A-induced immune-mediated ALI,

Merestinib can directly bind to Nrf2, thereby reducing oxidative

stress. Additionally, it regulates copper homeostasis in hepatocytes,

inhibits cuproptosis, and alleviates liver damage (128).

Viral hepatitis can also cause acute liver injury. However,

studies on cuproptosis in viral hepatitis are still limited at present.

Nevertheless, research has shown that in patients with chronic

hepatitis B, serum copper levels are significantly reduced,

antioxidant capacity is weakened, and ROS levels are significantly

increased (129, 130). In chronic hepatitis C patients, hepatic copper

levels correlate positively with the extent of hepatic fibrosis, yet

serum copper levels show no significant difference (131). These

findings suggest that copper metabolism disorders might contribute

to the pathogenesis of viral hepatitis and are worthy of further

detailed research.
4.5 Abnormal copper metabolism in
hepatocellular carcinoma

HCC is the most common type of primary liver cancer (132).

The pathogenesis of HCC is highly complex, encompassing genetic

factors, metabolic disorders, viral infections, and environmental
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exposures. These diverse risk factors contribute to liver cirrhosis

development, fostering an environment conducive to the

progression of HCC (133). Copper is vital for maintaining

mitochondrial function and significantly impacts energy

metabolism. Given that cancer cells proliferate rapidly, it is

predictable that they require more copper than normal cells to

satisfy their energy requirements. Moreover, since copper

metabolism abnormalities play a vital role in various chronic liver

diseases, the relevance of copper to HCC development is self-

evident. Research has demonstrated that copper concentrations

are markedly higher in various cancers (134–138). Li et al.

reported that the expression levels of most copper metabolism-

related pathways are decreased in HCC patients. The expression of

MTs genes related to copper ion detoxification is significantly

decreased in HCC (139).

In HCC, the abnormal elevation of copper ion levels can influence

the biological behavior of tumors through various mechanisms (140).

A bioinformatics analysis revealed that HCC patients presenting a

high-copper phenotype typically exhibit higher pathological grades

and poorer prognoses compared to those with a low-copper

phenotype. Additionally, the high copper phenotype was

characterized by higher expression of immune checkpoint genes,

resulting in a poorer response to immunotherapy (141). Davis et al.

reported that copper levels in HCC tumor tissues were significantly

higher than those in adjacent liver tissues. The overexpression of

CTR1 promoted the proliferative and migratory capacities of HCC

cells. Conversely, silencing CTR1 or treatment with TTM significantly

reduced glycolytic gene expression and downstream metabolite

utilization in HCC cells, thus inhibiting cell survival in hypoxic

conditions (142). Excess copper can promote the proliferation of

HCC through the MYC-CTR1 axis. MYC is an important oncogene

that can promote cell proliferation through the modulation of cell

cycle-related gene expression (143). Dysregulation of MYC is crucial

for the proliferation, invasion, and other processes of HCC (144).

Porcu et al. reported that copper exposure upregulated MYC

expression, and MYC could bind to the CTR1 promoter to promote

its transcription. Silencing of CTR1 can offset the copper-induced cell

proliferation (145). Excess copper within cells can also increase free

radicals, exacerbate DNA damage, thereby promoting the

proliferation of tumor cells (146). SOD1-/- mice exhibit a higher

incidence of HCC.

Angiogenesis is a vital pathway for the progression, invasion,

and metastasis of HCC. Copper significantly influences

angiogenesis and contributes to the malignant progression of

various tumors (147, 148). Copper metabolizing MURR1 domain

3 (COMMD3) is a crucial regulator of copper metabolism, and its

expression levels are closely correlated with intracellular copper ion

concentrations (31). The high expression of COMMD3 is associated

with adverse outcomes in a range of tumors and is related to the

tumor’s abilities of migration, invasion, and angiogenesis (149,

150). Zhu et al. reported that overexpression of COMMD3

significantly increased the expression of vascular endothelial

growth factor (VEGF), p-VEGFR2/VEGFR2, HIF-1a, and NF-kB
in HCC cells, thereby promoting tumor growth and angiogenesis
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(151). Conversely, downregulation of COMMD3 effectively

inhibited this tumor-promoting process. Studies have reported

that copper chelation therapy can improve the progression and

angiogenesis of HCC (152–154). Copper can also bind to CD147,

promoting its self-aggregation and thereby facilitating the

proliferation, invasion, and metastasis of HCC (155). CD147 is

overexpressed in various malignant cancers and can activate matrix

metalloproteinases (MMPs) -2, -3, and -9, thereby facilitating the

migration of HCC cells. Additionally, CD147 can regulate the

proliferation of HCC cells through the phosphoinositide-3-kinase

(PI3K)/protein kinase B (Akt) and p53 signaling pathway

(155, 156).

Targeting copper homeostasis has become a potential

therapeutic approach for treating HCC. By regulating the

intracellular levels of copper ions or leveraging copper-induced

PCD, the progression of HCC can be effectively inhibited.

Numerous studies have elucidated diverse mechanisms to target

copper ions for treating HCC. HCC cells need a higher level of

copper ions to promote their proliferation, invasion, and metastatic

ability. However, deviations from this optimal concentration—

either a reduction or an increase—can effectively impede the

progression of HCC.

CCs have been proven to significantly reduce the proliferation

and invasive capacity of HCC cells by inhibiting the activity of

copper ions (142, 152). Moreover, excess copper ions can inhibit the

progression of HCC through various mechanisms. For example, an

appropriate amount of copper can promote HCC through ROS-

dependent mechanisms. However, an excess of copper can increase

the intracellular ROS levels and induce apoptosis. Niu et al. reported

that the copper (II) complex of salicylate phenanthroline [Cu(sal)

(phen)] can significantly increase the ROS levels in HCC cells and

promote apoptosis (157). The treatment with Cu(sal)(phen)

significantly decreased Bcl-2 levels and triggered apoptosis in a

dose-dependent manner. Similarly, Jiang et al. synthesized two Cu

(II) 4-hydroxybenzoylhydrazone complexes, which can promote

HCC apoptosis by increasing ROS generation and damaging

mitochondrial DNA (158).

Cuproptosis is the primary pathway through which copper

exerts its anticancer effects. Bioinformatics analyses have

underscored the strong correlation of CRGs with the progression,

prognosis, and tumor microenvironment (TME) of HCC (159–

161). FDX1 can influence the prognosis of HCC by modulating

cuproptosis and the TME (162). High expression of FDX1 promotes

susceptibility to cuproptosis in HCC cells, enhances the infiltration

of NK cells, Th1 cells, and macrophages, and increases sensitivity to

oxaliplatin (163, 164). In contrast, low expression of FDX1

enhances tolerance to Cu2+ and correlates with a worse prognosis

in HCC (162). In addition, Sun et al. reported that knockdown of

FDX1 promotes mitophagy, activates the PI3K/Akt pathway and

facilitates HCC progression (165). DLAT also promotes the

proliferation of HCC (166). Li et al. reported that maternal

embryonic leucine zipper kinase (MELK) is highly expressed in

HCC and promotes DLAT via the PI3K/Akt pathway, improving

mitochondrial function (167). ES treatment inhibits MELK-induced
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HCC progression by promoting DLAT oligomerization and

inducing cuproptosis. In addition, LIPT1, LIAS, and GLS can also

promote the malignant progression of HCC (168–170).

Moreover, cuproptosis and ferroptosis are synergistic in HCC

(171). Ferroptosis is an iron-dependent PCD, characterized by the

elevation of intracellular iron ion levels that generate massive ROS

through the Fenton reaction, along with the depletion of the

antioxidant GSH, which subsequently trigger lipid peroxidation.

This damages the cell and mitochondrial membranes, and

ultimately causing cell death (172). Ren et al. reported that DSF-

Cu can promote the iron ion levels and lipid peroxidation in HCC

cells, thereby facilitating ferroptosis. DSF-Cu reduced the GSH

levels and FDX1 expression, while simultaneously promoting

ferroptosis and cuproptosis (173, 174). Combined treatment with

the ferroptosis inducer sorafenib enhanced the cytotoxicity against

HCC cells. In addition, sorafenib can also promote copper death

induced by ES-Cu. Treatment with sorafenib can enhance the

stability of FDX1 and reduce the level of GSH, and the enhanced

effect can be reversed by treatment with GSH or TTM (175).

Combining ferroptosis inducers with CIs could offer a new and

potentially more effective approach to treating HCC.

In addition to directly promoting PCDs, copper can also modulate

the immune microenvironment of HCC. Copper-triggered

Cuproptosis and ferroptosis release DAMPs, thereby enhancing

antitumor immunity. Mao et al. developed a prognostic model for

HCC containing 9 CRGs. The low-risk group exhibited high expression

of GLS, LIPT1, ATP7A, and ATP7B, as well as increased immune

infiltration and sensitivity to immune checkpoint inhibitors (176).

However, copper can also promote immunosuppression in the HCC

TME. A study reported that DSF-Cu demonstrates antitumor effects in

immunodeficient mice, but it promotes the upregulation of

programmed death ligand-1 (PD-L1) in immunocompetent mice,

leading to a less favorable therapeutic outcome (177). PD-L1 binds

to PD-1 on T cells, delivering inhibitory signals to T cells, thereby

suppressing their proliferation, activation, and cytokine secretion (178).

DSF-Cu achieves this by inhibiting Poly (ADP-ribose) polymerase 1

(PARP1) activity, increasing the phosphorylation of GSK3b at the Ser9

site, thereby inhibiting GSK3b activity and reducing the degradation of

PD-L1. However, when DSF/Cu is combined with anti-PD-1

antibodies, the expression of PARP1 and PD-L1 is decreased, while

the expression of CD8+ T cells and granzyme B is increased,

significantly enhancing antitumor efficacy (177). This offers a novel

combinatorial therapeutic strategy for treating HCC (Figure 4).
5 Conclusion

Copper participates in numerous biological processes, and its

balance is crucial for normal cellular functions. Imbalances in

copper homeostasis can trigger a wide range of diseases.

Cuproptosis, a copper ion-dependent PCD, and has been

implicated in various diseases, where it can either exacerbate or

mitigate disease progression, depending on the context. The liver is
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a key organ in copper metabolism, regulating its absorption,

storage, transport, and excretion. In this manuscript, we focus on

the mechanisms of copper metabolism and cuproptosis, and

explore their significance in WD, ALD, NAFLD, ALI, and HCC.

Additionally, copper overload also activates cuproptosis,

leading to mitochondrial dysfunction, activation of ferroptosis-

related pathways, and the transmission of apoptotic signals, which

further induce hepatocyte death. The extensive death of hepatocytes

not only exacerbates liver damage but also triggers inflammatory

responses, triggering the release of inflammatory mediators and the

infiltration of immune cells. Chronic inflammatory stimulation,

along with the repeated injury and regeneration of hepatocytes,

leads to liver fibrosis, cirrhosis and drives the progression of HCC.

Therefore, targeting the regulation of intracellular copper

homeostasis is a key strategy for treating liver diseases.

Currently, the common copper-targeting drugs used in clinical

practice mainly include CCs and CIs. CCs can bind to copper ions

and facilitate their excretion. They are widely used to treat copper-

related disorders like WD. CIs can transport copper ions across cell

membranes, increase intracellular copper, and promote

cuproptosis. This mechanism has potential applications in HCC

treatment. However, there are still many gaps in the current

research. CIs, such as DFS and ES, have demonstrated therapeutic

potential in HCC, but most studies are still limited to animal or in

vitro experiments, with a lack of relevant clinical research. Some

copper-targeting drugs still encounter challenges in overcome

resistance to immunotherapies, and do not achieve the expected

therapeutic effects. Moreover, due to the complexity of copper’s

actions, further clinical studies are necessary to investigate how to

precisely regulate copper levels in specific liver diseases. In addition,

cuproptosis, along with ferroptosis, apoptosis, and autophagy,

constitutes a network regulating cell fate. For instance, abnormal

copper metabolism can cause redox imbalance, and such redox

fluctuations are key factors in influencing other PCD pathways like

ferroptosis and disulfidptosis (179–181). Further studies are

required to investigate their interplay in liver diseases. Finally,

copper is vital for normal cellular function. Finding methods to

selectively target copper metabolism in liver diseases while

minimizing harm to healthy cells and organs remains a

significant challenge for future research.

Based on the current challenges, future research should

prioritize several key aspects. Specifically, leveraging advanced

imaging technologies alongside multi-omics sequencing of

particular circulating biomarkers in the blood allows for the

identification of biomarkers signaling copper metabolic

disruption. These biomarkers can serve as early diagnostic

indicators and facilitate the monitoring of disease progression and

therapeutic outcomes. Similarly, identifying novel therapeutic drugs

that specifically target copper metabolism is crucial. The primary

objective is to develop drugs with heightened selectivity and efficacy

while minimizing off-target toxicity to healthy cells. Researchers

should meticulously assess the risk-benefit profile of these drugs to

ensure they selectively modulate copper levels in diseased tissues
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without compromising the normal physiological functions of

copper in healthy cells. Moreover, investigating the synergistic

effects of copper-targeting therapies with other therapeutic

approaches represents a promising avenue. Combining copper-

based strategies with immunotherapies or metabolic drugs could

potentially enhance treatment efficacy and address the limitations

of single-therapy resistance. Furthermore, personalized treatment

plans should be developed based on the genetic makeup, disease

subtype, and individual copper metabolism status. Patient-

stratification approaches that account for these variables can help

tailor therapies to improve treatment precision and efficacy. By

integrating these research directions, the scientific community can

make significant progress in understanding copper-related liver

diseases and developing more effective therapies to combat them.
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In summary, copper metabolism and cuproptosis play crucial

roles in the pathogenesis and treatment of various liver diseases.

Clarifying the mechanisms that disrupt copper homeostasis in liver

diseases will help in the development of new therapeutic strategies.
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FIGURE 4

Copper mortality is associated with various liver diseases. ALI, acute liver injury; ALD, alcoholic liver disease; ATP7B, ATPase copper transporting 7B;
CTR1, copper transporter 1; DAMPs, damage-associated molecular patterns; DC, dendritic cell; DLAT, dihydrolipoamide S-acetyltransferase; HCC,
hepatocellular carcinoma; NAFLD, non-alcoholic fatty liver disease; PDHA1, [yruvate dehydrogenase E1 alpha 1 subunit; PI3K, phosphoinositide-3-
kinase; TCA, tricarboxylic acid cycle; WD, Wilson disease.
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Glossary

AILI acetaminophen-induced liver injury
Frontiers in Immunol
Akt protein kinase B
ALD alcoholic liver disease
ALI acute liver injury
APAP acetaminophen
AOC3 amine oxidase copper-containing 3
ATOX1 antioxidant 1 copper chaperone
BA bile acid
CC copper chelator
CCO cytochrome c oxidase
CCS copper chaperone for superoxide dismutase
CI copper ionophore
COMMD3 copper metabolizing MURR1 domain 3
COX17 cytochrome c oxidase 17
CP ceruloplasmin
CRG cuproptosis-related gene
CTR1 copper transport protein 1
DAMP damage-associated molecular pattern
DCYTB duodenal cytochrome b
DSF disulfiram
DLAT dihydrolipoyl transacetylase
DLST dihydrolipoyllysine-residue succinyltransferase
ES elesclomol
FDX1 ferredoxin 1
Fe-S iron-sulfur
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GCSH glycine cleavage system protein H
GPX4 glutathione peroxidase 4
GSH glutathione
GSSG glutathione disulfide
HCC hepatocellular carcinoma
HIF-1a hypoxia-inducible factor-1a
ogy 17
HIR hepatic ischemia-reperfusion
IEC intestinal epithelial cell
LIAS lipoic acid synthase
LIPT1/2 lipoyltransferase 1/2
MAFLD metabolic dysfunction-associated fatty liver disease
MAPK mitogen-activated protein kinase
MD Menkes disease
MELK maternal embryonic leucine zipper kinase
MMP matrix metalloproteinase
MOXD1 monooxygenase DBH-like 1
MT-1/2 metallothionein 1/2
mtETC mitochondrial electron transfer chain
NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic steatohepatitis
NF-kB nuclear factor-kappa B
PARP1 Poly (ADP-ribose) polymerase 1
PCD programmed cell death
PDHX pyruvate dehydrogenase complex component X
PD-L1 programmed death ligand-1
PI3K phosphoinositide-3-kinase
PXR pregnane X receptor
ROS reactive oxygen species
SOD1 superoxide dismutase 1
SSAO semicarbazide-sensitive amine oxidase
STEAP six transmembrane epithelial antigen of the prostate
TCA tricarboxylic acid
TME tumor microenvironment
TTM tetrathiomolybdate
VEGF vascular endothelial growth factor
WD Wilson disease
ZnT1 zinc transporter 1
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