
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Alex Yee-Chen Huang,
Case Western Reserve University, United States

REVIEWED BY

Oscar Badillo-Godinez,
Uppsala University, Sweden
Erdong Wei,
University of Minnesota Twin Cities,
United States

*CORRESPONDENCE

Min Tao

taomin@suda.edu.cn

Mengyao Wu

mywu@suda.edu.cn

RECEIVED 23 May 2025

ACCEPTED 26 September 2025
PUBLISHED 17 October 2025

CITATION

Chen W, Gong L, Li Y, Wu M and Tao M
(2025) Correlation of immune cell subsets in
the tumor microenvironment and peripheral
blood with immunotherapy response in
esophageal squamous cell carcinoma.
Front. Immunol. 16:1633748.
doi: 10.3389/fimmu.2025.1633748

COPYRIGHT

© 2025 Chen, Gong, Li, Wu and Tao. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 17 October 2025

DOI 10.3389/fimmu.2025.1633748
Correlation of immune
cell subsets in the
tumor microenvironment
and peripheral blood
with immunotherapy
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squamous cell carcinoma
Wei Chen1, Lian Gong2, Yahu Li3, Mengyao Wu4*
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Nantong, China, 2Department of Oncology, Taicang Loujiang New City Hospital (Ruijin Hospital,
Taicang), Suzhou, China, 3Department of Oncology, Longgang District Third People’s Hospital,
Shenzhen, China, 4Department of Oncology, The First Affiliated Hospital of Soochow University,
Suzhou, China, 5Department of Oncology, The Fourth Affiliated Hospital of Soochow University,
Suzhou, China
Background: Esophageal squamous cell carcinoma (ESCC) is commonly

diagnosed at an advanced stage, where conventional chemoradiotherapy

offers only limited clinical benefit. Immune checkpoint inhibitors targeting the

tumor microenvironment (TME) have demonstrated substantial therapeutic

potential; however, reliable biomarkers for predicting therapeutic outcomes

remain unclear.

Methods: Single-cell RNA sequencing dataset for ESCC was obtained from the

GEO database and analyzed using the Seurat R package to evaluate gene

expression in tumor and adjacent tissues. Additionally, flow cytometry was

used to assess immune cell subsets in peripheral blood samples from patients

undergoing immunotherapy. Statistical analyses, including survival analysis and

the Kruskal-Wallis test, were conducted to investigate the association between

immune cell subsets and treatment efficacy.

Results: In tumor tissues, immune subsets were significantly enriched compared

with adjacent tissues, including CD8+ T cells with exhaustion (CD39, TIM3, PD-1)

or activation/tissue residency (CD137, CD103) features; CD4+ T cells with

activation (CD134, CD137) or regulatory (FOXP3) phenotypes; and dendritic

cells expressing TIM3 or CD103. In peripheral blood, a median change in

TIM3+ CD8+ T cells of 3.35% was observed following immunotherapy. Patients

with changes exceeding this threshold experienced shorter progression-free

survival (PFS) compared to those with lower changes (5.0 vs. 8.5 months, P =

0.024). Furthermore, TIM3+ CD8+ T cell changes were markedly reduced in
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patients achieving complete or partial responses compared to those with

progressive disease.

Conclusions: TIM3+ CD8+ T cells are a promising predictive biomarker for

immunotherapy outcomes in ESCC. These findings highlight their potential to

guide personalized treatment strategies in clinical practice.
KEYWORDS

esophageal squamous cell carcinoma, tumor microenvironment, T cell immunoglobulin
and mucin domain molecule 3, immunotherapy, flow cytometry
Introduction

Esophageal cancer (EC) is the eighth most common malignancy

worldwide and ranks sixth in cancer-related mortality (1). China

accounts for over half of global ESCC cases and deaths annually,

underscoring its high burden (2). Despite advancements in traditional

treatments such as surgery, radiotherapy, and chemotherapy, the long-

term outcomes for ESCC remain suboptimal, with a 5-year overall

survival rate of only 20%-30% (3). The emergence of immunotherapy

has brought transformative progress to the management of EC,

offering new hope for improved outcomes.

The programmed cell death protein 1 (PD-1) receptor, expressed

on activated T cells, binds to its ligand programmed cell death ligand 1

(PD-L1), leading to the suppression of T cell proliferation, cytokine

secretion, and antitumor immune responses (4). Anti-PD-1

monoclonal antibodies restore T cell-mediated antitumor immunity

by inhibiting immune checkpoint pathways. However, due to tumor

heterogeneity, PD-L1 expression alone is insufficient as a predictive

biomarker for immunotherapy efficacy. For example, the ESCORT-1st

study demonstrated that even patients with TPS<1% could benefit

from anti-PD-1 therapy combined with chemotherapy (5). These

observations underscore the need for in-depth analysis of immune cell

subpopulations within the TME to better understand their roles in

treatment outcomes.

The TME is a complex ecosystem composed of tumor cells,

fibroblasts, immune cells, extracellular matrix, and soluble factors,

all of which play critical roles in tumor progression, immune evasion,

drug resistance, and metastasis. Immune cells within the TME play

dual roles, either suppressing or promoting tumor progression.

Among these, CD8+ cytotoxic T lymphocytes (CTLs) are critical

effectors of antitumor immunity. These cells recognize tumor

antigens presented by MHC class I molecules and secrete cytotoxic

mediators, such as perforin and granzyme, to eliminate tumor cells

(6). However, tumor-infiltrating T lymphocytes (TILs) often display

an exhausted phenotype caused by the upregulation of inhibitory

receptors such as PD-1 and TIM3 (7). Studies have shown that

PD1+TIM3+ T cells demonstrate impaired proliferation and reduced

interferon-g secretion, but their functionality can be partially restored

through the blockade of them (8).
02
Regulatory T cells (Tregs) also contribute to immune evasion by

suppressing effector T cell activity (9). These cells express FOXP3, a

transcription factor that regulates their development and

immunosuppressive function (10). Research has shown that

targeting TIM3 can enhance anti-tumor immune response by

reducing Tregs in head and neck cancer (11). Understanding the

roles of these molecules is essential for characterizing the immune

landscape of ESCC and identifying potential therapeutic targets.

Traditional bulk sequencing methods analyze the average

genomic or transcriptomic data from mixed cell populations,

obscuring intercellular heterogeneity (12). In contrast, single-cell

RNA sequencing (scRNA-seq) enables high-resolution profiling of

individual cells, providing detailed insights into immune cell

subpopulations and their functional states (13). In this study,

scRNA-seq revealed the heterogeneity of the ESCC immune

microenvironment and identified distinct immune cell

subpopulations with variations in distribution between tumor and

adjacent tissues. These findings were further validated through flow

cytometry, which highlighted the immune cell subsets most closely

associated with the immunotherapy efficacy.

In summary, dynamic monitoring of peripheral blood immune

cells using advanced profiling techniques has the potential to enable

early prediction of immunotherapy efficacy, providing insights to

advance personalized treatment strategies for ESCC.
Materials and methods

Patient data and sample collection

Data for this study were retrieved from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/), a

public repository maintained by the National Center for

Biotechnology Information (NCBI) (14). The raw data were

obtained from the GSE145370 dataset, released on October 19,

2020 (15). This dataset includes single-cell RNA sequencing of

tumor and adjacent tissues from seven treatment-naïve ESCC

patients who underwent surgical resection, providing an unbiased

view of the tumor and its microenvironment.
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Peripheral blood samples were collected from 20 patients with

unresectable locally advanced or metastatic ESCC treated at the

First Affiliated Hospital of Soochow University between January 1

and March 31, 2022. All patients received first-line chemotherapy

combined with anti-PD-1 monoclonal antibody therapy. Blood

samples(3 mL) were drawn from the antecubital vein into EDTA-

coated tubes before the first and third treatment cycles. Samples

were stored at 4°C and processed within 24 hours. The study was

approved by the Ethics Committee of the First Affiliated Hospital of

Soochow University, and informed consent was obtained from

all participants.
Single-cell RNA sequencing and analysis

Data preparation
The scRNA-seq data from GSE145370 were generated following

the protocol by Zheng et al.

Data processing
Analysis was performed using the Seurat R package (v3). Quality

Control: scRNA-seq has inherent technical limitations, including low

transcript coverage and capture efficiency, which can lead to

undetectable gene expressions, commonly referred to as “dropouts”

(16). Additionally, dead cells may be inadvertently incorporated

during library construction, potentially compromising data quality.

Cells with a low number of detected genes or a high proportion of

mitochondrial gene expression are indicative of ruptured membranes

or cell death (17). Therefore, quality control is essential prior to

analyzing the raw count matrix to ensure the reliability of the data.

Cells with fewer than 300 detected genes or >20% mitochondrial gene

content were excluded. Normalization: The NormalizeData function

was used to standardize the quality-controlled data. The original count

matrix exhibits high dispersion and significant differences in gene

expression abundance, necessitating this step to enable meaningful

comparisons of gene expression levels across cells. By default, the

library size is scaled to 10,000, and values are log-transformed.

Specifically, normalized gene expression is calculated as:log1p

(10,000 × gene counts/total cell counts). Dimensionality Reduction,

Clustering, and Grouping: The FindVariableFeatures function was

used to identify highly variable genes (HVGs) for initial

dimensionality reduction. The ScaleData function was then applied

for data centering, converting standardized expression levels into z-

scores to transform the expression matrix into a normal distribution,

facilitating subsequent principal component analysis (PCA).

Dimensionality reduction was conducted using the RunPCA

function, while cell classification was performed using

FindNeighbors and FindClusters. To visualize cell subpopulations,

the RunUMAP function was applied, and clustering plots based on
Frontiers in Immunology 03
tissue and patient data were generated using the DimPlot function.

[UMAP, Uniform Manifold Approximation and Projection, widely

used algorithm for single-cell data analysis and characterized by its

high computational efficiency and low memory requirements (18)].

Cell annotation
Subpopulations were annotated based on canonical markers:

NK Cells: GNLY, KLRD1

CD4+ T Cells: CD3G, CD3D, CD4

CD8+ T Cells: CD3G, CD3D, CD8A

B Cells: MS4A1, CD79A, IGLL5, SDC1

Mast Cells: TPSB2, CPA3, TPSAB1

Myeloid DCs: LYZ, APOE

Plasmacytoid DCs: TCF4, IL3RA, PTGDS

Monocytes: LAMP3, PPA1, CST3

Epithelial Cells: KRT19, IFI27, KRT8

Differential expression analysis
Dot plots were generated with average expression mapped to

color, percent expression mapped to point size, and expression

levels represented by Z-score normalized log2(count+1) values.

Violin plots were also created, with expression levels represented

by log2(count+1).

The target genes and their corresponding proteins analyzed in

this study are presented in Table 1. We analyzed CD4 and CD8A

(CD8) expression to compare CD4+ and CD8+ T cells between

tumor and adjacent tissues. For CD4+ T cells, we assessed TNFRSF4

(CD134), TNFRSF9 (CD137), CD44, SELL (CD62L), and FOXP3 to

compare CD134+, CD137+, CD44+, CD62L+, and Foxp3+ subsets.

Similarly, for CD8+ T cells, we examined ENTPD1 (CD39),

HAVCR2 (TIM3), PDCD1 (PD1), and other markers to compare

CD39+, TIM3+, PD1+, CD44+, CD62L+, CD40L+, CD137+, and

CD103+ subsets. Additionally, ITGAE and HAVCR2 expression on

dendritic cells (DCs) was evaluated to compare CD103+ DCs and

TIM3+ DCs.
Flow cytometry analysis

Sample processing
Seven 1.5 mL centrifuge tubes were labeled as Blank, 1, 2, 3, 4, 5,

and 6, with the Blank serving as the control. The blank control was

included to distinguish between cell autofluorescence and specific

fluorescence signals, thereby minimizing false positives.

Red blood cell lysis
To each tube, 100 mL of whole blood and 400 mL of red blood

cell lysis buffer were added. Samples were mixed thoroughly and

incubated at room temperature for 10 minutes to achieve complete
TABLE 1 Target genes and their corresponding proteins.

Gene name CD8A TNFRSF4 TNFRSF9 SELL ENTPD1 HAVCR2 PDCD1 CD40LG ITGAE

Protein CD8 CD134 CD137 CD62L CD39 TIM3 PD1 CD40L CD103
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lysis. The buffer, primarily consisting of low-osmotic NH4Cl,

selectively lyses red blood cells while preserving white blood cells.

Wash and centrifuge
Cells were washed twice with 900 mL of physiological saline

buffer, followed by centrifugation at 500×g for 4 minutes at room

temperature. The supernatant was discarded after each wash,

leaving a white cell pellet containing leukocytes, including

peripheral blood lymphocytes.

Antibody staining
Each tube was resuspended in 80 mL of physiological saline.

Fluorescein-conjugated antibodies (0.8 mL per tube) were added to

all tubes except the Blank control, which received no antibodies.

Samples were incubated at 4°C in the dark for 30 minutes. Surface

antigen analysis was employed for simplicity, excluding

intracellular markers such as Foxp3 due to the additional

complexity of membrane permeabilization. The staining scheme

was as follows: Blank tube: No antibody, serving as a control. Tube

1: CD8/CD39; Tube 2: CD8/Tim3/PD1/CD40L; Tube 3: CD8/

CD44/CD62L; Tube 4: CD3/CD8/CD137; Tube 5: CD4/CD134;

Tube 6: CD11c/Tim-3.

This staining setup enables the analysis of the following cell

populations: CD39+ CD8+ T cells, TIM3+ CD8+ T cells, PD1+ CD8+

T cells, CD40L+ CD8+ T cells, CD44+ CD62L+ CD8+ T cells, CD8+

CD137+ T cells, CD134+ CD4+ T cells, and TIM3+ dendritic

cells (DCs).

Final centrifugation
After staining, 500 mL of saline was added to each tube,

centrifuged at 500×g for 4 minutes, and the supernatant

discarded. The pellet was resuspended in 600 mL of saline for flow

cytometry analysis.

Data acquisition
Flow cytometry analysis was conducted with spectral overlap

compensation applied using single-stain controls. Subpopulations,

such as TIM3+ CD8+ T cells, were gated using dual-parameter plots.

Fluorescence compensation was performed to address spectral

overlap caused by broad fluorophore emissions, ensuring accurate

signal detection.

Instrument setup
Samples (Blank and tubes 1–6) were processed sequentially

using flow cytometry software, with data saved as FCS files. After

sample analysis, the instrument was cleaned and shut down

according to standard protocols.
Gating strategy

Flow cytometry data were analyzed using FlowJo software

(v10.6.2). Lymphocyte and monocyte populations were initially
Frontiers in Immunology 04
gated based on forward scatter (FSC) and side scatter (SSC)

characteristics to exclude debris. Singlet discrimination was

performed using FSC-A versus FSC-H plots to eliminate doublets.

CD3+ T cells were first identified from the lymphocyte gate, and

further divided into CD3+CD4+ and CD3+CD8+ subsets.

Corresponding markers were analyzed within CD8+ and CD4+ T

cell gates, respectively. The complete gating hierarchy and

representative plots are provided in Supplementary Figure S1.
Clinical follow-up

Patients underwent computed tomography (CT) scans every six

weeks to evaluate treatment response based on RECIST criteria

(19). PFS was defined as the time from the first cycle of anti-PD-1

therapy to disease progression or death. Follow-up continued until

January 1, 2023.
Statistical analysis

Changes in immune cell subsets were calculated as the difference

between values obtained from the second and first flow cytometry

measurements (denoted as D; e.g.,DTIM3+CD8
+). All subset frequencies

were expressed as percentages relative to their respective parent

populations (e.g., CD3+CD8+ or CD3+CD4+ T cells). Patients were

stratified by median D values to ensure balanced sample sizes for

robust comparisons. Kaplan-Meier curves were generated using

GraphPad Prism 8, and survival outcomes were assessed using the

log-rank test (P < 0.05). Differences in D values across clinical response

groups (CR+PR, SD, and PD) were evaluated using the Kruskal-Wallis

test, providing insights into the relationship between immune

dynamics and therapeutic response.
Results

Data quality control, UMAP visualization,
and gene expression

The raw dataset comprised 115,157 cells, of which 110,748

high-quality cells were retained after filtering for low-quality cells.

The number of cells per sample ranged from 3,359 to 15,472 per

sample, with a median of 1,072 genes detected per cell.

UMAP plots were employed to visualize cell distribution and

clustering. Tissue origins were distinguished by color, with cells from

adjacent and tumor tissues displayed in separate colors (Figure 1A).

Similarly, cells from the seven individual samples were color-coded to

indicate their respective sample origins (Figure 1B). Subpopulations

of cells were identified using marker gene expression, with distinct

colors representing each subpopulation (Figure 1C). Dot plots further

illustrated the relative expression levels of genes across different cell

subpopulations, highlighting variations in gene expression

profiles (Figure 1D).
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Immune remodeling in the tumor
microenvironment is characterized by
elevated CD8+ T cell infiltration

Across both tumor and adjacent tissues, CD8+ T cells consistently

exhibited higher expression levels than CD4+ T cells (Figure 2A).

Notably, the expression of both CD4 and CD8 was significantly

elevated in tumor tissues compared to adjacent tissues (CD8: 1.030 vs.

0.722; CD4: 0.189 vs. 0.139; both P < 0.05, Figures 2B, C). These

findings indicate a global enrichment of T cells within the TME, with

CD8+ T cells constituting the predominant subset.
CD8+ T cells in tumors exhibit a distinct
exhaustion phenotype

Tumor-infiltrating CD8+ T cells demonstrated significantly higher

expression of exhaustion markers compared to their counterparts in
Frontiers in Immunology 05
adjacent tissues (Figure 3A). Specifically, the levels of PD1, CD39, and

TIM3 were markedly increased in tumors (PD1: 0.340 vs. 0.203;

CD39: 0.431 vs. 0.069; TIM3: 0.292 vs. 0.123; all P < 0.05, Figures 3B–

D). These changes reflect a shift toward a dysfunctional, exhausted

phenotype among cytotoxic T cells within the TME, likely driven by

chronic antigen stimulation and immunosuppressive signaling.
Reduced central memory–like phenotype
in tumor-infiltrating T cells

Markers associated with central memory T cells—CD44 and

CD62L—were significantly downregulated in tumor-infiltrating

CD8+ T cells (CD44: 1.150 vs. 1.103, P = 0.036; CD62L: 0.313 vs.

0.250, P < 0.05, Figures 3E, F). A similar trend was observed in

CD4+ T cells, where CD44 expression was significantly reduced in

tumors (1.085 vs. 1.242, P < 0.05), while SELL (CD62L) expression

trended higher but did not reach statistical significance (0.441 vs.
FIGURE 1

UMAP visualization of cell clusters and gene expression levels across different clusters. (A) UMAP plot visualizing cells from tumor and adjacent normal tissues,
with distinct clusters representing tissue types. (B) UMAP plot visualizing cells from the seven specimens, with different colors indicating the origin of each
sample. (C) UMAP plot visualizing individual cell clusters, with distinct colors representing different cell populations. (D) Dot plot illustrating the expression
levels of marker genes across various immune cell subpopulations. Average expression is represented by color intensity, with deeper yellow indicating higher
expression levels, while percent expression is mapped to the size of the dots, with larger diameters indicating higher expression percentages.
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0.398, P = 0.053, Figures 4E, F). CD103 expression on CD8⁺ T cells

was significantly elevated in tumor tissues compared with adjacent

tissues (P < 0.05, Figure 3I). These findings suggest that the TME

may impair the maintenance or recruitment of memory T cell

subsets, potentially compromising long-term immune surveillance.
T cell activation markers show divergent
expression patterns in CD4+ and CD8+

compartments

Co-stimulatory receptors exhibited distinct expression profiles

between CD4+ and CD8+ T cells. In the CD4+ compartment, both

CD134 (1.590 vs. 0.811) and CD137 (0.570 vs. 0.273) were significantly

upregulated in tumor tissues (both P < 0.05, Figures 4C, D), indicating

enhanced activation potential or a regulatory phenotype skew. In

contrast, while CD137 was also elevated in tumor-infiltrating CD8+

T cells (0.278 vs. 0.055, P < 0.05, Figure 3H), CD40L—a key effector

molecule facilitating T cell–APC interactions—was significantly

reduced in this subset (0.072 vs. 0.129, P < 0.05, Figure 3G). These

results suggest a partial activation profile in CD8+ T cells, potentially

limited by suppressed CD40L signaling.
Frontiers in Immunology 06
Regulatory T cells are enriched in the
tumor microenvironment

The expression patterns of key immune markers in CD4⁺ T cells

were illustrated as a dot plot (Figure 4A). FOXP3, a canonical

marker of regulatory T cells (Tregs), was significantly upregulated

in CD4+ T cells from tumor tissues compared to adjacent controls

(1.100 vs. 0.469, P < 0.05, Figure 4B), indicating an accumulation of

immunosuppressive Tregs within the TME.
Dendritic cell subsets in tumors are
skewed toward a dysfunctional phenotype

The expression of TIM3 and CD103 on DCs was significantly

increased in tumor compared to adjacent tissues (TIM3: 0.368 vs.

0.221; CD103: 0.200 vs. 0.187; both P < 0.05, Figures 5B, C).

Notably, TIM3 expression exceeded that of CD103 in tumors

(Figure 5A), suggesting preferential expansion of tolerogenic or

dysfunctional DC subsets. This altered DC phenotype may

contribute to impaired antigen presentation and the maintenance

of T cell exhaustion within the ESCC microenvironment.
FIGURE 2

Expression levels of CD4 and CD8 on T cells from adjacent and tumor tissues. (A) Overall expression levels of CD4 and CD8 on T cells from
adjacent tissues and tumor tissues. (B, C) Violin plots depicting the expression differences of CD8 (B) and CD4 (C) on T cells.
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Baseline characteristics and immune cell
dynamics in ESCC patients receiving anti-
PD-1 therapy

This study included 20 patients with ESCC, with a median age

of 60.5 years (range: 44–72; 16 males, 4 females). As of January 1,

2023, 17 patients had reached the study endpoint, with a median

progression-free survival (mPFS) of 6.15 months. None of the

patients achieved a complete response (CR). Partial responses

(PR) were observed in 7 patients, stable disease (SD) in 10

patients, and progressive disease (PD) in 3 patients. The clinical

characteristics of ESCC patients are detailed in Supplementary

Table S1. The dynamic changes in peripheral immune cell
Frontiers in Immunology 07
subpopulations following immunotherapy in ESCC patients are

presented in Supplementary Table S2.
Changes in CD8+ T cell subsets and their
association with PFS and treatment efficacy

Exhausted CD8+ T cells: TIM3+, PD-1+, and
CD39+ subsets

In patients treated with immunotherapy, the median change (D)
in TIM3+ CD8+ T cell levels was 3.35% (range: -74.6% to 15.0%).

Patients with a change (D) >3.35% experienced shorter PFS

compared to those with D<3.35% (5.0 vs. 8.5 months; HR =
FIGURE 3

Expression of PD1, CD39, TIM3, CD44, CD62L, CD40L, CD137, and CD103 on CD8+ T cells. (A) Dot plots illustrating the expression of PD1, CD39,
TIM3, CD44, CD62L, CD40L, CD137, and CD103 on CD8+ T cells from adjacent and tumor tissues. (B–F) Violin plot depicting the expression
differences of PD1 (B), CD39 (C), TIM3 (D), CD44 (E), CD62L (F), CD40L (G), CD137 (H) and CD103 (I) on CD8+ T cells between adjacent and tumor
tissues.
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2.691, 95% CI 0.949–7.633, P = 0.024, Figure 6A). Figure 7A shows

representative flow cytometry data from patient 16.

The median D in CD39+ CD8+ T cell levels was 3.45% (range:

-22.9% to 26.6%). Patients with D>3.45% showed a trend toward

longer PFS compared to those with D<3.45% (8.0 vs. 7.0 months;

HR = 0.637, 95% CI 0.243–1.671, P = 0.318, Supplementary Figure

S3a). Figure 7B shows representative flow cytometry data from

patient 9.

The median D in PD1+ CD8+ T cell levels was 0.6% (range:

-9.5% to 23.3%). Patients with D>0.6% tended to have shorter PFS
Frontiers in Immunology 08
compared to those with D<0.6%, though the difference was not

statistically significant (5.6 vs. 8.5 months; HR = 1.722, 95% CI

0.631–4.694, P = 0.229; Supplementary Figure S3c). Figure 7C

shows representative flow cytometry data from patient 7.

The Kruskal-Wallis test revealed significant differences in

DTIM3+ CD8+ levels among therapeutic response groups (P =

0.004). Specifically, patients achieving CR or PR exhibited

significantly lower DTIM3+ CD8+ levels compared to those with

PD (P = 0.018). However, differences between CR+PR and SD

groups, as well as between SD and PD groups, were not statistically
FIGURE 4

Expression of FOXP3, CD137, CD134, CD62L and CD44 in CD4+ T cells. (A) Dot plot illustrating the expression of FOXP3, CD137, CD134, CD62L and
CD44 in CD4+ T cells from adjacent and tumor tissues. (B–F) Violin plots depicting the expression differences of FOXP3 (B), CD137 (C), CD134
(D), CD62L (E) and CD44 (F) in CD4+ T cells between adjacent and tumor tissues.
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significant (P = 0.061, 0.754, respectively; Figure 6B).No significant

differences in DCD39+ CD8+ levels and DPD1+ CD8+ levels were

noted among therapeutic response groups (Supplementary Figures

S3b, d).
Activated CD8+ T cells: CD137+ and
CD40L+ subsets

The median Din CD137+ CD8+ T cell levels was 2.7% (range:

-15.0% to 11.2%). Patients with D>2.7% had a trend toward longer

PFS compared to those with D<2.7%, but the difference was not

statistically significant (8.2 vs. 6.9 months; HR = 0.624, 95% CI

0.238–1.640, P = 0.782; Supplementary Figure S3e). Figure 7E

shows representative flow cytometry data from patient 14.

The median D in CD40L+ CD8+ T cell levels was -1.35% (range:

-26.3% to 6.4%). Patients with D>-1.35% tended to have shorter PFS

compared to those with D<-1.35%, but the difference was not

statistically significant (6.9 vs. 8.4 months; HR = 1.902, 95% CI

0.711–5.087, P = 0.154; Supplementary Figure S3g). Figure 7F

shows representative flow cytometry data from patient 19. No

significant differences in DCD40L+ CD8+ levels and DCD137+

CD8+ levels were observed among groups with response groups

(Supplementary Figures S3f, h).
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Central memory CD8+ T cells:
CD44+CD62L+ subset

Following immunotherapy, the median Din CD44+ CD62L+

CD8+ T cell levels was 7.65% (range: -26.7% to 47.2%). Patients with

D>7.65% showed a trend toward shorter PFS compared to those

with D <7.65%, though the difference was not statistically significant

(5.0 vs. 8.2 months; HR = 1.180, 95% CI 0.456–3.054, P = 0.720;

Supplementary Figure S3k). Figure 7D shows representative flow

cytometry data from patient 15. No significant differences in

DCD44+ CD62L+ CD8+ levels were observed among response

groups (Supplementary Figure S3l).
Changes in CD4+ T cell subsets and their
association with PFS and treatment efficacy

In ESCC patients receiving immunotherapy, the median D in

CD134+CD4+ T cell levels was 0.85% (range: -3.4% to 4.3%).

Patients with D>0.85% showed a trend toward longer PFS

compared to those with D<0.85%, though the difference was not

statistically significant (8.1 vs. 5.7 months; HR = 0.809, 95% CI

0.309–2.120, P = 0.650; Supplementary Figure S3i). Figure 7G

shows representative flow cytometry data from patient 9. No
FIGURE 5

Expression of CD103 and TIM3 on DCs. (A) Dot plot illustrating the expression of CD103 and TIM3 on DCs from adjacent and tumor tissues.
(B, C) Violin plots depicting the expression differences of CD103 (B) and TIM3 (C) on DCs between adjacent and tumor tissues.
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significant differences in DCD134+CD4+ T cell levels were observed

among therapeutic response groups (P > 0.05, Supplementary

Figure S3j).
Changes in CD11c+ monocytes and their
association with PFS and treatment efficacy

In ECC patients receiving immunotherapy, the median change

D in CD11c+ monocytes levels was 6.4% (range: -28.2% to 58.3%).

Patients with D>6.4% exhibited a trend toward shorter PFS

compared to those with D <6.4%, although the difference was not

statistically significant (4.3 vs. 8.2 months; HR = 2.203, 95% CI

0.833–5.829, P = 0.088; Figure 6C). Figure 7H shows representative

flow cytometry data from patient 1. Significant differences in

DTIM3+ CD11c+ monocytes levels were observed across groups

with different therapeutic responses (P = 0.039). Specifically,

patients achieving CR or PR showed significantly lower DTIM3+

DC levels compared to those with PD (P = 0.042). However, no

statistically significant differences were observed between CR+PR

and SD groups or between SD and PD groups (P > 0.05, Figure 6D).
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Discussion

Variability in the response to anti-PD-1 therapy among ESCC

patients is closely linked to immune cell heterogeneity within the

TME (20). While single-cell sequencing has revealed cellular

diversity and trajectories in the TME (21), the functional roles of

targets such as TIM3 remain underexplored. This study examines

immune marker expression in tumor-infiltrating and adjacent cells,

providing new insights into ESCC immunobiology.

Consistent with an active anti-tumor immune response, we

observed robust infiltration of CD8+ T cells in ESCC tumor tissues.

However, these tumor-infiltrating CD8+ T cells exhibited high levels

of exhaustion markers—PD-1, CD39, and TIM3, compared to

adjacent tissues. Chronic antigen stimulation and suppressive

cues within the TME can drive TILs toward a dysfunctional state

(22, 23), characterized by sustained upregulation of inhibitory

receptors such as PD-1, TIM-3, and CD39 (24). Exhausted CD8+

T cells produce less IL-2, IFN-g, and TNF-a and display impaired

proliferative capacity (25). This exhaustion diminishes antitumor

activity and reflects localized immune dysfunction (26). In a diffuse

large B-cell lymphoma model, blockade of PD-1 or TIM-3 restored
FIGURE 6

Prognostic significance of TIM3+ immune subsets in ESCC patients treated with immunotherapy. (A, C) Kaplan–Meier curves showing progression-
free survival (PFS) stratified by median changes (D) in TIM3+CD8+ T cells (A) and TIM3+CD11c+ monocytes (C). (B, D) Boxplots comparing the change
(D) in these subsets across clinical response groups: CR/PR (complete/partial response), SD (stable disease), and PD (progressive disease). Statistical
comparisons were performed using the log-rank test (PFS) and Kruskal–Wallis test with Dunn’s post hoc test (boxplots). *P < 0.05; ns, not significant.
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cytokine production and proliferation of these exhausted CD8+ T

cells (8). Thus, the prevalence of exhausted TILs in ESCC provides a

mechanistic explanation for limited PD-1 monotherapy efficacy

and suggests that reversing T cell exhaustion is key to

improving outcomes.

ESCC exhibited a marked enrichment of CD8+ tissue-resident

memory T cells (TRM), characterized by the expression of CD103, a

defining integrin that mediates epithelial retention. CD103 binds to

E-cadherin expressed on carcinoma cells, thereby promoting the

stable localization of TRM within the TME (27). TRM cells are

stationed at tumor sites for immediate effector function upon

antigen re-encounter and have been associated with improved

anti-tumor immunity and response to checkpoint therapy in
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multiple cancers (28). The abundance of CD103+ TRM in ESCC

suggests that local immunity remains partially preserved,

potentially enabling initial tumor recognition. However, this local

residency was accompanied by a marked reduction in

CD44+CD62L+ central memory T cells (Tcm). Tcm reside in

secondary lymphoid organs, mediate long-term immune memory,

and mount proliferative recall responses upon antigen re-

stimulation (29). The diminished Tcm population in ESCC

suggests that the T cells in tumors are skewed toward either

short-lived effector or terminally exhausted states. This

diminished Tcm population in tumors may impair immune

system “reservoirs” that normally support durable responses and

rapid recall upon tumor antigen recurrence (30).
FIGURE 7

Representative immune cell subpopulations before and after immunotherapy in selected patients, grouped by cell type. CD8+ T cell subsets
(A–F): (A) TIM-3+ CD8+ T cells (Patient 16), (B) CD39+ CD8+ T cells (Patient 9), (C) PD-1+ CD8+ T cells (Patient 7), (D) CD44+CD62L+ CD8+ T cells
(central memory phenotype; Patient 15), (E) CD137+ CD8+ T cells (Patient 14), (F) CD40L+ CD8+ T cells (Patient 19). CD4+ T cell subset (G) CD134+

CD4+ T cells (Patient 9). CD11C+ monocyte subset (H): (H) TIM-3+ dendritic cells (Patient 1). Left column shows pre-treatment samples; right
column shows post-treatment samples.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1633748
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1633748
Adding further complexity, co-stimulatory receptors CD137 (4-

1BB) and CD134 (OX40) were upregulated on tumor-infiltrating

CD8+ and CD4+ T cells, respectively. CD137 enhances T cell

proliferation and cytokine production upon ligand engagement

(31), and agonists targeting 4-1BB are being investigated to boost

anti-tumor immunity (32). Notably, OX40 signaling has been

shown to destabilize FOXP3+ Tregs and attenuate their

suppressive capacity (33). Despite the upregulation of OX40, the

TME in ESCC remained enriched with FOXP3+ Tregs, suggesting

persistent immunosuppression (34). The concurrent presence of

activated effector T cells and expanded Tregs in ESCC reflects a

competitive immunological landscape.

TIM3, encoded by the HAVCR2 gene, is a transmembrane

protein initially identified on Th1 and Tc1 cells but also expressed

on DCs (35, 36). Binding of Galectin-9 to TIM3 induces the release

of BAT3 from the intracellular tail of TIM3, leading to T cell

apoptosis (37). TIM3 upregulation on T cells following PD-1

blockade has been observed in various cancers, correlated with

tumor recurrence in preclinical models (38). Consistently, our

findings show that patients with shorter PFS exhibited greater

expansion of TIM3+CD8+ T cells after immunotherapy,

reinforcing the role of TIM3 in immune resistance.

Taking these findings together, we propose a model of

immunotherapy resistance in ESCC centered on TIM-3. In the

tumor, an abundance of TIM-3+ exhausted CD8+ TILs create an

immune milieu prone to tumor immune escape. Upon PD-1

blockade, patients with a highly suppressive TME mount only

transient T-cell reinvigoration, after which TIM-3–mediated

pathways blunt the response, leading to adaptive resistance. These

patients show peripheral immune changes: increasing frequencies

of circulating TIM-3+ CD8+ T cells that reflect ongoing T-cell

dysfunction. Clinically, this translates into poor outcomes. This

model integrates local and systemic immune signatures, revealing

how their convergence dictates response to PD-1 blockade. It is

consistent with prior observations in gastrointestinal cancers that

“immune-hot” tumors with reinvigorated T cells respond, whereas

“immune-cold/exhausted” tumors evade therapy through alternate

checkpoints and suppressive cells (39).

Our results underscore that TIM-3 is not only a biomarker of T-

cell exhaustion but also a potentially druggable target for

overcoming resistance in ESCC. TIM-3’s role in dampening

immune responses has been documented across multiple tumors,

and it appears especially pertinent in the context of PD-1 blockade

failure (40, 41). Encouragingly, therapeutic targeting of TIM-3 is

already underway: sabatolimab, an anti–TIM-3 monoclonal

antibody, received FDA Fast Track designation for advanced solid

tumors (42), and early-phase trials combining TIM-3 and PD-1

blockade have shown acceptable safety and preliminary efficacy

(43). Our finding that TIM-3+ cells associate with poorer outcomes

provides a strong rationale to test such combination strategies in

ESCC. We speculate that dual-checkpoint inhibition (anti–PD-1

plus anti–TIM-3) could reinvigorate exhausted TILs more

completely than PD-1 blockade alone, converting partial

responders into durable responders.
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Despite the insights gained, several limitations should be

acknowledged. First, the small, single-center cohort (N = 20)

limits statistical power. Second, as an observational study, residual

confounding is unavoidable. Key clinical variables (e.g. PD-L1

status) were not fully controlled. Third, although we integrated

public tumor scRNA-seq data with prospective blood profiling, the

absence of an external validation cohort limits the robustness of the

proposed prognostic threshold, which should be considered

exploratory. Finally, no functional assays were performed to

establish causality. The causal role of TIM-3+ T cells in immune

resistance remains uncertain, and mechanistic studies are required

to determine whether they are active mediators or passive markers.

In summary, our study identifies TIM-3+ CD8+ T cells as key

immunological features linking the TME to systemic immune changes

and clinical outcomes. Patients whose tumors foster a TIM-3–high,

exhausted immune contexture are more likely to exhibit peripheral T-

cell dysfunction during therapy and to experience disease progression,

underscoring TIM-3’s role in adaptive resistance to PD-1 inhibitors.

From a translational perspective, dynamic monitoring of TIM-3+ T

cells in blood could serve as an non-invasive indicator of

immunotherapy efficacy in ESCC, aiding in treatment decisions.

More importantly, our work lays a biological foundation for

therapeutically targeting TIM-3 in ESCC and supports its integration

into combinatorial immunotherapy to overcome resistance and

improve clinical outcomes.
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