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Frontiers in Immunology 
Overcoming resistant cancerous 
tumors through combined 
photodynamic and 
immunotherapy 
(photoimmunotherapy) 
Glory Kah and Heidi Abrahamse* 

Laser Research Centre, University of Johannesburg, Doornfontein, Johannesburg, South Africa 
Cancer is a major health problem as it causes significant mortality globally. In the 
last decades, conventional and recent therapeutic approaches have been used in 
oncology for cancer treatment. Despite this, the complete eradication of cancer 
is challenging, as the existing therapeutic strategies for cancer are typically faced 
with limitations. This is linked to cancer resistance to treatment, which arises 
because of the versatile nature of cancerous cells. Novel anticancer therapeutic 
procedures based on immune system activation, such as photodynamic therapy 
(PDT) and immunotherapy (IOT), are promising in treating resistant tumors. PDT 
is a minimally invasive treatment that induces cellular reactive oxygen species 
(ROS) production for direct elimination of cancerous cells, but can also trigger 
anticancer effects by activating the immune system of the host. IOT also has 
significant anticancer efficacy and has emerged as an advanced anticancer 
treatment that mainly enhances and stimulates the innate immune system of 
the body to identify and destroy cancerous cells. IOT can also instigate a long-
lasting anticancer response by harnessing the body’s immune system. PDT and 
IOT, when used alone, cannot tackle the issue of cancer resistance. This review 
elucidates the principles, benefits, and setbacks of PDT and IOT, along with the 
unique attributes that render them suitable for cancer combination therapy. It 
underscores the advancement of cancer PDT when utilized in combination with 
IOT (photoimmunotherapy), while also encapsulating the preclinical evidence 
regarding the efficacy of photoimmunotherapy, and its combination with 
nanotechnology (Nano-photoimmunotherapy). The key findings indicate that 
photoimmunotherapy preclinical methods hold great promise in cancer 
treatment, as they can directly destroy cancer cells through PDT while also 
stimulating an increased anticancer immunity through co-delivery of IOT agents. 
Target-specific moieties can be used in nanotechnology-based anticancer 
photoimmunotherapy techniques to get past resistance and other therapeutic 
obstacles. However, clinical utilization of photoimmunotherapy procedures is 
greatly required to warrant the full efficacy. 
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1 Introduction 

Cancer is a serious global health concern, as it is a great cause of 
mortality globally. It is accountable for about one in six deaths 
globally and with about 10 million deaths annually. Cancer is a 
transversal disease that affects both developed and emerging 
countries across different ethnicities and cultures (1, 2). Even 
though, an excessive burden is shouldered by the low and 
middle-income nations as a result of restricted access to early 
diagnosis and treatment, and increased exposure to risk factors 
including, unhealthy diets, poor physical activity, tobacco use, and 
some infections such as hepatitis B and HPV (2). Various treatment 
strategies are developed for cancer intervention, including surgery, 
radiotherapy, and chemotherapy (conventional therapy). Other 
recent strategies used in cancer treatment include targeted 
therapy, immunotherapy, stem cell therapy, ablation therapy, 
sonodynamic therapy, chemodynamic therapy, ferroptosis-based 
therapy, and radionics (3, 4). These modern cancer therapeutic 
procedures have significantly improved cancer treatment over the 
past 30 years (5); however, cancer treatment failure is still 
widespread due to the ineffectiveness of these therapies (6). This 
is linked to cancer resistance to monotherapies (5). The 
phenomenon of cancer resistance to treatment commonly arises 
in clinical practice, thus resulting in poor patient survival. Also, 
cancerous cells with resistant attributes frequently show cross-
resistance to different anticancer treatments or drugs that may 
not be structurally relevant, and this has been attributed to the 
appellation multidrug resistance (MDR). The MDR phenomenon is 
a major impeding obstacle to treatment success, with consequential 
impacts like cancer recurrence and cancer-related death (7). 
Abbreviations: ATP, adenosine triphosphate; ACT, Adoptive cell therapies; 

AbPCs, antibody-photosensitizer conjugates; Ags, antigens; BMS-202, (N-{2­

[({2-Methoxy-6-[(2-Methyl[1,1’-Biphenyl]-3-Yl)methoxy]pyridin-3-Yl}methyl) 

amino]ethyl}acetamide); Ce6, chlorin e6; CRT, calreticulin; CAFs, cancer-

associated fibroblasts; CARs, chimeric antigen receptors; CTLA-4, cytotoxic T-

lymphocyte-associated antigen 4; CuAAC, copper-catalyzed azide–alkyne 

cycloaddition; DAMPs, damage-associated molecular patterns; DCs, dendritic 

cells; EpCAM, epithelial cell adhesion molecule; EphA2, ephrin type-A receptor 

2; ER, endoplasmic reticulum; EPR, enhanced permeability and retention; FAP, 

fibroblast-activation protein; GM-CSF, granulocyte macrophage colony-

stimulating factor; HMGB1, high mobility group box 1; HSPs, heat-shock 

proteins; ICD, immunogenic cell death; ICIs, immune checkpoint inhibitors; 

IDO, indoleamine 2,3-dioxygenase; IFNs, interferons; IND, indoximod; IOT, 

immunotherapy; irAEs, immune-related adverse events; IRDye700, near-IR 

fluorescent dye; LAG-3, lymphocyte activation gene 3; mAbs, monoclonal 

antibodies; MDR, multidrug resistance; mTNBC, metastatic triple-negative 

breast cancer; NK, natural killer; NPs, nanoparticles; OVs, Oncolytic virus; 

PEG, polyethylene glycol; PD-1, programmed cell death protein 1, PD-L1 

programmed death-ligand; PDT, photodynamic therapy; PRRs, pattern 

recognition receptors; PS, photosensitizer; ROS, reactive oxygen species; TAMs, 

tumor-associated macrophages; TILs, Tumor-infiltrating lymphocytes; TME, 

tumor microenvironment; TNFa, tumor necrosis factor alpha; VEGF, vascular 

endothelial growth Factor. 
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Cancer treatment resistance can be grouped into acquired and 
intrinsic resistance depending on the time the resistance arises. 
Intrinsic cancer resistance is recognized as the primary resistance 
that originates from endogenous factors existing in tumor cells 
before any treatment applications. These factors give cancerous cells 
survival benefits and the potential to adapt to stress from primary 
therapy (8, 9). On the other hand, cancer-acquired drug resistance is 
typically mediated by adaptive changes that antagonize cancerous 
cells’ susceptibility to an administered treatment, thus reducing the 
treatment’s efficacy (7, 9). 

The reduced response of cancerous cells to treatment is also 
linked to different mechanisms, most often involving the co-action 
of genetic and non-genetic factors. Tumor cell genetic factors are 
identified as major contributors to treatment resistance. These 
genetic factors include oncogene amplification in bypass or 
compensatory pathways, acquired drug target mutations, genetic 
diversity, and changes in epigenetics, which can also affect DNA 
repair, tumor cell plasticity, intratumor heterogeneity, and tumor 
cell susceptibility to pathways leading to cell death, hence resulting 
in multifactor-mediated resistance (7, 10). Yet, cancer drug 
resistance has been identified in which there is no genetic 
mutation in patients with various types of cancers (10, 11). The 
genotype alterations can be independent of the phenotype changes 
when the resistance is mediated via the metabolic inactivation of 
cancerous drugs, drug compartmentation, fewer intracellular 
transporters of drug concentrations, and reversible transcriptional 
or posttranslational controls on adaptive pathways induced by the 
drugs (7). 

However, combination cancer treatments are stated to increase 
the likelihood and strength of treatment responses while lowering 
the probability of treatment resistance being developed in the 
patient (12). The cornerstone of cancer combination therapy is to 
target pathways that perpetuate or cause cancer precisely. 
Combination therapy often works in an additive or synergistic 
manner, thus requiring a reduced dose of each separate drug. 
Combination therapy can offer a toxic effect on cancerous cells 
while preventing damage to healthy cells. This can be materialized if 
one of the utilized drugs is cytotoxically antagonistic to a different 
drug within normal cells, thus shielding healthy cells from cytotoxic 
damage (13). An effective cancer combination therapy might 
overcome the shortcomings of conventional mono-therapeutic 
treatment, such as the non-selective targeting of active 
proliferating cells, which eventually results in the death of both 
malignant and healthy cells. Monotherapy, like chemotherapy, 
damages both healthy and cancerous proliferating cells, causing 
several hazardous effects. It can significantly weaken the immune 
system of patients by attacking cells in the bone marrow and 
amplifying the patient’s susceptibility to diseases (13, 14). 

Nonetheless, in the battle against tumors that are resistant to 
conventional therapy, novel anticancer therapy based on immune 
system activation is encouraged. Such therapy includes 
photodynamic therapy (PDT) and immunotherapy (IOT) (15). 
An anticancer combination therapy that explores PDT and IOT 
(photoimmunotherapy) may overcome the issues of cancer 
resistance since this type of combination therapy is documented 
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to prevent tumor metastasis, activate the immune system’s memory 
cells, and stop the recurrence of tumors (16, 17). Besides, 
photoimmunotherapy  in  combinat ion  with  advanced  
nanotechnology (nano-photoimmunotherapy) is noted to offer a 
better therapeutic efficacy against resistant cancer (18). In this 
review, we describe PDT and IOT, highlighting their significance 
in anticancer immune stimulation. The preclinical evidence on 
photoimmunotherapy and nano-photoimmunotherapy in 
combating cancer resistance is also discussed. 
 

2 Photodynamic therapy 

PDT is a photochemical therapeutic procedure that utilizes laser 
irradiation at a defined wavelength to stimulate the transfer of 
photoelectrons to nearby oxygen molecules, thereby generating 
singlet oxygen, which is lethal to cancerous cells (19). This 
therapeutic procedure is less invasive, suitable for treating 
squamous cell carcinoma, and offers good spatiotemporal 
selectivity (20). Apart from being directly lethal to cancerous 
cells, PDT can stimulate inflammatory reactions that encourage 
the creation of tumor-associated antigens from the remnants of 
cancerous cells, leading to immunogenic cell death (21). 
2.1 Principle of photodynamic therapy 

Light irradiation of photosensitizer (PS) stimulates photon 
absorption and the excitation of the PS to the singlet state (S1), 
where there is a shift of electrons to an orbital with higher energy 
(Figure 1). At this state (a short-lived state and typically not stable), the 
Frontiers in Immunology 03 
PS may go back to the ground state (S0) through the conversion of its 
energy to fluorescence or heat. This feature is so handy for applications 
in monitoring and diagnostic procedures (22). Alternatively, 
intersystem crossing may happen, resulting in the PS being excited 
to a triplet state (T1). The PS in the T1 can convey energy via 
phosphorescence or collide with different molecules, creating reactive 
chemical species through two kinds of molecular reactions. T1 PS can 
also react with different types of solvents or organic substrates to 
transfer a single proton or electron, forming cation species or radical 
anions, respectively. Mostly, reactions of the PS with electron donor 
substrate occur, forming PS that eventually reacts with oxygen, 
generating radical superoxide anion. This is classified as a type I 
reaction. Yet, a type II reaction could take place if the PS at T1 

directly reacts with oxygen in its ground state (3O2) by transferring

energy to generate singlet oxygen (1O2), noted as reactive oxygen 
species (ROS) (22, 23). The molecular products of PDT, such as 
superoxide anions and singlet oxygen, will promote cytotoxicity since 
both products can even react directly with biomolecules like nucleic 
acids, proteins, and lipids, leading to their degradation (24). The 
superoxide anions that are created from type I reactions are non-
damaging, especially in biological systems. Despite that, these 
superoxide anions can participate in reactions that generate 
hydrogen peroxide. A Fenton reaction may also occur where the 
superoxide anion instead reacts with hydrogen peroxide, forming 
highly reactive hydroxyl radicals. These radicals are ultimately 
capable of reducing hydrogen atoms in biomolecules or adding to 
the side of biomolecules with double bonds. For example, reactions of 
fatty acids with hydroxyl radicals can generate a hydroxylated product, 
which is also a radical, thus originating a reaction chain involved in 
lipid peroxidation and consequently causing damage to the cell (22, 
25). Moreover, ROS can directly damage lipids, proteins, and DNA in 
FIGURE 1 

Schematic representation of photodynamic therapy’s principle. The absorption of light by the photosensitizer (PS) excites it from the ground state 
(S0) to a higher energy orbital (S1 or S2) excited state. The PS returns to the original S0 or excites to the triplet state (T1). Type I reaction (Type I 
energy transfer) occurs where the PS at T1 reacts with oxygen, leading to ROS production. Type II reaction (Type II energy transfer) may also occur 
when the PS at T1 reacts directly with oxygen in its ground state (³O2) by transferring energy to generate singlet oxygen (¹O2). The ROS generated 
induces damage to cancerous cells and death. 
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cancerous cells, causing alterations in ion transportation and cellular 
metabolism and an imbalance in homeostasis. The mitogen-activated 
protein kinase is stimulated in response to induced oxidative stress. 
Also, numerous cytokines and mediators involved in cell death 
processes such as autophagy, necrosis, and/or apoptosis are released. 
These processes or pathways could occur simultaneously and are not 
mutually exclusive with the same cell population. Different important 
parameters could contribute to the occurrence of a particular type of 
cell death pathway. These parameters include drug dose, PS 
intracellular distribution, light dose (illumination total time and 
fluence rate), the cell type being investigated, and the available 
amount of oxygen (15). Cell death following PDT activation is 
typically induced via autophagy, necrosis, and/or apoptosis (26–28). 
However, some newly identified cell death processes are linked with 
PDT outcomes, including paraptosis (typified with elevated 
cytoplasmic vacuolization that does not involve nuclear 
fragmentation or caspase activation) (27, 29), pyroptosis 
(inflammation-induced cell death) (30), ferroptosis (iron-dependent 
lipid peroxidation-driven cell death) (31), and necroptosis (controlled 
cell death mimicking attributes of necrosis and apoptosis) (32). These 
cell death pathways or programs can each result in the release of 
damage-associated molecular patterns (DAMPs) or alarmins. The 
pattern recognition receptors (PRRs) on immune cells are able to 
recognize DAMPs. Binding of DAMPs to PRRs activates the immune 
cell and thus immunogenic cell death (ICD) (26). 
2.2 Photodynamic therapy 
photosensitizers, localization, and dose to 
induce ICD 

Through the years, photosensitizers (PSs) have been modified to 
address the setbacks of their predecessors and to enhance the 
therapeutic efficacy of PDT. This has led to PSs being grouped or 
divided into various generations, including first, second, third, and 
even fourth generations of PDT PSs. The first-generation PSs are 
often natural compounds and hematoporphyrin primary 
derivatives like porfimer sodium (Photofrin) (33, 34). These PSs 
are faced with limitations such as poor tissue penetration, being 
prone to photobleaching, exhibiting poor solubility due to their 
hydrophobic nature, and long cutaneous photosensitivity (33, 35). 
The second-generation PSs are designed to solve these limitations. 
Second-generation PSs can provide decreased skin photosensitivity, 
reduced tissue accumulation periods, and enhanced light 
absorption at wavelengths from 650 to 800 nm (36, 37). On the 
other hand, the third-generation PSs are developed for specific 
tumor targeting, improving the selectivity and efficacy in 
intracellular delivery and multimodal therapeutic applications. 
They can be obtained via the conjugation of second-generation 
PSs with the targeted molecules or encapsulated in nanomaterials 
(33, 36). Specifically, the incorporation or conjugation of PSs with 
nanomaterials has paved the way for their utilization as 
nanomedicine. The fourth-generation PSs are designed by making 
use of porous delivery systems, such as metal–organic frameworks 
and mesoporous silica (34). They are generally considered to 
Frontiers in Immunology 04
provide advanced targeting modes of action or combine many 
therapeutic modalities (36). 

PSs can accumulate to initiate their damaging effects on various 
cell compartments based on the chemical attributes of the PS. The 
PS subcellular localization involves various organelles, including 
mitochondria, endoplasmic reticulum (ER), lysosomes, Golgi 
apparatus, nucleus, and plasma membrane (38–40). PS 
localization is vital in determining if the cell death following PDT 
will be triggered via an immune response. An important 
prerequisite for ICD is the formation of ROS in the ER. This 
induces oxidative stress, after which one of the major DAMPs 
[calreticulin (CRT)] is exposed, causing the activation of the host 
immune system to fight cancer (26, 41). This is indicative that a 
successful cancer eradication strategy via PDT-induced ICD will 
logically require the targeting of the PS within the ER. Studies have 
established that direct accumulation of hypericin in the ER leads to 
elevated ROS production and the development of a robust immune 
response following PDT (41, 42). But not all PSs accumulate or 
build up in the ER. In order to accumulate in the ER, the PS must 
possess amphiphilic and hydrophobic characteristics. The PS’s 
charge also influences its ability to accumulate in the ER. 
Hydrophilic PSs are often found in the lysosomes/endosomes 
before being dispersed in the cytoplasm. When the PS is directly 
collected in the ER, the effectiveness of PDT and its immunogenic 
effects are both increased (41). 

However, using PS localized in other cell compartments for 
PDT might also display immunogenic properties. For instance, 
PDT immunogenicity was established following the localization of 
PS in the lysosomes. The immunogenicity was exhibited in mouse 
fibrosarcoma (MCA205 murine prophylactic tumor vaccination 
mode) via dendritic cell (DC) maturation, release of DAMPs, and 
an effective reduction in tumor growth (43). However, a PS can be 
localized in multiple cellular compartments simultaneously (40, 44). 
Interestingly, two PSs used at the same time target and harm two 
cellular compartments simultaneously. For instance, studies 
confirm the targeting of the mitochondria and the lysosome at 
the same time using benzoporphyrin derivative (BPD, verteporfin) 
and N-aspartyl chlorin E6 (NPe6) or photofrin, respectively. This 
PDT technique sequentially induced photodamage starting from 
the lysosomal, then to the mitochondrial, leading to higher tumor 
eradication than using a single PS (45–47). Despite that, it was not 
clarified whether this method could activate an ICD. Still, the 
administration of two PSs sequentially to target distinct 
subcellular compartments might be an encouraging strategy to 
induce ICD, as more intriguing discoveries may be anticipated. 

The administered dose of the PS also plays an instrumental role 
in the overall treatment outcome. High doses of PS can result in 
aggregation-induced quenching which causes a reduction in the PS 
optical properties. The systemic administration of such a high dose 
of PS could cause abnormal accumulation and distribution, 
resulting in a phototoxic effect (48). Also, high PS dosage raises 
the risk of adverse effects such as non-scarring skin lesions, 
erythema, pain, and the death of healthy cells around the area 
exposed to light (49, 50). It is therefore crucial for an ideal PS to be 
chosen for PDT, and this PS should trigger an ICD with the least 
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amount of damage to healthy cells. The PS can also infiltrate healthy 
cells, so elevated PS doses can promote severe dark toxicity to 
healthy cells. This can harm different cell types, especially cells in 
the brain, since morphofunctional abnormalities such as those in 
the neuron-glial network can cause a drastic malfunction in the 
central nervous system and exacerbate the patient’s situation (51, 
52). Recent PDT techniques indicate that elevated doses of PS could 
be circumvented by employing advanced nanostructure delivery 
systems. The delivery system can help deposit the PS in the targeted 
cellular compartment in the tumor tissue, leading to the stimulation 
of ICD while limiting exposure to healthy cells. 
2.3 PDT damage, inflammation, and 
immune response against cancer 

Tumor damage induced by PDT commonly involves the 
following: 1) ROS stimulating the direct killing of tumor cells by 
apoptosis, autophagy, and necrosis. 2) The vascular system targeted 
by PDT PSs forms thrombi, leading to tumor tissue hypoxic 
infarction. 3) An inflammatory response can occur, resulting in 
an antitumor immune response, and is triggered by inflammatory 
substances that are released by the tumor cells that undergo 
apoptosis or necrosis (6, 53). It is important to note that the PDT 
processes, including the cell cycle arrest, autophagy, and apoptosis, 
may all happen at the same time following a single session of PDT 
treatment. Sasnauskiene et al. findings reveal that there is a dose-
dependent correlation between the amount of cellular damage via 
oxidative stress. Elevated cell cycle arrest and autophagy, but 
without apoptosis were confirmed when the cellular toxic dose 
was augmented to 50% (54). Nonetheless, when the toxic dose was 
above 70%, the cells exhibited substantial cell cycle arrest, 
autophagy, and apoptosis. PDT-induced damage to the blood 
vessels principally depends on tumor tissue attributes of having 
large vascular gaps and poor integrity, thus promoting the 
aggregation of PS (55). The enrichment of the vascular 
endothelial tumor cells with PS following PDT photoactivation 
causes numerous physiological reactions, such as vasoconstriction 
and platelet aggregation. This results in ischemia, tumor vascular 
blockage, and hypoxia (6, 56). Moreover, different types of white 
blood cells, such as dendritic cells (DCs), macrophages, and 
neutrophils, are recruited thanks to the direct ablation action of 
PDT against tumor cells, which also liberate inflammatory mediators. 
The white blood cells subsequently trigger further tumor suppression 
via the stimulation of the immune cascade (6, 57). 

PDT can also stimulate the interaction between the immune 
system  of  the adaptive and  the innate arm  (58, 59). Tumor 
microenvironment (TME) changes may occur by inducing the 
expression of mediators (acute-phase response mediators) and 
pro-inflammatory in the area irradiated. This could lead to a 
cascade process that induces systemic inflammation and adaptive 
and innate immunity. As a restricted treatment, PDT indirectly 
promotes the initiation of an acute inflammatory response while 
also directly damaging the tumor. PDT-induced oxidative stress in 
tumor cells can boost the release of inflammatory cytokines and 
Frontiers in Immunology 05 
inflammatory transcription factors, as well as improve the 
distribution of heat shock proteins (HSPs) (58). The invasion of 
the tumor site by leukocytes leads to their production of cytokines 
and pro-inflammatory factors. The mechanism of PDT can give rise 
to a robust inflammatory response, promoting neutrophils to 
quickly move to the treatment site, resulting in enhanced 
immunity and tumor response rate. In addition to impacting the 
proliferation/survival of tumor T cells and directing the production 
of PDT antitumor immunity, neutrophils also directly interact with 
photodamaged cells and later on eliminate the tumor cells that are 
photodamaged (60). Findings from in vivo studies indicate that 
PDT neutrophils bind and cluster on the microvascular wall. This 
provides supporting information that correlates antitumor response 
with neutrophil activity (61). Nonetheless, complement system 
activation has emerged as an antitumor mediator, and it also 
raises secondary inflammatory mediators, including histamine, 
coagulation factors, thromboxane, leukotrienes, and cytokines 
(such as IL-1b, IL-6, IL-10, G-CSF, and TNF-a). Complement 
activation produces transmembrane channels, damages the plasma 
membrane integrity, and results in lysis and cell death. Besides the 
complement cascade system, natural killer cells, phagocytes 
[neutrophils, macrophages, and DCs], and cellular elements are 
all components of the innate immune system response. The 
activation of the complement and innate immune system, as well 
as the cytokine activity, all function together to activate the innate 
immune system in responding to PDT (6, 62, 63). 
2.4 Photodynamic therapy in immunogenic 
cell death and DAMPs 

Cancer PDT immune response leads to ICD of cancerous cells 
by inducing the liberation of tumor-related antigens from 
cancerous cells’ remnants. It can also further excite the activation, 
infiltration, and proliferation of antigen-specific T lymphocytes 
(64). ICD is also characterized by a specific response mechanism 
that causes cellular and organellar stress, ultimately leading to cell 
death and the exposure, passive secretion, or active release of several 
DAMPs as presented in Figure 2. 

DAMPs are spatiotemporally presented during ICD and are 
recognized by a unique type PRR found on antigen-presenting 
cells, starting a cascade of reactions that can trigger adaptive and 
innate immunologic responses (65, 66). DAMPs released by dying 
cells during ICD include the cytoplasmic protein annexin A1 
(ANX1), the non-histone chromatin-binding protein high-mobility 
group box 1 (HMGB1), endoplasmic reticulum (ER) chaperones [like 
heat-shock proteins (HSPs) and calreticulin (CRT)], as well as 
interferons (IFNs) (de novo synthesized type I IFNs) and adenosine 
triphosphate (ATP) (67–69). The recognition of DAMPs by the PRRs 
expressed in immunogenic adaptive and innate cells leads to effector 
cells’ chemoattraction, stimulation, maturation, and/or homing. 
These processes work together to suppress the tumor (65). 

Studies indicated that oxidative stress induced by PDT 
treatment can trigger the production of DAMPs and tumor 
antigens, resulting in antitumor immunity (64). The stimulation 
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of DAMPs following PDT-treated cancerous cells is widely 
documented. Nonetheless, the DAMPs pattern may differ 
depending on the cancerous cell type and the treatment regimen 
(38). Moreover, the production of DAMPs following cell death has 
become a crucial component of the network of intercellular 
communication, as it influences both inflammatory processes and 
immunological responses (70). The PDT-stimulated DAMP 
samples after PDT were noted to have DAMPs such as high 
mobility group box 1 (HMGB1), HSPs (HSP60, HSP70, HSP90), 
CRT, and ATP (64). Table 1 presents the various types of DAMP 
that could be involved in ICD. Also, HSPs such as HSP34, HSP27, 
and HSP72/73 have been induced by PDT (38). The DAMPs are 
upregulated and translocated to the membrane, where they might 
be recognized and eliminated by the cells of the innate immunity as 
a danger sign, thus stimulating an innate immune response (62). It 
is reported that following PDT treatment, immunocompetent 
mice’s tumor response was improved by CRT (DAMP molecule) 
as opposed to immunodeficient mice (78). 

A typical characteristic of dying PDT-treated cancerous cells is 
the plasma membrane surface exposure of the calcium-binding 
protein CRT. Normally, CRTs are located in the lumen. Yet, when 
CRTs are externally exposed, they can be recognized by lipoprotein 
receptor-related protein 1 (LPR1, CD91) of low density to provide 
an ‘eat me’ type of signal to antigen-presenting cells. ER stress is 
linked with CRT exposure, which results from misfolded proteins 
piling up, thus causing an unfolded protein response (38). However, 
the mechanisms for CRT induced by PDT can vary based on PS 
type. For instance, treatment with Rose Bengal acetate led to CRT 
exposure and the co-translocation of the ER protein (79, 80), while 
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the co-translocation of the ER protein was not noted in hypericin­
based mediated PDT (41, 41). In addition, the eukaryotic initiation 
factor 2a phosphorylation is widely considered to be needed for 
CTR exposure and is vital for UPR induction (81). Yet in a 
hypericin-based PDT, this phosphorylation did not occur (41, 
41). Also, macrophage activation can cause the release of CRT, 
where it may bind to viable cell surfaces and, in doing so, promote 
their clearance (82, 83). PDT-damaged cells found bound by CRT, 
were noted to activate migration, macrophages, and phagocytosis. 
Also, the host immune cells, including neutrophils, macrophages, 
and DCs, can be activated by DAMPs. DAMP expression induced 
thanks to PDT treatment can be a powerful immune response 
responsible for tumor ICD (6). 

DAMPs are necessary for tumor-associated antigens presentation 
to antigen-presenting cells, which helps to stimulate an immune 
response against cancerous cells. Dead/dying PDT-treated cells are 
reported to release PDT-related DAMPs such as ATP and HMGB1 
(43, 84, 85). Photosens and photodithazine have recently been reported 
to induce ICD which, was associated with the emission of HMGB1 and 
ATP (43). HMGB1 can trigger a response to innate immunity by 
interacting with 2 and 4 toll-like receptors and potentially with 
recognized receptors on antigen-presenting cells. ATP, on the other 
hand, encourages antigen-presenting cell recruitment by attaching to 
purinergic receptors, and this is read by antigen-presenting cells as a 
signal to ‘find me.’ ATP may be released actively from the cell, which is 
controlled by a particular signaling pathway, or released passively due 
to the loss of the integrity of the plasma membrane (86). Similar to the 
induced CRT mechanism, the exact mechanism stimulating ATP 
release following PDT appears to present unique attributes. For 
FIGURE 2 

Immunogenic cell death induced by photodynamic therapy (PDT). The stimulation of a PDT photosensitizer (PS) by light of a specific wavelength can 
lead to immunogenic cell death (ICD). The dying immunogenic tumor cell can secrete on its surface various types of damage-associated molecular 
patterns (DAMPs) such as CRT, ATP, HMGB, and HSP70. The secreted DAMPs can promote the recruitment of antigen-presenting cells, especially 
dendritic cells (DCs). The DCs can migrate to the lymph node, where they mature for antigenic presentation to T cells. This results in the induction of 
antitumor immunity, where activated antitumor immune cells from the lymph node move and infiltrate the tumor to cause cellular damage and death. 
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instance, hypericin-mediated PDT stimulated ATP secretion in a way 
that is autophagy-independent, which is contradictory to ICD 
stimulated by chemotherapy (87, 88). 
2.5 Photodynamic therapy advantages and 
disadvantages 

PDT has several advantages over conventional cancer 
therapeutic techniques. PDT has no long-term negative effect 
when correctly administered, yet first-generation PSs can induce 
modest, temporary photosensitivity in some areas, such as the eyes 
and skin (89, 90). When comparing PDT to surgical procedures, its 
adverse effects are frequently not severe, and the duration is not 
prolonged as in radiotherapy or chemotherapy. Also, PDT is 
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typically administered as an outpatient procedure. Tumor 
mortality is substantially caused by the destruction of the tumor’s 
associated vasculature (91, 92). PDT’s dual selectivity allows it to be 
directly applied and accurately target a precise tissue (90). PDT can 
be administered repeatedly in the same treatment area if necessary, 
as opposed to being dispersed like in radiotherapy. Scarring after 
the PDT healing process is generally minimal. Moreover, PDT 
treatment typically costs less than the majority of cancer treatments 
(90, 93). PDT can also alter the microenvironments of the stroma 
and blood vessels, increasing their vulnerability to further 
treatments like IOT and chemotherapy (15). 

Cancer tumors of the digestive tract, lung, lung lining 
(malignant pleural mesothelioma), head and neck, bladder, skin 
(basocellular carcinoma), and cervix have been treated using PDT 
(94). However, some disadvantages are linked with PDT. Tumor 
TABLE 1 Various types of DAMP that can be produced following cancer PDT treatment. 

DAMPs Description and function Responder cells Reference 

Heat Shock Proteins (HSPs) 
like HSP60, HSP70, HSP90, 
gp96, GRP94, GRP78 

HSPs, or stress proteins, are often found in organelles or intracellular areas. They are produced by 
the cells in reaction to a variety of stress stimuli, like ultraviolet light. However, they are displayed 
on the surface of damaged or dying cells and are a key component in immunomodulatory 
processes. For instance, it has been discovered that surface-exposed HSP90  and HSP70  impact  
antigen processing/presentation and phagocytosis. Immunogenicity through dying cells is noted to 
be defined by HSP90. Though HSPs can be actively released through the non-classical secretory 
route, HSPs are more frequently secreted passively by dying cells. Vital tumor antigens can be 
carried by secreted HSPs, facilitating the appropriate uptake and processing of antigens by antigen-
presenting cells. Moreover, they can activate immune cells to secrete different types of pro-
inflammatory cytokines. Recent evidence indicates that extracellular HSP90b can hinder the 
stimulation of latent TGF-b1. 

Monocytes, 
neutrophils 

(59, 71, 72) 

High mobility group box­
1 (HMGB1) 

They are nuclear chromatin-binding proteins that can act as a DAMP molecule at the exterior 
of cells and as a nuclear protein when inside the nucleus. It is noted to have strong cytokine­
like characteristics, and when HMGB1 is produced by dying cells, it activates immune cells to 
release a variety of pro-inflammatory cytokines. 

Monocytes, 
neutrophils 

(59, 71, 72) 

Calreticulin (CRT) They are multifunctional proteins that are usually present in different intracellular organelles/ 
regions (especially in the ER) (2, 13). Under stress conditions (commonly stress in the ER), 
their levels are increased extracellularly (exo-CRT) on the plasma membrane. They function 
as a danger “eat me” signal on the plasma membrane as they enhance the immunogenic 
ability of dying cells. 

(59, 71–73) 

Phosphatidylserine (PtdSer) Phosphatidylserine can move from the cell’s inner to the outer leaflet (compartment) if the 
cell is injured or dying to function as an “eat me signal” to mediate anti-inflammatory 
responses and effective phagocytosis, thanks to its interaction with multiple receptors on 
immune cells. They can also interact with opsonins (such as growth arrest-specific gene 6 
(Gas6), b2-glycoprotein (b2GP1), milk fat globule EGF/factor VIIC (MFG-E8), and 
Annexin-V). 

Macrophage, 
dendritic cells 

(71, 72, 74, 75) 

Adenosine triphosphate (ATP) They are often intracellular high-energy molecules, yet they can be secreted under specific 
stress conditions by apoptotic and necrotic cells. It is also possible for ATP generated 
extracellularly to help in immune cell chemoattraction. 

Dendritic cells, 
microglia 

(71, 72, 75) 

Covalent/Cross-linked 
dimer of ribosomal protein 
S19 (dRP S19) 

Description and function: They are small ribosomal subunit constituents and can be secreted 
by necrotic cells. They can attract different immune cells by acting as a chemotactic factor. 

Monocytes, 
neutrophils 

(59, 71, 72) 

Calgranulin family 
members S100S (S100A8, 
S100A9, S100A12) 

They are calcium-binding proteins expressed by different cell types. When calgranulins 
function as “find me signals” by attracting different immune cells. They can activate the pro-
inflammatory cytokines, thanks to their interaction with the receptor (TLR4/RAGE) on 
immune cells. 

Monocytes, 
neutrophils 

(59, 71, 72) 

Uric acid or 
Monosodium urate 

The intracellular uric acid stockpiles in dying or ischemic cells are released. Also, more uric 
acid is produced after cell death as a result of the enzymatic degradation of nucleic acids. 

Dendritic cells, 
neutrophils, CD4+ and 
CD8+ T cells 

(59, 72, 76) 

Spliceosome-associated 
protein 130 (SAP130) 

SAP130 is a histone deacetylase complex subunit and can be produced by dying cells 
following apoptosis and regulated necrosis. 

Macrophages (59, 72, 77) 
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cells are documented to be resistant to PDT (95, 96). Also, 
resistance to PDT photosensitizers may develop via similar 
mechanisms as those with conventional drugs, such as decreased 
uptake, elevated inactivation of the drug, drug efflux, and alterations 
in intracellular trafficking. A combination treatment strategy with 
at least two distinct treatment plans is one potential tactic for 
conquering tumor resistance (94). Also, PDT is ineffective for 
disseminated metastases because current PDT methods do not 
deliver whole-body laser light treatment, and the PDT effect often 
occurs at the treated location (97). This affirms that PDT yields 
limited therapeutic results on distal and metastatic tumors (23, 98). 
The effect of PDT relies on tumor tissue oxygenation, and this is 
commonly impeded by the thick tumor masses or necrotic tissue 
(90). The consumption of oxygen during PDT exacerbates tumor 
hypoxia, causing a vicious circle. Hypoxia in tumor cells can 
enhance the growth of immunosuppressive cells such as M2-type 
macrophages, hindering antitumor immunity and ICD, 
subsequently leading to tumor progression and relapses (99, 100). 

Treating deeply infiltrated or deep-seated tumors is challenging 
using PDT due to visible light’s (short light wavelength of about 
400–700 nm) poor tissue penetration (101). Furthermore, PDT 
alone is not enough to trigger a substantial immune response since 
tumor cells produce immunosuppressive cytokines or other types of 
tumor-enhancing substances by a non-immunogenic mechanism. 
This causes an immunosuppressive TME that promotes immune 
suppression, preventing the fight against cancer (102). The efficacy 
of PDT is also reduced due to the TME-compressed tumor 
extracellular matrix, which impedes the infiltration of oxygen and 
chemical therapeutic species (23, 98). This is, therefore, suggestive 
of the importance of combination therapy, where PDT can be used 
with other forms of cancer therapy to surmount its therapeutic 
pitfalls. A PDT-optimized procedure in combination with IOT 
could produce an excellent synergistic impact against resistance in 
cancer treatment. 
3 Cancer immunotherapy 

Cancer IOT is a biological therapeutic modality that works by 
enhancing the immune system’s defenses to combat cancerous cells. 
The thymus, spleen, bone marrow, and lymph nodes are among the 
organs that constitute the immune system. Immune cells such as 
dendritic cells, B and T lymphocytes, monocytes, natural killer (NK) 
cells, and granulocytes, and signal proteins that highly include 
cytokines (INFa, TNFa, IL-11, IL-6, and IL-2) and chemokines 
(CXCL10 and CXCL9) help safeguard the host organism against 
cancer (15, 103). Active and passive IOT form the main categories 
of IOT, principally achieved by artificial stimulation of the adaptive 
and innate immune systems. Active IOT makes use of monoclonal 
antibodies [particularly the immune checkpoint inhibitors (ICIs)] 
or immunostimulation changes that occur during the release of 
cytokines. This category also includes IOT that directly modulates 
the immune response,  like  antigen-independent or antigen-
dependent (for example, anticancer vaccines). Contrarily, passive 
IOT instead makes use of arginase inhibitors and small-molecule 
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indoleamine 2,3-dioxygenase (IDO), along with genetically 
modified immune cells, including NK cells and T cells (adoptive 
therapy) (15, 104). 

The immune system plays a vital role in combating cancer, and 
it may be broadly classified into two categories: the innate and 
adaptive immune systems. The system for the immune system is 
mostly made up of mucous membranes, epithelial barriers, 
neutrophils, macrophages, granulocytes, NK cells, and DCs (105). 
The system for the adaptive immune system mainly consists of 
humoral immunity, which principally consists of B cells, and 
cellular immunity, which is chiefly piloted by T cells (105, 106). 
The innate and adaptive immune systems should simultaneously 
function in the TME to effectively stimulate anticancer immunity. 
The main processes involved in stimulating an anticancer 
immunological effect can include (a) immature DCs recognizing 
cancerous cells or phagocytosing cancer-derived antigens (Ags), 
leading to their maturation. Also, through phagocytosis, the 
cancerous cells can be engulfed directly by macrophages (107); 
(b) fully developed DCs go through the lymphatic vessels to the 
lymph nodes, where they stimulate NK and T cells (108–110); (c) 
NK and T cells that are activated can migrate through the blood 
vessels to TME (111, 112); (d) cancer cell lysis is mediated by 
activated NK and T cells or macrophages. Nonetheless, the 
exhaustion of NK and T cells instead encourages tumor immune 
escape (113, 114). 
3.1 Current-day’ cancer immunotherapy 

Cancer IOT has greatly evolved and now has various therapeutic 
approaches that are designed to mimic the natural antitumor immunity 
of the body in order to combat cancer and extend the patient’s life
(115). The different therapeutic approaches are outlined below include 
IOT vaccines, adoptive cell therapies, immune checkpoint inhibitors 
IOT, monoclonal antibodies IOT, and oncolytic virus therapy. 

IOT vaccines: IOT vaccines for cancer treatment are developed 
to increase immune cells’ potential against cancer (116). They are 
divided into protein- and peptide-based vaccines (117), vector- and 
bacterial-based vaccines (118, 119), nucleic acid (RNA, DNA, self-
amplifying RNAs (saRNA), and mRNA)-based vaccines (120–122), 
and cellular (DC and whole cell)-based vaccines (123). 

Adoptive cell therapies (ACTs): In ACT, the NK and T cells or 
other cells from the patient are grown and expanded through 
engineering or without engineering, then infused into the patient to 
fight cancer (124, 125). The most common type of ACT is those 
derived from T-cells. The ACT based on T-cells can be accomplished 
by at least three unique T-cell approaches. Tumor-infiltrating­

lymphocytes (TILs)-based ACT is the first approach, where 
endogenous TILs obtained from the patient tumors are grown ex 
vivo and injected into the patient (125, 126). ACT, based on the 
fabricated T-cell receptor (TCR), is the second approach. This type of 
ACT helps recognize particular tumor antigens; however, it is 
restricted to Ags expressed by the major histocompatibility 
complex (126). ACT based on chimeric antigen receptors (CARs) 
is the third approach. Chimeric receptors comprising a domain for 
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recognizing extracellular antigens, a signaling domain in the 
cytoplasm, and a transmembrane domain are engineered with T 
cells obtained from the patient, producing CAR T-cells that lock onto 
and eradicate the specific types of cancer (127, 128). 

Immune checkpoint inhibitors (ICIs): Immunotherapy ICIs 
derived medication can boost tumor cell immune-mediated 
clearance procedure and obstruct the co-inhibitory signal pathways 
to reactivate immunity against the tumor (129, 130). For example, 
some types of cancerous cells excessively secrete on their surface the 
programmed death-ligand (PD-L1) in order to avoid immune 
surveillance. This causes the activation of the “cytotoxicity brake” 
to continuously working, leading to T cell exhaustion and positive 
PD-L1 cancer cell survival (131). Also, PD-L1 and programmed cell 
death protein 1 (PD-1) (132), T-cell immunoglobulin mucin-3 (TIM­

3) (133), lymphocyte activation gene 3 (LAG-3) (134, 135), and 
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) (132) are

frequently used immune checkpoint proteins. 
Monoclonal antibodies (mAbs) IOT: mAbs are large-molecular­

weight glycoproteins that are fabricated by B cells. They simulate 
induction of a durable antitumor response while also targeting 
cancerous cells directly (136). Three kinds of mAbs are commonly 
utilized in cancer treatment, which include the bispecific mAbs

consisting of two distinct proteins attached together either 
covalently or non-covalently (137), antibody-drug conjugates, 
which are designed by conjugating mAbs with radioactive particles 
or chemotherapy drugs (138, 139), and naked mAbs (unconjugated 
mAbs) (140). However, there are several kinds of mAbs, which are 
linked to the nature of their heavy chain structures, and IgGs are 
currently the type most frequently utilized in antibody therapy (141, 
142). Besides, the antibody (Ab) scaffold is a crucial component of 
tumor IOT. Findings from a recent study demonstrated that a VL 
one-domain antibody scaffold (rabbit-derived Ab scaffold) combined 
effectively with the drug 7-ethyl-10-hydroxycamptothecin (SN-38) to 
substantially hinder canine non-Hodgkin lymphoma (cNHL) cell in 
vivo and in vitro proliferation. This furnishes important theoretical 
justification for the application of Ab scaffolds in cancer IOT (143). 

Oncolytic virus (OVs) therapy: OVs are one of the latest 
developments in cancer IOT (144, 145). OVs are a group of viruses 
that can be produced experimentally or exist naturally (146). OVs has 
the therapeutic ability to selectively replicate and spread in cancerous 
cells, destroying cancerous cells while avoiding damage to normal 
cells (147). In addition, OVs can be utilized for in situ vaccination 
(148), while immunological modulatory transgenes can be 
transferred to it and might even be utilized in conjunction with 
different therapies, such as chemotherapy and cell therapy (104, 149, 
150). OVs are not limited to their application as oncolytic drugs; they 
can also serve as efficient carriers of anti-cancer genes and perform 
several functions at once, including gene therapy and virotherapy 
(151). The first OV medication authorized in 2015 by the U.S. FDA is 
T-vec (Talimogene laherparepvec, Imlygic) and is used for the 
treatment of recurrent melanoma in patients having topical non­
resectable skin, lymph node, and subcutaneous lesions (152). Yet, the 
efficiency of OVs often depends on combination therapies, while 
stand-alone oncolytic virus treatments are subject to variation based 
on different factors, such as the immunological condition of the 
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patient, the type of oncolytic viruses, and the kind of tumor. 
Moreover, current OVs exhibit poor infiltration and can be swiftly 
eliminated by antiviral responses (153). 

For an effective cancer IOT, it might be essential to devise 
alternative methods to enhance immunogenicity and boost 
antitumor efficacy. Nonetheless, combinational therapies such as 
immuno-photodynamic therapy have emerged as a pivotal treatment 
strategy to address these shortcomings of mono-immunotherapy (154). 
Different research has demonstrated that PDT can stimulate an 
immunological response against tumors through an ICD mechanism. 
This type of treatment strategy is anticipated to compensate for the 
setbacks of each of the mono-therapeutic modalities and induce a 
healthy immune system to combat cancer. It may also offer stronger 
IOT immunogenicity as well as stop the proliferation of tumor cells 
that are still present in the body following PDT (102, 115). 
3.2 Advantages and disadvantages of 
immunotherapy 

Compared with conventional cancer therapy, radiotherapy, 
chemotherapy, and surgical intervention, IOT significantly 
increases patient survival by using various strategies, targets, and 
directives to combat cancer. IOT can target tumor tissues specifically 
while minimizing damage to normal tissues (155, 156). Two 
important causes of cancer death, metastasis and recurrence, could 
originate from cancerous cells developing defenses by evading 
immune surveillance (104, 157). About 90% of cancer-related 
fatalities worldwide are caused by metastatic malignancies, for 
which IOT has become a groundbreaking treatment option (18). 
IOT is unequivocally achieved using a variety of techniques to boost 
pre-existing immunity, reconstruct immune suppression within the 
TME to combat the targeted cancerous cells, and effectively trigger 
the innate and adaptive immunity. In improving surveillance and 
clearance function to stop cancerous cells from metastasis and 
recurrence, IOT not only amplifies the immune response in the 
initial tumor during therapy, but the therapy also excites systemic and 
long-lasting protective benefits (104, 158). Moreover, immune 
checkpoint blockade for IOT, such as PD-1 or PD-L1 inhibitors, 
has recently shown encouraging clinical results following treatment of 
patients with different types of cancer (159, 160). IOT methods such 
as cancer vaccines (161, 162), CAR T-cell therapy (163), and cytokine 
therapy (164) have evolved and have been proven to extend the 
progression-free survival of cancer patients and animal models under 
preclinical investigation. Also, to date, different advanced-stage 
cancers have been successfully treated using IOT, although different 
problems are encountered with its development (104, 165). 

Solid tumor patients show a low response rate to IOT, which 
limits the therapy’s efficacy (166). Besides, first-generation 
immunotherapy-based cancer vaccines have had poor outcomes in 
clinical trials (167, 168). Immune-related side effects also hinder the 
effectiveness of treating cancer through IOT. Autoimmunity and 
immunological toxicity are becoming more widely recognized as 
significant clinical problems (104, 165). Also, conventional methods 
for IOT are unable to convert non-immunogenic (cold) cancer to 
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immunogenic (hot) cancer (165, 169). “Hot” tumors are defined by 
an active immune response that frequently exhibits high levels of 
immune cell infiltration and responds well to immunotherapy, 
especially immune checkpoint blockade-based treatments. The 
“hot” tumors often exhibit an immune-inflamed property, with 
important infiltration of immune cells, especially CD8+ T cells 
(170). The TME of “hot” tumors is immunosupportive, which 
increases the effectiveness of immunotherapy, hence leading to 
better immune checkpoint blockade therapy in patients with “hot” 
tumors (171, 172). Conversely, “cold” tumors are non-immunogenic, 
immunosuppressed, and have inadequate T cell infiltration. The 
“cold” tumors can effectively camouflage themselves so as not to be 
recognized by the immune system, lowering the immune response 
efficiency and hence hindering antitumor therapy (102). Also, “cold” 
tumors are commonly described as an immune desert since they 
significantly lack immune cells (170). Therapeutically, cold tumors 
often respond poorly to most IOT immune checkpoint blockade 
treatments. However, some tumors may have both “hot” and “cold” 
tumor traits, making treatment options more difficult and requiring 
additional novel biomarkers and therapeutic combinations. Still, the 
“hot” and “cold” tumor categorization helps in understanding the 
therapeutic limitations and the responsiveness of cancer treatment 
(170, 173). 

The limitations of current IOT techniques are linked to several 
factors that contribute to cancer’s overall resistance. Cancerous cells 
are developing resistance to IOT, leading to primary, adaptive, and 
acquired resistance, which greatly impedes cancer IOT (104, 165). For 
instance, failure can arise due to an immunosuppressive TME 
(consisting of stromal and cancer cells), which expedites tumor 
immune escape. Immunosuppressive molecules are secreted by 
stromal cells such as cancer-associated fibroblasts (CAFs) or 
tumor-associated macrophages (TAMs), which prevent cytotoxic T 
lymphocyte infiltration and stimulation, hence decreasing their 
potential to kill tumor cells. Also, the stromal surrounding 
components containing dense extracellular matrix and aberrant 
tumor vessels hinder effector T-lymphocyte infiltration into the 
tumor and enhance hypoxia. This consequently enhances immune 
suppression by distorting the production of cytokines, recruiting 
myeloid cells to suppress the immune system, and hampering 
cytotoxic T-lymphocytes’ killing action against cancerous cells. The 
aberrant tumor vasculature also controls solid tumors’ immune 
escape and restricts the distribution of immunotherapeutic 
molecules into the tumor (174). The efficacy of IOT is also limited 
since it does not work for all patients, and this is linked with low 
clinical response rates and solid tumors’ insufficient immunogenicity 
(175). Similarly, our body’s physiological and pathological barriers 
may obstruct the uptake of immunotherapeutic drugs or natives, 
making the bioavailability of the drugs considerably more 
challenging. In addition, certain types of cancerous tumors poorly 
react to IOT due to the absence of an immunogenic TME (176, 177). 
Furthermore, present-day clinical IOT is faced with the challenge of 
over-activated autoimmunity and inadequate immune response. For 
instance, IOT cancer vaccines are not used for all forms of cancer, as 
they can only induce the activation of the immune system in specific 
forms of cancer (178); immune suppression mediated by the tumor 
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tissue can render ACTs to malfunction (179); ICIs may result in 
unfavorable organ damage perpetuated through the immune system 
(180); and mAb treatments may cause an overactive immune 
response such as cytokine-release syndrome (181, 182). 

The alluded problems, therefore, hamper the advancement and 
wider execution of cancer IOT, and if unresolved, could lead to the 
reiteration of mistakes similar to those observed in some 
conventional cancer therapy (104, 165). However, combination 
cancer treatment strategies are strongly encouraged (183). The 
rationale behind this combination treatment seems to be based on 
the fact that molecularly targeted treatment can significantly impact 
the antitumor immunity to evoke a potential synergy if utilized with 
IOT. The combinational therapy approach may increase the efficacy 
and comprehensiveness of treatment by simultaneously targeting 
several tumor pathways. As a result, novel IOT approaches needed 
to circumvent tumor immune evasion are desperately needed. 
4 Combination of PDT with IOT 
(photoimmunotherapy) 

Combined treatment of PDT and IOT (photoimmunotherapy), 
can trigger both systemic and local immune responses in animal 
studies (preclinical studies), resulting in longer-lasting immune 
activity, more tumor cell death, and slower tumor growth 
(Figure 3). Among the notable advantages of this combination 
treatment are enhanced antigen presentation, reduced Tregs, 
increased T cell stimulation, and strengthened resistance to 
recurrence, regardless of the type of photosensitizer that is used. It 
is  reported  that  treatment  combining  PDT  and  CpG  
oligodeoxynucleotide can reduce metastases, potentially amplify the 
activation of CD8+ T cells, and prolong survival (184, 185). Similarly, 
a two-stage treatment intended to target the tumor directly combined 
a low PDT immunogenic dose followed by an elevated dose was 
documented. Prolongs survival and slow growth of metastases tumor 
was noted, albeit the effects vary depending on the tumor cell line (58, 
69). PDT-based immunotherapy is generally a versatile therapeutic 
method and is suitable for a wide range of patients since the treatment 
does not depend on a precise tolerance profile or genetic 
predisposition (69, 186). To achieve specific immunological 
stimulation in cancer treatment through photoimmunotherapy, 
different promising approaches involving monoclonal antibodies, 
immune inhibitors, immune adjuvants, immune checkpoint 
blockade, and tumor vaccines are used in preclinical settings to 
overcome tumor resistance and improve treatment outcomes. 
4.1 Preclinical methods and evidence of 
photoimmunotherapy 

4.1.1 Photoimmunotherapy antibody-
photosensitizer conjugate 

To overcome anticancer treatment resistance and improve 
treatment efficacy, antibody-photosensitizer conjugates (AbPCs) 
have emerged as a viable strategy of combining PDT and targeted 
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immunotherapy. The AbPCs are designed in such a way that the 
antibodies target the tumor tissue precisely, and the photosensitizer 
is also deposited in the tumor, which, when activated by light, 
induces ROS production that kills tumor cells. It is important to 
note that AbPCs both directly destroy cancerous cells and promote 
an immunological response against cancer (187, 188). This indicates 
that PDT’s selectivity and efficacy can be increased by conjugating 
PS with mAbs in the right way to activate an immunological 
response. Furthermore, the poor distribution of PS, because of the 
hydrophobic nature of most PSs, can be surmounted by 
incorporating PSs with specific antibodies. This helps to facilitate 
the internalization of the PS alongside the antibody (15, 188, 189). 
For instance, in a colorectal cancer model, a conjugate composed of 
chlorin e6 and cetuximab (cetuximab‐maleimide‐poly(ethylene 
oxide)‐poly(propylene oxide)‐poly(ethylene oxide)‐chlorine e6 
conjugate, CMPXC) in PDT markedly elevated the cytotoxic T-
cell and dendritic cell population (187). Likewise, PDT employing 
AbPCs can trigger the release of danger signals and antigens, 
strengthening anticancer immunological responses (16). Also, 
developed biomimetic photosensitizers [aggregation-induced 
emission (AIE) photosensitizers] with hitchhiking and antigen-
presenting capacity (DC@AIEdots) stimulated T-cell proliferation 
and activation in vivo, stimulating the immune system (190). The 
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conjugation of mAbs with aluminum phthalocyanine was validated. 
The low concentration of the free photosensitizer in the TME did 
not produce a significant PDT effect; however, conjugating the 
antibodies with the photosensitizer substantially elevates the 
selectivity and cytotoxicity effect of PDT while preserving the 
targeting molecule’s stability, integrity, and immunological 
reactivity (15, 191). 

Likewise, by specifically binding to tumor-associated antigens, an 
antibody conjugated to PS enables effective delivery of the therapeutic 
agent to cancer cells, resulting in more efficient treatment (192, 193). 
For instance, the conjugation of antibody against epidermal growth 
factor receptors (EGFR) and the near-infrared (NIR) phthalocyanine 
dye IR700 has demonstrated encouraging outcomes in causing 
selective cell death following exposure to NIR light (194). 
Interestingly, photoimmunotherapy can provide a special benefit 
when it comes to drug resistance mechanisms, especially those 
involving drug efflux pumps. It is demonstrated that conventional 
PSs like hypericin interact with breast cancer resistance protein and 
multidrug resistance-associated protein-1, which are known to 
contribute to drug resistance (195). Photoimmunotherapy 
treatment can potentially bypass the drug efflux mechanism, 
guaranteeing adequate intracellular accumulation of the PS (194, 
196). For instance, photoimmunotherapy is reported to successfully 
FIGURE 3 

Illustration of photodynamic therapy (PDT) and immunotherapy (IOT) combined therapy (photoimmunotherapy) in preclinical studies. PDT can 
activate an immunological antitumor effect through the induction of an immunogenic cell death. IOT methods (monoclonal antibodies, immune 
inhibitors, immune adjuvants, immune checkpoint blockade, and tumor vaccines) in combination with PDT can elicit an immune response through 
the stimulation of NK cells and T cells. Overall, treatment by photoimmunotherapy can result in long-lasting tumor immunity, inhibition of the 
original and metastasized tumor, and eradication of tumor cells. 
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lower the survival of these resistant cells, improving the effectiveness 
of treatment as a whole by targeting cancer stem-like cells noted to 
display drug efflux mechanisms (192, 193). 

Antibody and PS conjugation can be formed through different 
conjugation techniques, including genetic and chemical techniques 
that exploit specific functional groups like N-chlorosuccinimide 
(NCS), triazoles, and thiol. Frequently used chemical methods use 
reactive groups found on the photosensitizer and antibody, such as 
carbodiimide, isothiocyanate, or NHS (succinimidyl) ester, to 
produce conjugates (15, 188, 189). In genetic techniques, the 
antibody and the photosensitizer are fused directly using a 
recombinant protein, producing a single molecule (197–199). Using 
chemical techniques in bioconjugation enables the attachment of 
the PS to a specific area on the antibody. The bioconjugation 
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approach for PDT and related therapeutic applications could 
be divided into different categories, including isothiocyanate 
conjugation, amide conjugation, tetrapyrrole-nanoparticle-antibody 
conjugates, maleimide conjugation, and copper-catalyzed azide– 
alkyne cycloaddition (CuAAC) reactions (“click” reaction) (15, 
200–202). Table 2 presents some of the conjugation methods 
involved in antibody-photosensitizer conjugation for targeting 
specific tumor.  

Isothiocyanate-derived conjugates are formed by joining the 
antibody’s amino group to the PS using the isothiocyanate active 
group (210). The LAG-3 antibody was fused with 5-(4­
isothiocyanatophenyl)-10,15,20-tris-(4-N-methylpyridiniumyl) 
porphyrin trichloride through the isothiocyanate active group. The 
obtained conjugate demonstrated excellent PDT activity in the mouse 
TABLE 2 Conjugation methods involved in antibody-photosensitizer conjugation and their anticancer target. 

Antibody Photosensitizer Conjugation method Anticancer target Ref. 

Trastuzumab 
(a-HER2) 

IRDye700 Formation of amide bonds with lysine 
residues through activated ester 

Gastric carcinoma (NCI-N87) (203) 

Cetuximab 
(a-EGFR) 

Benzoporphyin monoacid ring A Formation of amide bonds with lysine 
residues through activated ester 

Chinese hamster ovary cell line 
expressing EGFR (CHO-EGFR) 

(204) 

a-CD104 2,5-dioxopyrrolidin-1-yl 4 (4Z,10Z,14E,15Z,19Z)­
10,15,20-tri(pyridin-4-yl)-1H,21H-porphyrin-5­
yl)benzoate 

Formation of amide bonds with lysine 
residues through activated ester 

Human bladder transitional cell 
carcinoma (UM-UC-3) 

(205) 

Trastuzumab 
(a-HER2) 

(8S)-5-(carboxymethyl)-7-(3-carboxypropyl)-18-ethyl­
2,8,12,17-tetramethyl-13-vinyl 7H,8Hporphyrin­
3-carboxylic acid 

Formation of amide bonds with lysine 
residues through activated ester 

Epithelial human breast cancer 
(MDA-MB-231), human 
breast cancer 

(206) 

HuHMFG1 Pyropheophorbide a Formation of amide bonds with lysine 
residues through activated ester 

Human colorectal adenocarcinoma 
(HT-29), human oesophageal 
adenocarcinoma (OE19) 

(207) 

LAG-3 5-(4-isothiocyanatophenyl)-10,15,20-tris-(4-N­
methylpyridiniumyl) 
porphyrin trichloride 

Isothiocyanate to amines on 
lysine residue 

Human colorectal cancer (Caco-2) (208) 

a-EpCAM 4-(15-(4-isothiocyanatophenyl)porphyrin-5-yl)-1­
methylpyridin-1-ium chloride 

Isothiocyanate to amines on 
lysine residue 

Human colorectal cancer (LoVo), 
Lung large cell carcinoma (CORL23) 

(209) 

35A7 5-(4-isothiocyanatophenyl)-10,15,20-tris-(4-N­
methylpyridiniumyl) 
porphyrin trichloride 

Isothiocyanate to amines on 
lysine residue 

SKOv3-CEA-1B9 tumor (210) 

35A7 
FSP 77 

5,5′,5′’-(20-(4-isothiocyanatophenyl)porphyrin-5,10,15-triyl)tris 
(benzene-1,3-diol) 

Isothiocyanate to amines on 
lysine residue 

Colorectal adenocarcinoma 
(LS174T), Ovarian 
adenocarcinoma (SKOv3) 

(210) 

SIP (LI9) 4,4′,4′’-(20-(4-((1-(4-((2,5-dioxopyrrolidin-1-yl)methyl) 
cyclohexyl)-1-oxo-5,8,11,14,17,20,23-heptaoxa-2­
azapentacosan-25-yl)carbamoyl)phenyl)porphyrin-5,10,15­
triyl)tris(1-methylpyridin-1-ium) 

Reduction via disulfide bridge and 
reconnection of free thiol 
using maleimide 

LM fibroblasts, immortalized human 
embryonic kidney cells (HEK293T), 
Chinese hamster ovary cells (CHO­
S), HEK293T 

(211) 

SIP (LI9) 4,4′,4′’-(20-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl) 
phenyl)porphyrin-5,10,15-triyl)tris(1-methylpyridin­
1-ium) 

Reduction via disulfide bridge and 
reconnection of free thiol 
using maleimide 

Vaccinia-infected mouse fibroblasts 
(LM fibroblasts), CHO­
S, (HEK293T) 

(211) 

Trastuzumab 
(Fab) 

Porphyrin Reduction via disulfide bridge and 
reconnection of free thiols using 
maleimide propargylmaleimide proceeded 
by CuAAC (“click” reaction) 

Invasive ductal breast carcinoma 
(BT-474), metastatic breast 
adenocarcinoma (MDA-MB-468) 

(212) 

Trastuzumab 
(IgG) 

Porphyrin Reduction via disulfide bridge and 
reconnection of free thiols using 
maleimide propargylmaleimide proceeded 
by “click” reaction. 

MDA-MB-468 (213) 
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model by significantly slowing the growth of the tumor. Also, the 
conjugate toxicity was noted to be tolerable in the animals tested (15). 

Amide bioconjugations are a frequently used approach that 
assists in joining two molecules together through amide bond 
formation and are commonly executed by fusing activated esters 
with amines. For instance, the conjugation of the HuHMFG1 
antibody with pyropheophorbide was reported. The conjugate 
was observed in vivo and in vitro in preclinical investigations to 
kill esophageal cancerous cells effectively. The conjugated 
compound thus shows promise in esophageal adenocarcinoma 
treatment and can provide a targeted and efficient therapeutic 
option for esophageal cancer (207). 

Maleimide conjugation is the process of joining the antibody’s 
thiol group to the PS using the maleimide active functional group. 
To boost adaptability, maleimide functional groups could be 
integrated into bigger molecular weight linkers. For instance, the 
capacity of three types of porphyrins with a maleimide group linked 
to them to specifically mark cysteine residues on SIP-L19 antibodies 
[small immunoprotein (SIP)-antiangiogenic antibody (L19)] was 
studied. The antibody and photosensitizer complex was formed by 
the porphyrin’s aryl ring attaching directly to the antibodies or by 
utilizing the succinimidyl-4-(N-maleimidomethyl) Linker 
cyclohexane-1-carboxylic (SMCC). The SMCC was joined to the 
photosensitizer through polyethylene glycol (PEG) or an aliphatic 
chain. The obtained conjugate preserved the photosensitizer’s 
capacity to kill cells when activated by light and the antibody’s 
capacity to bind to its target (211). Another photoimmunotherapy 
photosensitizer was developed for the localized targeting and 
treatment of prostate cancer (PC) and PC stem-like cells (PCSC). 
The photosensitizer recombinant cysteine-modified anti-EpCAM 
and anti-CD44 antibodies conjugated with silicon phthalocyanine 
dye (WB692-CB2 dye) through a maleimide linker. The developed 
conjugate, after red light irradiation, exhibited target-specific 
binding and elevated cytotoxicity on PCSC and PC. The 
conjugate could serve in PC-efficient treatment while protecting 
the prostate gland and with reduced adverse effects. It could also be 
employed in radical prostatectomy to destroy residual cancerous 
cells or metastasized tumors in the lymph node areas in scenarios 
where surgery is infeasible (193). 

In addition, the “click” conjugation technique is noted for being a 
very selective and effective chemical reaction and is gaining 
popularity in the synthetic chemistry sector. The CuAAC reaction 
(“click” reaction) is now documented to be commonly used in 
bioconjugation because of its selectivity, excellent yields, and 
biocompatibility (214). PDT photosensitizer-antibody bioconjugates 
developed using the “click” reaction method demonstrate high 
phototoxicity due to their enhanced optical ability in PDT and can 
selectively target and destroy cancerous cells (212, 213, 215). A 
combination of hydrophilic PEG and hydrophobic zinc 
phthalocyanine PS (C11Pc) stabilized water-soluble gold 
nanoparticles, which were then functionalized with jacalin (lectin 
or monoclonal antibodies specific to HER). The complex obtained in 
combination with PDT induced an enhanced production of singlet 
oxygen and phototoxicity in SK-BR-3 (breast adenocarcinoma cells) 
and HT-29 (colorectal adenocarcinoma cells) (216). 
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4.1.2 Photoimmunotherapy immune inhibitors/ 
immune adjuvants 

Immunological adjuvants have been shown to be effective when 
used in conjunction with PDT. Imiquimod (a TLR7 agonist) is 
among the most promising adjuvants and has been approved by 
the FDA for the treatment of different skin diseases (217). Imiquimod 
causes DCs to mature and liberate pro-inflammatory cytokines by 
interacting with TLR7 on the endosomes and DCs (218). Imiquimod 
was used in a cream in combination with 5-aminolevulinic acid-
mediated PDT to successfully treat skin squamous cell carcinoma 
(219). Also, it has been demonstrated that the artificial dipeptide 
called pidotimod can strengthen the immune response and guard 
against infection in humans and mice. However, the exact mode of 
action of pidotimod’s protective ability is unclear. According to a 
study exploring zebrafish models, PDT improved immune cell 
recruitment and enhanced the production of pro-inflammatory 
cytokines following the tail wound assay, yet protection from 
certain pathogen infections was not provided (220). PDT can also 
induce immunosuppression and inflammation because of contact 
hypersensitivity. Nonetheless, immune inhibitors are necessary to 
soften the immunosuppression signal of the tumor and allow for a 
fully induced PDT immune response (221, 222). 

Anti-angiogenic peptides in combination with photofrin­
mediated PDT preceded T cell activation and VEGF (vascular 
endothelial growth Factor) inhibition, resulting in improved PDT 
efficacy. An enhanced PDT impact and related immune response 
were equally observed when PDT was conducted in combination 
with granulocyte macrophage colony-stimulating factor (GM-CSF), 
IL-7, and IL-3. The GM-CSF and IL-7 were delivered into the tumor 
tissue by retroviral vectors, then PDT was conducted, followed by 
their administration. The T lymphocyte’s activity was stimulated by 
IL-7, and the macrophage maturation process was augmented 
thanks to GM-CSF activity. Recombinant cytokines, including 
IFN-g, IL-1, IL-6, IL-8, and IL-18, were also utilized in 
conjunction with PDT. The efficacy of PDT combined with the 
cytokine-based therapy strongly relies on the timing and mode of 
their administration, correlated with the PDT procedure (223). 

Also, PDT can be utilized in combination with nonspecific types 
of IOT, such as cytokine-based therapy. PDT in combination with 
an administered tumor necrosis factor alpha (TNFa) proves to 
boost the therapy’s efficacy. A TNFa antivascular inducer, 5,6­
dimethylxanthenone-4-acetic acid (DMXAA), in combination with 
Photofrin-mediated PDT, occasioned a reduction in tumor volume 
and the resumption of a prolonged growth period in mice having 
the radiation-induced fibrosarcoma-1. This combinational 
treatment strategy led to tumor tissue necrosis with a reduction 
in blood flow and vascular density. The utilization of GM-CSF led 
to similar results by initiating the suppression of the growth of the 
tumor, prolonging the CT26 survival period, and bearing the LLC 
tumor in mice. An enlargement of anticancer immunity and 
complete tumor cell destruction was observed in 1/3 of the mice 
treated (58). Besides, protoporphyrin IX (PpIX)-mediated PDT 
treatment was enhanced with lipopolysaccharide (LPS). The 
method of combined treatment caused the decreased production 
of IL-6 and an elevation of IL-10 and TNFa levels (224). 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1633953
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kah and Abrahamse 10.3389/fimmu.2025.1633953 

 

4.1.3 Immunotherapy/PDT vaccines 
A promising type of combination therapeutic strategy is the 

utilization of PDT-treated cancerous cells to immunize DCs. Thus, 
PDT-induced anticancer vaccines are based on the anticancer 
immune response that is activated by PDT. In TME, PDT can 
activate an immune response that could be exploited to generate an 
anticancer vaccine (225). Cells of the immune system implicated in 
this type of response often include T-cells and DCs, among others. 
Studies based on PDT-generated vaccines revealed that T-cell 
stimulation produced long-lasting anti-cancer immunity (15). 
Korbelik, a renowned scientist, used PDT to create a vaccination 
for squamous cell carcinoma (SCCVII). He demonstrated that this 
vaccine inhibited the growth of tumors (226). The utilization of Par­
ICG-Lipo filled with indocyanine green (ICG) for endoplasmic 
reticulum (ER)-targeted PDT induced ICD and demonstrated in 
vivo to improve the in situ tumor cells’ immunogenicity. This ER-
targeted PDT, in conjunction with dendritic cells, may result in an 
effective clinical method for treating cancer by modifying cancerous 
cells into a vaccine for treating cancer (227). In another study, a 
dendritic cell vaccine containing glioma cells was stimulated by 
photosens-mediated PDT, resulting in ICD and the discovery of a 
four-gene signature linked to glioma patients’ general survival. This 
strategy may have the capacity to enhance the treatment of glioma 
by triggering Th17 immunity and helping in the prediction of 
patient outcomes (228). 

Moreover, regulatory T-cells (Tregs), which are involved in 
hindering immunological activity against cancerous cells, can 
strongly affect the immunological response induced by PDT-
generated vaccines. The depletion of these cell types can augment 
the efficiency of PDT-generated vaccines (229). The tumor whole­
cell-derived vaccine can be optimized through interconnections 
with phagocytic receptors. The interconnection between phagocytic 
receptors and cancerous cells can enhance the effectiveness of PDT-
generated vaccines. Scavenger receptors and phagocytic receptors 
(such as mannose receptors) are present on macrophages and 
dendritic cells. These receptors have the potential to recognize 
and attach to tumor-associated antigens, resulting in their 
retention and presentation to T-cells (230). 

Also, tumor cell-derived vaccines can be optimized by using a 
different adjuvant like N-dihydrogalactochitosan (glycated chitosan) 
(231) or maneuvering cell death, especially that induced by necrosis 
(232). Dendritic cells can be activated by using adjuvants, 
consequently causing the adjuvant activation and thus robust 
production of an anti-cancer immune response for tumor-

associated antigens expressing cancerous cells. Still, it is established 
that the activation of an immune response triggered by PDT-induced 
cell lysates on P815 and EMT6 cancerous cells does not need adjuvant 
co-administration (58). Similarly, research findings indicate that 
PDT-induced cell lysates activate DC maturation and the 
expression of IL-12 (233). A combination of PDT with immune 
checkpoint blockade or with immuno-regulatory activity dampening 
can also maximize the efficiency of PDT vaccines (15, 69). Other 
authors created a delivery nano drug system having doxorubicin 
hydrochloride and chlorin e6 (Ce6) as PS loaded on an amphipathic 
4T1 breast cancer membrane that was coated by calcium carbonate. 
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The concurrent action of PDT and PDT resulted in the liberation of 
tumor-associated antigens and ICD. It is anticipated that ROS 
produced by this technique will create PDT-DC vaccination by 
recruiting DCs through imitating inflammatory mechanisms (234). 

4.1.4 Photoimmunotherapy immune checkpoint 
blockade therapy 

Immune checkpoint blockades (commonly monoclonal 
antibodies) are often used in IOT to target protein interactions 
that typically dampen the immune system (221, 235). The immune 
checkpoints exhibit undesirable immunomodulatory effects (236). 
Treatments based on immune checkpoint blockade are guided by 
helpful biomarkers such as tumor mutation burden. Future 
approaches could use tumor mutation burden and other 
biomarkers to better stratify individuals for IOT, which could 
help overcome the problem of high tumor burdens and poor 
treatment results, leading to cancer patients receiving an effective 
treatment (237–239). Current treatment strategies utilize target-
specific antibodies to stop different immune checkpoints (235). The 
importance of PDT in such a treatment process is to promote tumor 
sensitivity and immunogenicity, thereby inducing ICD (221). 

Medically used photosensitizers are being examined in 
conjunction with various immunotherapies targeting CTLA-4, 
VEGF,  OX40 [tumor necrosis factor receptor superfamily

member 4 (TNFRSF4)], EphA2 (ephrin type-A receptor 2), and 
immune checkpoint blockades, such as PD-1/PD-L1. The 
administration of antibodies that target PD-1 and its ligand, in 
conjunction with a vascular-targeted PDT (V-PDT) that utilizes 
Tookad®Soluble as a photosensitizer, modulated the immune 
system reaction, causing a high number of CD8+ T cells to 
infiltrate the TME. It also resulted in a decrease in the number 
and size of metastases and stimulated a general immune response 
(216). V-PDT in conjunction with OX40 and PD-1 targeted 
therapy also led to an elevated immune response (240, 241). 
Treatment using a conjugate composed of anti-EphA2 antibody 
and IRDye700 (near-IR fluorescent dye) promoted an increased 
ICD, conversely to treatment utilizing the photosensitizer alone 
(196). Immunotherapy that targets PD-L1 and CTLA-4 receptors 
in combination with PDT contributed to raising the survival rate 
of treated mice by activating various immune responses through 
inflammatory induction, phagocytosis, or improved leukocyte 
infiltration (242). An anti-VEGF therapy in combination with 
PDT improved antitumor response; yet, 24 hours after treatment, 
the build-up of the PDT photosensitizer [5,10,15,20-tetrakis(3­
hydroxyphenyl) chlorin (mTHPC)] was reduced (243). Ripasudil, 
in conjunction with Ce6-embedded nanophotosensitizer­
mediated PDT (FIC-PDT), triggered an ICD and incited the 
priming of tumor-specific cytotoxic T lymphocytes through the 
sensitization of antigen-presenting cells. This led to the activation 
of the PD-1/PD-L1 immune checkpoint blockade response, 
causing a strong antitumor impact in the melanoma intraocular 
model (244). PDT has been proposed as a possible complementary 
method to immune checkpoint inhibitors, including PD-1/PD-L1, 
CTLA-4, and CD47-targeted therapy. The principle of this 
treatment strategy is PDT’s potential to boost the immune 
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system and strengthen the response to cancer induced by immune 
checkpoint inhibitors. PDT in conjunction with immune 
checkpoint inhibitors has produced good results in different 
studies, indicating the possibility of increasing the effectiveness 
of cancer IOT (221, 245). Immuno checkpoint blocking can be 
used to rewire the immune system to target the residual malignant 
cells after PDT has been used to target the original tumor in a 
multimodal treatment paradigm that combines IOT and 
PDT (241). 

Moreover, PDT in conjunction with different therapies 
that focus on regulating macrophage activity or adjusting 
autophagy activity through chloroquine inhibition is being 
studied. PDT’s ability to activate a proapoptotic effect has 
increased due to its inhibitory effects on autophagic activity (246). 
The therapeutic outcome of PDT was enhanced by the macrophage-

activating factor, achieving a 100% therapeutic efficacy. However, 
no alterations in tumor growth were perceived when the activating 
factor [D3-binding protein-derived macrophage-activating factor 
(DBPMAF)] was administered without PDT. The DBPMAF also 
lessened the immunosuppressive effect brought on by PDT (247). 

Furthermore, transient hypoxia during PDT can change the 
phenotype of immune cells and tumors by upregulating PD-L1, 
which is reliant on hypoxia-inducible factor 1-alpha signaling. The 
possible changes linked with immune checkpoint homeostasis at 
post-PDT may work in concert with PDT’s stimulation of immune 
cell infiltration to support PD-1/PD-L1 blockage as a beneficial 
supplementary tactic (241, 248, 249). 
4.1.5 Challenges of photoimmunotherapy 
Some patients might find the combined cancer treatment 

strategy, such as photoimmunotherapy, to be expensive and 
inaccessible, which can hinder the widespread utilization of the 
treatment (18, 250). A major obstacle to photoimmunotherapy 
platform development is the absence of clinical trial statistics to help 
forecast the photoimmunotherapy execution in humans. This could 
hinder photoimmunotherapy interventions from completely 
replacing traditional cancer treatment, yet photoimmunotherapy 
is anticipated to be more suitable and widely used as an adjunct 
therapy. Also, it is crucial to determine which patients stand to gain 
from this treatment approach (18). 

Moreover, different perspectives, such as cancer resistance, 
immune-related adverse events (irAEs), toxicity, treatment 
parameter optimization, accessibility, and cost, can be examined 
to validate the setbacks and risks linked with PDT and IOT 
combined treatments. PDT uses photosensitizers, which can cause 
localized toxicity and negative consequences if they do not target 
precisely the required treatment area and can harm healthy tissues 
(18, 94, 251). Consequently, merging PDT and IOT may cause 
extreme toxicity, especially if the therapies are not adequately 
coordinated. However, irAEs that can include autoimmune 
responses may arise, where the body’s immune system targets 
healthy cells, which can be brought on by IOT. The irAEs may 
need to be managed carefully due to their severity (mild to severe 
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effects). Also, treating the immune-related conditions could be 
complex, hence necessitating more interventions and medications, 
which puts an enormous burden on patients (18). Likewise, some 
IOT agents could induce an immunosuppressive TME that hampers 
the effects (dampening effect) of PDT-induced ICD (252). 
Additionally, PDT can worsen irAEs since inflammation brought 
on by PDT might cause adverse effects in both the treated area and 
nearby normal tissues, hindering treatment outcomes (253, 254). 
PDT-induced inflammation may cause or exacerbate adverse drug 
events such as myocardial damage and muscle weakness in 
individuals receiving immunotherapy, such as with tislelizumab 
(253). Also, PDT-induced inflammatory response may intensify the 
immunological activation brought on by PD-1 blockade, resulting 
in severe irAEs (254). Another major problem is figuring out the 
ideal parameters for exploring photoimmunotherapy, like dosage, 
treatment sequencing, and timing. Standardizing the treatment 
methods is challenging since every patient reacts differently. 
Cancer that is resistant to both PDT and IOT, and combining the 
two treatments, might still not be enough to get beyond the 
resistance mechanism (18). Nonetheless, more advanced and 
effective anticancer photoimmunotherapy methods using 
nanotechnology may use target-specific moieties for overcoming 
resistance and other treatment challenges. 
5 Preclinical evidence of nano­
photoimmunotherapy combating 
cancer resistance 

Nanotechnology can improve photoimmunotherapy’s accuracy 
and effectiveness, providing answers to some of the treatment 
challenges. Nanomaterials with unique therapeutic attributes can 
exhibit high photoactivity, low toxicity, and multifunctional 
characteristics, and alongside a suitable wavelength of light 
stimulation, can deeply penetrate tumor tissues (18). Multiple 
treatment strategies can be successfully integrated into one 
platform thanks to the multi-functionality of nanoparticles (255, 
256). Photoimmunotherapy assisted by nanotechnology methods is 
noted to present synergistic effects, improving the antitumor 
immunological responses (257). This indicates that major cancer 
treatment resistance phenomena that are linked with the TME, 
metastases, enhanced permeability and retention (EPR), and non­
specific targeting may be addressed by incorporating formulated 
specific forms of nanoparticles in photommunotherapy treatment. 
This can help to overcome irAEs, toxicity, and treatment resistance. 
5.1 Nano-photoimmunotherapy in specific 
tumor-targeting 

Tumor-targeting through nano-photoimmunotherapy can 
minimize systemic toxicity, safeguard normal healthy cells, and 
strengthen photoimmunotherapy. Besides, the targeted delivery of 
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immune modulators and photosensitizers into the tumor tissue 
through nanoparticles can augment the treatment effectiveness (258, 
259). For instance, Deng et al. produced a reduction-sensitive 
nanocarriers (Ds-sP NPs) [PEG-s-s-1,2-distearoyl-sn-glycero-3­
phosphoethanolamine-N-(amino (polyethylene glycol)-2000] that 
were successfully loaded with an endoplasmic reticulum ER-targeting 
PS (TCPP-TER) [4,4′,4″,4′″-(porphyrin-5,10,15,20-tetrayl)tetrakis(N­
(2-((4methylphenyl)sulfonamido) ethyl)benzamide]. The obtained 
Ds-sP/TCPP-TER NPs complex exhibited a selective ER 
accumulation, resulting in local production of ROS, following 
treatment with the near-infrared laser. This induced an increased 
level of oxidative stress in the tumor cell ER, activating the DAMPs 
and hence producing an amplified ICD (260). Similarly, PDT 
combined with epidermal growth factor receptor blockade was 
investigated, where a nanobody-IRDye700 conjugate composite was 
administered to a mouse orthotopic tumor model. The results prove 
that the nanobody-PS conjugate composite accumulated in the tumor 
tissue, causing necrosis with a non-toxic impact on normal tissues 
(261). In addition, Hanaoka et al. developed a photoimmunotherapy 
photosensitizer nano-conjugate composite (drug), IR700-YP7, to target 
Glypican-3 (GPC3). Glypican-3 (GPC3) is a surface biomarker 
expressed on HCC cells and is a therapeutically attractive target since 
its expression is predominantly high in hepatocellular carcinoma 
(HCC) and not in healthy cells. Also, HCC is a deadly malignancy 
worldwide, and only a small percentage of patients with HCC can 
benefit from curative surgery (262, 263). The IR700-YP7 (IRDye700DX 
conjugated with anti-GPC3 antibody) photoimmunotherapy drug with 
nab-paclitaxel was used to treat A431/G1 tumors in mice. When the 
treated tumor tissue was exposed to near-infrared light treatment, the 
IR700-YP7 rapidly caused A431/G1 cell death. Photoimmunotherapy 
helped in decreasing the tumor growth in comparison with the 
untreated tumor  and also facilitated  the improved delivery of nab

paclitaxel, hence boosting the treatment therapeutically (262). This is 
supported by the fact that AbPCs do not affect non-expressing cells, but 
they are only effective as a therapeutic drug when attached to the 
targeted cell membrane. Also, early after photoimmunotherapy, tumor 
vessels are not damaged and are permeable, promoting a dramatic 
increase in blood flow. This makes it easy for nanosized drugs of high 
concentration to be delivered to the specific tumor during treatment, 
with little uptake in the non-tumor targeted areas (264). In another 
study, HCC  was targeted through  its cell surface  biomarker called

EpCAM (epithelial cell adhesion molecule) (265). EpCAM plays a vital 
role in cell proliferation, adhesion, stemness, and migration. This makes 
EpCAM a possible IOT target in cancer treatment and is also useful as a 
prognostic marker and in diagnosis (266, 267). EpCAM has been 
reported to be a stem cell marker and greatly promotes the survival and 
metastasis of cancerous tumors, including HCC (267, 268). An anti-
EpCAM-conjugated nano-micelle (anti-EpCAM-UPGs-MX) was 
developed by Han et al. An excellent EpCAM targeting signal was 
observed in HCC-bearing mice after they were treated with the 
conjugate. This was confirmed through a vibrant green fluorescence 
signal from the treated mice. The anti-EpCAM-conjugated nano­
micelle also exhibited both passive and active targeting potential, 
leading to its elevated aggregation rate in the tumor even 48 hours 
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after treatment. Conversely, the untargeted micelles exhibited passive 
targeting and no active targeting (265). 

In clinical practice, targeting tumors through the EPR effect 
does not always result in fruitful outcomes, as the EPR effect would 
rely on the tumor type and location, the macromolecular antitumor 
drug’s physical-chemical attributes, and the tumor blood perfusion 
state. However, nanoparticles can promote the EPR effect, making it 
possible to deliver the antitumor agent precisely. This can lead to 
increased accumulation of the antitumor agent at the tumor site and 
enhance blood supply to the tumor (269, 270). A study by Sano et al. 
developed a novel antibody conjugate consisting of an antibody and 
photosensitizer [RDye 700DX (IR700)] to enhance photo­
immunotherapy by the EPR effect. The antibody conjugate could 
deliver nanoparticles (with sizes 10–200 nm) effectively into the 
tumor site. Highly selective cell killing occurred rapidly following 
690 nm of phototreatment. The antibody bound maximally to the 
cells in the perivascular tumor space and caused the fast killing of 
tumor cells. When these cells are killed fast, vascular permeability 
rises, permitting rapid leakage of nanoparticles into the tumor. As a 
result, the photo-immunotherapy-treated tumor accumulated the 
nanoparticles up to 24 times above that of the control tumor, a 
phenomenon referred to as “super-enhanced permeability and 
retention.” Also, the photo-immunotherapy combined with 
liposome-daunorubicin treatment resulted in improved treatment 
and prolonged survival of the tumor-bearing mice (264). In 
addition, a nano-redox-activatable liposome (RAL) was developed 
and encapsulated with an indoleamine 2,3-dioxygenase (IDO) 
inhibitor (IDO@RAL). The RAL demonstrated an EPR effect by 
its increased tumor accumulation and prolonged blood circulation 
in mice with 4T1 tumors. If endocytosis occurred following 
treatment of the tumor, the nanovesicle may cause an exponential 
increase in PDT activity (>100-fold) and fluorescence signal due to 
the high glutathione threshold in the tumor intracellular space. 
Consequently, phototoxicity to healthy cells will be reduced, and 
tumor growth inhibition achieved thanks to the nano-activatable 
design. Interestingly, the RAL-mediated PDT led to cytotoxic T 
cells’ intratumoral infiltration by triggering the tumor cells in ICD. 
The treatment, in combination with the IDO inhibitor, led to an 
augmented systemic antitumor immunologic effect (271). 
5.2 Nano-photoimmunotherapy in 
overcoming tumor microenvironment 
setbacks 

Solid tumors commonly display certain TME resistance 
characteristics, such as extreme hypoxia, low pH, and elevated 
levels of glutathione (GSH) content, compared to healthy tissues. 
The TME can be modulated using nanoparticles to make it less 
immunosuppressive and more favorable for treatment that could 
trigger an immune response activation. Also, smart nanotechnology 
TME-sensitive components or chemical linkers can be designed to 
overcome the TME setbacks. TME-sensitive nanoparticle components, 
and also advanced nanosized metal–organic frameworks can efficiently 
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escape the aggregation-caused quenching. This allows for 
photosensitizers to be released quickly in the tumor, leading to great 
elevations in ROS production (99, 258). The elevated ROS can 
strengthen the immunological response by boosting the effect of 
ICD. In addition, TME-sensitive nanoparticles can program the 
pharmacokinetics and location of both immunomodulators and 
photosensitizers smartly. This increases the tumor-targeting ability, 
resulting in optimized photoimmunotherapy without producing 
any acute side effects (99). For instance, a study by Zhen et al. 
developed a nano-photoimmunotherapy (nanoparticle-based 
photoimmunotherapy) to modulate the  TEM for  effective  immunity  
against cancer. In the study, carcinoma-associated fibroblasts (CAFs) 
were combated by targeting a fibroblast-activation protein (FAP), 
noted to be highly expressed on CAFs’ surface (272). CAFs, as a 
major TME component, in both the original and metastatic tumors, 
can strongly affect the behavior of cancerous cells and exhibit multi-

functions in tumor development, metastasis, angiogenesis, cancer 
stemness, metabolism, immunosuppression, and tumorigenesis (273– 
275). FAP is regarded as a universal antigen for tumor targeting, and its 
expression by multipotent bone marrow stem cells has been reported 
by different studies (272, 276, 277). A nano-photoimmunotherapy drug 
developed using ferritin (a solid nanoparticle-protein cage, serving as a 
photosensitizer carrier) was conjugated with FAP-scFv (FAP-specific 
single-chain variable fragment). The photo-irradiation treatment 
facilitated the nano-photoimmunotherapy drug to eradicate the 
CAFs in tumors, yet with little injury to the normal tissues because 
of the treatment location. Importantly, the nano-photoimmunotherapy 
resulted in strong suppression of the tumor in immunocompetent 
mice. Additional investigation revealed that the nano­
photoimmunotherapy promoted a decrease in the secretion of C–X– 
C motif chemokine ligand 12 (CXCL12) and the deposition in the 
tumor extracellular matrix, which are all controlled in untreated 
tumors by CAFs and also regulate T cell exclusion, which stops T 
cells from direct contact with cancerous cells. CAFs’ selective killing 
through nano-photoimmunotherapy leads to substantial T cell 
infiltration, accompanied by effective suppression of the tumor (272). 
Another study serendipitously discovered that pH-responsive 
nanovesicles (pRNVs) (which are self-assembled from block 
copolymer polyethylene glycol-b-cationic polypeptide) are capable of 
more than just acting as nanocarriers, as the pRNVs also trigger ICD 
through exposing calreticulin on the surface of preapoptotic cells. The 
pRNVs composite was developed by encapsulating with indoximod 
(IND) (an indoleamine 2,3-dioxygenase inhibitor) and the 
photosensitizer [2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a 
(HPPH)], forming a pRNVs/HPPH/IND composite. A low dose of 
pRNVs/HPPH/IND stimulated significant anticancer impact, and the 
photo-irradiation led to an abscopal effect on the B16F10 melanoma 
model. The major outcome of the treatment includes the generation of 
singlet oxygen through HPPH-mediated PDT, increased recruitment 
of DC and immunological response following ICD stimulation by PDT 
and pRNVs, as well as the modulation of TME by IND, which was up-
regulated by P-S6K phosphorylation, leading to the inhibition of Tregs 
and the enlargement of CD8+ T cells. The study thus presents an “all­
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in-one” nanocarrier that uses multifunctional materials to enhance the 
effectiveness of cancer immunotherapy (278). 

Tumor hypoxia remains a significant barrier to immunotherapy, 
PDT, and other cancer treatment methods, resulting in poor clinical 
prognosis (279, 280). Hypoxia is essential for developing an 
immunosuppressive TEM, since it controls programmed death 
ligand 1 (PD-L1) expression and immunosuppressive TAMs 
infiltration (281). However, nanocarriers can deliver therapeutic 
agents to reduce hypoxia, which is often common in TMEs, 
improving the efficacy of cancer therapy. To overcome hypoxia and 
enhance tumor treatment, oxygen-generating or oxygen-carrying 
strategies mediated by nanoparticles can promote oxygen elevation 
in  the tumor  tissue (279, 280). A core-shell nanoformulation (AuNC@ 
MnO2, AM) was created in another study, consisting of a hollow gold 
nanocage (AuNCs) formulation covered with a manganese dioxide 
coat (282) for treating metastatic triple-negative breast cancer 
(mTNBC) through PDT-induced oxygen-boosted immunogenicity. 
mTNBC is a very aggressive form of cancer that is typified by 
producing elevated fatality and poor prognosis, even with systemic 
chemotherapy and radiotherapy interventions. The AuNC@MnO2, 
AM nanomaterial acts like a TME-responsive oxygen producer. The 
PDT-induced oxygen-boosted immunogenicity was stimulated thanks 
to the generation of ROS after the NIR irradiation treatment. In the 
presence of excessive H2O2 and in an acidic microenvironment, the 
manganese dioxide (MnO2) undergoes a reaction: MnO2 + H2O2 + 
2H+ → Mn²++ 2H2O + O2↑ in the tumor tissue, producing a lot of 
oxygen to enhance the build-up of ROS in the tumor tissue, while also 
increasing the effectiveness of PDT. This procedure elicits an ICD and 
the release of DAMPs, thereby inducing DC maturation and the 
stimulation of effector  cells.  This evokes a strong  systemic

immunological response against mTNBC. Also, the produced Mn²+ 

and oxygen are useful for multimodal imaging since they can generate 
fluorescence (FL)/photoacoustic (PA)/magnetic resonance, hence 
providing the possibility for integrating the diagnosis and treatment 
of tumors (282). 

Another study described an MnO2-containing albumin nano­
formulation for enhancing IOT through immunosuppressive 
TME modulation and tumor hypoxia alleviation. The MnO2­

containing albumin nano-formulation facilitated the collaborative 
delivery of paclitaxel dimer, NLG919, and IR780 to augment 
photoimmunotherapy. An increase in oxygen supply was catalyzed by 
MnO2, promoting an effective paclitaxel-mediated therapy and PDT, 
which collectively enhanced the development of specific cytotoxic  T  cells  
and ICD. Interestingly, the increased oxygen supply relieves the tumor 
tissue from hypoxia, hence modifying the immunosuppressive TME by 
suppressing the PD-L1 expression and the M2-type TAMs infiltration in 
the tumor tissue. This enhanced the effectiveness and infiltration of 
cytotoxic T cells when combined with immune checkpoint blockade 
through NLG919, leading to the complete eradication of the primary 
tumor and almost completely halting tumor cell metastasis and relapse. 
This study validates a strategic therapeutic method for breast cancer by 
strengthening IOT through hypoxia relief by immunosuppression 
modulation and ICD induction (281). 
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5.3 Nano-photoimmunotherapy in 
addressing metastasis and recurrence 

Cancer metastasis and recurrence remain the inevitable problems 
despite the utilization of robust treatment methods. Also, addressing 
the seeding and colonization of metastatic tumor cells remains difficult. 
The current IOT method seems to be more suitable for solving these 
problems. However, the  clinical  utilization of IOT is hindered by poor 
tumor antigen presentation, tumor tissue heterogeneity, and 
inadequate targeting (283, 284). Combination photo-immunotherapy 
procedures that use nanoparticles are encouraged, as they could 
enhance responsiveness in patients responding to cancer treatments 
(258). A study by Xu et al., 2017 engineered upconversion 
nanoparticles (UCNPs) that were concurrently filled with imiquimod 
(R837) (toll-like-receptor-7 agonist) and chlorin e6 (Ce6), producing a 
UCNP-Ce6-R837 complex that was used for preventing the recurrence 
of colorectal cancer by targeting both the primary and metastasized 
tumor. The UCNP-Ce6-R837 treatment, followed by near-infrared 
(NIR) irradiation, would lead to depth penetration of the tissue, leading 
to effective tumor destruction by PDT. This promotes the generation of 
tumor-associated antigens, which, when combined with the adjuvant 
(R837) containing nanoparticle (UCNP-Ce6-R837), can stimulate a 
robust anticancer immunological response. Interestingly, UCNP-Ce6­
R837 plus PDT treatment merged with checkpoint blockade (CTLA-4) 
not only exhibited outstanding effectiveness in eradicating the tumor 
when subjected to NIR irradiation but also caused a potent anticancer 
immunity, preventing the development of the distant tumor that 
remained following PDT treatment. Moreover, the long-term 
immunological memory capacity of such an IOT method against 
cancer shields the treated mice against cancer cell reactivation (285). 

Besides, a nano-chimeric peptide composite (nano-PpIX-1MT) 
was developed to target lung cancer tumors and metastasized tumors 
by photoimmunotherapy. The nano-PpIX-1MT integrates an immune 
checkpoint inhibitor [1-methyl-tryptophan (1MT)] with the 
photosensitizer [protoporphyrin IX (PpIX)] using a caspase­
responsive peptide sequence [Asp-Glu-Val-Asp (DEVD)]. The nano­
PpIX-1MT infiltrated the tumor site by an enhanced penetration and 
retention effect, followed by photo-irradiation treatment at 630 nm. 
This resulted in ROS production, which caused the cancerous cells to 
undergo apoptosis. This facilitated caspase-3 up-regulation and a 
strong immune response against tumor antigen production. The 
cleavage of caspase-3 was followed by 1MT release, subsequently 
enhancing the immune system and aiding in the efficient activation 
of CD8+ T cells. The nano-PpIX-1MT was therefore able to induce a 
cascaded synergic photoimmunotherapy effect by inhibiting the 
original tumor and metastasized lung cancer (283). 

Furthermore, Ce6/BMS-202 NPs [Ce6/BMS-202/Bristol-Myers 
Squibb nanoparticles (NPs)] were prepared for synergistic PDT and 
IOT on 4T1 tumors. The NPs present beneficial properties, such as 
exhibiting a 100% drug loading ability and nontoxic and 
hydrophilic properties. BMS-202 (N-{2-[({2-Methoxy-6-[(2­

Methyl[1,1’-Biphenyl]-3-Yl)methoxy]pyridin-3-Yl}methyl)amino] 
ethyl}acetamide) is a nonpeptidic small molecule capable of 
strongly inhibiting PD-1/PD-L1 interaction. Treating 4T1 tumor-
Frontiers in Immunology 18 
bearing mice with BMS-202 NPs resulted in a significant decrease in 
4T1 tumor growth, which was identical to the antitumor effect 
induced by anti-PD-L1 monoclonal antibody (a-PD-L1) treatment. 
Using Ce6 NPs in tandem with a-PD-L1 or BMS-202 NPs 
constantly leads to more anticancer and antimetastatic efficacy. 
This was accompanied by increased maturation of dendritic cells 
and improvement in antigen-specific T cells infiltrating the tumor 
tissue, hence resulting in over 90% of the original and distant 
tumors being inhibited. Also, the BMS-202 NPs can combat lung 
cancer metastasis and stop the recurrence of the tumor by providing 
immune-memory protection. BMS-202 NPs could possibly be used 
to replace monoclonal antibodies for cancer IOT applications, as 
antibodies present various therapeutic limitations, such as poor 
immunogenicity, ineffective tumor tissue penetration, and being 
very costly (286). 

Similarly, the study by Guo et al. utilized nano-core-shell magnetic 
composites (MNCs) to develop an oxygen-independent 
photosensitizer for the treatment of triple-negative breast cancer 
models. The MNCs-mediated PDT treatment led to persistent 
production of free radicals by promoting the polarization of 
macrophages into pro-inflammatory M1 phenotype, electron-hole 
dissociation efficacy, and stimulating a systemic immunological 
response against the tumor (287) However, concurrent adaptive 
immune resistance was observed with the MNCs-mediated PDT 
treatment, which was typified by increased expression of PD-L1 on 
tumor tissue, macrophages, and DCs. The MNCs mediated PDT 
treatment in combination with checkpoint blockade significantly 
suppressed the original and metastasized tumors through three 
intervention processes ‘trident modality,’ which includes 
immunosuppressive TEM modification with inhibition of PD-L1 
blockade and immunosuppressive cells; increased tumor-infiltrating­

lymphocyte (TIL) rates; and steady generation of free radicals in both 
the hypoxic and normoxic states to directly eradicate the tumor. 
Likewise, the possible mechanisms responsible for metastasis 
inhibition were investigated using the lung tissue transcriptome 
expression profiling. The outcome indicated that the ‘trident 
modality’ modified several genes that are linked with cancer-related 
signal pathways and immune activation. This “trident modality” could 
be used widely in clinical settings and serve as a potential therapeutic 
strategy for managing cancer that is resistant to treatment (287). 
Moreover, mesoporous hexagonal core-shell zinc porphyrin-silica 
nanomaterial (MPSNs) with the ability to serve as a superior 
photosensitizer in photo-immunotherapy and also as a drug carrier 
to achieve a synergistic effect were loaded with R837 (imiquimod, a toll-
like receptor-7 agonist) (MPSNs@R837) to stimulate photothermal 
therapy (PTT) and PDT ICD. This strategy led to strong 
immunological responses specific to 4T1 tumors in mice, by 
promoting dendritic cell maturation following the pH-responsive 
release of  R837 and  subsequently  causing little toxicity and a strong 
suppression of both primary and metastatic tumors when in 
conjunction with the programmed death ligand-1 (PD-L1) 
checkpoint blockade. This treatment strategy thus demonstrates that 
the utilization of checkpoint blockade alongside PTT and PDT 
treatment can inhibit cancer metastasis (288). 
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6 Conclusion and perspective 

Cancer PDT and IOT are promising therapeutic strategies. 
However, these treatment strategies are still ineffective in eradicating 
cancer due to their inability to surmount therapeutic defeats linked 
with cancer resistance. The involvement of PDT in activating 
anticancer immunological responses is highlighted in different 
studies. PDT is a well-liked treatment that has become a great way 
to enhance immunotherapies for a more effective cancer treatment. 
Various methods of incorporating PDT with IOT explore 
immunologic adjuvants, developed DC vaccines, immune checkpoint 
blockades, and antibody-photosensitizer conjugates and have led to 
excellent synergistic effects in preclinical studies. Still, the development 
of photoimmunotherapy seems to be in its early stages, since it seems to 
lack clinical evidence to fully validate its anticancer therapeutic 
potential in clinical settings. Major treatment setbacks, such as 
toxicity, treatment accessibility, and cost, also hamper 
photoimmunotherapy. Nanotechnology can help address some of the 
therapeutic issues by increasing the precision and efficacy of 
photoimmunotherapy. The amalgamation of tailored nanoparticles 
with photoimmunotherapy (nano-photoimmunotherapy) molecules 
or methods is confirmed in preclinical studies to offer cancer-
targeted therapy, combat cancer metastasis and recurrence, and 
prevent resistance from the TME. This helps to reduce treatment 
systemic toxicity and overall cancer resistance while also promoting a 
long-lasting immunological anticancer response. Unfortunately, these 
promising outcomes are obtained from preclinical research conducted 
in a variety of in vitro and in vivo studies. 

Photoimmunotherapy or nano-photoimmunotherapy clinical 
applications are strongly needed in order to fully warrant the 
efficacy of these combination therapies in eradicating resistant 
cancer in patients. To fully comprehend these anticancer 
therapeutic methods’ potential in clinical settings and further 
improve them, more research is necessary. Therefore, further 
clinical research or multiple clinical trial studies are solicited to 
determine the broader efficacy of photoimmunotherapy or nano­
photoimmunotherapy procedures across diverse patient tumor 
types. This could lead to clinical advanced photoimmunotherapy 
molecules for different cancers being introduced to the market. This 
could help in overcoming cancer resistance in cancer patients. 
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Determinants of photodynamic therapy resistance in cancer cells. Int J Mol Sci. 
(2024) 25:12069. doi: 10.3390/ijms252212069 

97. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. 
Photodynamic therapy of cancer: an update. CA Cancer J Clin. (2011) 61:250–81. 
doi: 10.3322/caac.20114 

98. Yang C, Fu Y, Huang C, Hu D, Zhou K, Hao Y, et al. Chlorin e6 and CRISPR­
Cas9 dual-loading system with deep penetration for a synergistic tumoral 
photodynamic-immunotherapy. Biomaterials. (2020) 255:120194. doi: 10.1016/ 
j.biomaterials.2020.120194 

99. Ji B, Wei M, Yang B. Recent advances in nanomedicines for photodynamic 
therapy (PDT)-driven cancer immunotherapy. Theranostics. (2022) 1):434–58. 
doi: 10.7150/thno.67300 

100. Nkune NW, Abrahamse H. Anti-hypoxia nanoplatforms for enhanced 
photosensitizer uptake and photodynamic Therapy Effects in Cancer Cells. Int J Mol 
Sci. (2023) 24:2656. doi: 10.3390/ijms24032656 

101. Sun B, Bte Rahmat JN, Zhang Y. Advanced techniques for performing 
photodynamic therapy in deep-seated tissues. Biomaterials. (2022) 291:121875. 
doi: 10.1186/s40364-024-00625-6 

102. Zhang M, Zhao Y, Ma H, Sun Y, Cao J. How to improve photodynamic 
therapy-induced antitumor immunity for cancer treatment? Theranostics. (2022) 
12:4629–55. doi: 10.7150/thno.72465 

103. Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J 
Clin Oncol. (2011) 29:4828–36. doi: 10.1200/JCO.2011.38.0899 

104. Sui C, Wu H, Li X, Wang Y, Wei J, Yu J, et al. Cancer immunotherapy and its 
facilitation by nanomedicine. biomark Res. (2024) 12:77. doi: 10.1186/s40364-024­
00625-6 

105. Tomar N, De RK. A brief outline of the immune system. Methods Mol Biol. 
(2014) 1184:3–12. doi: 10.1007/978-1-4939-1115-8_1 

106. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate 
immune system. Science. (2010) 327:291–5. doi: 10.1126/science.1183021 

107. Strioga M, Schijns V, Powell DJ, Pasukoniene V, Dobrovolskiene N, Michalek J. 
Dendritic cells and their role in tumor immunosurveillance. Innate Immun. (2013) 
19:98–111. doi: 10.1177/1753425912449549 

108. Bousso P. T-cell activation by dendritic cells in the lymph node: lessons from 
the movies. Nat Rev Immunol. (2008) 8:675–84. doi: 10.1038/nri2379 

109. Ferlazzo G, Münz C. NK cell compartments and their activation by dendritic 
cells. J Immunol. (2004) 172:1333–9. doi: 10.4049/jimmunol.172.3.1333 
frontiersin.org 

https://doi.org/10.1586/eci.10.81
https://doi.org/10.1158/0008-5472.CAN-07-1778
https://doi.org/10.3389/fonc.2022.863107/full
https://doi.org/10.5114/ceji.2015.56974
https://doi.org/10.5114/ceji.2015.56974
https://doi.org/10.1016/j.bbcan.2009.08.003
https://doi.org/10.1038/s41577-019-0215-7
https://doi.org/10.1038/nri.2017.9
https://doi.org/10.1038/s41568-018-0037-0
https://doi.org/10.1038/s41580-019-0133-3
https://doi.org/10.3389/fimmu.2024.1375767
https://www.authorea.com/users/868604/articles/1250265-the-damp-theory-concepts-evidence-and-implications
https://www.authorea.com/users/868604/articles/1250265-the-damp-theory-concepts-evidence-and-implications
https://doi.org/10.1039/c0pp00294a
https://doi.org/10.5411/wji.v4.i1.1
https://doi.org/10.1038/s41467-019-11269-8
https://doi.org/10.1038/cdd.2016.7
https://doi.org/10.1371/journal.pone.0105778
https://doi.org/10.1371/journal.pone.0105778
https://doi.org/10.1038/onc.2016.104
https://doi.org/10.1038/onc.2016.104
https://doi.org/10.1016/j.scitotenv.2024.175612
https://doi.org/10.1016/j.scitotenv.2024.175612
https://doi.org/10.3389/fonc.2015.00015
https://doi.org/10.1038/nri.2017.48
https://doi.org/10.1371/journal.pone.0105778
https://doi.org/10.1371/journal.pone.0105778
https://doi.org/10.1080/2162402X.2018.1431089
https://doi.org/10.1038/s41467-018-05211-7
https://doi.org/10.1038/s41467-018-06807-9
https://doi.org/10.1038/s41467-018-06807-9
https://doi.org/10.1126/scitranslmed.aae0105
https://doi.org/10.18632/oncotarget.5975
https://doi.org/10.1038/nrc3380
https://doi.org/10.4161/auto.25399
https://doi.org/10.4161/auto.25399
https://doi.org/10.1126/science.1208347
https://doi.org/10.1042/BJ20150942
https://doi.org/10.3390/pharmaceutics13091332
https://doi.org/10.1016/j.pdpdt.2009.03.002
https://doi.org/10.3390/pharmaceutics13060786
https://doi.org/10.3390/pharmaceutics13060786
https://doi.org/10.3389/fonc.2024.1373263
https://doi.org/10.1016/j.hsr.2025.100218
https://doi.org/10.3389/fphar.2022.964141
https://doi.org/10.3390/ijms252212069
https://doi.org/10.3322/caac.20114
https://doi.org/10.1016/j.biomaterials.2020.120194
https://doi.org/10.1016/j.biomaterials.2020.120194
https://doi.org/10.7150/thno.67300
https://doi.org/10.3390/ijms24032656
https://doi.org/10.1186/s40364-024-00625-6
https://doi.org/10.7150/thno.72465
https://doi.org/10.1200/JCO.2011.38.0899
https://doi.org/10.1186/s40364-024-00625-6
https://doi.org/10.1186/s40364-024-00625-6
https://doi.org/10.1007/978-1-4939-1115-8_1
https://doi.org/10.1126/science.1183021
https://doi.org/10.1177/1753425912449549
https://doi.org/10.1038/nri2379
https://doi.org/10.4049/jimmunol.172.3.1333
https://doi.org/10.3389/fimmu.2025.1633953
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kah and Abrahamse 10.3389/fimmu.2025.1633953 
110. Ghasemi M, Abbasi L, Ghanbari Naeini L, Kokabian P, Nameh Goshay Fard N, 
Givtaj N. Dendritic cells and natural killer cells: The road to a successful oncolytic 
virotherapy. Front Immunol. (2023) 13:950079/full. doi: 10.3389/fimmu.2022.950079/full 

111. Ager A, Watson HA, Wehenkel SC, Mohammed RN. Homing to solid cancers: 
A vascular checkpoint in adoptive cell therapy using CAR T-cells. Biochem Soc Trans. 
(2016) 44:377–85. doi: 10.1042/BST20150254 

112. Jiang H, Jiang J. Balancing act: the complex role of NK cells in immune regulation. 
Front Immunol. (2023) 14:1275028/full. doi: 10.3389/fimmu.2023.1275028/full 

113. Dolina JS, Van Braeckel-Budimir N, Thomas GD, Salek-Ardakani S. CD8+ T 
cell exhaustion in cancer. Front Immunol. (2021) 12:715234. doi: 10.3389/ 
fimmu.2021.715234 

114. Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, et al. 
Identification of a subset of human natural killer cells expressing high levels of 
programmed death 1: A phenotypic and functional characterization. J Allergy Clin 
Immunol. (2017) 139:335–46. doi: 10.1016/j.jaci.2016.04.025 

115. Lu Y, Sun W, Du J, Fan J, Peng X. Immuno-photodynamic therapy (IPDT): 
Organic photosensitizers and their application in cancer ablation. JACS Au. (2023) 
3:682–99. doi: 10.1021/jacsau.2c00591 

116. Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising 
immuno-therapeutics: platforms and current progress. J Hematol Oncol. (2022) 15:28. 
doi: 10.1186/s13045-022-01247-x 

117. Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: Current progress and 
future challenges. Chem Rev. (2020) 120:3210–29. doi: 10.1021/acs.chemrev.9b00472 

118. Morse MA, Hobeika AC, Osada T, Berglund P, Hubby B, Negri S, et al. An 
alphavirus vector overcomes the presence of neutralizing antibodies and elevated 
numbers of Tregs to induce immune responses in humans with advanced cancer. J Clin 
Invest. (2010) 120:3234–41. doi: 10.1172/JCI42672 

119. Toussaint B, Chauchet X, Wang Y, Polack B, Le Gouëllec A. Live-attenuated 
bacteria as a cancer vaccine vector. Expert Rev Vaccines. (2013) 12:1139–54. 
doi: 10.1586/14760584.2013.836914 

120. Guasp P, Reiche C, Sethna Z, Balachandran VP. RNA vaccines for cancer: 
Principles to practice. Cancer Cell. (2024) 42:1163–84. doi: 10.1016/j.ccell.2024.05.005 

121. Liao HC, Liu SJ. Advances in nucleic acid-based cancer vaccines. J Biomed 
Science. (2025) 32:10. doi: 10.1186/s12929-024-01102-w 

122. Yang R, Cui J. Advances and applications of RNA vaccines in tumor treatment. 
Mol Cancer. (2024) 23:226. 

123. Le DT, Pardoll DM, Jaffee EM. Cellular vaccine approaches. Cancer J. (2010) 
16:304–10. doi: 10.1097/PPO.0b013e3181eb33d7 

124. Bear AS, Fraietta JA, Narayan VK, O’Hara M, Haas NB. Adoptive cellular 
therapy for solid tumors. Am Soc Clin Oncol Educ Book. (2021) 41:57–65. doi: 10.1200/ 
EDBK_321115 

125. Rohaan MW, Wilgenhof S, Haanen JBAG. Adoptive cellular therapies: the 
current landscape. Virchows Arch. (2019) 474:449–61. doi: 10.1007/s00428-018-2484-0 

126. Lai J, Mardiana S, House IG, Sek K, Henderson MA, Giuffrida L, et al. Adoptive 
cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives 
epitope spreading and antitumor immunity. Nat Immunol. (2020) 21:914–26. 
doi: 10.1038/s41590-020-0676-7 

127. Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid 
tumors. Annu Rev Med. (2017) 68:139–52. doi: 10.1146/annurev-med-062315-120245 

128. Uslu U, June CH. Beyond the blood: expanding CAR T cell therapy to solid 
tumors. Nat Biotechnol. (2025) 43:506–15. doi: 10.1038/s41587-024-02446-2 

129. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. 
Nat Rev Cancer. (2012) 12:252–64. doi: 10.1038/nrc3239 

130. Sharon E, Streicher H, Goncalves P, Chen HX. Immune checkpoint inhibitors 
in clinical trials. Chin J Cancer. (2014) 33:434–44. doi: 10.5732/cjc.014.10122 

131. Guan J, Lim KS, Mekhail T, Chang CC. Programmed death ligand-1 (PD-L1) 
Expression in the programmed death receptor-1 (PD-1)/PD-L1 Blockade: A key player 
against various cancers. Arch Pathol Lab Med. (2017) 141:851–61. doi: 10.5858/ 
arpa.2016-0361-RA 

132. Salama AKS, Hodi FS. Cytotoxic T-lymphocyte-associated antigen-4. Clin 
Cancer Res. (2011) 17:4622–8. doi: 10.1158/1078-0432.CCR-10-2232 

133. He Y, Cao J, Zhao C, Li X, Zhou C, Hirsch FR. TIM-3, a promising target for 
cancer immunotherapy. Onco Targets Ther. (2018) 11:7005–9. doi: 10.2147/ 
OTT.S170385 

134. Lythgoe MP, Liu DSK, Annels NE, Krell J, Frampton AE. Gene of the month: 
lymphocyte-activation gene 3 (LAG-3). J Clin Pathol. (2021) 74:543–7. doi: 10.1136/ 
jclinpath-2021-207517 

135. Yu X, Huang X, Chen X, Liu J, Wu C, Pu Q, et al. Characterization of a novel 
anti-human lymphocyte activation gene 3 (LAG-3) antibody for cancer 
immunotherapy. MAbs. (2019) 11:1139–48. doi: 10.1080/19420862.2019.1629239 

136. Buss NAPS, Henderson SJ, McFarlane M, Shenton JM, de Haan L. Monoclonal 
antibody therapeutics: history and future. Curr Opin Pharmacol. (2012) 12:615–22. 
doi: 10.1016/j.coph.2012.08.001 

137. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 
(2015) 20:838–47. doi: 10.1016/j.drudis.2015.02.008 
Frontiers in Immunology 22 
138. Kimiz-Gebologlu I, Gulce-Iz S, Biray-Avci C. Monoclonal antibodies in cancer 
immunotherapy. Mol Biol Rep. (2018) 45:2935–40. doi: 10.1007/s11033-018-4427-x 

139. Ponziani S, Di Vittorio G, Pitari G, Cimini AM, Ardini M, Gentile R, et al. 
Antibody-drug conjugates: The new frontier of chemotherapy. Int J Mol Sci. (2020) 
21:5510. doi: 10.3390/ijms21155510 

140. Bayer V. An overview of monoclonal antibodies. Semin Oncol Nurs. (2019) 
35:150927. doi: 10.1016/j.soncn.2019.08.006 

141. Malik B, Ghatol A. Understanding how monoclonal antibodies work. In: 
StatPearls. StatPearls Publishing, Treasure Island (FL (2025). Available online at: 
http://www.ncbi.nlm.nih.gov/books/NBK572118/. 

142. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody 
successes in the clinic. Nat Biotechnol. (2005) 23:1073–8. doi: 10.1038/nbt0905-1073 
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