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Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially

curative therapy for hematologic malignancies. However, the initial clinical

experience with allo-HSCT revealed a concerning prevalence of severe graft-

versus-host disease (GVHD) and graft failure. Subsequent randomized studies

highlighted the role of anti-thymocyte globulin (ATG) in reducing acute and

chronic GVHD and graft failure, although it did not improve overall survival.

Pharmacodynamic studies have established an association between ATG

concentration and the incidence of GVHD and life-threatening infections.

However, ATG concentration at designated timepoints showed no such

correlations with non-relapse mortality and overall survival in allo-HSCT. There

is a delicate balance between ATG exposure and the outcomes of allo-HSCT.

More specifically, insufficient ATG exposure may diminish its function on GVHD

prophylaxis, while excessive ATG may delay immune reconstitution and increase

risk of disease relapse and infection. Considering the significant inter-individual

heterogeneity in ATG pharmacokinetics, individualized ATG dosing could

potentially increase the proportion of transplant recipients attaining the

optimal ATG exposure. Recent studies have shown that individualized ATG

dosing, guided by absolute lymphocyte count or therapeutic drug monitoring,

can improve optimal exposure attainment rate. Which indicated a potential

approach to achieve superior transplant outcomes. This review summarizes

the advances and the challenges of individualized ATG dosing in allo-HSCT.
KEYWORDS

antithymocyte globulin, graft-versus-host disease, hematopoietic stem cell
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1 Introduction

Despite advances in chemotherapy and novel cellular therapies,

allogeneic hematopoietic stem cell transplantation (allo-HSCT)

remains a well-established curative therapy for defined subsets of

hematologic malignancies (1, 2). In its initial historical application

decades ago, allo-HSCT was associated with substantial risks,

including graft-versus-host disease (GVHD) and graft failure

(GF) (3, 4). Multiple randomized trials demonstrated that anti-

thymocyte globulin (ATG) could reduce the incidence of both

severe acute (aGVHD) and chronic GVHD (cGVHD) post-

transplant (5–7), while some randomized studies reported no

significant improvement in cGVHD-free survival in specific

cohorts with ATG (8, 9). Collectively, these findings provide a

compelling rationale for the incorporation of ATG into allo-HSCT

to prevent GVHD.

ATG is a polyclonal antibody that could deplete a variety of

immune cells, while the primary mechanism of GVHD prophylaxis

is T-cell depletion (10). Historically, three main types of ATG

products have been available for clinical use. The first ATG

formulation was horse-derived ATG (ATGAM®, Pfizer, USA)

(11). ATGAM® is not typically used for the indication of allo-

HSCT, as two prospective trials failed to demonstrate its efficacy in

prophylaxis of aGVHD (12, 13). The other two ATGs,

Thymoglobulin® (ATG-T, Sanofi, France) and Grafalon®

(formerly known as ATG-Fresenius, ATG-F, Neovii, Germany),

are both derived from rabbits. Although most of these products are

commercially available, ATG-T remains the most commonly used

ATG preparation in clinical practice (14, 15). Consequently, this

review will focus on the investigations into optimizing the dosage of

ATG-T. It is important to note that there is no universally accepted

bioequivalent dosing between ATG-T and ATG-F, special caution

should be exercised when switching between the two ATG

preparations in clinical practice (16–18).

Pharmacological studies of ATG found that the immunological

effects of ATG are critically influenced by its concentration (19–26).

Therefore, optimizing ATG dose in allo-HSCT to maximize its

GVHD prophylaxis effect and minimize its potential side effects is

crucial for improving transplant outcomes (14, 27, 28). Early studies

explored the optimal ATG dose using body weight-adjusted dosing

strategy (6, 8, 29). However, due to ATG pharmacokinetics being

influenced by body weight of recipients, lymphocyte count and

timing of ATG administration, the inter-individual heterogeneity is

considerable (30–32). As such, the optimal ATG dose in allo-HSCT

has not yet been determined. Given the ATG pharmacokinetic

heterogeneity among transplant recipients, individualized ATG

dosing may be a potential solution and has garnered significant

research interest. Recent pharmacological studies have found that

optimal ATG exposure is associated with lower incidence of GVHD

and virus reactivation, and may even lead to improved non-relapse

mortality (NRM) and overall survival (OS) (33–35). Importantly,

achieving optimal ATG exposure through individualized dosing can

reduce adverse events in allo-HSCT and improve health-related

quality of life (19, 36, 37).
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This review aims to provide a comprehensive summary of the

advances of individualized ATG dosing in allo-HSCT and its effect

on transplant outcomes.
2 Immunomodulatory effects and
concentration detection of ATG

ATG-T is a heterologous polyclonal immunoglobulin G (IgG)

that targets over 40 antigens (14, 15). These antigens are classified

into two categories based on their biological function: immune cell

response antigens and adhesion/cell-trafficking molecules (Figure 1)

(14, 15, 38, 39). ATG-T mediates its immunomodulatory effects

primarily by targeting T cells and other immune effector cells. It

targets key T-cell antigens, including CD2, CD3, CD4, CD5, CD6,

CD8, CD28 and HLA class I molecules, leading to T-cell depletion

via complement-dependent lysis and T-cell activation-induced

apoptosis (38, 40). Additionally, ATG-T also contains antibodies

against B-cell surface proteins CD5, CD19, CD20, CD30, CD38,

CD40, CD80, CD95, CD138 and HLA-DR, triggering caspase- and

cathepsin-dependent B cell apoptosis (38, 40, 41). Furthermore,

ATG-T could inhibit dendritic cell (DC) maturation and migration

by targeting CD1a, CD4, CD11a, CD11b, CD29, CD32, CD51/61,

CD86, MHC I and MHC II (38, 42). In vitro studies have

demonstrated its capacity to expand CD4+ CD25+ regulatory T

cells (Tregs) by targeting CTLA-4, FOXP3, GITR (43, 44). Finally,

ATG modulates leukocyte-endothelial interactions by targeting

integrins (VLA-4, LPAM-1), chemokine receptors (CXCR4,

CCR5, CCR7), and leukocyte adhesion molecules (ICAM-1,

ICAM-2, ICAM-3), thereby disrupting leukocyte adhesion to

endothelia (38, 45).

It is important to note that the immunomodulatory effects of

ATG depended critically on its concentration. Specifically, a low

dose of ATG (e.g., 1 mg/kg) is sufficient to induce antibody-

dependent cell-mediated cytotoxicity (ADCC) against activated T

cells in blood circulation. However, this ATG concentration is

inadequate for depleting lymphocytes (T cells, B cells and NK

cells) and antigen-presenting cells residing within secondary

lymphoid tissues (22, 46). Additionally, B cells (CD20+) and NK

cells (CD16+/CD56+) may only be affected at higher doses (> 5mg/

kg) of ATG-T (22). Lower-dose ATG selectively depleted activated

T cells while preserving the function of B and NK cells, thereby

mitigating systemic immunosuppression (14). Although the effects

of ATG are dose-dependent on various cell types, it needs special

caution to adjust the dose of ATG for individuals to improve the

efficacy of HSCT.

The concentration of ATG, often labeled on the vial, generally

refers to the total ATG. Total ATG levels in patient samples could

be quantified by enzyme-linked immunosorbent assay (ELISA) (47,

48). The component capable of binding to human lymphocytes was

defined as active ATG. Despite comprising only 10% of total ATG,

active ATG significantly affects aGVHD, immune reconstitution

and post-transplant lymphoproliferative disorder (PTLD) (19–21,

49). The quantification of active ATG remains challenging (50, 51),
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https://doi.org/10.3389/fimmu.2025.1634157
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1634157
with flow cytometry being the most widely utilized method for its

detection (21, 51). In 2020, liquid chromatography-mass

spectrometry (LC-MS) was employed for the first time to quantify

the active fraction of ATG in plasma (52). This technique offers

superior precision; however, its application remains limited due to

restricted accessibility. The establishment of ATG detecting

methods enables its pharmacokinetic and pharmacodynamic

evaluation in allo-HSCT (Table 1).
3 Interindividual heterogeneity in ATG
pharmacokinetics

The complex immunomodulatory mechanisms of ATG

underlies the significant interindividual heterogeneity in its

pharmacokinetics (27, 48, 51, 53–55). Waller, et al. (48) reported

that the clearance of ATG was relatively slow, and serum total ATG
Frontiers in Immunology 03
remained detectable up to 90 days post-transplant. The calculated

half-life of active and total ATG were 7 days and 14 days,

respectively. The study further demonstrated that the time for

active ATG levels decreasing to sub-therapeutic levels (1 mg/mL)

in the 6 mg/kg group (17 days) was significantly shorter than 10 mg/

kg group (45 days; P = 0.002). Similarly, when using 16-20mg/kg

ATG-T, the median time for active ATG level to decline to less than

2.0mg/ml was 45.5 days (51). The clearance time of the 16–20 mg/kg

ATG group was not significantly longer than that of the 10 mg/kg

group, suggesting that a higher dose (> 10 mg/kg) of ATG-T may

not be necessary. An Austrian study by Seidel, et al. found that the

half-life of ATG-T was consistent when the ATG-T dose within the

range of 7.5-20mg/kg, with a linear correlation between the dose

and maximum serum concentration (Cmax). However, when the

ATG-T dose was 30–40 mg/kg, the active fraction of ATG-T

accumulated in the body, leading to a sharp increase in Cmax and

resulting in ATG overexposure (55).
FIGURE 1

Landscape of ATG-induced immunomodulation mechanisms. The mechanisms are categorized into three groups, indicated by colors in the
outermost circle: cell clearance and apoptosis (light blue) (14, 38, 41, 42), cell expansion (lake blue) (43), and cell adhesion and trafficking (dark blue)
(45). CAM, cell adhesion molecule; CCR, C-C chemokine receptor; CD, cluster of differentiation; CTLA, cytotoxic T-lymphocyte antigen; CXCR, C-
X-C chemokine receptor; DC, dentritic cell; FOXP3, forkhead box P3; GITR, glucocorticoid-induced tumor necrosis factor receptor family-related
protein; HLA-DR, human leukocyte antigen-DR isotype; HLA-I/II, human leukocyte antigen class I/II; LFA, lymphocyte function-associated antigen;
LPAM, lymphocyte Peyer’s patch adhesion molecule; VLA, very late antigen.
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Weight-based ATG dosing induces marked interindividual

variability in ATG exposure, arising from recipient-specific and

regimen-related determinants (Figure 2). Body weight and absolute

lymphocyte count (ALC) constitute principal recipient-specific

determinants of ATG clearance. Pharmacokinetic analyses

demonstrate that pediatric HSCT recipients with higher body

weight and lower ALC exhibit over exposure to active ATG (31, 56).

Both graft source and timing of ATG administration significantly

modulate ATG exposure (27, 32). Compared to G-CSF-mobilized

peripheral blood stem cells (G-PBSC), bone marrow and cord blood

grafts contain fewer memory T cells and more naïve T cells,

contributing to delayed post-transplant T-cell reconstitution. This

necessitates ATG dose reduction in bone marrow or cord blood

HSCT to promote T-cell recovery (32, 57–59). The timing of ATG

administration is also important. Early ATG administration (between

days -9 and -5) demonstrated reduced ATG exposure and accelerate

T-cell reconstitution compared to later administration (between days

-5 and 0) (32, 60).

Furthermore, ATG pharmacokinetics differ between

preparations. Rabbit-ATG (Thymoglobulin®) exhibits a longer

half-life, with detectable plasma active ATG persisting for one

month, whereas active horse-ATG (ATGAM®) components

decline within two weeks (53). As xenogeneic proteins, ATG

preparations can induce anti-ATG antibodies. Early antibody

formation (before day +22) mediates accelerated ATG clearance,

substantially reducing post-transplant exposure (61).

4 ATG dose adjustment guided by
ATG concentration at designated
timepoints or GVHD biomarkers

4.1 ATG dose adjustment guided by ATG
concentration at designated timepoints

Several studies have highlighted the association between ATG

concentrations at designated timepoints of allo-HSCT and

transplant outcomes (Table 2). Generally, increased ATG

concentrations reduce the risk of GVHD, while most studies
Frontiers in Immunology 04
suggest that ATG concentrations at designated timepoints do not

affect the incidence of relapse, death, or infection. A study conducted

by Remberger, et al. in Sweden reported that patients with serum

ATG-T levels >70 mg/mL on day 0 had lower risk of grades II-IV

aGVHD compared to those with ATG-T levels <70 mg/mL (11% vs

48%, P = 0.006) (47). In another study by the same group, patients

received ATG-T at a total dose of 6 or 8 mg/kg as part of GVHD

prophylaxis. The results revealed that patients with total ATG-T

levels ≤ 40 mg/mL on day +11 had a higher incidence of grades III-IV

aGVHD (32% vs. 0%, P < 0.01). However, their OS and relapse-free

survival (RFS) at 5 years were similar (62). Elmahdi, et al. from Japan

reported that a lower total ATG-T concentration in week 4 post-

transplant was an independent risk factor for grade II-IV aGVHD,

but no correlation was found between total ATG-T concentration at

week 2 or 4 and recurrence (63). Chawla, et al. evaluated the

relationship between active ATG concentration and GVHD in 180

allo-HSCT recipients receiving 4.5 mg/kg ATG-T. Higher

concentrations at days +7 and +28 correlated with a reduced risk

of aGVHD, while elevated levels at days 0, + 7, and +28 were

associated with lower cGVHD incidence (64). Similarly, Podgorny,

et al. from Canada found that both higher ATG-T levels on day +7

and +28 were associated with lower risks of grade II-IV aGVHD and

cGVHD, but not with relapse, death, or infection (20). Teramoto

et al. identified ATG concentration on day 0 (Cday_0) as the strongest

predictor for grade II-IV aGVHD. They found Cday_0 ≥ 20mg/mL

correlated with an approximately 3-fold reduced risk of aGVHD and

2-fold decrease in overall mortality and relapse. Their population

pharmacokinetic modeling indicated a total ATG dose of 3 mg/kg

(1.5 mg/kg per dose on days -2 and -1) to achieve target Cday_0 with

80% probability (65).

To investigate the reason why ATG concentration at designated

timepoints did not affect transplant outcomes, Jol-van der Zijde,

et al. measured concentrations of ATG-T and anti-ATG antibodies

in pediatric HSCT recipients. They found that 28% of the recipients

developed anti-ATG antibodies. Early production of these

antibodies (before day +22 of HSCT) led to a rapid decrease in

ATG concentration and swift recovery of T cells (61). These

findings suggest that overall ATG exposure is more important

than concentration at a designated timepoint.
TABLE 1 Systematic comparison of three ATG quantification methods.

Method
Detected
ATG
component

Detection
platform

Sample volume
required for
single detection

Fluorescent
labeling
of antibody

Lymphocytes
as vectors

High-throughput
detection
(YES/NO)

ELISA
(47, 48)

Total ATG
Enzyme
immunoassay

20-100mL HRP Not required YES

Flow
Cytometry
(21, 51)

Active ATG
Flow
cytometer

50-100mL FITC or PE Required NO

LC-MS/
MS (52)

Total and
active ATG

LC-MS System 10mL No antibody
Required when
detecting
active ATG

YES
ATG, anti-thymocyte globulin; ELISA, enzyme-linked immunosorbent assay; FITC, fluorescein isothiocyanate; HRP, horseradish peroxidase; LC-MS, liquid chromatography-mass spectrometry;
MS, mass spectrometry.
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4.2 ATG dose adjustment guided by GVHD
biomarkers

Several studies have investigated biomarker-guided

individualized ATG dosing to optimize allo-HSCT outcomes

(Table 3) (66–69). As early as 2001, Bacigalupo et al.

demonstrated the efficacy of this approach in alternative donor

bone marrow transplantation. Patients with serum bilirubin levels ≥

0.9 mg/dl and blood urea nitrogen (BUN) ≥ 21 mg/dl on day +7

were defined as a high-risk group. An additional dose of 3.75 mg/kg

ATG-T (1.25 mg/kg on days +7, +9, and +11) was added to high-

risk patients. This intervention significantly reduced severe GVHD

from 55% to 27% and 1-year transplant-related mortality (TRM)

from 60% to 40% (66). A subsequent multicenter randomized trial

confirmed these findings: the same ATG regimen significantly

reduced grade III–IV aGVHD (15% to 5%) and cGVHD (26% to

11%) in high-risk recipients, though it demonstrated no significant

benefit for TRM or OS (67).

In a study of adult peripheral blood stem cell transplantation

(PBSCT), Khanolkar et al. defined patients with day +7 serum sIL-

2Ra levels >4500 ng/L or IL-15 levels <31 ng/L as being at high risk

for GVHD. These high-risk patients received an additional dose of 3

mg/kg ATG on day +8, following a conditioning regimen with 4.5

mg/kg ATG. Compared with controls, this strategy significantly

reduced the risk of clinically significant GVHD (hazard ratio, 0.48,

P = 0.045), without increasing relapse. However, the OS benefit was

offset by a higher rate of infections in the intervention group,

resulting in no improvement in OS (68). More recently, in a study of

post-transplant cyclophosphamide (PT-Cy)-based allogeneic

PBSCT, Xue et al. administered an additional 5 mg/kg anti-T-

lymphocyte globulin (ATLG) on day +5 to patients receiving grafts

with CD3+ counts > 3 × 108/kg. Compared with historical controls,
Frontiers in Immunology 05
the addition of ATLG significantly reduced 1-year cGVHD (41% vs.

15%, P = 0.04) but did not impact grade II-IV aGVHD, NRM, or OS

(69). Consistent with these data, the biomarker-guided personalized

ATG dosing strategy ultimately failed to improve patient survival

across studies.
5 Timing of ATG administration and its
impact on transplant outcomes

The timing of ATG administration significantly influences allo-

HSCT outcomes. Late ATG administration (closer to day 0) more

effectively depletes donor T cells in the graft, while its effect on

recipient T cells and antigen-presenting cells remain comparable

with earlier dosing. Consequently, late ATG administration is often

associated with reduced GVHD but carries an increased risk of viral

reactivation compared to early dosing (before day -5) (70).

These timing-dependent effects are further supported by clinical

studies. In severe aplastic anemia patients undergoing haplo-

PBSCT, Wu, et al. demonstrated that shifting ATG dosing from

early (days -9 to -7) to late (days -5 to -3) effectively controlled

GVHD but led to increased rates of CMV reactivation and EBV-

associated post-transplant lymphoproliferative disorder (EBV-

PTLD) (71). Conversely, early ATG administration appears to

facilitate T-cell reconstitution. Lindemans, et al. observed

accelerated reconstitution of CD3+, CD4+, and naïve T cells in

cord blood transplant recipients receiving early ATG (days -9 to -5)

compared to later ATG (days -5 to 0) (32). Similarly, a Japanese

study in adult PBSCT found that early ATG administration

(1.25mg/kg on day -4), rather than the standard schedule (1.25

mg/kg, days -2 and -1), reduced post-transplant ATG exposure and

accelerated CD4+ T-cell recovery (60). These findings indicate that
FIGURE 2

Factors influencing ATG pharmacokinetics. ALC, absolute lymphocyte count; ATG, anti-thymocyte globulin; BMT, bone marrow transplantation;
CBT, cord blood transplantation; PBSCT, peripheral blood stem cell transplantation.
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TABLE 2 Association between ATG concentration at designated timepoints and transplant outcomes.

Children/

tal/Active
ATG

Timing
of ATG
monitoring

Association with clinical
outcomes

tal r-ATG
Day 0, Week 1,
2, 3, 4, 5

r-ATG > 70 mg/mL vs < 70mg/mL on
Day 0: lower risk of developing grade
II-IV aGVHD (11% vs 48%, P =
0.006).
r-ATG >45 mg/mL vs r-ATG < 45mg/
mL on Week 1: lower risk of
developing grades II-IV aGVHD (18%
vs 52%, P = 0.01).

tal r-ATG
Day 0, + 11,
+ 25

r-ATG ≤ 40 mg/mL vs > 40mg/mL on
Day +11: higher incidence of grade
III–IV aGVHD (32% vs. 0%, p<0.01),
higher TRM (69% vs. 7%, P = 0.005),
less relapse (17% vs. 82%, P < 0.01).

tal r-ATG Week 2 and 4

Grade II-IV aGVHD: lower r-ATG
levels (P = 0.004).
r-ATG < 6.2mg/mL at Week 4: an
independent risk factor for grade II-IV
aGVHD (P = 0.037).

tive r-ATG
Day 0, + 7,
+ 28

High active ATG on day +7 and +28:
lower risk of aGVHD.
High active ATG on day 0, + 7, and
+28: reduced risk of cGVHD.

tive r-ATG
Day +7
and +28

Active ATG > 1.454 mg/L vs < 1.454
mg/L on Day +7: 0.35-fold risk of
grade II-IV aGVHD (P = 0.019)
Active ATG > 0.029 mg/L vs < 0.029
mg/L on Day +28: 0.52-fold risk of
grade II-IV aGVHD (P = 0.002)
Active ATG > 0.803 mg/L vs < 0.803
mg/L on Day +7: 0.52-fold risk of
cGVHD (P = 0.025)
Active ATG > 0.052 mg/L vs < 0.052
mg/L on Day +28: 0.58-fold risk of
cGVHD (P = 0.019)
Active ATG > 1.436 mg/L vs < 1.436
mg/L on Day +7: 5.84-fold risk of
PTLD (P = 0.039)
Active ATG > 0.082 mg/L vs < 0.082

(Continued)
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Author
Donor
type

Stem
cell source

Malignant/
Benign

Gender
Adults
Age,
Median
(range)

Conditioning
regimen

Total r-ATG
dosage

To
r-

Remberger,
et al. (47)

MUD
BM (n=28)
PBSC (n=33)

Malignant
(n=53)
Benign (n=8)

Male (n=35)
Female (n= 26)

Children
(n=14).
Adults (n=47)
35 (1–61)

TBI-based MAC
(n=27)
BU-based MAC
(n=25)
RIC (n=9)

4mg/kg (n=14)
6mg/kg (n=21)
8mg/kg (n=15)
10mg/kg (n=11)

To

Remberger,
et al. (62)

MUD (n=5)
MMUD (n=38)

CB
Malignant
(n=27)
Benign (n=16)

Male (n=31)
Female (n=12)

Children
(n=26).
Adults (n=17)
16 (0.4-65)

TBI-based MAC
(n=11)
BU-based MAC
(n=16)
RIC (n=16)

6mg/kg (n=27)
8mg/kg (n=16)

To

Elmahdi,
et al. (63)

MUD (n=8),
MMUD (n=10)
MMRD (n=19)

BM (n=20)
CB (n=2)
BM +
PBSC (n=15)

Malignant
(n=14)
Benign (n=23)

Male (n=17)
Female (n=20)

Children
(n=35).
Adults (n=2)
8 (1-19)

TBI-based MAC
(n=36)
TLI-based
MAC (n=1)

10mg/kg (n=21)
15mg/kg (n=16)

To

Chawla,
et al. (64)

MSD (n=67)
Other (n=113)

PBSC Malignant
Male (n=104)
Female (n=76)

Adults
50 (18-66)

BU-based MAC
(n=177)
Other (n=3)

4.5mg/kg Ac

Podgorny,
et al. (20)

MSD (n=76)
MUD (n=51)
HLA-
mismatched
(n=26)

BM (n=10)
PBSC (n=143)

Malignant
(n=147)
Benign (n=6)

Male (n=91)
Female (n=62)

Adults
49 (19-66)

MAC with TBI
(n=96)
MAC without
TBI (n=57)

4.5mg/kg Ac
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TABLE 2 Continued

Children/
Adults
Age,
Median
(range)

Conditioning
regimen

Total r-ATG
dosage

Total/Active
r-ATG

Timing
of ATG
monitoring

Association with clinical
outcomes

mg/L on Day +28: 6.63-fold risk of
PTLD (P = 0.014)

Adults
47 (17-70)

TBI-based MAC
2.5 mg/kg
(n=92)
3 mg/kg (n=11)

Total r-ATG Day 0

Day 0 r-ATG concentrations ≥ 20 µg/
mL are associated with a ∼3-fold
reduced risk of Grade II–V aGVHD
(HR = 0.32, 95% CI 0.16–0.62) and a
∼2-fold lower risk of overall mortality
(HR = 0.47, 95% CI 0.28–0.77) and
relapse (HR = 0.50, 95% CI
0.26–0.94).

Children
Anti-ATG
(n=20): 9.6
(1.7-17.0)
No anti-ATG
(n=52): 5.0
(0.6-17.7)

TBI-based MAC
(n=30)
Non-TBI
based (n=42)

10mg/kg
Total and active
r-ATG

pre-HSCT, at
least once a
week until week
4, and once
every 2 weeks
until week 13
post HSCT

Early (day 16-22) vs Late (day 28-46)
IgG anti-ATG: higher incidence of
grade II-IV aGVHD (75% vs 17%)
Anti-ATG vs No anti-ATG: higher
incidence of grade II-IV aGVHD (35%
vs 10%, P = 0.01)

d; cGVHD, chronic GVHD; CI, confidence interval; GVHD, graft-versus-host disease; HLA, human leukocyte antigen; HR, hazard ratio; HSCT, hematopoietic stem
ismatched unrelated donor; MRD, matched related donor; MSD, matched sibling donor; MUD, matched unrelated donor; NA, not applicable; PBSC, peripheral blood
sity conditioning; TBI, total body irradiation.
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Author
Donor
type

Stem
cell source

Malignant/
Benign

Gender

Teramoto
et al. (65)

Related (n=99),
Unrelated
(n=4)

PBSC Malignant
Male (n=67)
Female (n=36

Jol-van der
Zijde, et al. (61)

MSD (n=8)
MUD (n=46)
MMUD (n=18)

BM (n=44)
PBSC (n=16)
CB (n=12)

Malignant
(n=43)
Benign (n=29)

NA

aGVHD, acute GVHD; ATG, anti-thymocyte globulin; BM, bone marrow; BU, busulfan; CB, cord bloo
cell transplantation; MAC, myeloablative conditioning; MMRD, mismatched related donor; MMUD, m
stem cell; PTLD, posttransplant lymphoproliferative disorder; r-ATG, rabbit ATG; RIC, reduced inte
)

n
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ATG dosing should be adjusted according to timing of

administration. A relatively increased dose may be necessary with

early ATG dosing, whereas the dose could be reduced if ATG

administered closer to day 0.
6 Impact of ATG exposure on
transplant outcomes

ATG exposure was quantified using the area under the

concentration-time curve (AUC). Total ATG exposure was divided

into pre- and post-transplant exposure using day 0 (graft infusion) as

the reference point. ATG exposure better predicts outcomes in allo-

HSCT than the concentration at designated timepoints. Several

studies have assessed the association between ATG exposure and

transplant outcomes, including GVHD, immune reconstitution,

relapse, and survival (Table 4) (19, 21, 31, 72–76).

Admiraal, et al. discovered that excessive exposure to active

ATG post-transplant significantly decreases the rate of successful

immune reconstitution (21). In subsequent study, they revealed that

for every 10% increase in the post-transplant AUC of active ATG-T,

the likelihood of successful CD4+ T cell immune reconstitution

decreased by 26%. Lower post-transplant active ATG exposure
Frontiers in Immunology 08
(< 16 AU × day/mL) and successful CD4+ immune reconstitution

were both associated with improved event-free survival (72).

Additionally, they found that pre-transplant active ATG exposure

≥ 40 AU × day/mL significantly reduced the incidence of grade II-

IV aGVHD, cGVHD, and graft failure (21). Similarly, Jamani, et al.

(73) from Canada discovered that the lowest quintile of pre-

transplant AUC and post-transplant AUC of active ATG were

associated with higher aGVHD and worse cGVHD- and relapse-

free survival (cGRFS) in myeloablative allo-HSCT. A multinational

prospective study by Oostenbrink, et al. reported that prolonged

ATLG exposure (active ATLG ≥ 1 AU/mL on day +16) significantly

reduced the incidence of grade II-IV aGVHD (from 50% to 8.2%)

(74). A study by Dabas, et al. from Canada showed that high pre-

transplant active ATG exposure of MNC-binding (> 282.36 UE*hr/

L) and CD33+ cells- binding (> 60.53 UE*hr/L) were associated

with a lower risk of relapse and better RFS. Whereas higher post-

transplant exposure of lymphocyte-binding (> 1022.42 UE*hr/L)

was associated with higher risk of relapse and lower RFS (75).

These studies highlight the importance of maintaining pre- or

post-transplant ATG exposure within an optimal range, as both

excessive and insufficient exposure compromise transplant

outcomes. A Dutch retrospective analysis identified an optimal

post-transplant active ATG exposure of 60–95 AU/mL/day. Sub-
TABLE 3 Individualized ATG dosing guided by GVHD biomarkers in clinical trials.

Author
Donor
type

Stem
cell
source

Malignant/
Benign

Children/
Adults

Conditioning
regimen

Total
r-ATG
dosage

Timing of
ATG
measurement

Association with
clinical outcomes

Bacigalupo,
et al. (66)

MUD
(n=109)

BM Malignant Adults (95%) TBI-based MAC

7.5mg/kg
(n=29)
15mg/
kg (n=27)

7.5mg/kg: Day -4
and -3; 15mg/kg:
Day -5, -4, -3,
and -2

Reduction in GVHD grade III-
IV (only in 15 mg/kg group)
from 50% to 11%, (P = 0.001),
reduction in cGVHD from
62% to 39%, (p=0.04), no
reduction in TRM.

Bacigalupo,
et al. (67)

Related
(n=25)
Unrelated
(n=145)

BM
(n=134)
PBSC
(n=36)

Malignant Adults
TBI-based MAC
(n=98)
RIC (n=72)

7.5mg/kg
(n=86)
10mg/
kg (n=84)

7.5mg/kg: Day-3, -2
10mg/kg: Day-3, -2
+7, +9

Reduced aGVHD (Grade III-
IV) from 15% to 5% (P =
0.02), reduced cGVHD from
26% to 11% (P = 0.03), no
significant TRM reduction

Khanolkar,
et al. (68)

MSD
(n=74)
MUD
(n=97)
MMUD
(n=40)

PBSC Malignant Adults TBI-based MAC

4.5mg/kg
(n=143)
7.5mg/
kg (n=68)

4.5mg/kg: Day-2,
-1, 0
7.5mg/kg: Day-2,
-1, 0, + 8

Reduction in sGVHD in high-
risk trial patients (HR = 0.48,
p < 0.05), no significant
change in overall survival, and
increased non-GVHD-
associated NRM due to
infections (HR = 3.73, P
< 0.05).

Xue,
et al. (69)

MRD
(n=11)
MUD
(n=16)
MMUD
(n=11)
MMRD
(n=25)

PBSC Malignant Adults
MAC (n=43)
RIC (n=20)

5mg/
kg (n=21)

Day +5

Delayed platelet engraftment
(29% vs. 45% at 30 days, P =
0.03), reduced incidence of
cGVHD at 1 year (15% vs
41%, p = 0.04), no differences
in grade II-IV aGVHD (29%
vs 24%, P = 0.86)
aGVHD, acute GVHD; ATG, anti-thymocyte globulin; BM, bone marrow; cGVHD, chronic GVHD; GVHD, graft-versus-host disease; MAC, myeloablative conditioning; MMRD, mismatched
related donor; MMUD, mismatched unrelated donor; MRD, matched related donor; MSD, matched sibling donor; MUD, matched unrelated donor; NRM, non-relapse mortality; PBSC,
peripheral blood stem cell; r-ATG, rabbit ATG; RIC, reduced intensity conditioning; sGVHD, significant GVHD; sHR, sub-hazard ratio; TBI, total body irradiation; TRM, transplant-
related mortality.
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TABLE 4 Association between ATG exposure and transplant outcomes.

Stem Diagnosis Total Total/ Pre-/Post-
Association with clinical outcomes

Optimal ATG exposure: 60–95 AU/mL/day
5-year OS: optimum exposure vs above optimum (69% vs 48%, P =
0.030), optimum exposure vs below optimum (69% vs 32%, P =
0.00037)
EFS: below optimum vs optimum exposure (HR 2.54, P = 0.007)
RRM: above optimum vs optimum exposure (HR 2·66, P = 0·027).
NRM: below optimum vs optimum exposure (HR 4.36, P = 0.004)
III-IV aGVHD: below optimum vs optimum exposure (HR 3.09, P
= 0.029).

Every 1% increase in post-transplant AUC: decreased CD4+
reconstitution (OR 0.991, P < 0.0001)
Pre-transplant AUC ≥ 40 AU × day/mL vs < 40 AU × day/mL: lower
incidence of grade II-IV aGVHD (HR 0·979, P = 0.0081), grade III-
IV aGVHD (HR 0·975, P = 0.033), cGVHD (HR 0·983, P = 0.029)
and GF (HR 0·981, P = 0.020)
Post-transplant AUC in matched BMT or PBSCT < 50 AU × day/mL
vs ≥ 50 AU × day/mL: better OS (HR 4.19, P = 0.021).

Every 10% increase in post-transplant AUC: decreased CD4+
reconstitution (HR= 0.974, P <.0001).
Post-transplant AUC > 16 AU × day/mL vs ≤16 AU × day/mL: lower
EFS (47% vs 72%, P = 0.007).

Pre-transplant AUC [178 (46-215) mg.hr/L] and post-transplant
AUC [588 (198-759) mg.hr/L): higher aGVHD and worse cGRFS.

Prolonged active ATLG exposure (≤16 days) had a lower incidence of
aGVHD (50% vs. 8.2%; P < 0.001) and an increased risk of relapse in
those transplanted in CR2 or 3 (P = 0.01).

High pre-transplant AUC of MNC- (> 282.36 UE*hr/L) and CD33+
cells- (> 60.53 UE*hr/L) binding ATG: lower CIR and higher RFS.
High post-transplant AUC of lymphocyte-binding ATG (> 1022.42

(Continued)
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Author
Donor
type

cell
source

(Malignant/
Benign)

Gender
Children/
Adults

Conditioning
regimen

r-ATG
dosage

Active
r-ATG

transplant
AUC

Admiraal,
et al. (31)

MUD
(n=111)
MMUD
(n=35)

PBSC Malignant

Male
(n=84)
Female
(n=62)

Children
(n=7)
Adult
(n=139)
50 (32-59)

Non-MAC 8mg/kg
Active
r-ATG

Pre- and Post-
transplant
AUC

Admiraal,
et al. (21)

NA

BM
(n=118)
CB
(n=91)
PBSC
(n=42)

Malignant
(n=116)
Benign (n=135)

Male
(n=157)
Female
(n=94)

Children and
young adult
6.2 (0.2-22.7)

BU-based MAC
(n=191)
TBI-based MAC
(n=54)
RIC (n=6)

10mg/kg
Active
r-ATG

Pre- and post-
transplant
AUC

Admiraal,
et al. (72)

MUD (n=55)
MMUD
(n=82)

CB
Malignant
(n=56)
Benign (n=81)

Male
(n=82)
Female
(n=55)

Children and
young adult
7.4 (0.2-22.7)

BU-based MAC
(n=122)
TBI-based MAC
(n=10)
Other (n=6)

ATG
(n=112)
10mg/kg
7.5mg/kg
(BW
>40kg,
2010
onwards)
No-
ATG
(n=25)

Active
r-ATG

Pre- and post-
transplant
AUC

Jamani,
et al. (73)

MRD (n=79)
MUD (n=97)
MMUD
(n=43)

BM
(n=6)
PBSC
(n=213)

Malignant
(n=215)
Benign (n=4)

NA
Adult
53 (41-60)

BU-based MAC
(n=214)
Other (n=5)

4.5mg/kg
Active
r-ATG

Pre- and post-
transplant
AUC

Oostenbrink
et al. (74)

HLA-
matched
unrelated
(n=101)

BM
(n=74)
PBSC
(n=27)

Malignant

Male
(n=63)
Female
(n=38)

Children
9.2 (0.6-18.6)

TBI-based MAC
(n=52)
Treosulfan-based
MAC
BU-based (n=33)
MAC (n=16)

45mg/kg
Active
ATLG

Post-
transplant
AUC

Dabas,
et al. (75)

MSD (n=55),
MUD (n=97)

PBSC Malignant
Male
(n=89)

Adult
53 (18-71)

BU-based MAC 4.5mg/kg
Active
r-ATG

Pre- and post-
transplant
AUC
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optimal exposure (< 60 AU/mL/day) increased grade III-IV

aGVHD and NRM, while over-optimal exposure (> 95 AU/mL/

day) increased relapse-related mortality (RRM). Only patients

within the optimal range achieved the best 5-year event-free

survival (EFS) and OS (31). A single-center prospective study

from China found an optimal total active ATG exposure of 100

to 148.5 UE/mL/day in haplo-HSCT following Beijing Protocol.

Interestingly, the optimal AUC group showed a significantly lower

incidence of cytomegalovirus (CMV) reactivation and persistent

CMV viremia compared to the non-optimal AUC group (total AUC

< 100 or >148.5 UE/mL/day). While no significant difference in

NRM and recurrence were observed between two groups, optimal

AUC group showed a trend toward better 2-year OS (75.7% vs.

57.8%, P = 0.061) (19). A recent phase IV trial established an

optimal post-transplant ATG exposure (55–75 AU/mL/day) for

acute leukemia patients undergoing myeloablative haplo-cord

HSCT. Compared to non-optimal range, patients within optimal

range have lower 2-year relapse (38.9% vs. 15.2%), higher leukemia-

free survival (LFS) (49.5% vs. 84.8%), superior OS (50.8% vs. 89.5%)

and GRFS (39.1% vs. 71.3%), and reduced grade II-IV aGVHD

(37.8% vs. 20.5%) (76).
7 Individualized ATG dosing strategies
in allo-HSCT

7.1 Individualized ATG dosing guided by
absolute lymphocyte count

A retrospective pharmacokinetic-pharmacodynamic study

demonstrated that patients who had optimal post-transplant

active ATG exposure (60–95 AU/mL/day) achieved the best 5-

year OS. Further analysis of the pharmacokinetic model identified

recipient’s body weight (< 50 kg) and ALC as significant covariates

influencing ATG clearance. In adult allo-HSCT, conventional

weight-based ATG dosing regimen achieved optimal exposure

only in 30%-53% of patients (when body weight > 50 kg),

whereas ALC-based dosing regimen achieved optimal exposure in

95%, thereby enhancing survival outcomes (31). Subsequently, the

same team conducted a prospective single-arm Phase II study to

explore the efficacy and safety of individualized ATG dosing based

on ALC (36). The study identified three key parameters (recipient’s

body weight, ALC before the first dose of ATG, and source of graft)

to guide individualized ATG dosing (ranging from 2 to 10mg/kg).

Of the 51 evaluable patients, 41 (80%) met CD4+ immune

reconstitution criteria, defined as two consecutive CD4+ T cell

counts > 0.05 × 109/L within 100 days post-transplantation. Their

previous studies have shown that patients who achieved CD4+

immune reconstitution early after transplantation had better OS,

lower NRM, and fewer virus reactivations. These findings indicate

that individualized ATG dosing may improve transplant outcomes

by increasing the proportion of patients attaining optimal AUC (21,

72). Seo, et al. found that the weight-based dosing regimen in

unrelated donor transplantation with reduced-intensity

conditioning could cause overexposure to ATG-T in adult
T
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recipient with an ALC < 500/ml at day -7. This overexposure

resulted in severe T-cell depletion, increasing the risk of life-

threatening infections, and impairing OS (77). Similarly, Woo,

et al. demonstrated in a study of adult matched sibling donor

transplantation that those with an ALC < 500/ml at day -7 had a

higher mortality, primarily due to infection-related complications

(78). These results support adjusting the ATG dose based on ALC to

avoid overexposure to ATG in patients with low ALC.

However, ALC-based individualized ATG dosing regimen may

not be universally applicable. A French study enrolled 116 adult

patients undergoing matched sibling or unrelated donor

transplantation investigated the association between ALC before

ATG administration and transplant outcomes. The study revealed

that whether the ALC was higher than the median value did not

affect survival (79). In a retrospective study of adult unrelated donor

transplantation, Heelan, et al. compared weight-based dosing

strategy versus ALC-guided individualized dosing strategy. The

study revealed substantial dose variation between the two

regimens: conventional weight-based ATG dosing yielded a

median total dose of 201 mg, whereas ALC (day -2) - guided

individualized dosing required a significantly higher dose with a

mean of 1205 mg, representing a 5-fold increase over conventional

weight-based dosing strategy. They assumed that when the

administration of ATG is close to graft infusion, the lymphocytes

are depleted by myeloablative conditioning, resulting in an

overestimation of the ATG dose when calculated based on

ALC (80).
7.2 Individualized ATG dosing guided by
therapeutic drug monitoring

Therapeutic drug monitoring (TDM) of calcineurin inhibitors

(CNIs) has been used in allo-HSCT for many years, which

correlated with improved transplant outcomes (81, 82). However,

current evidence regarding TDM-guided individualized ATG

dosing in allo-HSCT remains limited. In a Phase II study, Wang,

et al. developed a machine learning-based, TDM-guided

individualized ATG dosing model for haplo-PBSCT. ATG was

administered for 4 days (days -5 to -2) during conditioning.

Active ATG concentration was detected on day -5 and -4 via flow

cytometry, and the adjusted ATG doses on day -3 and -2 were

calculated according to the individualized dosing model. This

adjustment aimed to maintain total active ATG exposure within

the optimal range of 100-148.5 UE/mL/day, a range previously

identified by the same group to effectively reduce CMV/EBV

reactivation in haplo-PBSCT without increasing GVHD or relapse

(19, 37, 83). Additionally, researchers from the Netherlands and the

United States have theoretically verified the feasibility of TDM-

guided ATG dosing strategy using population pharmacokinetic

model. Their TDM-guided ATG dosing framework is as follows:

the total dose of ATG is administered over 4 days, and on the third

day after ATG administration, the peak and trough concentrations

of active ATG are measured. ATG dose on the fourth day is then

adjusted according to the model-predicted AUC. If the adjustment
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exceeds 25% of the total ATG dose, the administration of ATG

needs to be extended to the fifth day. The investigators assumed that

TDM-guided ATG dosing was more accurate than ALC-guided

dosing for patients presenting with immune deficiencies and/or

hyperinflammation (84). A randomized phase III multicenter trial

evaluated targeted ATG dosing strategy (Total ATG dose calculated

based on pharmacokinetic parameters, range: 6–13 mg/kg) against a

fixed dose of 10 mg/kg in adults haplo-PBSCT. Compared to fixed

dosing, targeted dosing reduced CMV reactivation (54.9% vs.

31.0%), improved GRFS (48.0% vs. 63.4%), and enhanced CD4+

T-cell reconstitution (72.7% vs. 91.0%) (85).
7.3 Challenges in individualized ATG dosing
in allo-HSCT

It should be noted that individualized ATG dosing in allo-HSCT

faces significant challenges. First, detecting active ATG is complex

and difficult to standardize. Flow cytometry, the predominant

detection method for active ATG, demonstrates an inter-laboratory

variability due to heterogeneity in flow cytometer models and

biological materials (e.g., cells and antibody clones). Second, the

clinical assessment of optimal ATG exposure lacks consensus criteria.

Different optimal ATG exposure ranges were reported across centers

due to inconsistent optimal exposure definitions [(e.g., successful

CD4+ T cell reconstitution (31, 86), or reduction of virus reactivation

(83)]. Heterogeneity in the timing and dosing of ATG administration

further complicates this issue, and collaborative efforts are needed to

establish a consensus-defined optimal active ATG exposure in allo-

HSCT. Third, current personalized dosing strategies including ALC-

guided and TDM-guided approaches, have population-specific

limitations (14, 84, 87, 88) (Figure 3). It is necessary to conduct

further research to establish a universally applicable individualized

dosing regimen using population pharmacokinetic modeling.
8 Discussion

This review discussed the challenges of optimizing ATG dosing

in allo-HSCT to balance GVHD prophylaxis with immune

reconstitution, while minimizing malignant disease recurrence

and life-threatening infections. Extensive research has focused on

weight-based ATG dosing regimens in allo-HSCT, yet this

approach remains suboptimal in addressing the pharmacokinetic

variability mediated by multiple parameters, including genetic

polymorphisms (e.g., HLA compatibility and Fcg receptor

genotypes), timing of ATG, anti-ATG antibody development, and

comorbidities. The weight-based ATG dosing approach failed to

address the substantial pharmacokinetic variability among patients,

thus attempting to establish body weight based optimal ATG dosing

regimen will continue to prove futile. Pharmacodynamic studies

demonstrated that lower ATG concentration was associated with

increased risks of aGVHD and cGVHD, although its impact on

TRM and relapse remains unclear (47, 62, 63). Notably, emerging

evidence highlights the association between ATG exposure and
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transplant outcomes such as GVHD incidence, immune

reconstitution, relapse, and OS (21, 31, 72, 75). Importantly, an

optimal ATG exposure range has been identified, associated with

reduced viral reactivation, accelerated immune reconstitution, and

improved OS (19, 31).

TDM and pharmacogenomics (PGx) are fundamental

approaches for achieving personalized dosing in clinical practice.

Advances in understanding ATG-PGx, including drug-

metabolizing enzymes, therapeutic targets, and drug transporters,

will enable optimized balancing of ATG’s efficacy against

treatment-related toxicity. Integrating TDM with PGx in ATG

personalized dosing represents a promising strategy to improve

outcomes of allo-HSCT. Recent studies have shown promising

outcomes using individualized ATG dosing strategies based on

ALC or TDM (36, 37). However, current individualized ATG

dosing protocols are often derived from physiologically based

pharmacokinetic (PBPK) and population pharmacokinetic
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(popPK) models (21, 56). These protocols exhibit inherent static

limitations of failing to integrate real-time patient data and dynamic

health trends. Model-informed precision dosing (MIPD) provides a

potential solution for optimizing ATG dosing via mathematical

modeling that integrates multidimensional data, including patient

characteristics, drug properties, and disease status. Collaboration

across clinicians, informaticians, clinical pharmacologists, and

TDM specialists will establish ethical framework for data sharing,

technology accessibility, and patient privacy, thereby facilitating

clinical implementation of MIPD. Artificial intelligence (AI) and

machine learning (ML) represent emerging tools for advancing

MIPD in personalized medicine, but their clinical application

remains experimental with unproven benefits for patient care

(89–91). Robust clinical validation and technological innovation

are essential to overcome inherent challenges, including data

privacy and algorithmic bias, thereby enabling tangible patient

benefits and facilitating clinical implementation (92). In
frontiersin.or
FIGURE 3

The balance of efficacy and toxicity of ATG and individualized dosing strategies in allo-HSCT. aGVHD, acute graft-versus-host disease; allo-HSCT,
allogeneic hematopoietic stem cell transplantation; ALC, absolute lymphocyte count; ATG, anti-thymocyte globulin; BUN, blood urea nitrogen; CD,
cluster of differentiation; cGVHD, chronic graft-versus-host disease; GVHD, graft-versus-host disease; IL, interleukin; slL-2Ra, soluble interleukin-2
receptor alpha.
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conclusion, the ongoing development and optimization of

individualized ATG dosing strategies are critical for enhancing

the safety and efficacy of allo-HSCT, ultimately improving

transplant outcomes.
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