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Introduction: Breast cancer (BC) remains a widespread malignancy and ranks as

the second leading cause of cancer-related mortality among women worldwide.

Hypoxia, epithelial-mesenchymal transition (EMT), and immune-related

processes have been increasingly recognized as critical contributors to BC

pathogenesis. However, a prognostic model integrating hypoxia-, EMT-, and

immune-related genes (HEMTIRGs) to predict BC outcomes has not yet

been established.

Methods: Gene expression datasets of BC patients were obtained from The

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Prognostic

genes were identified using Least Absolute Shrinkage and Selection Operator

(LASSO) Cox regression analysis. A prognostic model was developed based on

these genes. Immune infiltration was assessed using CIBERSORT and ssGSEA

analyses. Immunotherapy response was predicted using the tumor immune

dysfunction and exclusion (TIDE) algorithm. Functional roles of HEMTIRGs in

BC malignancy were validated through in vitro experiments.

Results: In this study, four HEMTIRGs (PAX7, DCD, CRISP3, and FGG) were

identified and used to develop a prognostic model. Patients were stratified into

high- and low-risk groups based on median risk scores. A nomogram based on

this model accurately predicted overall survival (OS), consistent with the

observed outcomes. Notably, patients in the high-risk group exhibited

increased immune cell infiltration but a lower predicted response to

immunotherapy. Immunohistochemistry (IHC) further confirmed that

HEMTIRGs expression levels were strongly associated with breast cancer, with

CRISP3 showing the most pronounced upregulation. In vitro functional assays

demonstrated that CRISP3 promoted malignant phenotypes of breast cancer

cells under hypoxic conditions through activation of the IL-17/AKT

signaling pathway.
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Conclusion: This study establishes a novel HEMTIRGs-based prognostic model

for BC, offering a robust tool for predicting patient prognosis and

immunotherapy efficacy. Additionally, our findings provide new insights into

BC pathogenesis, highlighting potential therapeutic targets.
KEYWORDS

breast cancer, hypoxia, epithelial-mesenchymal transition, prognosis, model,
immunotherapy
1 Introduction

Breast cancer (BC) remains the most common cancer among

women worldwide, accounting for approximately 31% of all female

cancers (1). Despite significant advancements in early detection and

treatment, BC recurrence remains a major challenge, contributing

to increased mortality risk (2). Recent advances in surgical

strategies, systemic therapies, and prognostic assessment have

improved the management of BC (3–5). However, a major

limitation in current clinical practice remains the lack of reliable

approaches to accurately predict prognosis, identify high-risk

patients, and evaluate responses to immunotherapy. To address

this gap, the present study develops a novel prognostic signature by

integrating genes associated with hypoxia, epithelial–mesenchymal

transition (EMT), and immune regulation.

Hypoxia, characterized by oxygen deprivation, is a common

feature of solid tumors and drives cancer progression through

enhanced invasion, angiogenesis, metabolic reprogramming, and

metastasis (6–9). In BC, hypoxia is associated with increased

invasiveness, drug resistance, and poor prognosis (10). Hypoxia-

inducible factor 1 (HIF-1), a central regulator of hypoxic responses, is

overexpressed in BC and correlates clinically with elevated mortality

and metastatic rates (11). Notably, HIF-1a overexpression in BC

tumors serves as an independent predictor of poor survival (12).

Notably, hypoxia stress can induce EMT by activating the HIFs

signaling pathway, thereby enhancing tumor cell migration, invasion,

and adaptation to the tumor microenvironment (13–16). EMT

facilitates tumor cell dissemination to distant organs to establish

secondary tumors, ultimately driving metastasis (17). In BC, EMT

activation is prominent in HER2-positive breast cancer stem cells,

which exhibit radioresistance, drug resistance, and poor clinical

outcomes, while EMT inhibition may mitigate treatment resistance

and metastasis by suppressing HER2 expression (18). Moreover,

hypoxia upregulates Slug and Snail, which suppress E-cadherin

expression, a key hallmark of EMT, further reinforcing BC

invasiveness (15, 19).

Beyond hypoxia and EMT, immune-related mechanisms also play

a crucial role in BC progression, including immune evasion, chronic

inflammation, and immune cell infiltration (20). In triple-negative

breast cancer (TNBC), hypoxia disrupts immune function by engaging
02
HIF-1awith histone deacetylase 1 (HDAC1) and polycomb repressive

complex 2 (PRC2), leading to suppression of T and NK cell activity

(21). Furthermore, studies have shown that HIF-1a overexpression in

T cells promotes T cell exhaustion and weakens antitumor immunity

in metastasis models (22). Additionally, EMT has been implicated in

immune evasion, as it upregulates immune checkpoints, enhances

metastatic potential, and contributes to therapy resistance (23).

Together, hypoxia, EMT, and immune suppression are

interconnected processes that form a synergistic network, which

cooperatively modulates BC malignancy. Although several

prognostic models have incorporated hypoxia- and immunity-

related factors, particularly in TNBC, offering improved

stratification for targeted therapies (24–26), the accuracy in

patient risk stratification remains limited, and the underlying

mechanistic insights remain incomplete. Currently, no prognostic

model has yet integrated hypoxia-, EMT-, and immune-related

genes (HEMTIRGs) into a unified framework. Given the established

biological crosstalk among these processes, we aimed to

innovatively integrate them into a single model to capture a more

holistic view of BC, thereby improving the precision of prognostic

stratification and informing potential therapeutic strategies.

In this study, we identified four key HEMTIRGs through a

comprehensive bioinformatics analysis. A prognostic model based

on this HEMTIRGs signature in a BC patient cohort was developed

and validated. We also constructed a nomogram to predict overall

survival (OS). Additionally, an in vitro experiment verified the

biological functions of HEMTIRGs in promoting BC malignancy.

Our findings offer novel insights into the molecular mechanisms

underlying BC pathogenesis associated with hypoxia, EMT, and

immune responses, with potential implications for clinical prognosis,

risk stratification, and immunotherapy response assessment.
2 Materials and methods

2.1 Acquisition of hypoxia-, EMT- and
immune-related gene sets

A total of 200 hypoxia-related genes were obtained from the

Molecular Signatures Database (http://www.gsea-msigdb.org/gsea/
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msigdb/index.jsp) (Supplementary Table S1). EMT-related genes

were retrieved from the dbEMT 2.0 database (https://bioinfo-

minzhao.org/dbemt/dbemt1/index.html) (Supplementary Table

S2). Additionally, the immune-related gene set was obtained from

the GeneCards database (https://www.genecards.org/) using the

search term “Immune” with a relevance score>2 (Supplementary

Table S3).
2.2 Data collection

RNA sequencing data and clinical information for The Cancer

Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) cohort were

collected from the TCGA database (https://portal.gdc.cancer.gov/).

Samples without detailed expression and clinical data or with a

follow-up duration of 0 days were excluded, resulting in 1,037

BRCA and 99 normal samples for training (27). For model

validation, the GSE20685 BRCA cohort was accessed from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/

geo/). Expression profiles were log2-transformed and normalized,

with the average expression level used for duplicate genes. Batch

effects were corrected using the “ComBat” function from the “sva”

package (https://bioconductor.org/packages/release/bioc/html/

sva.html) (v3.50.0) in R software version 4.2.1 (28).
2.3 Consensus clustering analysis

To identify potential molecular subtypes of BC based on

HEMTIRGs, we applied the “ConsensusClusterPlus” package

(v1.62.0) in R (v4.2.1) to perform consensus clustering on tumor

samples (29). The partitioning around medoids (PAM) algorithm

was selected with Euclidean distance as the similarity metric.

During clustering, 80% of samples were resampled, and the

process was repeated 1,000 times to ensure stability and

reproducibility. The optimal number of clusters (K) was

determined by evaluating the cumulative distribution function

(CDF) curve, the relative change in the area under the CDF

curve, and the consensus heatmap. According to these criteria,

K = 4 was identified as the most robust and biologically meaningful

classification, and all tumor samples were subsequently stratified

into four molecular subtypes (C1–C4). A random seed (set.seed =

12345) was applied to guarantee reproducibility.
2.4 Analysis of hypoxia and EMT features in
BC subtypes

Following the determination of the optimal cluster number, we

analyzed hypoxia- and EMT-related gene expression profiles within

each identified subtype. Gene Set Variation Analysis (GSVA,

v1.50.5) was employed to perform single-sample gene set

enrichment analysis (ssGSEA), assigning hypoxia and EMT scores

to each tumor sample based on predefined gene sets (30). Patients
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were then stratified into high- and low-hypoxia/EMT subgroups

using the median score within each subtype.
2.5 Identification of differentially expressed
genes

The “edgeR” package (v4.0.16) was used to analyze differentially

expressed genes (DEGs) between high and low hypoxia/EMT

subgroups, as well as between TCGA BRCA and normal tissues

(27). Genes were classified as differentially expressed based on an

adjusted p-value (adj.p)< 0.05 and |log2FoldChange| > 1.
2.6 Identification and validation of the
prognostic HEMTIRGs signature

To identify genes significantly associated with overall survival

(OS), univariate Cox proportional hazards regression analysis was

performed for each HEMTIRG in the TCGA training cohort (28, 31).

Subsequently, LASSO Cox regression analysis was applied using the

“glmnet” package (version 4.1-8) to refine the selection of prognostic

HEMTIRGs (32, 33). The optimal lambda value was determined, and

the corresponding HEMTIRGs were identified. A prognostic risk score

was then calculated for each patient using the following formula:

Risk   Score =o​expri ∗ coefi

where “coef” represents the regression coefficient for each

HEMTIRG, and “expr” denotes its respective expression level.

Patients in the TCGA BRCA cohort were stratified into high-risk

and low-risk groups based on the median risk score. To evaluate

whether the HEMTIRGs-based prognostic model functions as an

independent prognostic factor, univariate and multivariate Cox

proportional hazards regression analyses were performed in

conjunction with clinical variables. Kaplan-Meier (K-M) survival

curves were constructed to compare survival outcomes between risk

groups, with statistical differences assessed using the log-rank test.

The prognostic accuracy of the model was further evaluated using

ROC curve analysis, with results visualized via the “timeROC”

package (v0.4) (34). Model discrimination was quantified by the

area under the curve (AUC).
2.7 Development and validation of the
nomogram

A prognostic nomogram was developed using the “rms”

package (v6.8.0) in R to estimate 1-, 3-, and 5-year overall

survival (OS) probabilities for BC patients. The predictive

accuracy of the nomogram was assessed using calibration curves

and the Concordance Index (C-Index). Calibration curves visually

compared the predicted survival probabilities with actual outcomes,

while the C-Index provided a quantitative measure of model

performance, with the AUC indicating its discriminatory ability.
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2.8 Drug sensitivity profiling and analysis

Drug sensitivity prediction was conducted using the

calcPhenotype function in the OncoPredict package40. Training

data were obtained from two pharmacogenomic resources:

GDSC241, used to evaluate the sensitivity of breast cancer

samples to commonly applied chemotherapeutics, and CTRP,

applied to assess the sensitivity of EMT-promoting compounds

(35, 36). For all compounds tested, lower predicted scores represent

higher sensitivity of the samples.
2.9 Gene set enrichment analysis

To explore biological pathways associated with high- and low-

risk BC patients, GSEA was performed using the “clusterProfiler”

package (v4.10.1) (37, 38). Genes were ranked based on their signal-

to-noise ratio, and enrichment analysis was conducted using the

KEGG pathway database (c2.cp.kegg.v7.5.1.entrez.gmt). Pathways

with a normalized enrichment score (|NES|) > 1 and p-value< 0.05

were considered significantly enriched.
2.10 Functional enrichment analysis

To explore the biological significance of HEMTIRGs, we

conducted functional enrichment analysis using the “clusterProfiler”

package (v4.10.1) in R (37). This included Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment to characterize the functional profiles of HEMTIRGs.

An enrichment p-value of less than 0.05 was considered statistically

significant (39, 40).
2.11 Immune landscape analysis

To analyze the immune landscape of BC, tumor gene expression

profiles were examined to estimate the proportions of immune and

stromal cells within the tumor microenvironment (TME).

CIBERSORT was employed to deconvolute immune cell

composition, identifying the relative abundances of 22 distinct

immune cell types (41). Additionally, single-sample gene set

enrichment analysis (ssGSEA) from the “GSVA” package

(v1.50.5) was used to estimate the infiltration levels of 28 different

immune cell types (42).
2.12 Immunotherapy responses analysis

To evaluate the potential of the HEMTIRGs-based model in

predicting immunotherapy response, the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm was applied. TIDE

is a computational tool that assesses tumor immune evasion and

predicts responses to immune checkpoint inhibitors (ICIs) based on
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multiple biomarker signatures. TIDE scores were obtained from the

Harvard TIDE database (http://tide.dfci.harvard.edu/) (43).
2.13 Immunohistochemical staining
analysis of HEMTIRGs protein in BC
samples

To examine protein expression levels of HEMTIRGs in BC

tissues, immunohistochemical (IHC) staining images were retrieved

from the Human Protein Atlas (HPA) database (https://

www.proteinatlas.org/).
2.14 Reagents

Reagents were purchased or obtained from the following

sources: rabbit anti-E-Cadherin antibody (A20798, ABclonal,

China), rabbit anti-Vimentin antibody (A2584, ABclonal, China),

rabbit anti-Snail antibody (A5243, ABclonal, China), rabbit anti-

phospho-AKT (Ser 473) (#4060s, CST, USA), mouse anti-AKT

antibody (60203-2-Ig, ProteintechWuhan, China), mouse anti-Beta

Actin antibody (66009-1-Ig, Proteintech Wuhan, China),

NeutraKine® IL-17A Mouse McAb (69021-1-Ig, Proteintech

Wuhan, China), and goat anti-rabbit IgG (H+L) secondary

antibody Alexa Fluor® 488 conjugate (ABclonal, China). Plasmids

(PSPAX2, PMD2.G) used in this experiment were purchased from

Vector Builder (China). Cell Counting Kit-8 assay was purchased

from Beyotime (Cat No.C0038, Beyotime, China).
2.15 Cell culture

The MDA-MB-231 and MDA-MB-468 triple-negative breast

cancer (TNBC) cell lines were purchased from ATCC (American

Type Culture Collection). Cells were cultured in Dulbecco’s Modified

Eagle Medium (DMEM) (Sigma, USA) supplemented with 10%

fetal bovine serum (FBS) (Sigma, USA), 100 U/mL penicillin, and

100 mg/mL streptomycin. Cultures were maintained in a humidified

incubator at 37°C with 5% CO2.

For hypoxia treatment, cells were incubated in a controlled

hypoxic chamber with 1% O2, 5% CO2, and 94% N2, while

normoxic conditions were maintained at 21% O2 and 5% CO2.

IL-17 neutralizing antibody (nAb) treatment was administered at a

final concentration of 10 mg/mL.
2.16 RNA extraction and quantitative real-
time polymerase chain reaction

Total RNA was extracted using Trizol (ThermoFisher, Waltham,

MA, USA) according to the manufacturer’s instructions, and 1 mg of
total RNA from each cell line was used to transcribe into cDNA using

TransScript® One-Step gDNA Removal and cDNA Synthesis
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SuperMix (Beijing Quanshijin Biotechnology Co., Ltd., Beijing,

China). Quantitative real-time PCR (qRT-PCR) was performed

using the PerfectStart Green qPCR SuperMix on the Bio-Rad

CFX96 RealTime PCR system (Bio-Rad, US) with the program of

94°C for 30 s, 45 cycles of 94°C for 5 s and 60°C for 30 s. The relative

gene expression levels were calculated using the 2-DDCt method with

b-actin as an internal control. The primer sequences used in this

experiment were listed in Table 1.
2.17 Colony formation assay

Approximately 500 cells per group were seeded in six-well plates

in triplicate and incubated at 37°C with 5% CO2 for about two weeks,

until visible cell colonies were observed under a microscope. The

colonies were then fixed with 4% paraformaldehyde for 20 minutes,

washed twice with PBS, and stained with 0.2% crystal violet solution

(Sigma, St. Louis, MO, USA) for 10 minutes. After staining, the plates

were washed three times with PBS, air-dried, photographed, and

quantified using ImageJ software.
2.18 Cell counting kit 8 assay

Cell proliferation was assessed using the Cell Counting Kit-8

(CCK-8). Cells from each group were seeded in 96-well plates at a

density of 5 × 10³ cells per well and incubated at 37°C with 5% CO2

for 24, 48, 72, and 96 hours. At each time point, 10 mL of CCK-8

solution was added to each well, followed by incubation for 2 hours

in the dark. The absorbance at 450 nm was measured using a

microplate reader (Bio-Rad Laboratories, Hercules, CA, USA).
2.19 Wound healing assay

A scratch wound assay was performed to assess the migration

ability of BC cells in vitro. Horizontal guidelines were drawn on the

back of a six-well plate using a marker, and cells were seeded into

the plate for culture. Once the cells reached ~80% confluence, a

sterile 200 mL pipette tip was used to create a vertical scratch across

the monolayer, perpendicular to the horizontal guidelines. The cells

were then washed with PBS to remove debris, and the complete
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medium was replaced with DMEM containing 0.2% FBS. The cells

were incubated at 37°C with 5% CO2 for 24 hours. Images of the

wound area were captured at 0 hours and 24 hours using a light

microscope (Olympus Corp., Tokyo, Japan), and the scratch area

was quantified using ImageJ.
2.20 Transwell assay

To evaluate cell invasion, 100 mL of diluted Matrigel was added

to the upper chamber of the transwell insert and incubated at 37°C

with 5% CO2 for 2–4 hours to allow the gel to solidify. Subsequently,

200 mL of serum-free medium containing 5 × 104 cells was added to

the upper chamber, while 600 mL of complete medium containing

20% FBS was placed in the lower chamber. The transwell plates

were incubated at 37°C with 5% CO2 for 24 hours. After incubation,

the transwell chambers were washed three times with PBS, and non-

invading cells in the upper chamber were removed with a cotton

swab. The membranes were then fixed with 4% methanol for

20 minutes, washed three times with PBS, stained with 0.25%

crystal violet for 30 minutes, washed again three times with PBS,

air-dried, and photographed for analysis.
2.21 Enzyme‐linked immunosorbent assay

The concentration of IL-17 in the culture supernatant was

measured using an ELISA kit (RK00397, ABclonal, China),

following the manufacturer’s instructions. Blank control wells

were included in the assay. The absorbance at 450 nm was

measured using a microplate reader, and the IL-17 concentration

was determined based on a standard curve.
2.22 Lentivirus generation and transduction

HEK-293T cells were co-transfected with the packaging plasmid

(psPAX2), envelope plasmid (pMD2.G), and the PLKO.1-TRC

plasmid with targeted shRNA sequences for knockdown using

Lipo6000™ Transfection Reagent to produce the corresponding

lentivirus. After culturing the transfected HEK-293T cells for 48 h,

the supernatant was removed and centrifuged for 5 min at 1000 rpm
TABLE 1 List of primers used for qRT-PCR (h: human).

Target gene Forward Reverse

hHIF1A TATGAGCCAGAAGAACTTTTAGGC CACCTCTTTTGGCAAGCATCCTG

hCRISP3 TGTCAAGTGCCTCCAGCTCATG CACATCCAACGAGGTATGAAGAG

hPAX7 GGAGGATGAAGCGGACAAGAAG AGGTCAGGTTCCGACTCCACAT

hFGG GAAGGCAACTGTGCTGAACAGG CCATTAGGAGTAGATGCTTTTGAG

hDCD GGTTAGCCAGACAGGCACCAAA CACGCTTTCTAGATCTTCGACTG

hb-actin CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT
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to extract virus particles. Subsequently, lentivirus-infected cells were

screened for cells expressing the relevant antibiotic resistance gene

in a growth medium supplemented with 2 mg/mL puromycin. To

interfere with CRISP3 expression, short hairpin RNA (shRNA)

oligos of CRISP3 were cloned into pLKO.1-TRC. The boldface

sequences below represent the targeting sequences for hCRISP3-1-

shRNA and hCRISP3-2-shRNA (only the sense strand is shown):

hCRISP3-1-shRNA-F:

5’- CCGGCAGTAACCCAAAGGATCGAATCTCGAGATTC

GATCCTTTGGGTTACTGTTTTTG-3’

hCRISP3-2-shRNA -F:

5’- CCGGGTGCAATTACAGACACAGTAACTCGAGT

TACTGTGTCTGTAATTGCACTTTTTG-3’
2.23 Statistical analysis

Statistical significance between two sets of data was assessed

using the Student’s t-test, while comparisons among more than two

groups were evaluated through analysis of one-way ANOVA.

Univariate Cox analysis was employed to identify genes with

prognostic significance. Kaplan-Meier (K-M) survival curves were

constructed and compared using the log-rank test. All statistical

analyses were performed using R version 4.2.1 (https://www.r-

project.org/) along with appropriate packages. Statistically

significant differences are indicated by asterisks (*p< 0.05; **p<

0.01; ***p< 0.001). All experimental data are presented as mean ±

SEM of four independent replicates.
3 Results

3.1 Identification of HEMTIRGs in the BRCA
cohort

3.1.1 Consensus clustering and subgroup
classification

The study design is illustrated in Figure 1. To identify hypoxia-

and EMT-related genes in BC, consensus clustering was performed

on RNA sequencing data from 1,037 BC cases in the TCGA database

(Supplementary Table S4). Supplementary Figures S1A–D display

the Kaplan-Meier survival curves and log-rank tests for various

clinicopathological parameters, including overall stage, tumor (T),

metastasis (M), and node (N) classifications. The cumulative

distribution curve (Figure 2A) and area under the distribution

curve (Figure 2B) indicated that the highest group consistency was

achieved at k=4. Accordingly, the 1,037 BRCA samples were

classified into four distinct subtypes (C1, C2, C3, and C4), as

confirmed by the consensus matrix (Figure 2C). Subsequently,

gene set variation analysis (GSVA) was conducted to assess

hypoxia and EMT scores across the four subtypes. The results

showed that C1 and C2 exhibited significantly higher hypoxia and

EMT scores than C3 and C4 (Figure 2D). Based on this, C1 and C2

were designated as the high hypoxia/EMT group, while C3 and C4

were categorized as the low hypoxia/EMT group. This classification
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led to the identification of 121 differentially expressed genes (DEGs)

associated with hypoxia and EMT (Supplementary Table S5).

3.1.2 Identification of HEMTIRGs and prognostic
risk genes

Additionally, analysis of the TCGA cohort identified 5,079 BC-

specific DEGs (BRCA-DEGs), with 2,940 upregulated and 2,138

downregulated genes, as shown in the volcano plot (Figure 2E). By

intersecting hypoxia- and EMT-related DEGs (Supplementary

Table S5), BRCA-DEGs (Supplementary Table S6), and 5,335

immune-related genes (Supplementary Table S3), we identified 24

differentially expressed genes associated with hypoxia, EMT, and

immune function (HEMTIRGs) (Figure 2F). Univariate Cox

regression analysis was then conducted to evaluate the prognostic

significance of the 24 HEMTIRGs in overall survival (OS). Among

these, PAX7 (paired box 7), FGG (fibrinogen gamma chain),

CRISP3 (cysteine-rich secretory protein 3), and DCD (dermcidin)

were significantly correlated with OS and identified as risk genes

(HR > 1, p< 0.05) (Figure 2G). Further investigation focused on the

copy number variations (CNVs) of HEMTIRGs, aiming to explore

potential associations between CNVs and mRNA expression levels

in TCGA BRCA samples. The expected copy number for each gene

is 2; values above 2 are categorized as “GAIN” and those below 2 as

“LOSS.” We observed a significant amplification of DCD copy

numbers, which was associated with an increase in mRNA

expression (Supplementary Figure S2A). In contrast, PAX7 and

FGG showed relatively low CNV frequencies, and no CNVs were

detected for CRISP3 (Supplementary Figure S2A).
3.2 Development and evaluation of a
prognostic model based on HEMTIRGs in
the TCGA cohort and the GEO cohort

3.2.1 Construction and validation of the
HEMTIRGs-based prognostic model

To evaluate the prognostic value of the identified HEMTIRGs in

the BC, we conducted LASSO Cox regression analysis, which

identified PAX7, FGG, CRISP3, and DCD as key prognostic genes

with optimal logarithmic lambda values (l = 0.001) (Figures 3A, B).

A risk score for each patient in the TCGA cohort was then

computed using the following formula: Risk score = 0.26 *

PAX7 + 0.093 * FGG + 0.086 * CRISP3 + 0.048 * DCD. The

TCGA training cohort was then stratified into low-risk (n = 519)

and high-risk (n = 518) groups based on the median risk score.

High-risk patients exhibited higher risk scores and shorter survival

times compared to low-risk patients (Figure 3C). Kaplan-Meier

survival analysis further demonstrated a significantly higher

survival probability for the low-risk group compared to the high-

risk group (p< 0.001, HR = 2.21, 95% CI: 1.52-2.95) (Figure 3D).

Receiver operating characteristic (ROC) analysis revealed 1-, 3-, and

5-year survival probabilities of 0.69, 0.70, and 0.72, respectively

(Figure 3E). The prognostic accuracy of the model was validated in

the GEO cohort (GSE20685), which showed consistent results with

the TCGA training cohort (Figures 3F–H). Several prognostic
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models have been previously proposed for predicting survival

outcomes in BC patients.

3.2.2 Evaluation of model performance relative to
established prognostic models

We next conducted a comparative analysis of our model against

three previously established models: Model 1 (Lu et al.) (44), Model
Frontiers in Immunology 07
2 (Liu et al.) (45), and Model 3 (Gong et al.) (46), using both the

concordance index (C-index) and decision curve analysis (DCA)

(Supplementary Figures S3A, B). The C-index comparison revealed

that the HEMTIRGs-model exhibited the optimal prediction ability

for overall survival (OS) probabilities, achieving the highest C-index

value (0.712) compared to the other three models (Supplementary

Figure S3A). Furthermore, DCA results demonstrated that our
FIGURE 1

The flowchart of this study.
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model provided superior clinical performance, offering greater net

clinical benefit compared to the other models (Supplementary

Figure S3B). These findings suggest that the HEMTIRGs-based

prognostic model demonstrates exceptional accuracy, reliability,

and performance in clinically predicting the OS of BC patients.
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3.3 Construction and validation of the
nomogram

To assess the independent predictive ability of the risk score, we

performed both univariate and multivariate Cox regression analyses.
FIGURE 2

Consensus clustering analysis for identifying HEMTIRGs. (A) Consensus clustering CDF for k = 2-5. (B) Relative change in area under the CDF curve
for k = 2-5. (C) Consensus clustering matrix for k = 4. (D) Heatmap of hypoxia scores and EMT scores for the 4 subgroups. (E) Volcano plot of
the 5078 DEGs. (F) The Venn diagram of analysis of HEMTRGs, BRCA-DEGs, and immune-related genes. (G) Forest plot of the univariate Cox
regression analysis.
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FIGURE 3

Construction and evaluation of the HEMTIRGs-based prognostic model. (A) LASSO coefficient profiles of the four HEMTIRGs. (B) Coefficient profile
plot generated against the log (l) sequence in the LASSO model, with the optimal l value indicated by a vertical black dotted line. (C) Distribution of
risk score (top), and survival status with survival time (bottom) in the TCGA BRCA training cohort. Patients were stratified into high-risk (purple) and
low-risk (yellow) groups according to the median risk score, while survival status is indicated as alive (red) or dead (blue). (D) Kaplan-Meier curves of
HEMTIRGs in the TCGA BRCA training cohort. (E) The time-dependent ROC curves of the HEMTIRGs in the TCGA BRCA training cohort. (F) The
distribution of the risk score (top), and survival status with survival time (bottom) in the GSE20685 validation cohort. Patients were stratified into
high-risk (orange) and low-risk (blue) groups according to the median risk score, while survival status is indicated as alive (yellow) or dead (green).
(G) Kaplan-Meier curves of the HEMTIRGs in the GSE20685 validation cohort. (H) The time-dependent ROC curves of the HEMTIRGs in the
GSE20685 validation cohort.
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Univariate Cox regression analysis revealed significant associations

between overall survival (OS) and multiple clinicopathological

variables, including age (p< 0.001, HR = 1.035, 95% CI = 1.021-

1.050), T stage (p< 0.001, HR = 1.56, 95% CI = 1.26-1.94), N stage

(p< 0.001, HR = 1.64, 95% CI = 1.37-1.97), M stage (p< 0.001, HR =
Frontiers in Immunology 10
6.43, 95% CI = 3.61-11.45), tumor stage (p< 0.001, HR = 1.58, 95%

CI = 1.32-1.90), and risk score (p< 0.001, HR = 2.71, 95% CI = 1.78-

4.16) (Figure 4A). Furthermore, multivariate Cox regression analysis

confirmed that both age (p< 0.001, HR = 1.039, 95% CI = 1.02-1.05)

and risk score (p< 0.001, HR = 2.47, 95% CI = 1.56-3.90) were
FIGURE 4

Construction and validation of the nomogram. Forest plots of the (A) univariate and (B) multivariate Cox regression analysis in the TCGA BRCA
cohort. (C) The nomogram was developed based on age and risk score. The calibration plots were generated to predict the (D) 1-year, (E) 3-year,
and (F) 5-year OS rates. The X-axis displays the nomogram-predicted survival, and the y-axis represents the actual survival. (G) The concordance
index curves of the nomogram, risk score, and age. (H) DCA curves for nomogram, risk score, and age.
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significant independent prognostic factors for OS in BC patients

within the TCGA training cohort (Figure 4B). Next, a HEMTIRGs-

nomogram was developed to predict 1-, 3-, and 5-year OS in the

TCGA BRCA cohort, incorporating two independent risk factors

(age and risk score) (Figure 4C). Calibration curves demonstrated

that the predicted survival rates of the nomogram were consistent

with the observed survival rates at 1, 3, and 5 years (Figures 4D–F).

To assess the clinical decision value of the nomogram compared to
Frontiers in Immunology 11
other clinical indicators, we calculated the concordance index

(C-index) and decision curve analysis (DCA). The nomogram

achieved a C-index of 0.721, outperforming risk score (AUC =

0.702) and age (AUC = 0.669) in predicting OS (Figure 4G).

Furthermore, DCA revealed that the nomogram yielded higher net

benefits than other indicators in clinical practice (Figure 4H). These

results demonstrate that the nomogram based on HEMTIRGs

provides significantly higher predictive accuracy than individual
FIGURE 5

Clinical correlation analysis of HEMTIRGs. (A) The heatmap of HEMTIRGs expression associated with age, T, N, M, stage, gender, and risk scores.
(B) Distribution of clinicopathological characteristics (age, overall stage, T stage, N stage, and M stage) between high- and low-risk groups.
(C–F) Drug sensitivity analysis between high- and low-risk groups for EMT inhibitors, including (C) curcumin, (D) disulfiram, (E) palbociclib,
and (F) RO4929097. Statistical significance was determined by an unpaired Student’s t-test. ***p < 0.001.
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clinical indicators, underscoring its potential as a valuable tool for

clinical decision-making.
3.4 Clinicopathological analysis of
HEMTIRGs in BC

To investigate the association between HEMTIRGs expression

and clinicopathological characteristics in BC patients, we generated

a heatmap illustrating gene expression patterns (Figure 5A). The

heatmap demonstrated that the high-risk group exhibited a

significantly higher proportion of patients with advanced age (≥60

years), advanced stage (stage IV), and advanced TNM grade (T4,

N3, and M1) (Figure 5B). Furthermore, differential drug sensitivity

analysis revealed that patients in the low-risk group exhibited

significantly increased sensitivity to several commonly used EMT-

targeting inhibitors, such as curcumin (47), disulfiram (48),

palbociclib (49), and RO4929097 (50) as compared to high-risk

patients (Figures 5C–F). These findings suggest that EMT inhibition

may represent a promising therapeutic strategy, particularly for

low-risk patients who demonstrate greater responsiveness to

such agents.
3.5 Exploration of molecular functions and
signaling pathways associated with
HEMTIRGs using GSEA, GO, and KEGG
analyses

To elucidate the biological functions associated with HEMTIRGs

in high-risk and low-risk groups, we performed Gene Set Enrichment

Analysis (GSEA). All the enriched KEGG pathways were listed in

Supplementary Table S7. GSEA results identified 30 significantly

enriched pathways in the high-risk group, including protein export

(NES = 1.88, p = 0.032), steroid biosynthesis (NES = 1.81, p = 0.012),

citrate cycle (TCA cycle) (NES = 1.78, p = 0.029), glutathione

metabolism (NES = 1.67, p = 0.0082), and ascorbate and aldarate

metabolism (NES = 1.67, p = 0.020), all of which are implicated in

tumorigenesis (Figure 6A). In the low-risk group, 15 pathways were

significantly enriched, including the Notch signaling pathway (NES =

-1.88, p = 0.0040), base excision repair (NES = -1.61, p = 0.043), tight

junction (NES = -1.52, p = 0.033), glycerophospholipid metabolism

(NES = -1.42, p = 0.042), and RNA polymerase (NES = -1.40, p =

0.013) (Figure 6B). Next, we analyzed differences in biological

processes and pathways between the two risk groups based on the

HEMTIRGs signature. The DEGs between the high- and low-risk

groups were identified using adjusted p-value (adj. p)< 0.05 and

|log2FoldChange| > 1 as cutoffs (Supplementary Table S8). Gene

Ontology (GO) enrichment and KEGG pathway analyses revealed

295 biological processes (BPs), 6 cellular components (CCs), and 49

molecular functions (MFs) (Supplementary Table S9). The top 10

enriched BPs, CCs, and MFs are illustrated in Figures 6C–E. KEGG

pathway analysis identified 15 significantly enriched pathways

(Supplementary Table S10), with the IL-17 and AKT signaling

pathway showing a high degree of enrichment (Figure 6F).
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3.6 Immune status analysis for BC based
on HEMTIRGs

To comprehensively characterize the immune status analysis

based on HEMTIRGs within the context of risk stratification in BC,

CIBERSORT and single-sample Gene Set Enrichment Analysis

(ssGSEA) were performed in high-risk and low-risk groups. The

CIBERSORT algorithm was used to assess the distribution of 22

immune cell types, revealing significantly higher infiltration levels of

plasma cells (p< 0.001), activated memory CD4+ T cells, and gd T

cells (p< 0.001) in the high-risk group compared to the low-risk

group (Figure 7A). These results suggest a positive correlation

between risk score and the infiltration of these immune cell types

in the high-risk group. Additionally, ssGSEA analysis indicated

significant upregulation of genes associated with 9 immune cell

subtypes (activated dendritic cell, CD56bright natural killer cell,

eosinophil, immature B cell, immature dendritic cell, MDSC,

memory B cell, T follicular helper cell, Type 17 T helper cell) in

the high-risk group compared to the low-risk group (Figure 7B),

underscoring a more pronounced immune cell infiltration in the

high-risk cohort. We next compared the expression levels of 16

immune checkpoint molecules between these two groups. The high-

risk group showed significantly higher expression of BTLA, CD28,

KIR3DL1, CD80, VTCN1, IDO1, PDCD1LG2, LGALS3,

CEACAM1, TIGIT, CTLA4, PD-1, and PD-L1, whereas

TNFRSF14 expression was markedly lower in this group

(Figure 7C). To assess the predictive potential of our model for

immunotherapy response, we conducted a Tumor Immune

Dysfunction and Exclusion (TIDE) analysis. The high-risk group,

with its elevated TIDE score, exhibited a significantly poorer

response to immunotherapy compared to the low-risk group

(Figure 7D). Furthermore, drug sensitivity analysis revealed that

high-risk patients exhibited reduced responsiveness to multiple

conventional chemotherapeutic agents, including epirubicin,

mitoxantrone, paclitaxel, docetaxel, vinorelbine, cyclophosphamide,

cisplatin, oxaliplatin, 5-fluorouracil, gemcitabine, and lapatinib

(Figure 7E). This pattern suggests a broader therapy resistance in

the high-risk subgroup, potentially reflecting more aggressive tumor

biology and underscoring the need to explore alternative therapeutic

strategies for these patients.
3.7 Expression analysis of HEMTIRGs in the
TCGA BRCA cohort

We evaluated the expression patterns of HEMTIRGs in BC and

adjacent normal tissues from the TCGA BRCA cohort. PAX7 and

CRISP3 were significantly upregulated, while DCD and FGG were

markedly downregulated in BC samples (Figures 8A–D). To further

investigate HEMTIRGs expression across BC subtypes, we

employed GSEA to assess differences in hypoxia, EMT, and

hypoxia-EMT risk scores in four BC subtypes: hormone receptor-

positive (Luminal A and Luminal B), HER2-positive, and triple-

negative BC (TNBC), revealing that TNBC exhibited consistently

higher scores for these features compared to the other subtypes
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(Figures 8E–G). Among the four BC subtypes, CRISP3 and DCD

expression were significantly elevated in TNBC (Figure 8H). To

confirm these findings at the protein level, we performed

immunohistochemical (IHC) analysis using data from the Human

Protein Atlas (HPA). The results corroborated the transcriptional
Frontiers in Immunology 13
data, revealing significantly higher CRISP3 protein expression in

BC tissue compared to normal tissue, whereas DCD protein

expression showed no significant difference (Figures 8I, J). These

findings highlight the critical role of CRISP3 in BC pathogenesis,

particularly in TNBC.
FIGURE 6

Exploration on molecular functions and signaling pathways of HEMTIRGs. Enrichment plot of the DEGs between the (A) high- and (B) low-risk
groups using GSEA (Gene Set Enrichment Analysis). (C–E) GO (Gene Ontology) analysis, including (C) BP (Biological Processes), (D) CC (Cellular
Components), and (E) MF (Molecular Functions). (F) KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis.
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FIGURE 7

Analysis of the immune status in BC patients combined with prognostic modeling. (A) The relative proportions of 22 tumor-infiltrating immune
cell types in high- and low-risk groups of the TCGA BRCA cohort. (B) ssGSEA scores in the high- and low-risk groups. (C) Immune checkpoint
expression analysis between high- and low-risk groups. (D) TIDE score analysis between high- and low-risk groups. (E) Chemotherapeutic drug
sensitivity analysis between high- and low-risk patients. Statistical significance was determined by an unpaired Student’s t-test. *p < 0.05, **p < 0.01,
***p < 0.001, ns, not significant.
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FIGURE 8

Expression analysis of HEMTIRGs in the TCGA BRCA cohort. Expression of (A) PAX7, (B) CRISP3, (C) DCD, and (D) FGG in BC and normal tissues for the
TCGA BRCA cohort. (E) Hypoxia, (F) EMT, and (G) hypoxia-EMT risk scores for four subtypes of BC. (H) Expression of PAX7, CRISP3, DCD, and FGG in
four subtypes of BC. (I, J) Immunohistochemical images of CRISP3 and DCD protein in normal and BC tissues. Protein expression was quantified based
on the percentage of immunopositive cells and categorized as follows: negative (0%), weakly positive (<25%), moderately positive (25-75%), or strongly
positive (>75%). Statistical significance was determined using one-way ANOVA. *p< 0.05, **p < 0.01, ***p < 0.001, ns, not significant.
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3.8 In vitro functional validation of CRISP3
in BC cells

To explore and validate the hypoxia responses of CRISP3 in

TNBC cells, MDA-MB-231 and MDA-MB-468 TNBC cell lines

were exposed to hypoxic conditions for 0, 12, 24, and 48 hours, as

confirmed by the remarkable upregulation of HIF-1a mRNA

expression (Figure 9A). qRT-PCR analysis revealed a remarkable

upregulation of CRISP3 in TNBC cells under hypoxic conditions

(Figure 9B). In contrast, PAX7, FGG, and DCD showed only

modest changes in mRNA expression in response to hypoxia

(Supplementary Figures S4A–C), indicating that CRISP3 is the

most robustly hypoxia-inducible gene among the identified

HEMTIRGs. To further validate the function and action

mechanism of CRISP3 in TNBC cells, we applied lentivirus-

mediated shRNA to knockdown CRISP3, as validated by qRT-

PCR (Figure 9C). Next, we silenced CRISP3 under hypoxic

conditions in MDA-MB-231 and MDA-MB-468 cells to evaluate

the EMT process. Notably, CRISP3 knockdown significantly

suppressed the expression of vimentin and snail while restoring

E-cadherin expression under hypoxia (Figure 9D, Supplementary

Figures S5A–C). Consistently, CCK-8 and colony formation assays

demonstrated that CRISP3 depletion significantly reduced hypoxia-

induced cell proliferation (Figures 9E–G) in both TNBC cell lines.

Moreover, wound healing assays and transwell invasion revealed

that CRISP3 knockdown led to a significant reduction in cell

migration (Figures 9H, I) and invasion (Figures 9J, K) under

hypoxic conditions. Intriguingly, IL-17 levels were elevated in the

supernatants of hypoxia-treated TNBC cells, whereas CRISP3

knockdown significantly attenuated this elevation in IL-17

production (Figure 9L). These findings indicate that CRISP3 may

promote TNBC cell proliferation, migration, invasion, as well as

EMT by enhancing IL-17 production under hypoxic conditions.
3.9 CRISP3 promotes the pro-carcinogenic
progression through activation of the IL-
17/AKT signaling axis in BC cells

To further verify whether CRISP3 drives BC progression

through elevation of IL-17 production, we treated TNBC cell lines

exposed to hypoxia with IL-17 neutralizing antibodies (IL-17 nAb).

Consistently, we found that IL-17 neutralizing antibody treatment

significantly inhibited hypoxia-induced cell viability (Figure 10A),

proliferation (Figure 10B), migration (Figures 10C, D), and invasion

(Figure 10E) of MDA-MB-231 and MDA-MB-468 cells. Moreover,

we observed that IL-17 nAb significantly prevented hypoxia-

induced EMT processes in MDA-MB-231 and MDA-MB-468 cell

lines, as demonstrated by elevated E-cadherin and reduced

vimentin and snail expression levels as compared to the hypoxia

treatment group (Figure 10F, Supplementary Figures S5D–F). In

our KEGG pathway enrichment analysis, we found that the AKT

signaling pathway was also significantly enriched. Accumulating

evidence has demonstrated that hypoxia is strongly implicated with

activation of AKT signaling in a variety of cell types (51–53), and
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IL-17 can exert tumor-promoting effects through activation of the

AKT pathway (54–56), which prompts us to consider whether

CRISP3 drives the pro-carcinogenic progression through

activation of the IL-17/AKT signaling axis in BC cells. As

expected, IL-17 nAb was prominent to prevent hypoxia-induced

AKT activation (Figure 10F), with quantification data shown in

Supplementary Figure S5G.
4 Discussion

BC remains the most prevalent malignancy among women

globally, yet challenges persist in achieving personalized treatment

and accurate prognostic evaluation. Advances in bioinformatics

have enabled the identification of numerous aberrantly expressed

oncogenes, which hold potential as prognostic signatures in BC (57,

58). However, the prognostic potential gene signature based on

HEMTIRGs has remained largely unexplored. In this study, we

identified four key HEMTIRGs and developed a prognostic model

that demonstrated high reliability and accuracy in predicting

patient outcomes and guiding immunotherapy in BC. Notably,

comprehensive bioinformatics analyses combined with in vitro

experiments confirmed the strong involvement of HEMTIRGs in

BC pathogenesis, with strong associations to hypoxia, EMT, and

immune regulation. These findings highlight the HEMTIRGs

signature as a promising biomarker for prognosis, survival risk

stratification, and the development of personalized treatment

strategies in BC.

Here, we identified four HEMTIRGs, including PAX7, DCD,

CRISP3, and FGG, in the BRCA cohort. Based on this HEMTIRGs

signature, we developed a novel prognostic risk evaluation model

using LASSO Cox regression analysis. In previous studies, the

prognostic model solely based on hypoxia-associated markers (46),

EMT-related lncRNAs (59), or immune cell signatures (45) has been

established. In this study, our HEMTIRGs-based model integrates

hypoxia, EMT, and immune-related genes, offering a distinct

approach with unique advantages for prognostic prediction. To

assess its performance, we conducted a comparative analysis with

other existing models, including those based on ferroptosis-related

genes (44), hypoxia-associated markers (46), and immune cell

signatures (45). Our results demonstrate that the HEMTIRGs

model outperforms these alternatives in accuracy and reliability for

predicting overall survival (OS) in BC patients. Additionally, we

constructed an HEMTIRGs-based nomogram to predict 1-, 3-, and

5-year OS in the TCGA BRCA cohort. Calibration curves revealed a

strong concordance between predicted and observed OS at these

intervals, indicating that the nomogram provides significantly

greater predictive accuracy than individual clinical indicators

alone. Artificial intelligence (AI) is increasingly transforming

breast imaging, with the potential to enhance diagnostic efficiency

(60). In further studies, an extended nomogram model based on

HEMTIRGs combining with AI and clinical features could be

developed to facilitate cancer detection and support clinical

decision-making. In clinical practice, the HEMTIRG-derived risk

score could be incorporated into routine molecular testing or
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FIGURE 9

CRISP3 knockdown attenuates hypoxia-induced TNBC cell proliferation, migration, and EMT. MDA-MB-231 and MDA-MB-468 cells were transduced
with pLKO.1-TRC shRNA as control (Con) or pLKO.1-CRISP3 shRNA to silence CRISP3 (shRNA CRISP3). qRT-PCR analysis of the mRNA expression of
(A) HIF-1a and (B) CRISP3 under hypoxia conditions in MDA-MB-231 and MDA-MB-468 cells. (C) qRT-PCR analysis of CRISP3 silencing efficiency in
MDA-MB-231 and MDA-MB-468 cells. (D) Immunoblotting analysis of EMT markers. (E) The CCK8 assay, and (F–G) colony formation assay were
employed to evaluate cell proliferation. (H, I) Wound healing assay, and (J–K) transwell assay were conducted for assessment of migrative ability.
(L) ELISA was performed to measure the level of IL-17 in the conditioned medium of MDA-MB-231 and MDA-MB-468 cells. Statistical significance
was determined using one-way ANOVA. Data are presented as mean ± SEM (n = 4). *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar = 0.1 mm.
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immunohistochemistry to stratify breast cancer patients into high-

and low-risk groups. Such stratification may guide preoperative

treatment planning, postoperative surveillance scheduling, and the

selection of immunotherapy or combination regimens. Moreover,

the nomogram established in this study could be embedded into

clinical workflows or electronic medical record systems as a decision-

support tool, providing oncologists with individualized survival

predictions to improve prognosis assessment and treatment

planning. In addition, immunohistochemical analysis confirmed

aberrant expression of HEMTIRGs in BC tissue samples as

compared to the normal group, underscoring their potential as

diagnostic biomarkers for BC diagnosis. Nevertheless, the clinical

applicability of HEMTIRGs for BC prognosis and diagnosis warrants

further validation in prospective and multicenter studies.
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To investigate the potential mechanisms through which

HEMTIRGs modulate the malignant progression of BC, we

examined the biological processes and signaling pathways of

HEMTIRGs in both high-risk and low-risk groups. GSEA, GO, and

KEGG analyses reveal that HEMTIRGs were significantly associated

with several BC-related pathways, including steroid biosynthesis (61),

citrate cycle TCA cycle (62), notch signaling pathway (63), tight

junction (64), glycerophospholipid metabolism (65), humoral

immune response (66), Akt signaling pathway (67) and IL-17

signaling pathway (68). Mechanistically, HEMTIRGs may contribute

to the pathogenesis of BC by regulating hypoxia, EMT, and immune

responses through the enriched pathways, which provides novel

perspectives to elucidate the molecular mechanisms driving BC

pathogenesis and offer potential targets for therapeutic intervention.
FIGURE 10

Blocking IL-17 prevents hypoxia-induced pro-carcinogenic progression in BC cells. MDA-MB-231 and MDA-MB-468 cells were exposed to hypoxic
conditions (1% O2, 5% CO2, and 94% N2) and subsequently treated with IL-17 neutralizing antibody (nAb) at a final concentration of 10 mg/mL.
(A) CCK8 assay. (B) Colony formation assay. (C, D) Wound healing assay. (E) The transwell assay. (F) Immunoblotting analysis of EMT markers,
AKT, and p-AKT. Statistical significance was determined using one-way ANOVA. Data are presented as mean ± SEM (n = 4). **p < 0.01, ***p < 0.001.
Scale bar = 0.1 mm.
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Tumor-infiltrating immune cells play a critical role in BC

progression by infiltrating the tumor microenvironment (TME)

and interacting with cancer cells and other immune components to

promote malignant phenotypes (69). In this present study, we

performed CIBERSORT and ssGSEA analyses to assess the

involvement of immune cell infiltration in BC, revealing

significantly elevated levels of immune cell populations, including

CD4+ T cells, gd T cells, and dendritic cells, in the high-risk group.

Elevated immune cell infiltration within the TME may promote the

progression of BC, thereby contributing to the poorer prognosis

observed in high-risk patients. Additionally, tumor-infiltrating

immune cells have been recognized as prognostic markers for

chemotherapy response and survival in BC (70). Moreover, we

observed that the expression levels of 13 immune checkpoint

molecules (BTLA, CD28, KIR3DL1, CD80, VTCN1, IDO1,

PDCDLG2, LGALS3, CEACAM1, TIGIT, CTLA4, PD-1, and PD-

L1) were significantly elevated in the high-risk group, while

TNFRSF14 expression was notably reduced. Several of these

molecules have been previously implicated in BC development

and progression, including CD28 (71), CD80 (72), VTCN1 (73),

IDO1 (74), PDCDLG2 (75), TIGIT (76), PD-1, and PD-L1 (77).

Whereas the roles of BTLA, KIR3DL1, LGALS3, CEACAM1, and

TNFSF4 in modulating BC remain poorly understood, highlighting

the need for further investigation.

Notably, our experimental work validated that CRISP3 is a key

HEMTIRG that modulates the biological functions of breast cancer

cells under hypoxic conditions through the IL-17/AKT signaling

pathway. For the first time, we found that CRISP3 expression was

significantly upregulated in BC cell lines following hypoxic exposure,

and CRISP3 depletion significantly attenuated hypoxia-induced cell

proliferation, migration, invasion, and EMT, which is in line with the

prognostic prediction model based on HEMTIRGs. Consistently, in

patients with mammary carcinoma, it has been found that higher

expression of CRISP3 was connected to a significantly decreased

disease-free survival and overall survival (78). A significant higher

mRNA and protein levels of CRISP3 were seen in T-47D as well as

SK-BR-3 human breast cancer cell lines compared with those in

other types of mammary carcinoma cells, and knockdown of CRISP3

resulted in weakened migration or invasion abilities (78).

Furthermore, our study identifies the IL-17/AKT signaling axis as

the key pathway through which CRISP3 drives hypoxia-induced BC

progression. IL-17 has been implicated in tumor-associated

inflammation, immune evasion, and EMT through activation of

AKT (55, 56). CRISP3 may facilitate IL-17 secretion or signaling,

promoting an immunosuppressive and pro-metastatic environment.

The observed attenuation of hypoxia-induced proliferation and EMT

upon CRISP3 depletion suggests that CRISP3 may amplify AKT

phosphorylation, reinforcing its oncogenic function in BC. Notably,

CRISP3-mediated upregulation of IL-17 in BC cells (Figure 9L) may

contribute to the enrichment of Th17 and gd T lymphocytes

observed in the high-risk group (Figure 7), suggesting a potential

feed-forward loop between tumor-intrinsic signaling and immune

microenvironment remodeling. As IL-17 is a signature cytokine of

these cell types, CRISP3 may both promote tumor cell proliferation
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via IL-17/AKT signaling and facilitate the recruitment or expansion

of IL-17–producing immune cells, thereby reinforcing an

immunosuppressive tumor microenvironment. This dual

mechanism highlights the role of CRISP3 in linking hypoxia-

driven tumor progression to an adverse immune milieu, ultimately

contributing to the poor prognosis observed in high-risk patients.

Although the functional role of PAX7, FGG, and DCD in

modulating BC malignant progression has not been validated in

this study, emerging evidence suggests that they may be directly or

indirectly involved in BC pathogenesis associated with hypoxia and

EMT. PAX7, as a transcription factor, has been implicated in EMT

(79), a critical process for cancer cell migration and invasion. It may

drive Snail, Slug, and ZEB1/2 expression, leading to E-cadherin

suppression and vimentin upregulation, hallmarks of EMT. FGG is a

key component offibrinogen, traditionally involved in blood clotting

and wound healing. However, recent studies suggest that FGG plays

a crucial role in tumor progression, particularly in promoting

angiogenesis, metastasis, and immune suppression. FGG has been

identified and characterized as a potential prognostic gene for

predicting overall survival in hepatocellular carcinoma (HCC)

patients, which enhances HCC cell migration and invasion by

activating EMT (80). Moreover, silencing FGG in lung squamous

cell carcinoma (LUSC) tissue notably altered the extent of immune

infiltration, particularly affecting the infiltration of M1-type

macrophages derived from THP-1 cell polarization (80). DCD, a

secreted antimicrobial peptide, has been found to be dysregulated in

a subset of breast tumors (81). Patients with DCD-positive breast

cancer have worse prognostic features (81). Bancovik et al. revealed

that DCDmodulated its oncogenic role in breast cancer by the ERBB

signaling (81). Taken together, these evidences confirm that these

HEMTIRGs (CRISP3, PAX7, FGG, and DCD) are closely related to

hypoxia, EMT, and tumor immunity, which in turn contribute to the

regulation of BC pathogenesis and prognosis.

Although our study developed a novel prognostic risk model for

BC based on HEMTIRGs, demonstrating strong accuracy and

reliability, certain limitations remain. In particular, the functional

role of CRISP3 in hypoxia-induced BC progression was only

validated in vitro. Future studies should include in vivo models to

strengthen these mechanistic insights. Additionally, future research

should focus on validating the model’s predictive performance and

its effectiveness in stratifying BC patients, forecasting prognosis,

and assessing immunotherapy responses in larger clinical cohorts.

Finally, the exact molecular mechanisms through which

HEMTIRGs contribute to BC pathogenesis and progression

require further investigation to fully elucidate their role in BC

development and potential therapeutic targeting.
5 Conclusion

In conclusion, we identified a novel and reliable prognostic

HEMTIRGs signature through bioinformatics analysis of hypoxia-,

EMT-, and immune-related genes in the BC training cohort. A

prognostic risk model based on HEMTIRGs effectively stratified BC
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patients, and demonstrated excellent reliability and accuracy in

predicting BC prognosis and assessing immunotherapy efficacy,

offering valuable insights for risk assessment, personalized

treatment strategies, and clinical decision-making in BC

management. Furthermore, our findings enhance the understanding

of hypoxia- and EMT-driven mechanisms underlying BC progression

and prognosis, highlighting novel therapeutic targets for

BC treatment.
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