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Introduction: Breast cancer (BC) remains a widespread malignancy and ranks as
the second leading cause of cancer-related mortality among women worldwide.
Hypoxia, epithelial-mesenchymal transition (EMT), and immune-related
processes have been increasingly recognized as critical contributors to BC
pathogenesis. However, a prognostic model integrating hypoxia-, EMT-, and
immune-related genes (HEMTIRGs) to predict BC outcomes has not yet
been established.

Methods: Gene expression datasets of BC patients were obtained from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Prognostic
genes were identified using Least Absolute Shrinkage and Selection Operator
(LASSO) Cox regression analysis. A prognostic model was developed based on
these genes. Immune infiltration was assessed using CIBERSORT and ssGSEA
analyses. Immunotherapy response was predicted using the tumor immune
dysfunction and exclusion (TIDE) algorithm. Functional roles of HEMTIRGs in
BC malignancy were validated through in vitro experiments.

Results: In this study, four HEMTIRGs (PAX7, DCD, CRISP3, and FGG) were
identified and used to develop a prognostic model. Patients were stratified into
high- and low-risk groups based on median risk scores. A nomogram based on
this model accurately predicted overall survival (OS), consistent with the
observed outcomes. Notably, patients in the high-risk group exhibited
increased immune cell infiltration but a lower predicted response to
immunotherapy. Immunohistochemistry (IHC) further confirmed that
HEMTIRGs expression levels were strongly associated with breast cancer, with
CRISP3 showing the most pronounced upregulation. In vitro functional assays
demonstrated that CRISP3 promoted malignant phenotypes of breast cancer
cells under hypoxic conditions through activation of the IL-17/AKT
signaling pathway.
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Conclusion: This study establishes a novel HEMTIRGs-based prognostic model
for BC, offering a robust tool for predicting patient prognosis and
immunotherapy efficacy. Additionally, our findings provide new insights into
BC pathogenesis, highlighting potential therapeutic targets.

breast cancer, hypoxia, epithelial-mesenchymal transition, prognosis, model,

immunotherapy

1 Introduction

Breast cancer (BC) remains the most common cancer among
women worldwide, accounting for approximately 31% of all female
cancers (1). Despite significant advancements in early detection and
treatment, BC recurrence remains a major challenge, contributing
to increased mortality risk (2). Recent advances in surgical
strategies, systemic therapies, and prognostic assessment have
improved the management of BC (3-5). However, a major
limitation in current clinical practice remains the lack of reliable
approaches to accurately predict prognosis, identify high-risk
patients, and evaluate responses to immunotherapy. To address
this gap, the present study develops a novel prognostic signature by
integrating genes associated with hypoxia, epithelial-mesenchymal
transition (EMT), and immune regulation.

Hypoxia, characterized by oxygen deprivation, is a common
feature of solid tumors and drives cancer progression through
enhanced invasion, angiogenesis, metabolic reprogramming, and
metastasis (6-9). In BC, hypoxia is associated with increased
invasiveness, drug resistance, and poor prognosis (10). Hypoxia-
inducible factor 1 (HIF-1), a central regulator of hypoxic responses, is
overexpressed in BC and correlates clinically with elevated mortality
and metastatic rates (11). Notably, HIF-1o overexpression in BC
tumors serves as an independent predictor of poor survival (12).

Notably, hypoxia stress can induce EMT by activating the HIFs
signaling pathway, thereby enhancing tumor cell migration, invasion,
and adaptation to the tumor microenvironment (13-16). EMT
facilitates tumor cell dissemination to distant organs to establish
secondary tumors, ultimately driving metastasis (17). In BC, EMT
activation is prominent in HER2-positive breast cancer stem cells,
which exhibit radioresistance, drug resistance, and poor clinical
outcomes, while EMT inhibition may mitigate treatment resistance
and metastasis by suppressing HER2 expression (18). Moreover,
hypoxia upregulates Slug and Snail, which suppress E-cadherin
expression, a key hallmark of EMT, further reinforcing BC
invasiveness (15, 19).

Beyond hypoxia and EMT, immune-related mechanisms also play
a crucial role in BC progression, including immune evasion, chronic
inflammation, and immune cell infiltration (20). In triple-negative
breast cancer (TNBC), hypoxia disrupts immune function by engaging
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HIF-1o with histone deacetylase 1 (HDAC1) and polycomb repressive
complex 2 (PRC2), leading to suppression of T and NK cell activity
(21). Furthermore, studies have shown that HIF-1o. overexpression in
T cells promotes T cell exhaustion and weakens antitumor immunity
in metastasis models (22). Additionally, EMT has been implicated in
immune evasion, as it upregulates immune checkpoints, enhances
metastatic potential, and contributes to therapy resistance (23).

Together, hypoxia, EMT, and immune suppression are
interconnected processes that form a synergistic network, which
cooperatively modulates BC malignancy. Although several
prognostic models have incorporated hypoxia- and immunity-
related factors, particularly in TNBC, offering improved
stratification for targeted therapies (24-26), the accuracy in
patient risk stratification remains limited, and the underlying
mechanistic insights remain incomplete. Currently, no prognostic
model has yet integrated hypoxia-, EMT-, and immune-related
genes (HEMTIRGS) into a unified framework. Given the established
biological crosstalk among these processes, we aimed to
innovatively integrate them into a single model to capture a more
holistic view of BC, thereby improving the precision of prognostic
stratification and informing potential therapeutic strategies.

In this study, we identified four key HEMTIRGs through a
comprehensive bioinformatics analysis. A prognostic model based
on this HEMTIRGs signature in a BC patient cohort was developed
and validated. We also constructed a nomogram to predict overall
survival (OS). Additionally, an in vitro experiment verified the
biological functions of HEMTIRGs in promoting BC malignancy.
Our findings offer novel insights into the molecular mechanisms
underlying BC pathogenesis associated with hypoxia, EMT, and
immune responses, with potential implications for clinical prognosis,
risk stratification, and immunotherapy response assessment.

2 Materials and methods

2.1 Acquisition of hypoxia-, EMT- and
immune-related gene sets

A total of 200 hypoxia-related genes were obtained from the
Molecular Signatures Database (http://www.gsea-msigdb.org/gsea/
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msigdb/index.jsp) (Supplementary Table S1). EMT-related genes
were retrieved from the dbEMT 2.0 database (https://bioinfo-
minzhao.org/dbemt/dbemtl/index.html) (Supplementary Table
S2). Additionally, the immune-related gene set was obtained from
the GeneCards database (https://www.genecards.org/) using the
search term “Immune” with a relevance score>2 (Supplementary
Table S3).

2.2 Data collection

RNA sequencing data and clinical information for The Cancer
Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) cohort were
collected from the TCGA database (https://portal.gdc.cancer.gov/).
Samples without detailed expression and clinical data or with a
follow-up duration of 0 days were excluded, resulting in 1,037
BRCA and 99 normal samples for training (27). For model
validation, the GSE20685 BRCA cohort was accessed from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/). Expression profiles were log2-transformed and normalized,
with the average expression level used for duplicate genes. Batch
effects were corrected using the “ComBat” function from the “sva”
package (https://bioconductor.org/packages/release/bioc/html/
sva.html) (v3.50.0) in R software version 4.2.1 (28).

2.3 Consensus clustering analysis

To identify potential molecular subtypes of BC based on
HEMTIRGs, we applied the “ConsensusClusterPlus” package
(v1.62.0) in R (v4.2.1) to perform consensus clustering on tumor
samples (29). The partitioning around medoids (PAM) algorithm
was selected with Euclidean distance as the similarity metric.
During clustering, 80% of samples were resampled, and the
process was repeated 1,000 times to ensure stability and
reproducibility. The optimal number of clusters (K) was
determined by evaluating the cumulative distribution function
(CDF) curve, the relative change in the area under the CDF
curve, and the consensus heatmap. According to these criteria,
K = 4 was identified as the most robust and biologically meaningful
classification, and all tumor samples were subsequently stratified
into four molecular subtypes (C1-C4). A random seed (set.seed =
12345) was applied to guarantee reproducibility.

2.4 Analysis of hypoxia and EMT features in
BC subtypes

Following the determination of the optimal cluster number, we
analyzed hypoxia- and EMT-related gene expression profiles within
each identified subtype. Gene Set Variation Analysis (GSVA,
v1.50.5) was employed to perform single-sample gene set
enrichment analysis (ssGSEA), assigning hypoxia and EMT scores
to each tumor sample based on predefined gene sets (30). Patients
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were then stratified into high- and low-hypoxia/EMT subgroups
using the median score within each subtype.

2.5 Identification of differentially expressed
genes

The “edgeR” package (v4.0.16) was used to analyze differentially
expressed genes (DEGs) between high and low hypoxia/EMT
subgroups, as well as between TCGA BRCA and normal tissues
(27). Genes were classified as differentially expressed based on an
adjusted p-value (adj.p)< 0.05 and [log2FoldChange| > 1.

2.6 Identification and validation of the
prognostic HEMTIRGs signature

To identify genes significantly associated with overall survival
(OS), univariate Cox proportional hazards regression analysis was
performed for each HEMTIRG in the TCGA training cohort (28, 31).
Subsequently, LASSO Cox regression analysis was applied using the
“glmnet” package (version 4.1-8) to refine the selection of prognostic
HEMTIRGs (32, 33). The optimal lambda value was determined, and
the corresponding HEMTIRGs were identified. A prognostic risk score
was then calculated for each patient using the following formula:

Risk Score = expr; * coef;

where “coef” represents the regression coefficient for each
HEMTIRG, and “expr” denotes its respective expression level.
Patients in the TCGA BRCA cohort were stratified into high-risk
and low-risk groups based on the median risk score. To evaluate
whether the HEMTIRGs-based prognostic model functions as an
independent prognostic factor, univariate and multivariate Cox
proportional hazards regression analyses were performed in
conjunction with clinical variables. Kaplan-Meier (K-M) survival
curves were constructed to compare survival outcomes between risk
groups, with statistical differences assessed using the log-rank test.
The prognostic accuracy of the model was further evaluated using
ROC curve analysis, with results visualized via the “timeROC”
package (v0.4) (34). Model discrimination was quantified by the
area under the curve (AUC).

2.7 Development and validation of the
nomogram

A prognostic nomogram was developed using the “rms”
package (v6.8.0) in R to estimate 1-, 3-, and 5-year overall
survival (OS) probabilities for BC patients. The predictive
accuracy of the nomogram was assessed using calibration curves
and the Concordance Index (C-Index). Calibration curves visually
compared the predicted survival probabilities with actual outcomes,
while the C-Index provided a quantitative measure of model
performance, with the AUC indicating its discriminatory ability.
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2.8 Drug sensitivity profiling and analysis

Drug sensitivity prediction was conducted using the
calcPhenotype function in the OncoPredict package40. Training
data were obtained from two pharmacogenomic resources:
GDSC241, used to evaluate the sensitivity of breast cancer
samples to commonly applied chemotherapeutics, and CTRP,
applied to assess the sensitivity of EMT-promoting compounds
(35, 36). For all compounds tested, lower predicted scores represent
higher sensitivity of the samples.

2.9 Gene set enrichment analysis

To explore biological pathways associated with high- and low-
risk BC patients, GSEA was performed using the “clusterProfiler”
package (v4.10.1) (37, 38). Genes were ranked based on their signal-
to-noise ratio, and enrichment analysis was conducted using the
KEGG pathway database (c2.cp.kegg.v7.5.1.entrez.gmt). Pathways
with a normalized enrichment score (|NES|) > 1 and p-value< 0.05
were considered significantly enriched.

2.10 Functional enrichment analysis

To explore the biological significance of HEMTIRGs, we
conducted functional enrichment analysis using the “clusterProfiler”
package (v4.10.1) in R (37). This included Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment to characterize the functional profiles of HEMTIRGs.
An enrichment p-value of less than 0.05 was considered statistically
significant (39, 40).

2.11 Immune landscape analysis

To analyze the immune landscape of BC, tumor gene expression
profiles were examined to estimate the proportions of immune and
stromal cells within the tumor microenvironment (TME).
CIBERSORT was employed to deconvolute immune cell
composition, identifying the relative abundances of 22 distinct
immune cell types (41). Additionally, single-sample gene set
enrichment analysis (ssGSEA) from the “GSVA” package
(v1.50.5) was used to estimate the infiltration levels of 28 different
immune cell types (42).

2.12 Immunotherapy responses analysis

To evaluate the potential of the HEMTIRGs-based model in
predicting immunotherapy response, the Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm was applied. TIDE
is a computational tool that assesses tumor immune evasion and
predicts responses to immune checkpoint inhibitors (ICIs) based on
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multiple biomarker signatures. TIDE scores were obtained from the
Harvard TIDE database (http://tide.dfciharvard.edu/) (43).

2.13 Immunohistochemical staining
analysis of HEMTIRGs protein in BC
samples

To examine protein expression levels of HEMTIRGs in BC
tissues, immunohistochemical (THC) staining images were retrieved
from the Human Protein Atlas (HPA) database (https://
www.proteinatlas.org/).

2.14 Reagents

Reagents were purchased or obtained from the following
sources: rabbit anti-E-Cadherin antibody (A20798, ABclonal,
China), rabbit anti-Vimentin antibody (A2584, ABclonal, China),
rabbit anti-Snail antibody (A5243, ABclonal, China), rabbit anti-
phospho-AKT (Ser 473) (#4060s, CST, USA), mouse anti-AKT
antibody (60203-2-Ig, Proteintech Wuhan, China), mouse anti-Beta
Actin antibody (66009-1-Ig, Proteintech Wuhan, China),
NeutraKine® IL-17A Mouse McAb (69021-1-Ig, Proteintech
Wuhan, China), and goat anti-rabbit IgG (H+L) secondary
antibody Alexa Fluor® 488 conjugate (ABclonal, China). Plasmids
(PSPAX2, PMD2.G) used in this experiment were purchased from
Vector Builder (China). Cell Counting Kit-8 assay was purchased
from Beyotime (Cat No0.C0038, Beyotime, China).

2.15 Cell culture

The MDA-MB-231 and MDA-MB-468 triple-negative breast
cancer (TNBC) cell lines were purchased from ATCC (American
Type Culture Collection). Cells were cultured in Dulbecco’s Modified
Eagle Medium (DMEM) (Sigma, USA) supplemented with 10%
fetal bovine serum (FBS) (Sigma, USA), 100 U/mL penicillin, and
100 pg/mL streptomycin. Cultures were maintained in a humidified
incubator at 37°C with 5% CO..

For hypoxia treatment, cells were incubated in a controlled
hypoxic chamber with 1% O,, 5% CO,, and 94% N,, while
normoxic conditions were maintained at 21% O, and 5% CO,.
IL-17 neutralizing antibody (nAb) treatment was administered at a
final concentration of 10 pg/mL.

2.16 RNA extraction and quantitative real-
time polymerase chain reaction

Total RNA was extracted using Trizol (ThermoFisher, Waltham,
MA, USA) according to the manufacturer’s instructions, and 1 pg of
total RNA from each cell line was used to transcribe into cDNA using
TransScript® One-Step gDNA Removal and ¢cDNA Synthesis
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SuperMix (Beijing Quanshijin Biotechnology Co., Ltd., Beijing,
China). Quantitative real-time PCR (qRT-PCR) was performed
using the PerfectStart Green qPCR SuperMix on the Bio-Rad
CFX96 RealTime PCR system (Bio-Rad, US) with the program of
94°C for 30 s, 45 cycles of 94°C for 5 s and 60°C for 30 s. The relative
gene expression levels were calculated using the 2-**Ct method with
B-actin as an internal control. The primer sequences used in this
experiment were listed in Table 1.

2.17 Colony formation assay

Approximately 500 cells per group were seeded in six-well plates
in triplicate and incubated at 37°C with 5% CO, for about two weeks,
until visible cell colonies were observed under a microscope. The
colonies were then fixed with 4% paraformaldehyde for 20 minutes,
washed twice with PBS, and stained with 0.2% crystal violet solution
(Sigma, St. Louis, MO, USA) for 10 minutes. After staining, the plates
were washed three times with PBS, air-dried, photographed, and
quantified using Image] software.

2.18 Cell counting kit 8 assay

Cell proliferation was assessed using the Cell Counting Kit-8
(CCK-8). Cells from each group were seeded in 96-well plates at a
density of 5 x 10° cells per well and incubated at 37°C with 5% CO,
for 24, 48, 72, and 96 hours. At each time point, 10 uL of CCK-8
solution was added to each well, followed by incubation for 2 hours
in the dark. The absorbance at 450 nm was measured using a
microplate reader (Bio-Rad Laboratories, Hercules, CA, USA).

2.19 Wound healing assay

A scratch wound assay was performed to assess the migration
ability of BC cells in vitro. Horizontal guidelines were drawn on the
back of a six-well plate using a marker, and cells were seeded into
the plate for culture. Once the cells reached ~80% confluence, a
sterile 200 UL pipette tip was used to create a vertical scratch across
the monolayer, perpendicular to the horizontal guidelines. The cells
were then washed with PBS to remove debris, and the complete

TABLE 1 List of primers used for gRT-PCR (h: human).

Target gene

Forward

10.3389/fimmu.2025.1634399

medium was replaced with DMEM containing 0.2% FBS. The cells
were incubated at 37°C with 5% CO, for 24 hours. Images of the
wound area were captured at 0 hours and 24 hours using a light
microscope (Olympus Corp., Tokyo, Japan), and the scratch area
was quantified using Image].

2.20 Transwell assay

To evaluate cell invasion, 100 UL of diluted Matrigel was added
to the upper chamber of the transwell insert and incubated at 37°C
with 5% CO, for 2-4 hours to allow the gel to solidify. Subsequently,
200 uL of serum-free medium containing 5 x 10* cells was added to
the upper chamber, while 600 UL of complete medium containing
20% FBS was placed in the lower chamber. The transwell plates
were incubated at 37°C with 5% CO, for 24 hours. After incubation,
the transwell chambers were washed three times with PBS, and non-
invading cells in the upper chamber were removed with a cotton
swab. The membranes were then fixed with 4% methanol for
20 minutes, washed three times with PBS, stained with 0.25%
crystal violet for 30 minutes, washed again three times with PBS,
air-dried, and photographed for analysis.

2.21 Enzyme-linked immunosorbent assay

The concentration of IL-17 in the culture supernatant was
measured using an ELISA kit (RK00397, ABclonal, China),
following the manufacturer’s instructions. Blank control wells
were included in the assay. The absorbance at 450 nm was
measured using a microplate reader, and the IL-17 concentration
was determined based on a standard curve.

2.22 Lentivirus generation and transduction

HEK-293T cells were co-transfected with the packaging plasmid
(psPAX2), envelope plasmid (pMD2.G), and the PLKO.1-TRC
plasmid with targeted shRNA sequences for knockdown using
Lipo6000TM Transfection Reagent to produce the corresponding
lentivirus. After culturing the transfected HEK-293T cells for 48 h,
the supernatant was removed and centrifuged for 5 min at 1000 rpm

Reverse

hHIFIA TATGAGCCAGAAGAACTTTTAGGC CACCTCTTTTGGCAAGCATCCTG

hCRISP3 TGTCAAGTGCCTCCAGCTCATG CACATCCAACGAGGTATGAAGAG
hPAX7 GGAGGATGAAGCGGACAAGAAG AGGTCAGGTTCCGACTCCACAT
hFGG GAAGGCAACTGTGCTGAACAGG CCATTAGGAGTAGATGCTTTTGAG
hDCD GGTTAGCCAGACAGGCACCAAA CACGCTTTCTAGATCTTCGACTG

hp-actin CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT
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to extract virus particles. Subsequently, lentivirus-infected cells were
screened for cells expressing the relevant antibiotic resistance gene
in a growth medium supplemented with 2 pug/mL puromycin. To
interfere with CRISP3 expression, short hairpin RNA (shRNA)
oligos of CRISP3 were cloned into pLKO.1-TRC. The boldface
sequences below represent the targeting sequences for hCRISP3-1-
shRNA and hCRISP3-2-shRNA (only the sense strand is shown):

hCRISP3-1-shRNA-F:

5- CCGGCAGTAACCCAAAGGATCGAATCTCGAGATTC
GATCCTTTGGGTTACTGTITTTTG-3

hCRISP3-2-shRNA -F:

5- CCGGGTGCAATTACAGACACAGTAACTCGAGT
TACTGTGTCTGTAATTGCACTTTTTG-3

2.23 Statistical analysis

Statistical significance between two sets of data was assessed
using the Student’s t-test, while comparisons among more than two
groups were evaluated through analysis of one-way ANOVA.
Univariate Cox analysis was employed to identify genes with
prognostic significance. Kaplan-Meier (K-M) survival curves were
constructed and compared using the log-rank test. All statistical
analyses were performed using R version 4.2.1 (https://www.r-
project.org/) along with appropriate packages. Statistically
significant differences are indicated by asterisks (*p< 0.05; **p<
0.01; **p< 0.001). All experimental data are presented as mean +
SEM of four independent replicates.

3 Results

3.1 Identification of HEMTIRGs in the BRCA
cohort

3.1.1 Consensus clustering and subgroup
classification

The study design is illustrated in Figure 1. To identify hypoxia-
and EMT-related genes in BC, consensus clustering was performed
on RNA sequencing data from 1,037 BC cases in the TCGA database
(Supplementary Table S4). Supplementary Figures SIA-D display
the Kaplan-Meier survival curves and log-rank tests for various
clinicopathological parameters, including overall stage, tumor (T),
metastasis (M), and node (N) classifications. The cumulative
distribution curve (Figure 2A) and area under the distribution
curve (Figure 2B) indicated that the highest group consistency was
achieved at k=4. Accordingly, the 1,037 BRCA samples were
classified into four distinct subtypes (Cl, C2, C3, and C4), as
confirmed by the consensus matrix (Figure 2C). Subsequently,
gene set variation analysis (GSVA) was conducted to assess
hypoxia and EMT scores across the four subtypes. The results
showed that C1 and C2 exhibited significantly higher hypoxia and
EMT scores than C3 and C4 (Figure 2D). Based on this, C1 and C2
were designated as the high hypoxia/EMT group, while C3 and C4
were categorized as the low hypoxia/EMT group. This classification
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led to the identification of 121 differentially expressed genes (DEGs)
associated with hypoxia and EMT (Supplementary Table S5).

3.1.2 ldentification of HEMTIRGs and prognostic
risk genes

Additionally, analysis of the TCGA cohort identified 5,079 BC-
specific DEGs (BRCA-DEGs), with 2,940 upregulated and 2,138
downregulated genes, as shown in the volcano plot (Figure 2E). By
intersecting hypoxia- and EMT-related DEGs (Supplementary
Table S5), BRCA-DEGs (Supplementary Table S6), and 5,335
immune-related genes (Supplementary Table S3), we identified 24
differentially expressed genes associated with hypoxia, EMT, and
immune function (HEMTIRGs) (Figure 2F). Univariate Cox
regression analysis was then conducted to evaluate the prognostic
significance of the 24 HEMTIRGs in overall survival (OS). Among
these, PAX7 (paired box 7), FGG (fibrinogen gamma chain),
CRISP3 (cysteine-rich secretory protein 3), and DCD (dermcidin)
were significantly correlated with OS and identified as risk genes
(HR > 1, p< 0.05) (Figure 2G). Further investigation focused on the
copy number variations (CNVs) of HEMTIRGs, aiming to explore
potential associations between CNVs and mRNA expression levels
in TCGA BRCA samples. The expected copy number for each gene
is 2; values above 2 are categorized as “GAIN” and those below 2 as
“LOSS.” We observed a significant amplification of DCD copy
numbers, which was associated with an increase in mRNA
expression (Supplementary Figure S2A). In contrast, PAX7 and
FGG showed relatively low CNV frequencies, and no CNVs were
detected for CRISP3 (Supplementary Figure S2A).

3.2 Development and evaluation of a
prognostic model based on HEMTIRGs in
the TCGA cohort and the GEO cohort

3.2.1 Construction and validation of the
HEMTIRGs-based prognostic model

To evaluate the prognostic value of the identified HEMTIRGS in
the BC, we conducted LASSO Cox regression analysis, which
identified PAX7, FGG, CRISP3, and DCD as key prognostic genes
with optimal logarithmic lambda values (A = 0.001) (Figures 3A, B).
A risk score for each patient in the TCGA cohort was then
computed using the following formula: Risk score = 0.26 *
PAX7 + 0.093 * FGG + 0.086 * CRISP3 + 0.048 * DCD. The
TCGA training cohort was then stratified into low-risk (n = 519)
and high-risk (n = 518) groups based on the median risk score.
High-risk patients exhibited higher risk scores and shorter survival
times compared to low-risk patients (Figure 3C). Kaplan-Meier
survival analysis further demonstrated a significantly higher
survival probability for the low-risk group compared to the high-
risk group (p< 0.001, HR = 2.21, 95% CI: 1.52-2.95) (Figure 3D).
Receiver operating characteristic (ROC) analysis revealed 1-, 3-, and
5-year survival probabilities of 0.69, 0.70, and 0.72, respectively
(Figure 3E). The prognostic accuracy of the model was validated in
the GEO cohort (GSE20685), which showed consistent results with
the TCGA training cohort (Figures 3F-H). Several prognostic
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FIGURE 1
The flowchart of this study.

models have been previously proposed for predicting survival 2 (Liu et al.) (45), and Model 3 (Gong et al.) (46), using both the
outcomes in BC patients. concordance index (C-index) and decision curve analysis (DCA)
(Supplementary Figures S3A, B). The C-index comparison revealed

3.2.2 Evaluation of model performance relative to that the HEMTIRGs-model exhibited the optimal prediction ability
established prognostic models for overall survival (OS) probabilities, achieving the highest C-index
We next conducted a comparative analysis of our model against ~ value (0.712) compared to the other three models (Supplementary
three previously established models: Model 1 (Lu et al.) (44), Model ~ Figure S3A). Furthermore, DCA results demonstrated that our
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Consensus clustering analysis for identifying HEMTIRGs. (A) Consensus clustering CDF for k = 2-5. (B) Relative change in area under the CDF curve
for k = 2-5. (C) Consensus clustering matrix for k = 4. (D) Heatmap of hypoxia scores and EMT scores for the 4 subgroups. (E) Volcano plot of

the 5078 DEGs. (F) The Venn diagram of analysis of HEMTRGs, BRCA-DEGs, and immune-related genes. (G) Forest plot of the univariate Cox
regression analysis.

model provided superior clinical performance, offering greater net 3.3 Construction and validation of the

clinical benefit compared to the other models (Supplementary nomogram

Figure S3B). These findings suggest that the HEMTIRGs-based

prognostic model demonstrates exceptional accuracy, reliability, To assess the independent predictive ability of the risk score, we
and performance in clinically predicting the OS of BC patients. performed both univariate and multivariate Cox regression analyses.
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Univariate Cox regression analysis revealed significant associations
between overall survival (OS) and multiple clinicopathological
variables, including age (p< 0.001, HR = 1.035, 95% CI = 1.021-
1.050), T stage (p< 0.001, HR = 1.56, 95% CI = 1.26-1.94), N stage
(p<0.001, HR = 1.64, 95% CI = 1.37-1.97), M stage (p< 0.001, HR =

10.3389/fimmu.2025.1634399

6.43, 95% CI = 3.61-11.45), tumor stage (p< 0.001, HR = 1.58, 95%
CI = 1.32-1.90), and risk score (p< 0.001, HR = 2.71, 95% CI = 1.78-
4.16) (Figure 4A). Furthermore, multivariate Cox regression analysis
confirmed that both age (p< 0.001, HR = 1.039, 95% CI = 1.02-1.05)
and risk score (p< 0.001, HR = 2.47, 95% CI = 1.56-3.90) were
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significant independent prognostic factors for OS in BC patients
within the TCGA training cohort (Figure 4B). Next, a HEMTIRGs-
nomogram was developed to predict 1-, 3-, and 5-year OS in the
TCGA BRCA cohort, incorporating two independent risk factors
(age and risk score) (Figure 4C). Calibration curves demonstrated
that the predicted survival rates of the nomogram were consistent
with the observed survival rates at 1, 3, and 5 years (Figures 4D-F).
To assess the clinical decision value of the nomogram compared to
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other clinical indicators, we calculated the concordance index
(C-index) and decision curve analysis (DCA). The nomogram
achieved a C-index of 0.721, outperforming risk score (AUC =
0.702) and age (AUC = 0.669) in predicting OS (Figure 4G).
Furthermore, DCA revealed that the nomogram yielded higher net
benefits than other indicators in clinical practice (Figure 4H). These
results demonstrate that the nomogram based on HEMTIRGs
provides significantly higher predictive accuracy than individual
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clinical indicators, underscoring its potential as a valuable tool for
clinical decision-making.

3.4 Clinicopathological analysis of
HEMTIRGs in BC

To investigate the association between HEMTIRGs expression
and clinicopathological characteristics in BC patients, we generated
a heatmap illustrating gene expression patterns (Figure 5A). The
heatmap demonstrated that the high-risk group exhibited a
significantly higher proportion of patients with advanced age (=60
years), advanced stage (stage IV), and advanced TNM grade (T4,
N3, and M1) (Figure 5B). Furthermore, differential drug sensitivity
analysis revealed that patients in the low-risk group exhibited
significantly increased sensitivity to several commonly used EMT-
targeting inhibitors, such as curcumin (47), disulfiram (48),
palbociclib (49), and RO4929097 (50) as compared to high-risk
patients (Figures 5C-F). These findings suggest that EMT inhibition
may represent a promising therapeutic strategy, particularly for
low-risk patients who demonstrate greater responsiveness to
such agents.

3.5 Exploration of molecular functions and
signaling pathways associated with
HEMTIRGs using GSEA, GO, and KEGG
analyses

To elucidate the biological functions associated with HEMTIRGs
in high-risk and low-risk groups, we performed Gene Set Enrichment
Analysis (GSEA). All the enriched KEGG pathways were listed in
Supplementary Table S7. GSEA results identified 30 significantly
enriched pathways in the high-risk group, including protein export
(NES = 1.88, p = 0.032), steroid biosynthesis (NES = 1.81, p = 0.012),
citrate cycle (TCA cycle) (NES = 1.78, p = 0.029), glutathione
metabolism (NES = 1.67, p = 0.0082), and ascorbate and aldarate
metabolism (NES = 1.67, p = 0.020), all of which are implicated in
tumorigenesis (Figure 6A). In the low-risk group, 15 pathways were
significantly enriched, including the Notch signaling pathway (NES =
-1.88, p = 0.0040), base excision repair (NES = -1.61, p = 0.043), tight
junction (NES = -1.52, p = 0.033), glycerophospholipid metabolism
(NES = -1.42, p = 0.042), and RNA polymerase (NES = -1.40, p =
0.013) (Figure 6B). Next, we analyzed differences in biological
processes and pathways between the two risk groups based on the
HEMTIRGs signature. The DEGs between the high- and low-risk
groups were identified using adjusted p-value (adj. p)< 0.05 and
[logoFoldChange| > 1 as cutoffs (Supplementary Table S8). Gene
Ontology (GO) enrichment and KEGG pathway analyses revealed
295 biological processes (BPs), 6 cellular components (CCs), and 49
molecular functions (MFs) (Supplementary Table S9). The top 10
enriched BPs, CCs, and MFs are illustrated in Figures 6C-E. KEGG
pathway analysis identified 15 significantly enriched pathways
(Supplementary Table S10), with the IL-17 and AKT signaling
pathway showing a high degree of enrichment (Figure 6F).
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3.6 Immune status analysis for BC based
on HEMTIRGs

To comprehensively characterize the immune status analysis
based on HEMTIRGs within the context of risk stratification in BC,
CIBERSORT and single-sample Gene Set Enrichment Analysis
(ssGSEA) were performed in high-risk and low-risk groups. The
CIBERSORT algorithm was used to assess the distribution of 22
immune cell types, revealing significantly higher infiltration levels of
plasma cells (p< 0.001), activated memory CD4" T cells, and vy T
cells (p< 0.001) in the high-risk group compared to the low-risk
group (Figure 7A). These results suggest a positive correlation
between risk score and the infiltration of these immune cell types
in the high-risk group. Additionally, ssGSEA analysis indicated
significant upregulation of genes associated with 9 immune cell
subtypes (activated dendritic cell, CD56bright natural killer cell,
eosinophil, immature B cell, immature dendritic cell, MDSC,
memory B cell, T follicular helper cell, Type 17 T helper cell) in
the high-risk group compared to the low-risk group (Figure 7B),
underscoring a more pronounced immune cell infiltration in the
high-risk cohort. We next compared the expression levels of 16
immune checkpoint molecules between these two groups. The high-
risk group showed significantly higher expression of BTLA, CD28,
KIR3DL1, CD80, VTCNI1, IDO1, PDCDILG2, LGALS3,
CEACAMI1, TIGIT, CTLA4, PD-1, and PD-L1, whereas
TNFRSF14 expression was markedly lower in this group
(Figure 7C). To assess the predictive potential of our model for
immunotherapy response, we conducted a Tumor Immune
Dysfunction and Exclusion (TIDE) analysis. The high-risk group,
with its elevated TIDE score, exhibited a significantly poorer
response to immunotherapy compared to the low-risk group
(Figure 7D). Furthermore, drug sensitivity analysis revealed that
high-risk patients exhibited reduced responsiveness to multiple
conventional chemotherapeutic agents, including epirubicin,
mitoxantrone, paclitaxel, docetaxel, vinorelbine, cyclophosphamide,
cisplatin, oxaliplatin, 5-fluorouracil, gemcitabine, and lapatinib
(Figure 7E). This pattern suggests a broader therapy resistance in
the high-risk subgroup, potentially reflecting more aggressive tumor
biology and underscoring the need to explore alternative therapeutic
strategies for these patients.

3.7 Expression analysis of HEMTIRGs in the
TCGA BRCA cohort

We evaluated the expression patterns of HEMTIRGs in BC and
adjacent normal tissues from the TCGA BRCA cohort. PAX7 and
CRISP3 were significantly upregulated, while DCD and FGG were
markedly downregulated in BC samples (Figures 8A-D). To further
investigate HEMTIRGs expression across BC subtypes, we
employed GSEA to assess differences in hypoxia, EMT, and
hypoxia-EMT risk scores in four BC subtypes: hormone receptor-
positive (Luminal A and Luminal B), HER2-positive, and triple-
negative BC (TNBC), revealing that TNBC exhibited consistently
higher scores for these features compared to the other subtypes
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groups using GSEA (Gene Set Enrichment Analysis). (C—E) GO (Gene Ontology) analysis, including (C) BP (Biological Processes), (D) CC (Cellular
Components), and (E) MF (Molecular Functions). (F) KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis.

(Figures 8E-G). Among the four BC subtypes, CRISP3 and DCD
expression were significantly elevated in TNBC (Figure 8H). To
confirm these findings at the protein level, we performed
immunohistochemical (IHC) analysis using data from the Human
Protein Atlas (HPA). The results corroborated the transcriptional
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data, revealing significantly higher CRISP3 protein expression in
BC tissue compared to normal tissue, whereas DCD protein
expression showed no significant difference (Figures 81, J). These
findings highlight the critical role of CRISP3 in BC pathogenesis,
particularly in TNBC.
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3.8 In vitro functional validation of CRISP3
in BC cells

To explore and validate the hypoxia responses of CRISP3 in
TNBC cells, MDA-MB-231 and MDA-MB-468 TNBC cell lines
were exposed to hypoxic conditions for 0, 12, 24, and 48 hours, as
confirmed by the remarkable upregulation of HIF-1oo. mRNA
expression (Figure 9A). qRT-PCR analysis revealed a remarkable
upregulation of CRISP3 in TNBC cells under hypoxic conditions
(Figure 9B). In contrast, PAX7, FGG, and DCD showed only
modest changes in mRNA expression in response to hypoxia
(Supplementary Figures S4A-C), indicating that CRISP3 is the
most robustly hypoxia-inducible gene among the identified
HEMTIRGs. To further validate the function and action
mechanism of CRISP3 in TNBC cells, we applied lentivirus-
mediated shRNA to knockdown CRISP3, as validated by qRT-
PCR (Figure 9C). Next, we silenced CRISP3 under hypoxic
conditions in MDA-MB-231 and MDA-MB-468 cells to evaluate
the EMT process. Notably, CRISP3 knockdown significantly
suppressed the expression of vimentin and snail while restoring
E-cadherin expression under hypoxia (Figure 9D, Supplementary
Figures S5A-C). Consistently, CCK-8 and colony formation assays
demonstrated that CRISP3 depletion significantly reduced hypoxia-
induced cell proliferation (Figures 9E-G) in both TNBC cell lines.
Moreover, wound healing assays and transwell invasion revealed
that CRISP3 knockdown led to a significant reduction in cell
migration (Figures 9H, I) and invasion (Figures 9], K) under
hypoxic conditions. Intriguingly, IL-17 levels were elevated in the
supernatants of hypoxia-treated TNBC cells, whereas CRISP3
knockdown significantly attenuated this elevation in IL-17
production (Figure 9L). These findings indicate that CRISP3 may
promote TNBC cell proliferation, migration, invasion, as well as
EMT by enhancing IL-17 production under hypoxic conditions.

3.9 CRISP3 promotes the pro-carcinogenic
progression through activation of the IL-
17/AKT signaling axis in BC cells

To further verify whether CRISP3 drives BC progression
through elevation of IL-17 production, we treated TNBC cell lines
exposed to hypoxia with IL-17 neutralizing antibodies (IL-17 nAb).
Consistently, we found that IL-17 neutralizing antibody treatment
significantly inhibited hypoxia-induced cell viability (Figure 10A),
proliferation (Figure 10B), migration (Figures 10C, D), and invasion
(Figure 10E) of MDA-MB-231 and MDA-MB-468 cells. Moreover,
we observed that IL-17 nAb significantly prevented hypoxia-
induced EMT processes in MDA-MB-231 and MDA-MB-468 cell
lines, as demonstrated by elevated E-cadherin and reduced
vimentin and snail expression levels as compared to the hypoxia
treatment group (Figure 10F, Supplementary Figures S5D-F). In
our KEGG pathway enrichment analysis, we found that the AKT
signaling pathway was also significantly enriched. Accumulating
evidence has demonstrated that hypoxia is strongly implicated with
activation of AKT signaling in a variety of cell types (51-53), and
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IL-17 can exert tumor-promoting effects through activation of the
AKT pathway (54-56), which prompts us to consider whether
CRISP3 drives the pro-carcinogenic progression through
activation of the IL-17/AKT signaling axis in BC cells. As
expected, IL-17 nAb was prominent to prevent hypoxia-induced
AKT activation (Figure 10F), with quantification data shown in
Supplementary Figure S5G.

4 Discussion

BC remains the most prevalent malignancy among women
globally, yet challenges persist in achieving personalized treatment
and accurate prognostic evaluation. Advances in bioinformatics
have enabled the identification of numerous aberrantly expressed
oncogenes, which hold potential as prognostic signatures in BC (57,
58). However, the prognostic potential gene signature based on
HEMTIRGs has remained largely unexplored. In this study, we
identified four key HEMTIRGs and developed a prognostic model
that demonstrated high reliability and accuracy in predicting
patient outcomes and guiding immunotherapy in BC. Notably,
comprehensive bioinformatics analyses combined with in vitro
experiments confirmed the strong involvement of HEMTIRGs in
BC pathogenesis, with strong associations to hypoxia, EMT, and
immune regulation. These findings highlight the HEMTIRGs
signature as a promising biomarker for prognosis, survival risk
stratification, and the development of personalized treatment
strategies in BC.

Here, we identified four HEMTIRGsS, including PAX7, DCD,
CRISP3, and FGG, in the BRCA cohort. Based on this HEMTIRGs
signature, we developed a novel prognostic risk evaluation model
using LASSO Cox regression analysis. In previous studies, the
prognostic model solely based on hypoxia-associated markers (46),
EMT-related IncRNAs (59), or immune cell signatures (45) has been
established. In this study, our HEMTIRGs-based model integrates
hypoxia, EMT, and immune-related genes, offering a distinct
approach with unique advantages for prognostic prediction. To
assess its performance, we conducted a comparative analysis with
other existing models, including those based on ferroptosis-related
genes (44), hypoxia-associated markers (46), and immune cell
signatures (45). Our results demonstrate that the HEMTIRGs
model outperforms these alternatives in accuracy and reliability for
predicting overall survival (OS) in BC patients. Additionally, we
constructed an HEMTIRGs-based nomogram to predict 1-, 3-, and
5-year OS in the TCGA BRCA cohort. Calibration curves revealed a
strong concordance between predicted and observed OS at these
intervals, indicating that the nomogram provides significantly
greater predictive accuracy than individual clinical indicators
alone. Artificial intelligence (AI) is increasingly transforming
breast imaging, with the potential to enhance diagnostic efficiency
(60). In further studies, an extended nomogram model based on
HEMTIRGs combining with AI and clinical features could be
developed to facilitate cancer detection and support clinical
decision-making. In clinical practice, the HEMTIRG-derived risk
score could be incorporated into routine molecular testing or
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with pLKO.1-TRC shRNA as control (Con) or pLKO.1-CRISP3 shRNA to silence CRISP3 (shRNA CRISP3). gRT-PCR analysis of the mRNA expression of
(A) HIF-1o and (B) CRISP3 under hypoxia conditions in MDA-MB-231 and MDA-MB-468 cells. (C) gRT-PCR analysis of CRISP3 silencing efficiency in
MDA-MB-231 and MDA-MB-468 cells. (D) Immunoblotting analysis of EMT markers. (E) The CCK8 assay, and (F-G) colony formation assay were
employed to evaluate cell proliferation. (H, 1) Wound healing assay, and (J—K) transwell assay were conducted for assessment of migrative ability.

(L) ELISA was performed to measure the level of IL-17 in the conditioned medium of MDA-MB-231 and MDA-MB-468 cells. Statistical significance
was determined using one-way ANOVA. Data are presented as mean + SEM (n = 4). *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar = 0.1 mm.
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immunohistochemistry to stratify breast cancer patients into high-
and low-risk groups. Such stratification may guide preoperative
treatment planning, postoperative surveillance scheduling, and the
selection of immunotherapy or combination regimens. Moreover,
the nomogram established in this study could be embedded into
clinical workflows or electronic medical record systems as a decision-
support tool, providing oncologists with individualized survival
predictions to improve prognosis assessment and treatment
planning. In addition, immunohistochemical analysis confirmed
aberrant expression of HEMTIRGs in BC tissue samples as
compared to the normal group, underscoring their potential as
diagnostic biomarkers for BC diagnosis. Nevertheless, the clinical
applicability of HEMTIRGs for BC prognosis and diagnosis warrants
further validation in prospective and multicenter studies.

Frontiers in Immunology 18

To investigate the potential mechanisms through which
HEMTIRGs modulate the malignant progression of BC, we
examined the biological processes and signaling pathways of
HEMTIRGs in both high-risk and low-risk groups. GSEA, GO, and
KEGG analyses reveal that HEMTIRGs were significantly associated
with several BC-related pathways, including steroid biosynthesis (61),
citrate cycle TCA cycle (62), notch signaling pathway (63), tight
junction (64), glycerophospholipid metabolism (65), humoral
immune response (66), Akt signaling pathway (67) and IL-17
signaling pathway (68). Mechanistically, HEMTIRGs may contribute
to the pathogenesis of BC by regulating hypoxia, EMT, and immune
responses through the enriched pathways, which provides novel
perspectives to elucidate the molecular mechanisms driving BC
pathogenesis and offer potential targets for therapeutic intervention.
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Tumor-infiltrating immune cells play a critical role in BC
progression by infiltrating the tumor microenvironment (TME)
and interacting with cancer cells and other immune components to
promote malignant phenotypes (69). In this present study, we
performed CIBERSORT and ssGSEA analyses to assess the
involvement of immune cell infiltration in BC, revealing
significantly elevated levels of immune cell populations, including
CD4" T cells, 3 T cells, and dendritic cells, in the high-risk group.
Elevated immune cell infiltration within the TME may promote the
progression of BC, thereby contributing to the poorer prognosis
observed in high-risk patients. Additionally, tumor-infiltrating
immune cells have been recognized as prognostic markers for
chemotherapy response and survival in BC (70). Moreover, we
observed that the expression levels of 13 immune checkpoint
molecules (BTLA, CD28, KIR3DL1, CD80, VITCNI1, IDOI,
PDCDLG2, LGALS3, CEACAM], TIGIT, CTLA4, PD-1, and PD-
L1) were significantly elevated in the high-risk group, while
TNFRSF14 expression was notably reduced. Several of these
molecules have been previously implicated in BC development
and progression, including CD28 (71), CD80 (72), VTCN1 (73),
IDO1 (74), PDCDLG2 (75), TIGIT (76), PD-1, and PD-L1 (77).
Whereas the roles of BTLA, KIR3DL1, LGALS3, CEACAMI, and
TNFSF4 in modulating BC remain poorly understood, highlighting
the need for further investigation.

Notably, our experimental work validated that CRISP3 is a key
HEMTIRG that modulates the biological functions of breast cancer
cells under hypoxic conditions through the IL-17/AKT signaling
pathway. For the first time, we found that CRISP3 expression was
significantly upregulated in BC cell lines following hypoxic exposure,
and CRISP3 depletion significantly attenuated hypoxia-induced cell
proliferation, migration, invasion, and EMT, which is in line with the
prognostic prediction model based on HEMTIRGs. Consistently, in
patients with mammary carcinoma, it has been found that higher
expression of CRISP3 was connected to a significantly decreased
disease-free survival and overall survival (78). A significant higher
mRNA and protein levels of CRISP3 were seen in T-47D as well as
SK-BR-3 human breast cancer cell lines compared with those in
other types of mammary carcinoma cells, and knockdown of CRISP3
resulted in weakened migration or invasion abilities (78).
Furthermore, our study identifies the IL-17/AKT signaling axis as
the key pathway through which CRISP3 drives hypoxia-induced BC
progression. IL-17 has been implicated in tumor-associated
inflammation, immune evasion, and EMT through activation of
AKT (55, 56). CRISP3 may facilitate IL-17 secretion or signaling,
promoting an immunosuppressive and pro-metastatic environment.
The observed attenuation of hypoxia-induced proliferation and EMT
upon CRISP3 depletion suggests that CRISP3 may amplify AKT
phosphorylation, reinforcing its oncogenic function in BC. Notably,
CRISP3-mediated upregulation of IL-17 in BC cells (Figure 9L) may
contribute to the enrichment of Th17 and yd T lymphocytes
observed in the high-risk group (Figure 7), suggesting a potential
feed-forward loop between tumor-intrinsic signaling and immune
microenvironment remodeling. As IL-17 is a signature cytokine of
these cell types, CRISP3 may both promote tumor cell proliferation

Frontiers in Immunology

19

10.3389/fimmu.2025.1634399

via IL-17/AKT signaling and facilitate the recruitment or expansion
of IL-17-producing immune cells, thereby reinforcing an
immunosuppressive tumor microenvironment. This dual
mechanism highlights the role of CRISP3 in linking hypoxia-
driven tumor progression to an adverse immune milieu, ultimately
contributing to the poor prognosis observed in high-risk patients.
Although the functional role of PAX7, FGG, and DCD in
modulating BC malignant progression has not been validated in
this study, emerging evidence suggests that they may be directly or
indirectly involved in BC pathogenesis associated with hypoxia and
EMT. PAX7, as a transcription factor, has been implicated in EMT
(79), a critical process for cancer cell migration and invasion. It may
drive Snail, Slug, and ZEB1/2 expression, leading to E-cadherin
suppression and vimentin upregulation, hallmarks of EMT. FGG is a
key component of fibrinogen, traditionally involved in blood clotting
and wound healing. However, recent studies suggest that FGG plays
a crucial role in tumor progression, particularly in promoting
angiogenesis, metastasis, and immune suppression. FGG has been
identified and characterized as a potential prognostic gene for
predicting overall survival in hepatocellular carcinoma (HCC)
patients, which enhances HCC cell migration and invasion by
activating EMT (80). Moreover, silencing FGG in lung squamous
cell carcinoma (LUSC) tissue notably altered the extent of immune
infiltration, particularly affecting the infiltration of M1-type
macrophages derived from THP-1 cell polarization (80). DCD, a
secreted antimicrobial peptide, has been found to be dysregulated in
a subset of breast tumors (81). Patients with DCD-positive breast
cancer have worse prognostic features (81). Bancovik et al. revealed
that DCD modulated its oncogenic role in breast cancer by the ERBB
signaling (81). Taken together, these evidences confirm that these
HEMTIRGs (CRISP3, PAX7, FGG, and DCD) are closely related to
hypoxia, EMT, and tumor immunity, which in turn contribute to the
regulation of BC pathogenesis and prognosis.

Although our study developed a novel prognostic risk model for
BC based on HEMTIRGs, demonstrating strong accuracy and
reliability, certain limitations remain. In particular, the functional
role of CRISP3 in hypoxia-induced BC progression was only
validated in vitro. Future studies should include in vivo models to
strengthen these mechanistic insights. Additionally, future research
should focus on validating the model’s predictive performance and
its effectiveness in stratifying BC patients, forecasting prognosis,
and assessing immunotherapy responses in larger clinical cohorts.
Finally, the exact molecular mechanisms through which
HEMTIRGs contribute to BC pathogenesis and progression
require further investigation to fully elucidate their role in BC
development and potential therapeutic targeting.

5 Conclusion

In conclusion, we identified a novel and reliable prognostic
HEMTIRGs signature through bioinformatics analysis of hypoxia-,
EMT-, and immune-related genes in the BC training cohort. A
prognostic risk model based on HEMTIRGs effectively stratified BC
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patients, and demonstrated excellent reliability and accuracy in
predicting BC prognosis and assessing immunotherapy efficacy,
offering valuable insights for risk assessment, personalized
treatment strategies, and clinical decision-making in BC
management. Furthermore, our findings enhance the understanding
of hypoxia- and EMT-driven mechanisms underlying BC progression
and prognosis, highlighting novel therapeutic targets for
BC treatment.
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