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Introduction: Type 2 diabetes mellitus (T2DM) is a globally prevalent metabolic
disease, and emerging studies have revealed its strong association with calcific
aortic valve disease (CAVD). Chronic inflammation, oxidative stress, and immune
dysregulation induced by hyperglycemia in T2DM may accelerate CAVD
progression, although the molecular mechanisms remain unclear.

Methods: We integrated and analyzed four CAVD and two T2DM gene
expression datasets from the GEO database. Through differential gene
expression analysis, weighted gene co-expression network analysis (WGCNA),
and secretory protein screening, we identified shared pathogenic genes between
T2DM and CAVD. Protein-protein interaction (PPI) networks, functional
enrichment analysis, and Connectivity Map (cMAP) prediction were conducted
to identify potential therapeutic targets. A diagnostic model was constructed
using 113 machine learning algorithms, and immune infiltration analysis was
performed using CIBERSORT. The expression of key genes was validated in
clinical valve tissue samples via RT-qPCR, Western blotting,
and immunohistochemistry.

Results: A total of 13 intersecting genes were identified as potential secretory
biomarkers. The diagnostic model built with four key genes (CDH19, COL1A2,
PRG4, and SPP1) showed excellent predictive performance (average AUC = 0.95).
Immune infiltration analysis revealed significant differences in macrophage and T
cell subtypes between CAVD and controls. CDH19 was downregulated, while
COL1A2, PRG4, and SPP1 were significantly upregulated in T2DM-associated
CAVD tissues. Among the candidate compounds, phorbol-12-myristate-13-
acetate (PMA) emerged as a top therapeutic molecule potentially capable of
reversing pathological gene expression.
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Conclusion: Our study identifies key secretory proteins and immune signatures
in T2DM-associated CAVD and proposes a novel diagnostic model with strong
clinical applicability. These findings offer new insights for early diagnosis and
personalized treatment strategies in CAVD patients with T2DM.

type 2 diabetes mellitus, calcific aortic valve disease, secretory proteins, bioinformatics,
machine learning, immune infiltration

1 Introduction

Type 2 diabetes mellitus (T2DM) represents a globally prevalent
metabolic disorder characterized by escalating incidence rates
paralleling lifestyle modifications and population aging. Beyond
its hallmark disturbances in glucose homeostasis, T2DM is
intricately linked to multifaceted pathophysiological processes
encompassing chronic inflammation, oxidative stress, and
dysregulated immune modulation (1, 2). These systemic
perturbations markedly exacerbate cardiovascular morbidity, with
calcific aortic valve disease (CAVD) emerging as a critical
comorbidity. CAVD, a prevalent valvulopathy pathognomonically
defined by progressive aortic valve fibrosis and calcification,
culminates in aortic valve stenosis and predisposes to catastrophic
cardiovascular sequelae, including heart failure and sudden cardiac
death (3-5). Accumulating epidemiological evidence has
demonstrated a significantly elevated CAVD prevalence in T2DM
cohorts compared to non-diabetic populations, with T2DM
independently predicting accelerated CAVD progression and
adverse clinical outcomes (6, 7).

The mechanistic interplay between T2DM and CAVD
pathogenesis is mediated through multiple secretory protein
pathways. Chronic hyperglycemia in T2DM fosters a
proinflammatory milieu characterized by persistent elevation of
systemic pro-inflammatory cytokines, including IL-6, TNF-o and
IL-1B (8, 9). These mediators not only perpetuate systemic
inflammation but also potentiate localized inflammatory cascades
within valvular interstitial cells, thereby accelerating fibrotic
remodeling and osteogenic differentiation (10). Furthermore,
oxidative stress—a cardinal metabolic derangement in T2DM—
exacerbates CAVD progression through upregulation of
extracellular matrix-degrading enzymes and profibrotic mediators
such as TGF-B, collectively driving pathological matrix remodeling
(11). Notably, immune dysregulation constitutes a pivotal pathogenic

Abbreviations: AUC, average area under the curve; CAVD, calcific aortic valve
disease; cMAP, Connectivity Map; DEGs, Differentially Expressed Genes; GEO,
Gene Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; MAD, Median absolute deviation; ML, machine learning;
PCA, Principal component analysis; PMA, phorbol-12-myristate-13-acetate; PPI,
Protein-protein interaction; T2DM, Type 2 diabetes mellitus; WGCNA, weighted

gene co-expression network analysis.
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nexus between T2DM and CAVD. Recent investigations have
identified aberrant activation patterns in monocyte-macrophage
lineages among T2DM patients, with these immunocompetent cells
secreting pro-inflammatory cytokines and proteolytic enzymes that
synergistically promote valvular fibrocalcific transformation (12).
Such immune-mediated mechanisms assume particular significance
in CAVD pathogenesis, as T2DM-associated immune perturbations
may critically accelerate valvular degeneration through feedforward
inflammatory loops (13).

Given the pathophysiological nexus between T2DM and
CAVD, the development of early diagnostic tools and
personalized therapeutic strategies for T2DM patients assumes
critical clinical urgency. To achieve early CAVD detection and
timely intervention in high-risk populations, it is imperative to
establish a comprehensive diagnostic framework incorporating
novel biomarkers that reflect the intersecting pathomechanisms of
T2DM and CAVD. Such a model, synergistically integrating multi-
omics signatures of both disorders, holds dual potential: enhancing
diagnostic precision at preclinical stages and informing
mechanistically grounded therapeutic innovations.

In this study, we analyzed four CAVD datasets and two T2DM
cohorts from the Gene Expression Omnibus (GEO) database using
bioinformatics methods to identify T2DM-related hub genes and their
mechanisms in CAVD. Potential therapeutic compounds for CAVD
were also screened. Machine learning-based diagnostic models were
constructed, with a four-gene panel (CDH19, COL1A2, PRG4, SPP1)
showing optimal performance. The expression patterns of these genes
were validated, and the model’s diagnostic efficacy was assessed using
two independent CAVD cohorts from GEO. Finally, we investigated
immune cell characteristics in CAVD to explore interactions between
these genes and the immune system.

2 Methods

2.1 Microarray data acquisition and
processing

Six raw expression datasets (GSE12644, GSE51472, GSE153555,

GSE83453, GSE235995, GSE55492) comprising CAVD test/
training cohorts, along with two T2DM datasets (GSE20966,
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TABLE 1 Descriptive statistics of the GEO datasets.

10.3389/fimmu.2025.1634655

GEO . Sample .
. Platform Origin P CAVD Species Group

accession control
Homo

GSE12644 GPL570 Heart valve 10 10 .
sapiens
Homo

GSE51472 GPL570 Heart valve 5 5 .
sapiens

Train group

H

GSE153555 GPL16791 Heart valve 10 20 omo
sapiens
Homo

GSE83453 GPL10558 Heart valve 8 19 i
sapiens
Homo

GSE235995 GPL24676 Heart valve 4 5 .
sapiens

Test group

GSE55492 GPL11154 Heart valve 10 9 Homo

sapiens
GEO Sample .
. Platform P Species
accession Control
s Homo

GSE20966 GPL1352 Pancreatic tissue 10 10 .

sapiens
o Homo

GSE25724 GPL6480 Pancreatic tissue 7 6 .

sapiens

CAVD,calcific aortic valve disease
T2DM, Type 2 diabetes mellitus

GSE25724), were retrieved from the GEO database. Using the “sva”
R package (v4.3.1) (14), batch correction was performed on four
CAVD datasets (GSE12644, GSE51472, GSE153555, GSE83453) via
the ComBat algorithm, generating an integrated CAVD expression
matrix containing 44 calcified and 33 control samples. Datasets
GSE235995 and GSE55492 were processed as independent test
cohorts for subsequent validation. Detailed descriptive
information of datasets was shown in Table 1.

2.2 Differentially expressed genes analysis

DEGs were identified in the integrated CAVD and T2DM
datasets using the “limma” R package (15), with thresholds set at
adjusted p <0.05 and |log2FC| >0.585. Volcano plots and heatmaps
were generated for DEG visualization.

2.3 WGCNA enrichment analysis of key
genes

The WGCNA package (16) implemented in R was used to construct
scale-free co-expression networks. Key steps included: (1) Median
absolute deviation (MAD) filtering (genes with MAD = 0 excluded);
(2) Sample quality control via “goodSamplesGenes”; (3) Network
construction with soft threshold power B=5; (4) Module eigengene
(ME) identification via principal component analysis; (5) Module-trait
relationship assessment. Modules showing strongest positive/negative
correlations with clinical traits were selected for downstream analysis.
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2.4 Secretory protein gene extraction

A total of 3,947 secretory protein-coding genes were obtained
from the “SPOCTOPUS predicted secreted proteins” class in the
Human Protein Atlas (https://www.proteinatlas.org) (17).

2.5 PPI network construction

PPI networks were built using the STRING database (18)
(confidence score >0.4) and visualized via Cytoscape v3.8.2. Top
two modules identified by MCODE plugin were retained for
further analysis.

2.6 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were conducted using DAVID
(19) with significance threshold p<0.05. Results were visualized as
bubble plots and circos diagrams.

2.7 cMAP analysis

Upregulated genes from top PPI modules were input into
cMAP (20) to identify potential CAVD therapeutics. The top 10
compounds with highest enrichment scores were selected.
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2.8 Machine learning algorithms

Twelve algorithms (LASSO, Ridge, Stepglm, XGBoost, RF, Enet,
plsRglm, GBM, Naive Bayes, LDA, glmBoost, SVM) were
systematically evaluated across 113 combinatorial configurations
(21). We employed a stacking ensemble strategy to integrate
predictions from multiple base models. Specifically: Base models
(12 algorithms) were trained using 10-fold cross-validation on the
training set. Their predictions on the validation folds were used as
meta-features. A generalized linear model (GLM) was trained as the
meta-model on these meta-features. The final ensemble model was
applied to the independent test sets (GSE235995 and GSE55492).
The optimal model was defined by highest mean AUC.

2.9 Immune infiltration analysis

CIBERSORT quantified immune cell proportions in CAVD
samples. Wilcoxon tests compared immune cell differences between
calcified/control valves (p<0.05). Spearman correlation assessed
biomarker-immune cell interactions (22).

2.10 Clinical sample collection

Calcified T2DM (n=3) and non-calcified control (n=3) aortic
valves were obtained from Zhongnan Hospital of Wuhan
University following ethical approval (Declaration of Helsinki).
Informed consent was obtained preoperatively.

2.11 RNA isolation and RT-gPCR

Total RNA extracted with TRIzol® (Invitrogen) was reverse-
transcribed using PrimeScriptTM RT Master Mix (Takara). RT-
qPCR was performed on a 7500 Real-Time PCR System (Applied
Biosystems) with TB Green Premix Ex TaqTM II (Takara) (23).
Relative mRNA expression was calculated via 2-AACt method using
GAPDH normalization.

2.12 Western blotting

Proteins isolated with RIPA buffer were separated on 10% SDS-
PAGE gels, transferred to PVDF membranes, and probed with
primary/secondary antibodies. Bands were visualized via ECL (New
Cell & Molecular Biotech) and quantified using Image] v1.8 (24).

2.13 Immunohistochemistry

Paraffin-embedded valve sections (5 um) were stained with
anti-SI00A8 (A12018, ABclonal) and S100A9 (A9842, ABclonal)
antibodies. Staining areas were quantified using Image] under
confocal microscopy (Olympus) (25).
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2.14 Statistical analysis

All analyses were performed in R v4.2.0. Wilcoxon test compared
two groups; Kruskal-Wallis test analyzed three groups. Survival analysis
used log-rank test. p<0.05 indicated statistical significance.

2.15 Software and code availability

All statistical analyses and visualizations were performed using
R software (v4.2.0). The main R packages used in this study include:
sva (v3.48.0) for batch effect correction, limma (v3.56.0) for
differential expression analysis, WGCNA (v1.72-5) for co-
expression network construction, ggplot2 (v3.4.4) and pheatmap
(v1.0.12) for plotting, caret (v6.0-94) and glmnet (v4.1-8) for
machine learning model training and evaluation, and 1071 (v1.7-
14) for Support Vector Machine implementation. Protein-protein
interaction analysis was performed using the STRING database
(v12.0) and visualized in Cytoscape (v3.8.2).

3 Results

3.1 Data processing

The bioinformatics workflow is schematically depicted in
Figure 1. Four raw aortic valve datasets (calcified vs. control
samples) were retrieved from the GEO database and merged
following batch effect correction using the “sva” package. Post-
normalization, the integrated CAVD dataset comprised 44 calcified
and 33 control samples. Principal component analysis (PCA)
demonstrated significant reduction in inter-dataset heterogeneity
after batch correction, as visualized in Figures 2A-D.

3.2 Identification of differentially expressed
genes in calcific aortic valve disease

Comparative transcriptomic analysis between calcified and
control aortic valve specimens identified 750 DEGs under
predefined thresholds (adjusted p-value <0.05, |log2FC| >0.585),
comprising 427 upregulated and 323 downregulated transcripts.
The spatial distribution and hierarchical clustering patterns of these
DEGs were visually represented through volcano plots and
heatmaps, as illustrated in Figures 2E, F.

3.3 Construction of weighted gene co-
expression network and identification of
key modules in CAVD

To delineate pivotal genetic determinants in CAVD pathogenesis,
a WGCNA was implemented. Scale-free network construction
employed soft threshold power B=6, determined through scale-free
topology fit (R*>0.85) and mean connectivity optimization
(Figure 3A). Hierarchical clustering dendrogram partitioned co-
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Research flow chart.

expressed genes into seven discrete modules, with topological
relationships visualized through module eigengene clustering
(Figure 3B). Module-trait correlation analysis revealed the brown
module as most significantly associated with CAVD pathogenesis,
encompassing 429 genes demonstrating strong positive correlation
(r=0.82, p= 2e-19) with disease phenotype (Figure 3C). Intersectional
analysis between CAVD-associated DEGs and WGCNA-derived hub
genes identified 337 consensus candidates (Figure 3D), prioritized for
subsequent functional investigations.
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3.4 Identification of differentially expressed
secretory proteins in type 2 diabetes
mellitus

Evidence from prior studies establishes a causal relationship
between T2DM and accelerated CAVD progression. To investigate
T2DM-associated pathogenic mechanisms in CAVD, we conducted
systematic reanalysis of T2DM expression profiles from the GEO
database. Volcano plot and heatmap visualization delineated 445
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FIGURE 2

The integration of CAVD datasets and differential expression analysis of the integrated CAVD dataset. (A) Boxplot of raw data. (B) Boxplot after
normalization. (C) PCA of three original CAVD datasets before batch-effect correction. (D) PCA of the integrated CAVD dataset after batch-effect
correction. (E) The heatmap showing the top 30 upregulated and 30 downregulated DEGs in the integrated CAVD dataset. CAVD calcific aortic valve
disease, PCA principal component analysis, DEGs differentially expressed genes. (F) The volcano plot representing CAVD DEGs in the integrated
CAVD dataset. The upregulated genes are presented in red dots, whereas the downregulated genes are presented in blue dots.

DEGs in T2DM (p<0.05, |log2FC|>0.585). (Figures 4A, B).
Given the postulated secretory protein-mediated mechanism
underlying T2DM-CAVD pathogenesis, intersectional analysis

3.5 Functional enrichment analysis of
T2DM-associated pathogenic genes in
CAVD via PPl network screening

between T2DM DEGs and curated secretory protein genes

identified 142 T2DM-associated differentially expressed secretory

proteins (Figure 4C).
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To elucidate the molecular mechanisms underlying T2DM-
related CAVD pathogenesis, we constructed a PPI network using
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Screening of key module genes in the integrated CAVD dataset via WGCNA and identification of CAVD key genes through the intersection of key
module genes and DEGs. (A) The scale-free topology model was utilized to identify the best B value, and = 5 was chosen as the soft threshold
based on the average connectivity and scale independence. (B) The network heatmap showing the gene dendrogram and module eigengenes.

(C) The heatmap revealing the relationship between module eigengenes and status of CAVD. The correlation (upper) and p-value (bottom) of
module eigengenes and status of CAVD were presented. The pink and yellow modules correlated with CAVD exhibited the highest and lowest
correlation coefficients, respectively, which were identified as the key modules in CAVD. (D) A total of 337 key genes in CAVD were identified by
taking the intersection between key modules genes and DEGs via the Venn diagram. WGCNA weighted gene co-expression network analysis, CAVD

calcific aortic valve disease, DEG differentially expressed genes.

the STRING database (interaction confidence score >0.4),
integrating T2DM-associated secretory proteins and CAVD hub
genes. Cytoscape visualization and MCODE clustering identified
two critical modules containing 46 T2DM-associated pathogenic
genes (Figures 5A, B). Functional enrichment analysis of these
genes revealed significant involvement in chemokine-related
pathways. GO analysis demonstrated enrichment in biological
processes such as “chemokine-mediated signaling” (Figure 5C),
cellular components including “collagen trimer complexes”
(Figure 5D), and molecular functions like “chemokine activity”
and “receptor binding” (Figure 5E). KEGG pathway analysis further
highlighted associations with “Chemokine signaling pathway” and
“Viral protein-cytokine receptor interactions” (Figure 5F). These
findings collectively implicate chemokine-driven inflammatory

Frontiers in Immunology

responses and extracellular matrix remodeling as pivotal
mechanisms linking T2DM to CAVD progression.

3.6 Screening of small-molecule
compounds with therapeutic potential for
CAVD

To investigate potential therapeutic agents for T2DM-
associated CAVD, upregulated genes from T2DM-related
pathogenic modules were analyzed using the cMAP database to
identify compounds capable of reversing disease-associated
transcriptional alterations. Computational screening revealed 10
top candidate compounds with the most significant negative
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Identification of T2DM-associated secretory proteins through
differential expression analysis in pancreatic tissues. (A) Heatmap
depicting the top 10 upregulated (red) and downregulated (blue)
DEGs in T2DM datasets. (B) Volcano plot visualizing DEGs in T2DM
(C) Venn diagram illustrating the intersection between T2DM DEGs
and secretory protein-coding genes, identifying 142 T2DM-
associated secretory proteins.

enrichment scores (indicating reversal of disease gene expression
patterns): phorbol-12-myristate-12-acetate, ingenol, ZG-10,
sirolimus, digoxin, Merck60, LFM-A12, chromomycin-A3,
helveticoside, and topotecan (Figures 6A, B). Structural motifs
and predicted target pathways of these candidates—spanning
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immunomodulatory, epigenetic, and metabolic regulators—are
systematically annotated in Figure 6C.

3.7 Development of a diagnostic model
based on a machine learning—integrated
framework

A diagnostic model was constructed using an integrated machine
learning (ML) framework, based on 13 intersecting genes identified
from DEGs in CAVD, key genes implicated in CAVD pathogenesis,
and secreted protein DEGs associated with T2DM (Figure 7A). The
merged datasets from GSE12644, GSE51472, GSE153555, and
GSE83453 were utilized as the training cohort for model
development, while GSE235995 and GSE55492 were employed as
independent validation cohorts. To build the model, we applied a
comprehensive ML-based computational framework to the
expression profiles of the 13 candidate genes. A total of 12 distinct
ML algorithms were employed, resulting in 113 combinatorial
models being evaluated. As illustrated in Figure 7B, the optimal
combination comprising Stepglm, bidirectional and XGBoost
achieved the highest average area under the curve (AUC) of 0.95
across five datasets, and was designated the optimal diagnostic model.
The stacking ensemble model achieved the highest performance
across multiple metrics, including Accuracy (0.94), Precision/Recall
(0.98), F1 score (0.89), and Matthews Correlation Coefficient (0.89),
Sensitivity/Specificity(0.98),demonstrating robust predictive
capability and balance between sensitivity and specificity
(Supplementary Table S1). The development process is depicted in
Figures 7C-E. Based on this optimal ML combination, we
constructed a diagnostic model using four hub genes(CDH19,
COL1A2, PRG4, and SPP1). All of which demonstrated robust
diagnostic performance, as evidenced by consistently high AUC
values. This four-gene model was subsequently applied to predict
disease probability in both the training and validation cohorts,
yielding accurate and consistent predictive outcomes. The
distribution of cases and corresponding confusion matrices for
both cohorts are presented in Figure 7F. Furthermore, analysis of
gene expression patterns between CAVD and control samples
revealed upregulation of COL1A2, PRG4, and SPP1, and
downregulation of CDH19 in CAVD tissues (Figures 7G, H).

3.8 Immune infiltration landscape analysis

Functional and pathway enrichment analyses of T2DM-related
pathogenic genes in CAVD revealed strong associations with
inflammatory and immune regulatory processes. To investigate
the immune microenvironment and its relationship with
diagnostic biomarkers in CAVD, we employed the CIBERSORT
algorithm to estimate the composition of immune cell populations.
This analysis quantified the proportions of 22 immune cell types in
each sample and identified significant differences in eight immune
cell subsets between calcified and control aortic valve tissues.
Compared with controls, CAVD samples exhibited increased
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proportions of MO macrophages, M1 macrophages, and T cells
gamma delta, while showing decreased proportions of plasma cells,
activated NK cells, and M2 macrophages (Figures 8A, B). Moreover,
correlation analysis among the 22 immune cell types revealed a
significant positive correlation between M1 macrophages and naive
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B cells (r = 0.47, p < 0.05), as well as a significant negative
correlation between M2 macrophages and M0 macrophages (r =
-0.58, p < 0.05) (Figure 8C). Further correlation analysis between
these immune cell subsets and the four identified hub genes

demonstrated strong associations across all gene-immune cell
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pairs, with CDHI19 showing a particularly strong positive
correlation with Mast cell resting (Figure 8D).

3.9 Correlation analysis between immune
cell infiltration and hub genes

To further elucidate the expression patterns of diagnostic
biomarkers and their potential associations with infiltrating
immune cells, we performed a comprehensive correlation analysis
(Supplementary Figure S1). CDH19 expression exhibited a strong
positive correlation with Mast cells resting (r = 0.64, p < 0.001) and
T cells CD4 memory resting (r = 0.36, p = 0.017), while displaying a
negative correlation with Macrophages MO (r = —0.37, p = 0.013)
(Figure 9A). COL1A2 was positively correlated with B cells naive (r
= 0.43, p = 0.004) and negatively correlated with Plasma cells (r =
—-0.36, p = 0.017) (Figure 9B). PRG4 demonstrated positive
correlations with both T cells CD4 memory resting (r = 0.39, p =
0.009) and T cells CD4 memory activated (r = 0.33, p = 0.030), while
negatively correlated with Macrophages MO (r = —0.32, p = 0.035)
(Figure 9C). SPP1 exhibited significant correlations with various
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immune cell subsets, showing positive associations with T cells
follicular helper (r = 0.50, p < 0.001), Macrophages MO (r = 0.40, p =
0.008), Mast cells activated (r = 0.37, p = 0.015), and NK cells
resting (r = 0.33, p = 0.029), while demonstrating negative
correlations with Macrophages M1 (r = —0.40, p = 0.008), Mast
cells resting (r = —0.31, p = 0.039), and T cells CD4 naive (r = —0.30,
p = 0.046) (Figure 9D).

3.10 Validation of hub gene expression in
CAVD tissues with coexisting T2DM

To characterize the expression profiles of CDH19, COL1A2,
PRG4, and SPPI1, we performed RT-qPCR and Western blot
analyses on clinical tissue samples. Primers are shown in Table 2.
Compared with normal tissues, mRNA levels of CDHI19 were
significantly downregulated, whereas COL1A2, PRG4, and SPP1
were markedly upregulated in CAVD tissues complicated with
T2DM (Figures 10A-D). To corroborate these findings, Western
blotting was conducted to assess the corresponding protein levels,
which revealed expression patterns consistent with the mRNA
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Construction of a diagnostic model for CAVD using an integrated machine learning (ML) framework. (A) Schematic of the diagnostic model built
based on 13 intersecting genes (from CAVD DEGs, CAVD pathogenesis-related key genes, and T2DM-associated secreted protein DEGs). (B)
Performance comparison of 113 combinatorial ML models; the optimal combo (Stepglm, bidirectional, XGBoost) achieved an average AUC of 0.95.
(C—E) Visualization of the integrated ML model development process. (F) Case distribution and confusion matrices of the four-gene (CDH19,
COL1A2, PRG4, SPP1) model in training and validation cohorts. (G-H) Gene expression patterns: COL1A2, PRG4, SPP1 upregulated and CDH19

downregulated in CAVD tissues vs controls.

results (Figures 10B, C). Furthermore, immunohistochemical
staining was performed on human aortic valve samples obtained
from Zhongnan Hospital of Wuhan University to evaluate the tissue
localization and expression of CDH19, COL1A2, SPP1 and PRG4
(Figures 10D, E). Furthermore, to explore the potential pathways
involving these hub genes, we assessed the protein expression of
CXCLI12 and MMP9, which were central to the bioinformatically-
predicted chemokine and extracellular matrix remodeling
pathways. Western blot analysis revealed a significant
upregulation of MMP9 and a strong increasing trend for CXCL12
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in the T2DM-CAVD group compared to controls (Supplementary
Figure S2), providing preliminary protein-level evidence supporting
the involvement of this predicted network.

4 Discussion

In recent decades, the incidence of CAVD has risen sharply.
Despite this growing prevalence, effective pharmacological
treatments for CAVD remain lacking, underscoring the urgent
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FIGURE 8

Immune infiltration analysis. (A) Histogram of different immune cell content in each sample. (B) Comparison of the content of different immune cells
in normal and CAVD groups. (C) Correlation heatmap of all immune infiltrating cells. (D) Correlation network heatmap of hub genes and immune

infiltrating cells.

need to identify potential therapeutic options. CAVD often presents
no significant symptoms in its early stages; however, once
symptoms manifest, the disease is typically in its advanced stages.
At this point, aortic valve replacement—whether performed
through surgical or transcatheter procedures—becomes the only
viable therapeutic approach (3-5). The pathological link between
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CAVD and T2DM has become a focal point of research in the
cardiovascular and metabolic domains. While the hypothesis that
T2DM accelerates CAVD progression through mechanisms such as
chronic inflammation, oxidative stress, and immune dysregulation
is widely accepted, the molecular mechanisms that bridge these two
conditions remain inadequately understood. Therefore, the
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COL1A2 with immune cell infiltration. (C) Correlation of PRG4 with immune cell infiltration. (D) Correlation of SPP1 with immune cell

infiltration.*Statistical significance: *p < 0.05, **p <0.01, **p < 0.001.

TABLE 2 Primers for RT-qPCR experiments with 4 Hub Genes.

Gene id Forward pri Reverse primer
COL1A2 GAGGAGAGCCTGGCAACATT AGGACCAGGGAGACCAAACT
SPP1 AATCTCCTAGCCCCACAGACC CCACACTATCACCTCGGCCA
PRG4 CGACGCCCAATGTAAGAAGTATG TGATGGTTTGAGATGCTCCTGAA
CDH19 CTGACGATCCCTCAAGTGGTAAT ACCCAATACTCATCTTGCAGTTCT

RT-qPCR Reverse transcription quantitative-polymerase chain reaction.

objective of our study was to utilize bioinformatics approaches to
identify novel biomarkers associated with both CAVD and T2DM,
as well as to screen for small molecules with potential therapeutic
properties (11).

In recent years, significant breakthroughs have been made in the
discovery of small molecules with therapeutic potential for a variety
of diseases. Small molecules with high tissue permeability, tunable
half-lives, and favorable oral bioavailability have shown great promise
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in therapeutic applications. For example, fluoridated enzyme
inhibitors have shown significant effects in preventing calcification
in CAVD (26). Additionally, the role of statins is currently under
investigation, with evidence suggesting that they may help slow the
pathological progression of CAVD (27). However, the development
of potential therapeutic agents for CAVD requires further high-
throughput screening based on gene expression profiles in calcified
aortic valves, to identify more small molecules with potential efficacy.
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FIGURE 10

Validation of hub gene expression patterns in calcified aortic valves with T2DM. (A) mRNA expression levels of hub genes detected by gPCR (n =3
per group). (B, C) Representative Western blot (WB) analysis and quantification of COL1A2, SPP, PRG4, and CDH19 protein levels in calcified aortic
valves with T2DM (n = 3 per group). (D) Immunofluorescence staining of COL1A2, SPP, PRG4 and CDH19 in calcified aortic valves with T2DM.

(E) Quantitative analysis of immunofluorescence intensity. Scale bar: 200 um. Statistical significance was determined by two-tailed unpaired

Student’s t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

In this context, the current study, through cMAP analysis, offers a
novel perspective by linking T2DM-related pathogenic genes to
identify potential compounds for CAVD treatment. By applying
upregulated T2DM-related pathogenic genes from calcified valves
to cMAP analysis, ten small molecules (PMA, Ingenol, ZG-10,
Sirolimus, Digoxin, Merck60, LFM-A12, Chromomycin-A3,

Frontiers in Immunology

Helveticoside, and Topotecan) were selected as candidate
compounds. Notably, PMA (28), an effective PKC activator,
exhibited the highest negative enrichment score in the cMAP
analysis, suggesting its potential to reverse the upregulation of
T2DM-related pathogenic genes in CAVD. Although a direct link
between PMA and calcification has not yet been established, PMA
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has shown significant signaling modulation effects in diabetic
complications (29). For example, PMA can improve cardiovascular
function by inhibiting PKC-related inflammatory responses, reducing
the expression of adhesion molecules (30), and suppressing monocyte
accumulation. Previous studies have indicated that there is a
complex relationship between T2DM and CAVD, with insulin
resistance and inflammation accelerating the progression of
CAVD (31), while PMA may slow the pathological development
of CAVD by intervening in these key pathways. Furthermore,
PMA has demonstrated its ability to modulate immune and
inflammatory responses in other metabolism-related cardiovascular
diseases (32, 33). Therefore, PMA represents a promising therapeutic
option that may have a beneficial impact on the progression of
CAVD in T2DM patients. Early intervention with PMA in T2DM
patients may improve glucose metabolism and delay the progression
of aortic valve calcification, thus improving patient survival and
quality of life.

This study is the first to systematically analyze the molecular
network driving CAVD in T2DM from the perspective of secreted
proteins. By analyzing transcriptomic data from the GEO database
for CAVD and T2DM, we identified a significant overlap between the
142 aberrantly expressed secreted protein genes in T2DM patients
and the core genes associated with CAVD. Notably, an interaction
network of 13 key genes was found to dominate valve pathology
through chemokine signaling pathways and collagen remodeling
mechanisms. Of particular importance, the diagnostic model
constructed using machine learning further narrowed the focus to
four pivotal genes CDH19, COL1A2, PRG4, and SPP1 whose
diagnostic efficacy (AUC = 0.95) was validated in an independent
cohort. The diagnostic model developed in this study was capable of
effectively distinguishing between CAVD patients and controls,
providing valuable guidance for clinical treatment. Furthermore,
histological experiments confirmed the differential expression
patterns of these genes in T2DM patients with CAVD.
Importantly, these four hub genes (CDH19, COL1A2, PRG4, SPP1)
have been identified as regulators of the cell cycle in multiple disease
contexts, playing critical roles in disease pathogenesis. CDH19, a
cadherin family member, regulates endothelial integrity and
inflammatory responses. Its downregulation in CAVD tissues
correlates with increased MO and S100A8/A9 pathway activation,
suggesting a role in mitigating immune-mediated calcification.
COL1A2, a key component of type I collagen, is upregulated via
hyperglycemia-induced TGF-B signaling, driving vascular smooth
muscle cell transdifferentiation and fibrosis (34). Elevated COL1A2
levels correlate with B cell infiltration and collagen deposition,
forming a “fibrosis-inflammation” axis (35). PRG4, an anti-
inflammatory glycoprotein, is suppressed in T2DM, exacerbating
TLR4/NF-kB-mediated adipose inflammation and insulin resistance
(36). Its positive correlation with resting memory T cells implies a
regulatory role in immune tolerance, supported by preclinical studies
showing PRG4 overexpression improves glucose metabolismé6 (37).
SPP1 acts as a metabolic-immune hub, promoting calcification via
PI3K/Akt-mediated hydroxyapatite deposition and recruiting
follicular helper T cells via CXCL12-CXCR4 signaling (38, 39).
Paradoxically, its glycosylation in diabetic conditions may shift its
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function from pro-calcific to pro-fibrotic, as observed in tumor
microenvironments (40).

The innovation of this study lies in its dual breakthroughs in
methodology and biological insight. By developing a cross-analysis
framework between T2DM secreted proteins and CAVD genes. Our
functional enrichment analysis, combined with the protein
validation of CXCL12, COL1A2, and MMP9, leads us to
hypothesize that a potential interaction between chemokine
signaling (CXCL12) and matrix remodeling (COL1A2, MMP9)
may represent a novel mechanism linking T2DM to CAVD
progression. To our knowledge, this is the first study to
bioinformatically predict and provide preliminary protein
evidence for this specific interaction network in the context of
T2DM-associated CAVD. The model optimization strategy, based
on 113 machine learning combinations, not only enhances
diagnostic efficacy, but also identifies non-classical biomarkers,
such as CDH19, providing new targets for liquid biopsy
development. Immune microenvironment analysis reveals an
imbalance in the M1/M2 macrophage ratio and an expansion of
T cells CD4 memory resting, providing a theoretical foundation for
immunotherapy targeting immune checkpoints. Moreover, among
the 10 compounds predicted by cMAP, sirolimus and topotecan
have been confirmed to inhibit vascular smooth muscle cell
osteogenic differentiation (41, 42), aligning closely with the
mechanisms predicted in this study and highlighting the
application value of bioinformatics-guided drug repositioning.

However, this study does have some limitations. Despite
integrating multiple datasets and applying batch correction, the
sample size may restrict the precision of the diagnostic model. It is
important to note that our diagnostic model distinguishes between
existing CAVD patients and controls. Its potential for predicting
future disease risk (prognosis) requires validation in longitudinal
prospective studies. Additionally, the lack of T2DM stratification
analysis makes it difficult to distinguish the impact of blood glucose
control on gene expression. While wet-lab experiments validated
the gene expression trends, further studies and clinical trials are
required to elucidate the specific role of key genes in valve cells and
confirm our findings.

5 Conclusion

We have uncovered the inflammatory immune pathways
underlying T2DM-related CAVD and developed a CAVD
diagnostic model based on CDH19, COL1A2, PRG4, and SPP1
using machine learning. This provides new insights for future
diagnostic and therapeutic interventions based on serum for
T2DM-associated CAVD.
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SUPPLEMENTARY FIGURE 1

Correlation between hub gene expression and immune infiltration assessed
by CIBERSORT analysis. (A—C) Correlation of CDH19 expression with
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CIBERSORT immune scores. (D, E) Correlation of COL1A2A expression with
CIBERSORT immune scores. (F=1) Correlation of PRG4 expression
with CIBERSORT immune scores. (J—P) Correlation of SPP1 expression
with CIBERSORT immune scores.

SUPPLEMENTARY FIGURE 2

mMRNA and protein expression validation of CXCL12 and MMP9 in the predicted
pathway. (A) mRNA expression levels of CXCL12 and MMP9 in control (n=3) and
T2DM-CAVD (n=3) human aortic valve tissues as determined by RT-gPCR. *p <
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