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machine learning analyses
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secretory proteins and
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drugs in calcific aortic valve
disease with type 2 diabetes
Xiang Zhang1,2,3†, Jiahui Wang1,2,3†, Qian Hu1,2,3†, Bangyu Guo1,2,3,
Mengjie Hu1,2,3, Xiaobo Yu1,2,3, Shunbo Wei1,2,3, Qiujie Luo1,2,3,
Yuqing Zhang1,2,3, Shentao Li1,2,3, Binhao Zhang1,2,3,
Caixia Gao1,2,3*, Shuang Wang1,2,3* and Jianliang Zhou1,2,3*

1Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,
2Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan,
Hubei, China, 3Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart
Disease, Wuhan, Hubei, China
Introduction: Type 2 diabetes mellitus (T2DM) is a globally prevalent metabolic

disease, and emerging studies have revealed its strong association with calcific

aortic valve disease (CAVD). Chronic inflammation, oxidative stress, and immune

dysregulation induced by hyperglycemia in T2DM may accelerate CAVD

progression, although the molecular mechanisms remain unclear.

Methods: We integrated and analyzed four CAVD and two T2DM gene

expression datasets from the GEO database. Through differential gene

expression analysis, weighted gene co-expression network analysis (WGCNA),

and secretory protein screening, we identified shared pathogenic genes between

T2DM and CAVD. Protein-protein interaction (PPI) networks, functional

enrichment analysis, and Connectivity Map (cMAP) prediction were conducted

to identify potential therapeutic targets. A diagnostic model was constructed

using 113 machine learning algorithms, and immune infiltration analysis was

performed using CIBERSORT. The expression of key genes was validated in

c l i n i ca l va l ve t i s sue samp les v i a RT-qPCR , Wes te rn b lo t t i ng ,

and immunohistochemistry.

Results: A total of 13 intersecting genes were identified as potential secretory

biomarkers. The diagnostic model built with four key genes (CDH19, COL1A2,

PRG4, and SPP1) showed excellent predictive performance (average AUC = 0.95).

Immune infiltration analysis revealed significant differences in macrophage and T

cell subtypes between CAVD and controls. CDH19 was downregulated, while

COL1A2, PRG4, and SPP1 were significantly upregulated in T2DM-associated

CAVD tissues. Among the candidate compounds, phorbol-12-myristate-13-

acetate (PMA) emerged as a top therapeutic molecule potentially capable of

reversing pathological gene expression.
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Abbreviations: AUC, average area under the curve; CAV

disease; cMAP, Connectivity Map; DEGs, Differentially

Gene Expression Omnibus; GO, Gene Ontology; KEGG,

Genes and Genomes; MAD, Median absolute deviation;

PCA, Principal component analysis; PMA, phorbol-12-m
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Conclusion: Our study identifies key secretory proteins and immune signatures

in T2DM-associated CAVD and proposes a novel diagnostic model with strong

clinical applicability. These findings offer new insights for early diagnosis and

personalized treatment strategies in CAVD patients with T2DM.
KEYWORDS

type 2 diabetes mellitus, calcific aortic valve disease, secretory proteins, bioinformatics,
machine learning, immune infiltration
1 Introduction

Type 2 diabetes mellitus (T2DM) represents a globally prevalent

metabolic disorder characterized by escalating incidence rates

paralleling lifestyle modifications and population aging. Beyond

its hallmark disturbances in glucose homeostasis, T2DM is

intricately linked to multifaceted pathophysiological processes

encompassing chronic inflammation, oxidative stress, and

dysregulated immune modulation (1, 2). These systemic

perturbations markedly exacerbate cardiovascular morbidity, with

calcific aortic valve disease (CAVD) emerging as a critical

comorbidity. CAVD, a prevalent valvulopathy pathognomonically

defined by progressive aortic valve fibrosis and calcification,

culminates in aortic valve stenosis and predisposes to catastrophic

cardiovascular sequelae, including heart failure and sudden cardiac

death (3–5). Accumulating epidemiological evidence has

demonstrated a significantly elevated CAVD prevalence in T2DM

cohorts compared to non-diabetic populations, with T2DM

independently predicting accelerated CAVD progression and

adverse clinical outcomes (6, 7).

The mechanistic interplay between T2DM and CAVD

pathogenesis is mediated through multiple secretory protein

pathways. Chronic hyperglycemia in T2DM fosters a

proinflammatory milieu characterized by persistent elevation of

systemic pro-inflammatory cytokines, including IL-6, TNF-a and

IL-1b (8, 9). These mediators not only perpetuate systemic

inflammation but also potentiate localized inflammatory cascades

within valvular interstitial cells, thereby accelerating fibrotic

remodeling and osteogenic differentiation (10). Furthermore,

oxidative stress—a cardinal metabolic derangement in T2DM—

exacerbates CAVD progression through upregulation of

extracellular matrix-degrading enzymes and profibrotic mediators

such as TGF-b, collectively driving pathological matrix remodeling

(11). Notably, immune dysregulation constitutes a pivotal pathogenic
D, calcific aortic valve
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nexus between T2DM and CAVD. Recent investigations have

identified aberrant activation patterns in monocyte-macrophage

lineages among T2DM patients, with these immunocompetent cells

secreting pro-inflammatory cytokines and proteolytic enzymes that

synergistically promote valvular fibrocalcific transformation (12).

Such immune-mediated mechanisms assume particular significance

in CAVD pathogenesis, as T2DM-associated immune perturbations

may critically accelerate valvular degeneration through feedforward

inflammatory loops (13).

Given the pathophysiological nexus between T2DM and

CAVD, the development of early diagnostic tools and

personalized therapeutic strategies for T2DM patients assumes

critical clinical urgency. To achieve early CAVD detection and

timely intervention in high-risk populations, it is imperative to

establish a comprehensive diagnostic framework incorporating

novel biomarkers that reflect the intersecting pathomechanisms of

T2DM and CAVD. Such a model, synergistically integrating multi-

omics signatures of both disorders, holds dual potential: enhancing

diagnostic precision at preclinical stages and informing

mechanistically grounded therapeutic innovations.

In this study, we analyzed four CAVD datasets and two T2DM

cohorts from the Gene Expression Omnibus (GEO) database using

bioinformatics methods to identify T2DM-related hub genes and their

mechanisms in CAVD. Potential therapeutic compounds for CAVD

were also screened. Machine learning-based diagnostic models were

constructed, with a four-gene panel (CDH19, COL1A2, PRG4, SPP1)

showing optimal performance. The expression patterns of these genes

were validated, and the model’s diagnostic efficacy was assessed using

two independent CAVD cohorts from GEO. Finally, we investigated

immune cell characteristics in CAVD to explore interactions between

these genes and the immune system.
2 Methods

2.1 Microarray data acquisition and
processing

Six raw expression datasets (GSE12644, GSE51472, GSE153555,

GSE83453, GSE235995, GSE55492) comprising CAVD test/

training cohorts, along with two T2DM datasets (GSE20966,
frontiersin.org
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GSE25724), were retrieved from the GEO database. Using the “sva”

R package (v4.3.1) (14), batch correction was performed on four

CAVD datasets (GSE12644, GSE51472, GSE153555, GSE83453) via

the ComBat algorithm, generating an integrated CAVD expression

matrix containing 44 calcified and 33 control samples. Datasets

GSE235995 and GSE55492 were processed as independent test

cohorts for subsequent validation. Detailed descriptive

information of datasets was shown in Table 1.
2.2 Differentially expressed genes analysis

DEGs were identified in the integrated CAVD and T2DM

datasets using the “limma” R package (15), with thresholds set at

adjusted p <0.05 and |log2FC| >0.585. Volcano plots and heatmaps

were generated for DEG visualization.
2.3 WGCNA enrichment analysis of key
genes

TheWGCNApackage (16) implemented in Rwas used to construct

scale-free co-expression networks. Key steps included: (1) Median

absolute deviation (MAD) filtering (genes with MAD = 0 excluded);

(2) Sample quality control via “goodSamplesGenes”; (3) Network

construction with soft threshold power b=5; (4) Module eigengene

(ME) identification via principal component analysis; (5) Module-trait

relationship assessment. Modules showing strongest positive/negative

correlations with clinical traits were selected for downstream analysis.
Frontiers in Immunology 03
2.4 Secretory protein gene extraction

A total of 3,947 secretory protein-coding genes were obtained

from the “SPOCTOPUS predicted secreted proteins” class in the

Human Protein Atlas (https://www.proteinatlas.org) (17).
2.5 PPI network construction

PPI networks were built using the STRING database (18)

(confidence score >0.4) and visualized via Cytoscape v3.8.2. Top

two modules identified by MCODE plugin were retained for

further analysis.
2.6 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were conducted using DAVID

(19) with significance threshold p<0.05. Results were visualized as

bubble plots and circos diagrams.
2.7 cMAP analysis

Upregulated genes from top PPI modules were input into

cMAP (20) to identify potential CAVD therapeutics. The top 10

compounds with highest enrichment scores were selected.
TABLE 1 Descriptive statistics of the GEO datasets.

GEO
accession

Platform Origin
Sample
control

CAVD Species Group

GSE12644 GPL570 Heart valve 10 10
Homo
sapiens

Train group

GSE51472 GPL570 Heart valve 5 5
Homo
sapiens

GSE153555 GPL16791 Heart valve 10 20
Homo
sapiens

GSE83453 GPL10558 Heart valve 8 19
Homo
sapiens

GSE235995 GPL24676 Heart valve 4 5
Homo
sapiens

Test group

GSE55492 GPL11154 Heart valve 10 9
Homo
sapiens

GEO
accession

Platform Origin
Sample
Control

T2DM Species

GSE20966 GPL1352 Pancreatic tissue 10 10
Homo
sapiens

GSE25724 GPL6480 Pancreatic tissue 7 6
Homo
sapiens
CAVD,calcific aortic valve disease
T2DM, Type 2 diabetes mellitus
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2.8 Machine learning algorithms

Twelve algorithms (LASSO, Ridge, Stepglm, XGBoost, RF, Enet,

plsRglm, GBM, Naive Bayes, LDA, glmBoost, SVM) were

systematically evaluated across 113 combinatorial configurations

(21). We employed a stacking ensemble strategy to integrate

predictions from multiple base models. Specifically: Base models

(12 algorithms) were trained using 10-fold cross-validation on the

training set. Their predictions on the validation folds were used as

meta-features. A generalized linear model (GLM) was trained as the

meta-model on these meta-features. The final ensemble model was

applied to the independent test sets (GSE235995 and GSE55492).

The optimal model was defined by highest mean AUC.
2.9 Immune infiltration analysis

CIBERSORT quantified immune cell proportions in CAVD

samples. Wilcoxon tests compared immune cell differences between

calcified/control valves (p<0.05). Spearman correlation assessed

biomarker-immune cell interactions (22).
2.10 Clinical sample collection

Calcified T2DM (n=3) and non-calcified control (n=3) aortic

valves were obtained from Zhongnan Hospital of Wuhan

University following ethical approval (Declaration of Helsinki).

Informed consent was obtained preoperatively.
2.11 RNA isolation and RT-qPCR

Total RNA extracted with TRIzol® (Invitrogen) was reverse-

transcribed using PrimeScript™ RT Master Mix (Takara). RT-

qPCR was performed on a 7500 Real-Time PCR System (Applied

Biosystems) with TB Green Premix Ex Taq™ II (Takara) (23).

Relative mRNA expression was calculated via 2-DDCt method using

GAPDH normalization.
2.12 Western blotting

Proteins isolated with RIPA buffer were separated on 10% SDS-

PAGE gels, transferred to PVDF membranes, and probed with

primary/secondary antibodies. Bands were visualized via ECL (New

Cell & Molecular Biotech) and quantified using ImageJ v1.8 (24).
2.13 Immunohistochemistry

Paraffin-embedded valve sections (5 mm) were stained with

anti-S100A8 (A12018, ABclonal) and S100A9 (A9842, ABclonal)

antibodies. Staining areas were quantified using ImageJ under

confocal microscopy (Olympus) (25).
Frontiers in Immunology 04
2.14 Statistical analysis

All analyses were performed in R v4.2.0. Wilcoxon test compared

two groups; Kruskal-Wallis test analyzed three groups. Survival analysis

used log-rank test. p<0.05 indicated statistical significance.
2.15 Software and code availability

All statistical analyses and visualizations were performed using

R software (v4.2.0). The main R packages used in this study include:

sva (v3.48.0) for batch effect correction, limma (v3.56.0) for

differential expression analysis, WGCNA (v1.72-5) for co-

expression network construction, ggplot2 (v3.4.4) and pheatmap

(v1.0.12) for plotting, caret (v6.0-94) and glmnet (v4.1-8) for

machine learning model training and evaluation, and e1071 (v1.7-

14) for Support Vector Machine implementation. Protein-protein

interaction analysis was performed using the STRING database

(v12.0) and visualized in Cytoscape (v3.8.2).
3 Results

3.1 Data processing

The bioinformatics workflow is schematically depicted in

Figure 1. Four raw aortic valve datasets (calcified vs. control

samples) were retrieved from the GEO database and merged

following batch effect correction using the “sva” package. Post-

normalization, the integrated CAVD dataset comprised 44 calcified

and 33 control samples. Principal component analysis (PCA)

demonstrated significant reduction in inter-dataset heterogeneity

after batch correction, as visualized in Figures 2A–D.
3.2 Identification of differentially expressed
genes in calcific aortic valve disease

Comparative transcriptomic analysis between calcified and

control aortic valve specimens identified 750 DEGs under

predefined thresholds (adjusted p-value <0.05, |log2FC| >0.585),

comprising 427 upregulated and 323 downregulated transcripts.

The spatial distribution and hierarchical clustering patterns of these

DEGs were visually represented through volcano plots and

heatmaps, as illustrated in Figures 2E, F.
3.3 Construction of weighted gene co-
expression network and identification of
key modules in CAVD

To delineate pivotal genetic determinants in CAVD pathogenesis,

a WGCNA was implemented. Scale-free network construction

employed soft threshold power b=6, determined through scale-free

topology fit (R²>0.85) and mean connectivity optimization

(Figure 3A). Hierarchical clustering dendrogram partitioned co-
frontiersin.org
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expressed genes into seven discrete modules, with topological

relationships visualized through module eigengene clustering

(Figure 3B). Module-trait correlation analysis revealed the brown

module as most significantly associated with CAVD pathogenesis,

encompassing 429 genes demonstrating strong positive correlation

(r=0.82, p= 2e-19) with disease phenotype (Figure 3C). Intersectional

analysis between CAVD-associated DEGs and WGCNA-derived hub

genes identified 337 consensus candidates (Figure 3D), prioritized for

subsequent functional investigations.
Frontiers in Immunology 05
3.4 Identification of differentially expressed
secretory proteins in type 2 diabetes
mellitus

Evidence from prior studies establishes a causal relationship

between T2DM and accelerated CAVD progression. To investigate

T2DM-associated pathogenic mechanisms in CAVD, we conducted

systematic reanalysis of T2DM expression profiles from the GEO

database. Volcano plot and heatmap visualization delineated 445
FIGURE 1

Research flow chart.
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DEGs in T2DM (p<0.05, |log2FC|>0.585). (Figures 4A, B).

Given the postulated secretory protein-mediated mechanism

underlying T2DM-CAVD pathogenesis, intersectional analysis

between T2DM DEGs and curated secretory protein genes

identified 142 T2DM-associated differentially expressed secretory

proteins (Figure 4C).
Frontiers in Immunology 06
3.5 Functional enrichment analysis of
T2DM-associated pathogenic genes in
CAVD via PPI network screening

To elucidate the molecular mechanisms underlying T2DM-

related CAVD pathogenesis, we constructed a PPI network using
FIGURE 2

The integration of CAVD datasets and differential expression analysis of the integrated CAVD dataset. (A) Boxplot of raw data. (B) Boxplot after
normalization. (C) PCA of three original CAVD datasets before batch-effect correction. (D) PCA of the integrated CAVD dataset after batch-effect
correction. (E) The heatmap showing the top 30 upregulated and 30 downregulated DEGs in the integrated CAVD dataset. CAVD calcific aortic valve
disease, PCA principal component analysis, DEGs differentially expressed genes. (F) The volcano plot representing CAVD DEGs in the integrated
CAVD dataset. The upregulated genes are presented in red dots, whereas the downregulated genes are presented in blue dots.
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the STRING database (interaction confidence score >0.4),

integrating T2DM-associated secretory proteins and CAVD hub

genes. Cytoscape visualization and MCODE clustering identified

two critical modules containing 46 T2DM-associated pathogenic

genes (Figures 5A, B). Functional enrichment analysis of these

genes revealed significant involvement in chemokine-related

pathways. GO analysis demonstrated enrichment in biological

processes such as “chemokine-mediated signaling” (Figure 5C),

cellular components including “collagen trimer complexes”

(Figure 5D), and molecular functions like “chemokine activity”

and “receptor binding” (Figure 5E). KEGG pathway analysis further

highlighted associations with “Chemokine signaling pathway” and

“Viral protein-cytokine receptor interactions” (Figure 5F). These

findings collectively implicate chemokine-driven inflammatory
Frontiers in Immunology 07
responses and extracellular matrix remodeling as pivotal

mechanisms linking T2DM to CAVD progression.
3.6 Screening of small-molecule
compounds with therapeutic potential for
CAVD

To investigate potential therapeutic agents for T2DM-

associated CAVD, upregulated genes from T2DM-related

pathogenic modules were analyzed using the cMAP database to

identify compounds capable of reversing disease-associated

transcriptional alterations. Computational screening revealed 10

top candidate compounds with the most significant negative
FIGURE 3

Screening of key module genes in the integrated CAVD dataset via WGCNA and identification of CAVD key genes through the intersection of key
module genes and DEGs. (A) The scale-free topology model was utilized to identify the best b value, and b = 5 was chosen as the soft threshold
based on the average connectivity and scale independence. (B) The network heatmap showing the gene dendrogram and module eigengenes.
(C) The heatmap revealing the relationship between module eigengenes and status of CAVD. The correlation (upper) and p-value (bottom) of
module eigengenes and status of CAVD were presented. The pink and yellow modules correlated with CAVD exhibited the highest and lowest
correlation coefficients, respectively, which were identified as the key modules in CAVD. (D) A total of 337 key genes in CAVD were identified by
taking the intersection between key modules genes and DEGs via the Venn diagram. WGCNA weighted gene co-expression network analysis, CAVD
calcific aortic valve disease, DEG differentially expressed genes.
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enrichment scores (indicating reversal of disease gene expression

patterns): phorbol-12-myristate-12-acetate, ingenol, ZG-10,

sirolimus, digoxin, Merck60, LFM-A12, chromomycin-A3,

helveticoside, and topotecan (Figures 6A, B). Structural motifs

and predicted target pathways of these candidates—spanning
Frontiers in Immunology 08
immunomodulatory, epigenetic, and metabolic regulators—are

systematically annotated in Figure 6C.
3.7 Development of a diagnostic model
based on a machine learning–integrated
framework

A diagnostic model was constructed using an integrated machine

learning (ML) framework, based on 13 intersecting genes identified

from DEGs in CAVD, key genes implicated in CAVD pathogenesis,

and secreted protein DEGs associated with T2DM (Figure 7A). The

merged datasets from GSE12644, GSE51472, GSE153555, and

GSE83453 were utilized as the training cohort for model

development, while GSE235995 and GSE55492 were employed as

independent validation cohorts. To build the model, we applied a

comprehensive ML-based computational framework to the

expression profiles of the 13 candidate genes. A total of 12 distinct

ML algorithms were employed, resulting in 113 combinatorial

models being evaluated. As illustrated in Figure 7B, the optimal

combination comprising Stepglm, bidirectional and XGBoost

achieved the highest average area under the curve (AUC) of 0.95

across five datasets, and was designated the optimal diagnostic model.

The stacking ensemble model achieved the highest performance

across multiple metrics, including Accuracy (0.94), Precision/Recall

(0.98), F1 score (0.89), and Matthews Correlation Coefficient (0.89),

Sensitivity/Specificity(0.98),demonstrating robust predictive

capability and balance between sensitivity and specificity

(Supplementary Table S1). The development process is depicted in

Figures 7C–E. Based on this optimal ML combination, we

constructed a diagnostic model using four hub genes(CDH19,

COL1A2, PRG4, and SPP1). All of which demonstrated robust

diagnostic performance, as evidenced by consistently high AUC

values. This four-gene model was subsequently applied to predict

disease probability in both the training and validation cohorts,

yielding accurate and consistent predictive outcomes. The

distribution of cases and corresponding confusion matrices for

both cohorts are presented in Figure 7F. Furthermore, analysis of

gene expression patterns between CAVD and control samples

revealed upregulation of COL1A2, PRG4, and SPP1, and

downregulation of CDH19 in CAVD tissues (Figures 7G, H).
3.8 Immune infiltration landscape analysis

Functional and pathway enrichment analyses of T2DM-related

pathogenic genes in CAVD revealed strong associations with

inflammatory and immune regulatory processes. To investigate

the immune microenvironment and its relationship with

diagnostic biomarkers in CAVD, we employed the CIBERSORT

algorithm to estimate the composition of immune cell populations.

This analysis quantified the proportions of 22 immune cell types in

each sample and identified significant differences in eight immune

cell subsets between calcified and control aortic valve tissues.

Compared with controls, CAVD samples exhibited increased
FIGURE 4

Identification of T2DM-associated secretory proteins through
differential expression analysis in pancreatic tissues. (A) Heatmap
depicting the top 10 upregulated (red) and downregulated (blue)
DEGs in T2DM datasets. (B) Volcano plot visualizing DEGs in T2DM
(C) Venn diagram illustrating the intersection between T2DM DEGs
and secretory protein-coding genes, identifying 142 T2DM-
associated secretory proteins.
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proportions of M0 macrophages, M1 macrophages, and T cells

gamma delta, while showing decreased proportions of plasma cells,

activated NK cells, and M2 macrophages (Figures 8A, B). Moreover,

correlation analysis among the 22 immune cell types revealed a

significant positive correlation between M1 macrophages and naïve
Frontiers in Immunology 09
B cells (r = 0.47, p < 0.05), as well as a significant negative

correlation between M2 macrophages and M0 macrophages (r =

−0.58, p < 0.05) (Figure 8C). Further correlation analysis between

these immune cell subsets and the four identified hub genes

demonstrated strong associations across all gene–immune cell
FIGURE 5

PPI analysis between T2DM-associated secretory proteins and CAVD key genes and followed by enrichment analysis of the PPI-screened nodes.
(A) The PPI network of module1 genes with the top1 highest score based on Cytoscape plug-in MCODE analysis. Salmon nodes are marked as
members of CAVD key genes, yellow nodes as members of T2DM-associated secretory proteins, while red nodes as common genes of the two sets.
(B) The PPI network of module2 genes with the top2 highest score according to MCODE analysis. (C–F) The bubble plots showing the GO
enrichment analysis results, including biological process (C), cellular component (D), and molecular function (E) of genes included in module1 and
module2. (F) Circos plot representing the KEGG analysis results of genes included in module1 and module2. PPI protein-protein interaction, T2DM
chronic kidney disease, CAVD calcific aortic valve disease, MCODE molecular complex detection.
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pairs, with CDH19 showing a particularly strong positive

correlation with Mast cell resting (Figure 8D).
3.9 Correlation analysis between immune
cell infiltration and hub genes

To further elucidate the expression patterns of diagnostic

biomarkers and their potential associations with infiltrating

immune cells, we performed a comprehensive correlation analysis

(Supplementary Figure S1). CDH19 expression exhibited a strong

positive correlation with Mast cells resting (r = 0.64, p < 0.001) and

T cells CD4 memory resting (r = 0.36, p = 0.017), while displaying a

negative correlation with Macrophages M0 (r = −0.37, p = 0.013)

(Figure 9A). COL1A2 was positively correlated with B cells naive (r

= 0.43, p = 0.004) and negatively correlated with Plasma cells (r =

−0.36, p = 0.017) (Figure 9B). PRG4 demonstrated positive

correlations with both T cells CD4 memory resting (r = 0.39, p =

0.009) and T cells CD4memory activated (r = 0.33, p = 0.030), while

negatively correlated with Macrophages M0 (r = −0.32, p = 0.035)

(Figure 9C). SPP1 exhibited significant correlations with various
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immune cell subsets, showing positive associations with T cells

follicular helper (r = 0.50, p < 0.001), Macrophages M0 (r = 0.40, p =

0.008), Mast cells activated (r = 0.37, p = 0.015), and NK cells

resting (r = 0.33, p = 0.029), while demonstrating negative

correlations with Macrophages M1 (r = −0.40, p = 0.008), Mast

cells resting (r = −0.31, p = 0.039), and T cells CD4 naive (r = −0.30,

p = 0.046) (Figure 9D).
3.10 Validation of hub gene expression in
CAVD tissues with coexisting T2DM

To characterize the expression profiles of CDH19, COL1A2,

PRG4, and SPP1, we performed RT-qPCR and Western blot

analyses on clinical tissue samples. Primers are shown in Table 2.

Compared with normal tissues, mRNA levels of CDH19 were

significantly downregulated, whereas COL1A2, PRG4, and SPP1

were markedly upregulated in CAVD tissues complicated with

T2DM (Figures 10A–D). To corroborate these findings, Western

blotting was conducted to assess the corresponding protein levels,

which revealed expression patterns consistent with the mRNA
FIGURE 6

Screening of the potential small-molecular compounds for the treatment of CAVD via cMAP analysis. (A) The heatmap presenting the top10
compounds with the most significantly negative enrichment scores in 10 cell lines based on cMAP analysis. (B) The description of those top10
compounds. (C) The chemical structures of those 10 compounds were shown. cMAP connectivity map.
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results (Figures 10B, C). Furthermore, immunohistochemical

staining was performed on human aortic valve samples obtained

from Zhongnan Hospital of Wuhan University to evaluate the tissue

localization and expression of CDH19, COL1A2, SPP1 and PRG4

(Figures 10D, E). Furthermore, to explore the potential pathways

involving these hub genes, we assessed the protein expression of

CXCL12 and MMP9, which were central to the bioinformatically-

predicted chemokine and extracellular matrix remodeling

pathways. Western blot analysis revealed a significant

upregulation of MMP9 and a strong increasing trend for CXCL12
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in the T2DM-CAVD group compared to controls (Supplementary

Figure S2), providing preliminary protein-level evidence supporting

the involvement of this predicted network.
4 Discussion

In recent decades, the incidence of CAVD has risen sharply.

Despite this growing prevalence, effective pharmacological

treatments for CAVD remain lacking, underscoring the urgent
FIGURE 7

Construction of a diagnostic model for CAVD using an integrated machine learning (ML) framework. (A) Schematic of the diagnostic model built
based on 13 intersecting genes (from CAVD DEGs, CAVD pathogenesis-related key genes, and T2DM-associated secreted protein DEGs). (B)
Performance comparison of 113 combinatorial ML models; the optimal combo (Stepglm, bidirectional, XGBoost) achieved an average AUC of 0.95.
(C–E) Visualization of the integrated ML model development process. (F) Case distribution and confusion matrices of the four-gene (CDH19,
COL1A2, PRG4, SPP1) model in training and validation cohorts. (G–H) Gene expression patterns: COL1A2, PRG4, SPP1 upregulated and CDH19
downregulated in CAVD tissues vs controls.
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need to identify potential therapeutic options. CAVD often presents

no significant symptoms in its early stages; however, once

symptoms manifest, the disease is typically in its advanced stages.

At this point, aortic valve replacement—whether performed

through surgical or transcatheter procedures—becomes the only

viable therapeutic approach (3–5). The pathological link between
Frontiers in Immunology 12
CAVD and T2DM has become a focal point of research in the

cardiovascular and metabolic domains. While the hypothesis that

T2DM accelerates CAVD progression through mechanisms such as

chronic inflammation, oxidative stress, and immune dysregulation

is widely accepted, the molecular mechanisms that bridge these two

conditions remain inadequately understood. Therefore, the
FIGURE 8

Immune infiltration analysis. (A) Histogram of different immune cell content in each sample. (B) Comparison of the content of different immune cells
in normal and CAVD groups. (C) Correlation heatmap of all immune infiltrating cells. (D) Correlation network heatmap of hub genes and immune
infiltrating cells.
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objective of our study was to utilize bioinformatics approaches to

identify novel biomarkers associated with both CAVD and T2DM,

as well as to screen for small molecules with potential therapeutic

properties (11).

In recent years, significant breakthroughs have been made in the

discovery of small molecules with therapeutic potential for a variety

of diseases. Small molecules with high tissue permeability, tunable

half-lives, and favorable oral bioavailability have shown great promise
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in therapeutic applications. For example, fluoridated enzyme

inhibitors have shown significant effects in preventing calcification

in CAVD (26). Additionally, the role of statins is currently under

investigation, with evidence suggesting that they may help slow the

pathological progression of CAVD (27). However, the development

of potential therapeutic agents for CAVD requires further high-

throughput screening based on gene expression profiles in calcified

aortic valves, to identify more small molecules with potential efficacy.
FIGURE 9

Correlation analysis between hub genes and immune cell infiltration. (A) Correlation of CDH19 with immune cell infiltration. (B) Correlation of
COL1A2 with immune cell infiltration. (C) Correlation of PRG4 with immune cell infiltration. (D) Correlation of SPP1 with immune cell
infiltration.*Statistical significance: *p < 0.05, **p < 0.01, **p < 0.001.
TABLE 2 Primers for RT-qPCR experiments with 4 Hub Genes.

Gene id Forward primer Reverse primer

COL1A2 GAGGAGAGCCTGGCAACATT AGGACCAGGGAGACCAAACT

SPP1 AATCTCCTAGCCCCACAGACC CCACACTATCACCTCGGCCA

PRG4 CGACGCCCAATGTAAGAAGTATG TGATGGTTTGAGATGCTCCTGAA

CDH19 CTGACGATCCCTCAAGTGGTAAT ACCCAATACTCATCTTGCAGTTCT
RT-qPCR Reverse transcription quantitative-polymerase chain reaction.
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In this context, the current study, through cMAP analysis, offers a

novel perspective by linking T2DM-related pathogenic genes to

identify potential compounds for CAVD treatment. By applying

upregulated T2DM-related pathogenic genes from calcified valves

to cMAP analysis, ten small molecules (PMA, Ingenol, ZG-10,

Sirolimus, Digoxin, Merck60, LFM-A12, Chromomycin-A3,
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Helveticoside, and Topotecan) were selected as candidate

compounds. Notably, PMA (28), an effective PKC activator,

exhibited the highest negative enrichment score in the cMAP

analysis, suggesting its potential to reverse the upregulation of

T2DM-related pathogenic genes in CAVD. Although a direct link

between PMA and calcification has not yet been established, PMA
FIGURE 10

Validation of hub gene expression patterns in calcified aortic valves with T2DM. (A) mRNA expression levels of hub genes detected by qPCR (n = 3
per group). (B, C) Representative Western blot (WB) analysis and quantification of COL1A2, SPP, PRG4, and CDH19 protein levels in calcified aortic
valves with T2DM (n = 3 per group). (D) Immunofluorescence staining of COL1A2, SPP, PRG4 and CDH19 in calcified aortic valves with T2DM.
(E) Quantitative analysis of immunofluorescence intensity. Scale bar: 200 mm. Statistical significance was determined by two-tailed unpaired
Student’s t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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has shown significant signaling modulation effects in diabetic

complications (29). For example, PMA can improve cardiovascular

function by inhibiting PKC-related inflammatory responses, reducing

the expression of adhesionmolecules (30), and suppressingmonocyte

accumulation. Previous studies have indicated that there is a

complex relationship between T2DM and CAVD, with insulin

resistance and inflammation accelerating the progression of

CAVD (31), while PMA may slow the pathological development

of CAVD by intervening in these key pathways. Furthermore,

PMA has demonstrated its ability to modulate immune and

inflammatory responses in other metabolism-related cardiovascular

diseases (32, 33). Therefore, PMA represents a promising therapeutic

option that may have a beneficial impact on the progression of

CAVD in T2DM patients. Early intervention with PMA in T2DM

patients may improve glucose metabolism and delay the progression

of aortic valve calcification, thus improving patient survival and

quality of life.

This study is the first to systematically analyze the molecular

network driving CAVD in T2DM from the perspective of secreted

proteins. By analyzing transcriptomic data from the GEO database

for CAVD and T2DM, we identified a significant overlap between the

142 aberrantly expressed secreted protein genes in T2DM patients

and the core genes associated with CAVD. Notably, an interaction

network of 13 key genes was found to dominate valve pathology

through chemokine signaling pathways and collagen remodeling

mechanisms. Of particular importance, the diagnostic model

constructed using machine learning further narrowed the focus to

four pivotal genes CDH19, COL1A2, PRG4, and SPP1 whose

diagnostic efficacy (AUC = 0.95) was validated in an independent

cohort. The diagnostic model developed in this study was capable of

effectively distinguishing between CAVD patients and controls,

providing valuable guidance for clinical treatment. Furthermore,

histological experiments confirmed the differential expression

patterns of these genes in T2DM patients with CAVD.

Importantly, these four hub genes (CDH19, COL1A2, PRG4, SPP1)

have been identified as regulators of the cell cycle in multiple disease

contexts, playing critical roles in disease pathogenesis. CDH19, a

cadherin family member, regulates endothelial integrity and

inflammatory responses. Its downregulation in CAVD tissues

correlates with increased M0 and S100A8/A9 pathway activation,

suggesting a role in mitigating immune-mediated calcification.

COL1A2, a key component of type I collagen, is upregulated via

hyperglycemia-induced TGF-b signaling, driving vascular smooth

muscle cell transdifferentiation and fibrosis (34). Elevated COL1A2

levels correlate with B cell infiltration and collagen deposition,

forming a “fibrosis-inflammation” axis (35). PRG4, an anti-

inflammatory glycoprotein, is suppressed in T2DM, exacerbating

TLR4/NF-kB-mediated adipose inflammation and insulin resistance

(36). Its positive correlation with resting memory T cells implies a

regulatory role in immune tolerance, supported by preclinical studies

showing PRG4 overexpression improves glucose metabolism6 (37).

SPP1 acts as a metabolic-immune hub, promoting calcification via

PI3K/Akt-mediated hydroxyapatite deposition and recruiting

follicular helper T cells via CXCL12-CXCR4 signaling (38, 39).

Paradoxically, its glycosylation in diabetic conditions may shift its
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function from pro-calcific to pro-fibrotic, as observed in tumor

microenvironments (40).

The innovation of this study lies in its dual breakthroughs in

methodology and biological insight. By developing a cross-analysis

framework between T2DM secreted proteins and CAVD genes. Our

functional enrichment analysis, combined with the protein

validation of CXCL12, COL1A2, and MMP9, leads us to

hypothesize that a potential interaction between chemokine

signaling (CXCL12) and matrix remodeling (COL1A2, MMP9)

may represent a novel mechanism linking T2DM to CAVD

progression. To our knowledge, this is the first study to

bioinformatically predict and provide preliminary protein

evidence for this specific interaction network in the context of

T2DM-associated CAVD. The model optimization strategy, based

on 113 machine learning combinations, not only enhances

diagnostic efficacy, but also identifies non-classical biomarkers,

such as CDH19, providing new targets for liquid biopsy

development. Immune microenvironment analysis reveals an

imbalance in the M1/M2 macrophage ratio and an expansion of

T cells CD4 memory resting, providing a theoretical foundation for

immunotherapy targeting immune checkpoints. Moreover, among

the 10 compounds predicted by cMAP, sirolimus and topotecan

have been confirmed to inhibit vascular smooth muscle cell

osteogenic differentiation (41, 42), aligning closely with the

mechanisms predicted in this study and highlighting the

application value of bioinformatics-guided drug repositioning.

However, this study does have some limitations. Despite

integrating multiple datasets and applying batch correction, the

sample size may restrict the precision of the diagnostic model. It is

important to note that our diagnostic model distinguishes between

existing CAVD patients and controls. Its potential for predicting

future disease risk (prognosis) requires validation in longitudinal

prospective studies. Additionally, the lack of T2DM stratification

analysis makes it difficult to distinguish the impact of blood glucose

control on gene expression. While wet-lab experiments validated

the gene expression trends, further studies and clinical trials are

required to elucidate the specific role of key genes in valve cells and

confirm our findings.
5 Conclusion

We have uncovered the inflammatory immune pathways

underlying T2DM-related CAVD and developed a CAVD

diagnostic model based on CDH19, COL1A2, PRG4, and SPP1

using machine learning. This provides new insights for future

diagnostic and therapeutic interventions based on serum for

T2DM-associated CAVD.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1634655
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1634655
Ethics statement

The studies involving humans were approved by Medical Ethics

Committee of Zhongnan Hospital, Wuhan University. The studies

were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study. The animal study was

approved by Medical Ethics Committee of Zhongnan Hospital,

Wuhan University. The study was conducted in accordance with

the local legislation and institutional requirements.
Author contributions

XZ: Writing – review & editing, Conceptualization, Investigation,

Methodology, Writing – original draft, Resources, Project

administration, Visualization, Formal Analysis, Data curation,

Validation. JW: Writing – review & editing. QH: Supervision,

Formal Analysis, Writing – review & editing, Writing – original

draft, Data curation, Visualization, Project administration,

Validation. BG: Funding acquisition, Writing – original draft,

Methodology, Data curation. MH: Methodology, Writing – original

draft. XY: Formal Analysis, Writing – original draft, Project

administration, Methodology. SHW: Data curation, Methodology,

Formal Analysis, Writing – review & editing. QL: Methodology,

Writing – review & editing. YZ: Validation, Writing – original draft.

SL: Methodology, Formal Analysis, Writing – review & editing. BZ:

Visualization, Writing – original draft. CG: Methodology,

Investigation, Writing – review & editing, Formal Analysis,

Resources, Supervision, Project administration. SW: Formal

Analysis, Methodology, Resources, Project administration,

Conceptualization, Investigation, Writing – review & editing. JZ:

Conceptualization, Methodology, Funding acquisition, Project

administration, Formal Analysis, Writing – review & editing,

Data curation.
Funding

The authors declare financial support was received for the research

and/or publication of this article. This work was supported by the

National Natural Science Foundation of China (Grant No. 82270382);

the Natural Science Foundation of Hubei Province (2023AFB817); the

Key Research and Development Project of the Technological

Innovation Program of Hubei Provincial Department of Science and

Technology (2025BCB018); the "Wuhan Talent" Industry-Leading

Talent Project (WHYCCYLJ2021002); the Talent Project of

Zhongnan Hospital Affiliated to Wuhan University (Grant Nos.

rcyj20210601, CXPY2022046); the General General Project of the

Joint Fund for Translational Medicine and Interdisciplinary Research

of Zhongnan Hospital of Wuhan University (ZNJC202423); the

Clinical Medical Education and Teaching Reform Research (Western

Medicine) Project of Hubei Provincial Health Commission (HBJG-

250020); the Comprehensive Reform Project for Undergraduate
Frontiers in Immunology 16
Education Quality Construction of Wuhan University (ZG241359);

the Teaching Research Project of the Medical Department of Wuhan

University (2025ZD18); the 2025 National University Student

Innovation Training Program Project of the Ministry of Education-

Wuhan University (202510486164); the Hubei Provincial Natural

Science Foundation (2025AFD873); the Science and Technology

Innovation Cultivation Fund of Zhongnan Hospital of Wuhan

University (CXPY2024076); and the Medical Science and

Technology Innovation Platform Support Project of Zhongnan

Hospital of Wuhan University (PTXM2025026).
Acknowledgments

We thank the GEO and GeneCards databases for providing the

data used in this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The authors declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1634655/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Correlation between hub gene expression and immune infiltration assessed
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CIBERSORT immune scores. (D, E) Correlation of COL1A2A expression with
CIBERSORT immune scores. (F–I) Correlation of PRG4 expression

with CIBERSORT immune scores. (J–P) Correlation of SPP1 expression
with CIBERSORT immune scores.

SUPPLEMENTARY FIGURE 2

mRNA and protein expression validation of CXCL12 and MMP9 in the predicted

pathway. (A) mRNA expression levels of CXCL12 and MMP9 in control (n=3) and
T2DM-CAVD (n=3) human aortic valve tissues as determined by RT-qPCR. *p <
Frontiers in Immunology 17
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Student’s *t*-test).(B)
Representative Western blot images showing protein levels of CXCL12 and

MMP9. (C) Quantitative analysis of CXCL12 and MMP9 protein expression levels
from (B). Data are presented as mean ± SEM (n = 3 per group). (*p < 0.05, **p <

0.01, ***p < 0.001, ****p < 0.0001, ns: not significant, Student’s *t*-test).

SUPPLEMENTARY TABLE 1

Comprehensive performance evaluation of the optimal stacking
ensemble model.
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