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Single-cell and multi-omics 
analysis reveals the role of 
stem cells in prognosis and 
immunotherapy of lung 
adenocarcinoma patients 
Jianan Zheng †, Haoran Lin †, Wei Ye †, Mingjun Du*, 
Chenjun Huang* and Jun Fan* 

Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, 
Nanjing, China 
Background: The roles of stem cells in lung adenocarcinoma (LUAD) progression 
and therapeutic resistance have been recognized, yet their impact on patient 
prognosis and immunotherapy response remains unclear. 

Methods: Single-cell RNA sequencing was performed to identify stem cell 
populations characterized by high expression of MKI67 and STMN1. Key marker 
genes were identified using the FindAllMarkers function, and these genes were 
subsequently analyzed for mutations, copy number variations, and prognostic 
significance in LUAD patients. Multiple machine learning algorithms were 
systematically compared in order to develop an optimal prognostic model. The 
predictive performance of the model was validated across seven independent 
LUAD cohorts and immunotherapy datasets. Patterns of immune infiltration were 
assessed using various computational approaches and were further validated in 
an internal hospital cohort. 

Results: Through comprehensive machine learning optimization, CoxBoost 
+Enet (alpha=0.7) was identified as the optimal model, incorporating seven key 
stem cell–related genes and designated as the Stem Cell Prognostic Model 
(SCPM). Patients were consistently stratified into high- and low-SCPM groups 
across all seven validation cohorts, with poorer overall survival observed in the 
high-SCPM group. Predictive accuracy was demonstrated by ROC analysis (AUC 
> 0.65), while clear group separation was confirmed through PCA based on the 
seven-gene signature. Notably, immunotherapy response was also predicted by 
SCPM, with inferior outcomes observed in high-SCPM patients following 
treatment with immune checkpoint inhibitors. Significantly lower immune cell 
infiltration, characteristic of “cold” tumors, was detected in high-SCPM patients 
by multiple immune infiltration algorithms. These findings were further validated 
in the internal cohort, where reduced CD8+ T cell infiltration was observed in 
high-SCPM patients. 
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Conclusion: A stem cell–based prognostic model (SCPM) was constructed and 
validated, enabling accurate prediction of survival and immunotherapy response 
in LUAD patients. Patients with immunologically “cold” tumors, as identified by 
the SCPM, may benefit from alternative therapeutic strategies. 
KEYWORDS 

lung  adenocarcinoma,  s ingle-cel l  sequencing,  stem  cel ls ,  prognost ic  
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Introduction 

Lung cancer is the leading cause of cancer-related morbidity 
and mortality worldwide, with over 2.2 million new cases and 
approximately 1.8 million deaths annually according to the World 
Health Organization (1, 2). Lung adenocarcinoma (LUAD), as the 
predominant histological subtype of non-small cell lung cancer, 
accounts for 40-50% of all lung cancers (3, 4). Despite significant 
advances in molecular targeted therapy and immunotherapy in 
recent years, the 5-year survival rate for LUAD patients remains low 
(5, 6). Tumor heterogeneity, early metastatic tendency, treatment 
resistance, and disease recurrence continue to be key factors 
limiting long-term patient survival, creating an urgent need for 
novel biomarkers to guide precision treatment strategies. 

Cancer stem cell (CSC) theory provides a new perspective for 
understanding tumor heterogeneity and treatment resistance (7–10). 
Cancer stem cells are a subset of tumor cells with self-renewal 
capacity and multipotent differentiation potential. They play crucial 
roles not only in tumor initiation, progression, metastasis, and 
recurrence but also serve as an important source of tumor 
heterogeneity (11). In lung cancer, cancer stem cells typically 
exhibit resistance to chemotherapy and radiotherapy, enabling 
survival under treatment pressure and causing disease recurrence 
(12). MKI67, as a classic marker of cell proliferation, has expression 
levels closely associated with tumor aggressiveness and patient 
prognosis. STMN1, as an important microtubule-regulating 
protein, participates in cell cycle regulation and anti-apoptotic 
processes through microtubule dynamics control, playing a key role 
in maintaining cancer stem cell properties. The rapid development of 
single-cell RNA sequencing technology provides powerful tools for 
in-depth investigation of tumor heterogeneity and cancer stem cell 
characteristics, enabling researchers to dissect the complexity of the 
tumor microenvironment at the single-cell level (13). 

Immunotherapy, particularly the application of immune 
checkpoint inhibitors, has brought revolutionary changes to lung 
cancer treatment (14). Immune checkpoint inhibitors such as PD-1/ 
PD-L1 and CTLA-4 antibodies reactivate the body’s anti-tumor 
immune response by relieving tumor cell suppression of the 
immune system (15, 16). However, immunotherapy also faces 
significant challenges: only approximately 20-30% of LUAD 
patients achieve durable clinical benefit from immunotherapy, 
02 
while the majority exhibit primary or acquired resistance (17). 
The immune cell infiltration status in the tumor microenvironment, 
particularly the infiltration levels of effector immune cells such as 
CD8+ T cells and CD4+ T cells, is considered a key factor affecting 
immunotherapy efficacy. “Hot tumors” typically have abundant 
immune cell infiltration and respond well to immunotherapy, while 
“cold tumors” are characterized by sparse immune cell infiltration, 
leading to poor immunotherapy outcomes. Studies suggest that 
cancer stem cells may influence the immune status of the tumor 
microenvironment through mechanisms such as secreting 
immunosuppressive factors and recruiting regulatory T cells (18). 

Based on the above background, this study aims to 
systematically identify cancer stem cell-like subpopulations in 
LUAD and deeply analyze their molecular characteristics and 
biological functions by integrating single-cell RNA sequencing 
data with large-scale clinical cohort data. We employ advanced 
machine learning algorithms to construct a Stem Cell Prognostic 
Model (SCPM) based on stem cell-related genes and validate its 
predictive performance across multiple independent cohorts. 
Additionally, we will explore the potential value of this model in 
predicting immunotherapy response and analyze the relationship 
between cancer stem cell characteristics and the tumor immune 
microenvironment. We hypothesize that tumors with high cancer 
stem cell features exhibit “cold tumor” characteristics and show 
poor responsiveness to immunotherapy. The findings of this study 
will provide novel biomarkers and theoretical foundations for 
precision diagnosis and treatment of LUAD. 
Method 

Dataset source 

LUAD gene expression profiles, somatic single nucleotide 
variants (SNVs), and copy number alterations (CNAs) were 
obtained from The Cancer Genome Atlas (TCGA) repository, 
while normal lung tissue expression profiles were retrieved from 
the Genotype-Tissue Expression (GTEx) database for comparative 
analysis. Recurrent genomic amplifications and deletions were 
identified through the application of GISTIC 2.0 algorithm 
(https://software.broadinstitute.org) to TCGA-derived CNA data. 
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Six independent LUAD datasets were consolidated from the Gene 
Expression Omnibus (GEO) repository: GSE13213 (19) (n=117), 
GSE26939 (20) (n=115), GSE29016 (21) (n=39), GSE30219 (22) 
(n=85), GSE31210 (23) (n=226), and GSE42127 (24) (n=133). 
Inter-cohort batch effects were eliminated using the ComBat 
normalization method (25),  followed by standard data

preprocessing procedures. To assess the model’s performance in 
immunotherapy contexts, three immunotherapy-associated NSCLC 
datasets were compiled: POPLAR (26) (n=59), OAK (26) (n=257), 
SU2C (27)(n=130). 
scRNA-seq data processing 

Single-cell transcriptomic data were sourced from GEO: 
GSE241934. Raw transcriptomic profiles were preprocessed using 
the Seurat R package (28) (version 4.2.0). Analytical inclusion 
criteria were established with a minimum expression threshold 
requiring each gene to be detected in at least 10 cells per sample. 
Cell quality filtering was performed according to predefined 
parameters: cells were excluded if they exhibited expression of 
more than 5000 or fewer than 200 genes, or if mitochondrial 
genome-derived unique molecular identifiers (UMIs) comprised 
more than 10% of total counts. Sample integration was achieved 
through the harmony R package implementation. The analytical 
workflow encompassed highly variable gene identification for 
principal component analysis (PCA), followed by dimensionality 
reduction employing the top 30 principal components via t-
distributed Stochastic Neighbor Embedding (t-SNE) methodology. 
Subpopulation-specific expression signatures were characterized 
using the “FindAllMarkers” function, with cellular phenotype 
annotation performed based on established lineage-specific 
markers from previous studies (29). 
Development of cancer stem cell-derived 
prognostic signature 

Through single-cell transcriptomic profiling, MKI67+STMN1+ 
cancer stem cell subsets were characterized, with downstream 
investigations performed utilizing their distinctive molecular 
markers. Gene expression differences were assessed via the limma 
software package (30), applying cutoff criteria of FDR < 0.05 and | 
log2FC| > 1. Mutational profiles of target genes were systematically 
examined through maftools package implementation. Visual 
representation of frequently altered stem cell-related genes was 
achieved using Oncoplot methodology, whereas prevalent 
mutational signatures were uncovered via signature profiling 
techniques. Machine learning methodologies serve essential 
functions in prognostic biomarker construction (31, 32). For 
developing a reliable Stem Cell Prognostic Model (SCPM), 
preliminary univariate Cox proportional hazards analysis was 
executed to detect survival-related genetic elements. The 
refinement process encompassed thorough assessment of diverse 
Frontiers in Immunology 03 
algorithmic strategies via 10-fold cross-validation techniques (33). 
Multiple computational methodologies were integrated within the 
analytical framework: sequential Cox modeling, Lasso constraint 
methods, Ridge penalization, Cox-adapted partial least squares 
regression (plsRcox), CoxBoost algorithms, random survival 
forests (RSF), gradient boosting machines (GBM), elastic net 
(Enet) constraints, supervised principal component (SuperPC) 
techniques, and survival-oriented support vector machines 
(survival-SVM). This comprehensive assessment was structured to 
determine the most effective SCPM architecture, employing 
concordance index (C-index) as the principal evaluation criterion. 
Performance validation of the constructed SCPM was accomplished 
using temporal ROC curve assessment, Kaplan-Meier survival 
estimation, and principal component analysis (PCA) techniques. 
Immunological profile assessment 

Assessment of immunotherapy sensitivity in LUAD patients 
was conducted using immunophenoscore (IPS) calculations 
through The Cancer Immunome Atlas database (https://tcia.at/ 
home) (34) .  Character izat ion  of  the  tumor  immune  
microenvironment was performed via ssGSEA methodology, 
which measured immune cell penetration dynamics and 
immunological pathway activity levels in malignant tissue 
samples. Detailed immune cell infiltration data from TCGA 
cohorts were obtained using the TIMER2.0 resource (35), which 
integrated results from various analytical algorithms. 
Clinical sample acquisition and 
transcriptomic analysis 

Tissue specimen procurement was granted ethical clearance by 
the Medical Ethics Board of the First Affiliated Hospital of Nanjing 
Medical University. These specimens were verified as pulmonary 
adenocarcinoma by pathological specialists, retrieved during 
surgical procedures, and subsequently transported to Oncocare 
Inc. (Suzhou, China) for transcriptomic sequencing analysis. 
Study population and specimen acquisition 

Tissue specimens consisted of formalin-fixed paraffin-
embedded sections obtained from the Pathology Department of 
The First Affiliated Hospital of Nanjing Medical University. 
Histopathological confirmation of LUAD diagnosis was 
established for all samples, with inclusion limited to therapy-
naive patients prior to operative procedures. Ethical approval for 
the investigation was granted by the Institutional Review Board of 
The First Affiliated Hospital of Nanjing Medical University, and 
informed consent documentation was secured from each 
participant. These histological sections were processed for 
multiplex immunohistochemical examination. 
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Multi-marker immunohistochemical 
staining 

The correlation between prognostic scores and immunocyte 
penetration was assessed through multiplex fluorescent 
immunolabeling techniques. Specimen preparation commenced 
with dewaxing in xylene solution, subsequently followed by tissue 
rehydration using graduated alcohol concentrations. Following 
epitope unmasking and protein blocking with 5% caprine serum, 
tissue sections were subjected to consecutive primary antibody 
incubations: CD4 (dilution 1:500, Cat# ab133616), CD8 (dilution 
1:2000, Cat# ab217344), and CD20 (dilution 1:100, Cat# ab64088), 
after which fluorescent-labeled secondary antibodies were applied. 
Cell nuclei visualization was accomplished using DAPI counterstain. 
Statistical methods 

Data analysis was conducted using R software version 4.2.0. 
Two-group comparisons were analyzed through unpaired Student’s 
t-test for parametric data, whereas Mann-Whitney U test was 
utilized for non-parametric distributions. Multi-group analyses 
were executed using one-way ANOVA with subsequent Tukey’s 
multiple comparison testing for parametric data, while Kruskal-
Wallis analysis followed by Dunn’s multiple comparison procedure 
was applied for non-parametric datasets. Pearson’s correlation 
coefficients were calculated to assess variable relationships. Results 
were expressed as mean ± standard deviation (SD). The threshold 
for statistical significance was established at P < 0.05 (*P < 0.05, 
**P < 0.01, ***P < 0.001). 
Result 

Single-cell RNA sequencing analysis 
reveals expression patterns and mutational 
characteristics of stem cell marker genes 

To deeply explore the role of stem cells in LUAD development 
and progression, we first analyzed the distribution characteristics of 
various cell types in the tumor microenvironment using single-cell 
RNA sequencing technology. Through t-SNE dimensionality 
reduction visualization (Figure 1A), we systematically examined 
the expression distribution of multiple cell type–specific markers, 
including B cells (CD79A), T cells (CD3D), myeloid cells (LYZ), 
epithelial cells (EPCAM), endothelial cells (CLDN5), fibroblasts 
(COL1A1), mast cells (MS4A2), natural killer cells (NKG7), as well 
as proliferation-associated stem cell marker genes MKI67 and 
STMN1. Based on the expression profiles of these marker genes, 
we successfully identified the major cell types within the tumor 
microenvironment (Figure 1B), providing a foundation for further 
investigation of stem cell roles in the complex tumor 
microenvironment. It should be noted that the “proliferative stem 
cells” defined in this study are a population selected based on high 
expression of broad proliferation-related markers (MKI67 and 
Frontiers in Immunology 04
STMN1), and actually comprise a mixture of cell subtypes with 
high proliferative activity, rather than strictly corresponding to 
classical definitions of cancer stem cells or mesenchymal stem 
cells. Building upon the comprehensive characterization of the 
tumor microenvironment’s cellular composition, we further 
focused on analyzing the mutational characteristics of stem cell 
marker genes (Figure 1C). For the selection of marker genes 
included in the mutation analysis, we applied the following 
parameters: only.pos = TRUE, min.pct = 0.25, and logfc.threshold 
= 0.25. Mutational spectrum analysis targeting stem cell-related 
genes revealed that missense mutations were the predominant 
variant type, suggesting these mutations may directly affect stem 
cell biological properties by altering protein function. Variant type 
analysis showed that single nucleotide polymorphisms (SNPs) 
dominated among stem cell marker genes, while insertions (INS) 
and deletions (DEL) were relatively rare. Single nucleotide variant 
(SNV) analysis revealed that C>A and C>T transitions were the 
most common mutation types in stem cell marker genes, potentially 
related to defects in DNA damage repair mechanisms in stem cells. 
Analysis of mutational burden distribution across samples revealed 
significant inter-patient variability in the mutation frequency of 
these genes. Finally, we constructed a comprehensive mutational 
landscape of stem cell marker genes (Figure 1D), specifically 
displaying the top 30 most frequently mutated stem cell marker 
genes across 522 LUAD samples, with 405 samples (77.59%) 
harboring at least one stem cell-related gene alteration. Among 
these highly mutated stem cell marker genes, KRAS showed the 
highest mutation rate (29%). As a key signaling pathway gene 
regulating stem cell self-renewal and proliferation, KRAS mutations 
may directly activate the oncogenic transformation capacity of stem 
cells. KEAP1, as the second most frequently mutated gene, 
participates in oxidative stress response regulation, and its 
mutations may enhance the antioxidant capacity and survival 
advantage of stem cells. SYNE2, the third most frequently 
mutated gene, primarily participates in nuclear envelope structure 
maintenance and nuclear morphology regulation, and its mutations 
may affect nucleocytoplasmic interactions and gene expression 
regulatory mechanisms in stem cells. This specialized mutational 
landscape analysis of stem cell marker genes provides important 
molecular foundations for understanding the molecular aberrant 
mechanisms of tumor stem cells and developing precise stem cell-
targeted therapeutic strategies. 
Comprehensive analysis of stem cell 
marker gene expression alterations and 
associated biological pathways 

To gain deeper insights into the expression changes of stem cell 
marker genes in LUAD, we performed systematic differential 
expression analysis of stem cell-related genes between GTEx 
normal lung tissues and TCGA LUAD tissues (Figure 2A). The 
heatmap results revealed complex expression regulatory patterns of 
stem cell marker genes in tumor tissues. Among these, key genes 
including TMEM106C, ECT2, PSMD2, STIL, and TTK showed 
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significant upregulation in tumor tissues, and their high expression 
may be closely associated with abnormal activation of tumor stem 
cells, cell cycle regulation, and enhanced self-renewal capacity. 
Notably, the ALDOA gene exhibited downregulation in tumor 
Frontiers in Immunology 05 
tissues, suggesting that different stem cell marker genes may play 
distinct regulatory roles during tumorigenesis. Further analysis of 
the chromosomal localization characteristics of these differentially 
expressed stem cell marker genes (Figure 2B) revealed that these 
FIGURE 1 

Single-cell transcriptomic analysis and mutational characteristics of stem cell-related genes. (A) t-SNE plots showing expression distribution of 
various cell type-specific marker genes, with MKI67 and STMN1 serving as stem cell markers, where color intensity reflects gene expression levels. 
(B) Cell type annotation based on marker gene expression, identifying various cell populations within the tumor microenvironment to provide 
cellular context for stem cell research. (C) Systematic analysis of stem cell marker gene mutation spectrum, including variant classification 
distribution (upper left), variant type statistics (upper middle), single nucleotide variant categories (upper right), sample mutation burden distribution 
(lower left), variant classification summary (lower middle), and ranking of most frequently mutated stem cell marker genes (lower right). 
(D) Mutational landscape waterfall plot of stem cell marker genes, specifically displaying mutation patterns of the top 30 most frequently mutated 
stem cell marker genes across 522 lung adenocarcinoma samples, with different colors representing different types of genomic alterations, providing 
direct evidence for understanding the molecular mechanisms of stem cell abnormalities in lung adenocarcinoma pathogenesis. 
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genes are widely distributed across various chromosomes, with 
genes significantly highly expressed in tumors (p<0.05, marked by 
red dots) mainly concentrated in specific chromosomal regions. The 
central PCA analysis plot displays the sample distribution pattern 
from seven LUAD transcriptomic datasets after batch effect 
correction, demonstrating good consistency in stem cell marker 
gene expression patterns across different datasets, providing a 
reliable data foundation for subsequent functional analysis. To 
elucidate the biological functions of these differentially expressed 
stem cell marker genes, we performed KEGG pathway enrichment 
analysis (Figure 2C). The results showed that differentially 
expressed genes were mainly enriched in core pathways related to 
cell proliferation regulation, including cell cycle, DNA replication, 
and p53 signaling pathway, while also being significantly enriched 
in metabolic reprogramming-related pathways such as glycolysis/ 
gluconeogenesis and HIF-1 signaling pathway. The enrichment of 
Frontiers in Immunology 06
these pathways suggests that abnormal expression of stem cell 
marker genes may affect tumor stem cell function maintenance by 
simultaneously regulating cell proliferation and metabolic 
reprogramming. GO functional enrichment analysis further 
revealed the specific functional characteristics of these genes 
(Figure 2D). In terms of biological processes, differentially 
expressed genes mainly participate in nuclear division, cell 
division, and other cell proliferation-related processes; regarding 
cellular components, these genes are primarily localized to 
chromosomes, centromeric regions, and other cellular structures 
closely related to cell division; in terms of molecular functions, 
differentially expressed genes mainly possess ATP-dependent DNA 
activity, microtubule motor activity, and other functions. These 
functional enrichment results further confirm the important role of 
stem cell marker genes in regulating cell division and proliferation, 
which are core stem cell functions. 
FIGURE 2 

Differential expression analysis and functional enrichment of stem cell marker genes. (A) Heatmap of differentially expressed stem cell marker genes 
based on GTEx normal lung tissues and TCGA lung adenocarcinoma tissues, with blue indicating low expression and red indicating high expression, 
showing upregulation of TMEM106C, ECT2, PSMD2, STIL, TTK and other genes in tumors, while ALDOA gene is downregulated. (B) Chromosomal 
localization analysis of differentially expressed stem cell marker genes, with outer ring showing chromosomal positions, inner red dots representing 
genes significantly highly expressed in tumors (p<0.05), and central PCA plot displaying sample distribution from seven lung adenocarcinoma 
transcriptomic datasets after batch correction. (C) KEGG pathway enrichment analysis of differentially expressed genes, showing these genes mainly 
participate in cell cycle, DNA replication, metabolic reprogramming and other key biological pathways. (D) GO functional enrichment analysis of 
differentially expressed genes, including biological processes (BP, red), cellular components (CC, blue), and molecular functions (MF, green), 
revealing gene functions in cell division and proliferation regulation. 
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Construction and validation of stem cell 
prognostic model 

To deeply explore the genomic characteristics of stem cell 
marker genes and construct a reliable prognostic prediction 
model, we first analyzed the chromosomal distribution and copy 
number variation characteristics of these differentially expressed 
genes (Figure 3A). The results revealed that stem cell marker 
genes are widely distributed across various chromosomes, with 
amplification (AMP, orange) and deletion (DEL, blue) events 
showing specific patterns in different chromosomal regions. 
Notably, multiple key genes such as S100A10, UBE2T, and 
ANLN predominantly exhibited gene amplification, while some 
genes tended to undergo deletion events. This copy number 
variation pattern may be closely related to the expression changes 
and functional abnormalities of these genes in tumors. Through 
univariate Cox regression analysis in the TCGA cohort (Figure 3B), 
we found that all stem cell marker genes had hazard ratios (HR) 
greater than 1, indicating that high expression of these genes was 
consistently associated with poor prognosis in LUAD patients, 
providing a foundation for prognostic model construction. Based 
on these prognostically valuable stem cell marker genes, we 
employed a random combination strategy of multiple machine 
learning algorithms to construct prognostic prediction models 
(Figure 3C). By systematically comparing the performance of 
different algorithm combinations in the TCGA training cohort 
and six GEO validation cohorts, we used the C-index as an 
evaluation metric to measure model prediction accuracy. The 
heatmap displays C-index values of various algorithm 
combinations across different cohorts, with colors ranging from 
blue to red representing C-index values from low to high. 
Considering both the number of genes included in the model and 
the C-index performance comprehensively, we ultimately selected 
the CoxBoost+Enet[alpha=0.7] combination as the optimal model 
and named it SCPM (Stem Cell Prognostic Model). This model not 
only demonstrated good predictive performance in the training 
cohort but also showed stable prognostic prediction capability 
across multiple independent validation cohorts. 
Validation of SCPM prognostic 
performance and immunotherapy 
prediction value 

To validate the robustness and generalizability of the SCPM 
model, we first confirmed its performance in the TCGA training 
cohort (Supplementary Figure S1). Patients were stratified into high-
SCPM and low-SCPM groups based on SCPM scores, demonstrating 
excellent prognostic stratification with significant survival differences 
(Log-rank p < 0.0001) (Supplementary Figure S1A). Time-dependent 
ROC analysis showed good predictive accuracy with AUC values of 
0.68, 0.68, and 0.64 for 1-, 3-, and 5-year survival predictions, 
respectively (Supplementary Figure S1B). Principal component 
analysis based on SCPM signature genes revealed distinct 
clustering patterns between high-SCPM and low-SCPM groups 
Frontiers in Immunology 07 
(Supplementary Figure S1C), indicating that the model effectively 
captures biological differences related to stem cell characteristics. 
Subsequently, we systematically evaluated SCPM prognostic 
performance across six independent GEO validation cohorts 
(Figure 4). Kaplan-Meier survival analysis consistently 
demonstrated significant prognostic stratification capability across 
all validation datasets (Figure 4A). SCPM score-based stratification 
effectively distinguished patients into prognostically distinct 
subgroups, further confirming the robust discriminatory power of 
the SCPM scoring system. Time-dependent ROC analysis (Figure 4B) 
further validated the predictive accuracy of SCPM across multiple 
time points, demonstrating good predictive performance in all 
validation cohorts. It should be noted that, since most patients in 
the GSE31210 cohort had survival times exceeding one year, it was 
not possible to calculate the ROC curve and AUC value at the 1-year 
time point for this cohort. To gain deeper insights into the biological 
foundation of the SCPM model, we performed principal component 
analysis based on the expression profiles of 7 SCPM signature genes 
across six validation cohorts (Figures 5A–F). Results showed that 
patient samples could be clearly separated into two distinct clusters 
based on SCPM signature gene expression patterns across all 
validation cohorts, with high-SCPM (orange) and low-SCPM (blue) 
groups showing clear separation in principal component space, 
further validating the molecular biological rationale and cross-
cohort consistency of the SCPM model. 

Considering the close relationship between stem cell characteristics 
and the tumor immune microenvironment, we further analyzed the 
association between SCPM scores and immunotherapy sensitivity 
(Figures 5G–J). Using The Cancer Immunome Atlas (TCIA) scoring 
system, we systematically evaluated the  predicted responsiveness of

different SCPM groups to immune checkpoint inhibitors across 
multiple immunotherapy subtypes. The results showed that the low-
SCPM group demonstrated better performance in several 
immunotherapy response prediction metrics. Further subgroup 
analysis revealed that this benefit was mainly observed in patients 
receiving CTLA-4 inhibitors or double-negative immunotherapy 
regimens, while no statistically significant differences were found in 
other immunotherapy subtypes. These findings suggest the potential 
value and limitations of the SCPM model in guiding precision 
immunotherapy, indicating that patients in the low-SCPM group may 
be more suitable for specific types of immunotherapeutic strategies. 
Validation of SCPM model in 
immunotherapy cohorts 

To further validate the clinical utility of SCPM in the context 
of immunotherapy, we evaluated its prognostic performance across 
three independent immunotherapy cohorts (Figure 6, Supplementary 
Figure S2). In the OAK and POPLAR clinical trial cohorts, SCPM 
demonstrated good prognostic stratification capability. In the OAK 
cohort, the high-SCPM group showed significantly worse outcomes 
compared to the low-SCPM group for both OS and PFS (Log-rank p 
= 8e-04 and p = 0.024, respectively) (Figures 6A, B). In the POPLAR 
cohort, OS difference approached statistical significance (Log-rank p 
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= 0.067), while PFS difference reached statistical significance (Log­
rank p = 0.038) (Figures 6C, D). Additional validation was performed 
in the SU2C immunotherapy cohort (Supplementary Figure S2). The 
SCPM model maintained its prognostic capability with significant OS 
stratification (Log-rank p = 0.028) (Supplementary Figure S2A), 
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while PFS stratification showed a similar trend but did not reach 
statistical significance (Log-rank p = 0.25) (Supplementary Figure 
S2B). These results across multiple independent immunotherapy 
cohorts consistently support the prognostic value of SCPM and its 
potential utility in guiding immunotherapy treatment decisions. 
FIGURE 3 

Construction and validation of stem cell prognostic model through genomic analysis and machine learning approaches. (A) Chromosomal 
distribution and copy number variation characteristics of differentially expressed stem cell marker genes, with orange bars representing 
amplifications (AMP) and blue bars representing deletions (DEL) across different chromosomes, showing that genes like S100A10, UBE2T, and ANLN 
are predominantly amplified. (B) Forest plot showing univariate Cox regression analysis results of stem cell marker genes in TCGA cohort, with 
hazard ratios and confidence intervals indicating prognostic significance of individual genes. (C) Heatmap displaying C-index values of various 
machine learning algorithm combinations across TCGA training cohort and six GEO validation cohorts, with color intensity representing model 
performance from blue (low C-index) to red (high C-index). The optimal model CoxBoost+Enet[alpha=0.7] was selected as SCPM (Stem Cell 
Prognostic Model) based on comprehensive consideration of gene number and C-index performance. *P < 0.05, **P < 0.01, ***P < 0.001. 
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SCPM-associated immune 

To elucidate the underlying mechanisms of SCPM’s prognostic 
and immunotherapeutic predictive value, we comprehensively 
analyzed the immune microenvironment characteristics between 
high-SCPM and low-SCPM groups. Analysis of immune-related 
gene expression revealed distinct patterns between the two groups 

microenvironment characteristics 
Frontiers in Immunology 09
(Figure 7A). Notably, the high-SCPM group showed reduced 
expression of HLA class genes, particularly MHC class I and II 
molecules, indicating potential immune evasion mechanisms. 
Conversely, the high-SCPM group exhibited elevated expression 
of immune checkpoint molecules including PDCD1, CD274, and 
TIGIT, suggesting an immunosuppressive microenvironment 
despite the presence of checkpoint molecules. To further 
characterize immune infiltration patterns, we employed seven 
FIGURE 4 

Validation of SCPM prognostic performance across independent GEO cohorts. (A) Kaplan-Meier survival curves showing prognostic stratification 
capability of SCPM across six independent validation cohorts (GSE13213, GSE26939, GSE29016, GSE30219, GSE31210, and GSE42127), with 
significant survival differences between high-SCPM (red) and low-SCPM (green) groups (all p < 0.05). (B) Time-dependent ROC curves 
demonstrating predictive accuracy of SCPM for 1-, 3-, and 5-year survival across validation cohorts, with AUC values consistently above 0.6. 
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different computational algorithms to evaluate immune cell 
infiltration levels across SCPM groups (Figure 7B). Consistent 
across multiple algorithms including CIBERSORT-ABS, 
CIBERSORT, EPIC, XCELL, MCP-COUNTER, TIMER, and 
Frontiers in Immunology 10 
QUANTISEQ, the low-SCPM group demonstrated significantly 
higher levels of immune cell infiltration compared to the 
high-SCPM group. This enhanced immune infiltration in 
low-SCPM tumors suggests a more immunologically “hot” 
FIGURE 5 

Molecular characterization validation and immunotherapy prediction value of SCPM model. (A–F) Principal component analysis based on 7 SCPM 
signature gene expression profiles showing clear separation between high-SCPM (orange) and low-SCPM (blue) groups across six validation cohorts, 
validating the molecular biological foundation and cross-cohort consistency of the model. (G–J) Comparison of TCIA scores between high-SCPM 
and low-SCPM groups, showing significantly higher immunotherapy sensitivity scores in low-SCPM group patients for CTLA4-pos PD1-neg (H) and 
CTLA4-neg PD1-pos (J) subtypes (***p < 0.001), while differences were not statistically significant for CTLA4-pos PD1-pos (G) and CTLA4-neg PD1­
neg (I) subtypes (ns). 
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tumor microenvironment that may be more responsive to 
immunotherapy. To validate these computational findings, we 
performed multiplex immunofluorescence staining on clinical 
samples from our institutional cohort (Figure 7C). RNA-seq data 
from our internal cohort was used to stratify patients into high-
SCPM and low-SCPM groups, followed by immunofluorescence 
validation using CD4, CD8, and CD20 markers. The results 
confirmed our computational predictions, showing that low-
SCPM tumors had significantly enhanced infiltration of CD8+ T 
cells and CD20+ B cells compared to high-SCPM tumors. This 
experimental validation strongly supports the association between 
low SCPM scores and increased immune cell infiltration, providing 
a mechanistic basis for the superior immunotherapy responsiveness 
observed in low-SCPM patients. 
Frontiers in Immunology 11 
Discussion 

In this comprehensive study, we developed and validated 
SCPM, a novel stem cell-based prognostic model for LUAD that 
demonstrates robust predictive capability across multiple 
independent cohorts and provides valuable insights for 
immunotherapy decision-making. Our findings reveal the critical 
role of stem cell characteristics in determining patient prognosis 
and treatment response, offering new perspectives for precision 
medicine in lung cancer. Single-cell RNA sequencing analysis 
revealed the complex cellular ecosystem within the LUAD 
microenvironment, with stem cell marker genes showing distinct 
expression patterns across different cell types. We identified 
widespread mutations in stem cell-related genes, particularly the 
FIGURE 6 

SCPM prognostic performance in immunotherapy cohorts. (A, B) Kaplan-Meier survival curves in the OAK immunotherapy cohort showing significant 
prognostic stratification for both overall survival (OS, Log-rank p = 8e-04) and progression-free survival (PFS, Log-rank p = 0.024) between high-
SCPM (red) and low-SCPM (green) groups. (C, D) Survival analysis in the POPLAR immunotherapy cohort demonstrating prognostic stratification for 
OS (Log-rank p = 0.067) and PFS (Log-rank p = 0.038) between high-SCPM and low-SCPM groups. 
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high frequency of KRAS mutations (29%), which aligns with 
previous studies emphasizing the central role of KRAS in cancer 
stem cell biology (36, 37). The prevalence of KRAS mutations in our 
cohort is consistent with its established function in maintaining 
Frontiers in Immunology 12 
stem cell self-renewal and promoting oncogenic transformation. 
Similarly, the frequent mutations in KEAP1 suggest that oxidative 
stress response is a critical pathway disrupted in LUAD stem 
cells (38). 
FIGURE 7 

SCPM-associated immune microenvironment characteristics. (A) Heatmap showing differential expression of immune-related genes between high-
SCPM and low-SCPM groups, including co-stimulators, co-inhibitors, and MHC molecules. High-SCPM group shows reduced HLA expression but 
elevated immune checkpoint molecules (PDCD1, CD274, TIGIT). (B) Immune cell infiltration analysis using seven computational algorithms 
(CIBERSORT-ABS, CIBERSORT, EPIC, XCELL, MCP-COUNTER, TIMER, QUANTISEQ) demonstrates consistently higher immune infiltration in low-
SCPM group (green) compared to high-SCPM group (red). (C) Multiplex immunofluorescence validation in clinical samples showing enhanced CD8+ 
T cell and CD20+ B cell infiltration in low-SCPM tumors compared to high-SCPM tumors. DAPI (blue), CD4 (green), CD8 (white), CD20 (yellow), and 
merged images are shown for representative low-SCPM and high-SCPM cases. 
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Comprehensive differential expression analysis between normal 
and tumor tissues revealed complex regulatory patterns of stem cell 
marker genes, with key genes such as TMEM106C, ECT2, PSMD2, 
STIL, and TTK showing significant upregulation in tumor tissues. 
These findings are consistent with the cancer stem cell hypothesis, 
which posits that a small subset of cells with stem-like properties 
drives tumor initiation, progression, and therapeutic resistance (39). 
The enrichment of differentially expressed genes in cell cycle 
regulation, DNA replication, and metabolic reprogramming 
pathways suggests that stem cell characteristics are intimately 
linked to fundamental cellular processes that drive tumorigenesis. 
Notably, the downregulation of ALDOA in tumor tissues highlights 
the metabolic reprogramming that occurs in cancer stem cells, 
potentially reflecting their unique metabolic dependencies 
compared to bulk tumor cells. Chromosomal distribution analysis 
revealed that stem cell marker genes are subject to widespread copy 
number alterations, with amplification events predominating in 
genes such as S100A10, UBE2T, and ANLN, suggesting that 
genomic instability contributes to the dysregulation of stem cell 
programs in LUAD. 

The application of multiple machine learning algorithms in 
cancer biomarker development has advanced rapidly (40, 41). The 
consistent performance of SCPM across seven independent cohorts, 
including both transcriptomic datasets and immunotherapy 
cohorts, demonstrates its robustness and clinical applicability. 
The superior prognostic stratification achieved by SCPM, 
particularly in the context of immunotherapy, suggests that stem 
cell characteristics serve as important determinants of treatment 
response. The association between low SCPM scores and improved 
immunotherapy outcomes may be explained by the enhanced 
immune cell infiltration observed in low-SCPM tumors. We 
found that low-SCPM tumors exhibit higher levels of CD8+ T 
cells and CD20+ B cells, confirmed by both computational analysis 
and experimental validation, providing mechanistic insights into 
why these patients respond better to immune checkpoint inhibitors. 
This is consistent with emerging evidence that cancer stem cells can 
modulate the immune microenvironment and influence 
immunotherapy efficacy (42). 

Immune microenvironment analysis revealed striking 
differences between high-SCPM and low-SCPM groups, with 
high-SCPM tumors characterized by reduced HLA expression 
and elevated immune checkpoint molecule expression, suggesting 
an immunosuppressive phenotype despite the presence of immune 
activation markers. This paradoxical pattern may reflect the 
complex interplay between stem cell characteristics and immune 
evasion mechanisms. The reduced expression of MHC class I and II 
molecules in high-SCPM tumors indicates impaired antigen 
presentation capacity, which may limit the effectiveness of T cell-
mediated immune responses. The clinical implications of our 
findings extend beyond prognostic stratification to treatment 
selection, as the SCPM model may help identify patients who are 
most likely to benefit from immunotherapy. Future studies should 
focus on validating these findings in prospective clinical trials and 
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exploring the potential for targeting stem cell pathways in 
combination with immunotherapy to improve outcomes for high-
SCPM patients. 

In this study, we successfully developed and validated SCPM, a 
novel prognostic prediction tool for LUAD based on stem cell 
marker genes. Through integrated multi-omics analysis and 
advanced machine learning algorithms, we demonstrated that 
SCPM provides robust prognostic stratification across multiple 
independent cohorts, with particularly strong performance in 
predicting responses to immunotherapy. Our findings reveal that 
patients with low SCPM scores exhibit higher levels of immune cell 
infiltration and respond more favorably to immunotherapy, offering 
valuable prognostic assessment and guidance for clinical decision-
making. The SCPM model holds significant promise for clinical 
application, enabling the identification of patient subgroups most 
likely to benefit from immunotherapy and advancing the precision 
treatment of LUAD. 
Data availability statement 

The original contributions presented in the study are included 
in the article/Supplementary Material. Further inquiries can be 
directed to the corresponding authors. 
Ethics statement 

The studies involving humans were approved by the Ethics 
Board of The First Affiliated Hospital with Nanjing Medical 
University (Approval No. 2019-SR-156). The studies were 
conducted in accordance with the local legislation and 
institutional requirements. The participants provided their written 
informed consent to participate in this study. 
Author contributions 

JZ: Methodology, Conceptualization, Writing – review & 
editing, Writing – original draft. HL: Data curation, Writing – 
review & editing, Methodology, Writing – original draft. WY: 
Project administration, Writing – review & editing, Methodology, 
Writing – original draft. MD: Writing – original draft, Project 
administration, Writing – review & editing. CH: Methodology, 
Writing – original draft, Software. JF: Project administration, 
Writing – review & editing, Writing – original draft, Investigation. 
Funding 

The author(s) declare that no financial support was received for 
the research and/or publication of this article. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1634830
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2025.1634830 
Acknowledgments 

The authors express their gratitude for the provision of data by 
databases such as TCGA and GEO. Sincere appreciation is extended 
to the reviewers and editors for their valuable comments. 
Conflict of interest 

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest. 
Generative AI statement 

The author(s) declare that no Generative AI was used in the 
creation of this manuscript. 
Publisher’s note 

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
Frontiers in Immunology 14 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher. 
Supplementary material 

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fimmu.2025. 
1634830/full#supplementary-material 

SUPPLEMENTARY FIGURE 1 

SCPM performance in TCGA training cohort. (A) Kaplan-Meier survival curve 
showing significant prognostic stratification between high-SCPM and low-

SCPM groups (Log-rank p < 0.0001). (B) Time-dependent ROC curves for 1-, 
3-, and 5-year survival predictions with AUC values of 0.68, 0.68, and 0.64, 
respectively. (C) Principal component analysis showing distinct clustering 
patterns between high-SCPM (orange) and low-SCPM (blue) groups based on 
SCPM signature genes. 

SUPPLEMENTARY FIGURE 2 

SCPM prognostic performance in SU2C immunotherapy cohort. (A, B) 
Kaplan-Meier survival curves showing significant OS stratification (Log-rank 
p = 0.028) and PFS trend (Log-rank p = 0.25) between high-SCPM (red) and 
low-SCPM (green) groups in the SU2C immunotherapy cohort. 
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