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Personalized medicine has redefined cancer treatment by aligning therapies with

each patient’s unique biological profile. A key example is chimeric antigen receptor

T-cell (CAR-T) therapy, in which a patient’s own T cells are genetically modified to

recognize and destroy cancer cells. This approach has delivered remarkable results

in hematologic malignancies and is beginning to show promise in solid tumors and

autoimmune diseases. However, its broader adoption is limited by major

challenges, including complex manufacturing, high costs, limited efficacy in solid

tumors, and potentially severe toxicities. Nanotechnology offers exciting

possibilities to overcome many of these barriers. Engineered nanoparticles can

improve gene delivery, target tumors more precisely, enhance immune cell

function, and enable in vivo CAR-T production, reducing the need for labor-

intensive ex vivo processes. However, despite this promise, translation into clinical

settings remains difficult due to regulatory hurdles, scalability issues, and

inconsistent reproducibility in human models. At the same time, artificial

intelligence (AI), with its powerful algorithms for data analysis and predictive

modeling, is transforming how we design, evaluate, and monitor advanced

therapies, including the optimization of manufacturing processes. In the context

of CAR-T, AI holds strong potential for better patient stratification, improved

prediction of treatment response and toxicity, and faster, more precise design of

CAR constructs and delivery systems. Leveraging these three technological pillars,

this review introduces the concept of Smart CART Nanosymbionts, an integrated

framework in which AI guides the design and deployment of nanotechnology-
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enhanced CAR-T therapies. We explore how this convergence enables

optimization of lipid nanoparticle formulations for mRNA transfection, specific

targeting and modification of the tumor microenvironment, real-time monitoring

of CAR-T cell behavior and toxicity, and improved in vivo CAR-T generation and

overcoming barriers in solid tumors. Finally, it’s important we also address the

ethical and regulatory considerations surrounding this emerging interface of living

therapies and computational driven systems. The Smart CART Nanosymbionts

framework (Figure 1:) represents a transformative step forward, promising to

advance personalized cancer treatment toward greater precision, accessibility,

and overall effectiveness.
KEYWORDS

CAR-T therapy, nanotechnology, artificial intelligence, machine learning, deep learning,
immunotherapy, manufacturing, personalized medicine
1 Introduction

Personalized medicine is redefining approaches to cancer

prevention, diagnosis, and treatment by leveraging each patient’s

unique biological profile (1). Among its most significant

advancements is CAR-T cell therapy, which involves genetically

reprogramming a patient’s own T cells to recognize and eliminate

cancer cells expressing specific antigens (2). Since the first approval

by the U.S. Food and Drug Administration (FDA) in 2017, CAR-T

cell therapy has provided critical treatment options for patients with

recurrent leukemias, lymphomas, and myelomas, achieving

unprecedented remission rates when conventional treatments

have failed (3–6). In the field of autoimmunity, its benefits are

beginning to be demonstrated mainly in systemic lupus

erythematosus (7).

Despite its successes, several serious challenges impede broader

adoption. Reliance on viral vectors for gene delivery introduces

risks, including variable transfection efficiency, stringent regulatory

requirements, and potential insertional mutagenesis (8–10). Such

concerns have prompted regulatory agencies like the FDA to

emphasize the urgent need for safer and more precise gene

delivery methods (11). Off-target cytotoxicity also remains a

major issue, manifesting in severe complications such as cytokine

release syndrome (CRS), macrophage activation syndrome (MAS)/

hemophagocytic lymphohistiocytosis (HLH), and neurological

toxicities. Furthermore, CAR-T therapy is less effective in solid

tumors due to immunosuppressive microenvironments and

physical barriers that limit T-cell infiltration and function (8, 12,

13). It also comes with high expenses, almost $400,000 per patient

and approaching $1 million with associated care (14–16).

Nanotechnology is emerging as a promising solution to these

challenges. It enhances CAR-T cell persistence, infiltration,

functionality and can provide non-viral gene delivery platforms.
02
It also facilitates real-time monitoring of CAR-T cell activity and

supports in vivo CAR-T generation, reducing the need for labor-

intensive ex vivo processes (17–21).

Even with this new perspective, there are still cogs in the

machine that could be better integrated. AI can streamline

manufacturing workflows, automate complex data analyses, and

refine the design for nano-driven CAR-T systems, enhancing both

efficiency and effectiveness. Defined as the development of systems

capable of performing tasks traditionally requiring human

intelligence, AI employs advanced algorithms and self-learning

models that adapt, identify patterns and make autonomous

decisions (22–24). The integration of AI would allow for smart

tuning of nanoparticle properties, such as size and surface charge, to

optimize delivery efficiency and safety and in the context of CAR-T.

Additionally, AI supports CAR-T optimization through predictive

tools for patient selection, receptor design, cell classification and

quality control, and early toxicity prediction. In this review, we

explore how the fusion of nanotechnology and artificial intelligence

can help address the current challenges facing CAR-T therapy and

describe current AI-models applied to specific problematics. This

approach has the potential to revolutionize how CAR-T therapy

and nanotechnology come together, signaling a major leap forward

in precision in oncology. We introduce a model we call Smart CAR-

T Nanosymbionts and combined with the previous Addition by

Subtraction model we authors proposed in previous reviews

(Figure 1). A model designed to streamline the treatment of

patients by reducing inefficiencies, lowering costs, and enhancing

therapeutic outcomes through AI-powered nanotech in the context

of pathologies targetable with CAR-T. This conceptual framework

guides the structure of the review and offers a future-oriented lens

for understanding how these technologies can reshape CAR-T

innovation (25–28). We have created a glossary (Table 1) at the

end of this paper for guidance.
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2 CAR T-Cell Nanosymbionts:
redifying the frontier of cellular
immunotherapy with nanotech
synergy

A nanosymbiont refers to a nanoscale entity that forms a

symbiotic relationship with a host system, typically at the cellular

or macromolecular level. These nanosymbionts are often

engineered nanoparticles or smarter nano-devices—such as

nanomachines and nanorobots—that interact beneficially with

biological systems by mimicking or enhancing natural symbiotic

functions. These nanosymbionts are often made from lipid-based

nanostructures (like liposomes), polymeric nanoparticles, DNA/
Frontiers in Immunology 03
RNA nanostructures (e.g., nanosnowflakes) (259), Inorganic

nanomaterials (e.g., gold or silica nanoparticles) (260).

The discovery of materials exhibiting unique and distinctive

properties at the nanoscale (generally defined as structures with

dimensions smaller than 100 nanometers) has led to the

development of the multidisciplinary field of nanotechnology. This

field encompasses the development, synthesis, characterization, and

utilization of nanomaterials and nanodevices across various

disciplines, including environmental science, electronics, energy, and

medicine (261).

Nanoparticles possess a diverse array of tunable properties. These

include customizable chemical compositions and internal structures,

high surface-to-volume ratios, defined geometries, and distinctive

electrical, magnetic, optical, and catalytic behaviors (e.g.,
FIGURE 1

Compares the use of ML and DL in optimizing the production of advanced therapies, such as CAR-T cells and nanoparticles. In the ML section the
algorithm can be trained for feature extraction, incorporating clinical data (such as biomarkers and immune responses) and manufacturing data
(such as ethanol concentration and total flow rate). These inputs are analyzed to enable early prediction of CRS and ICANS toxicity and to improve
the efficiency and quality of nanoparticle production. The DL section presents a more advanced approach using, ANNs, CNNs and GNNs. These
technologies analyze proteins, RNA sequences, cellular imaging, and spatial representations. Key applications include the design of nanoparticles
with enhanced tumor penetration, the optimization of CAR-T cells with greater cytotoxicity and persistence(CAR-Toner and motifs analysis), and the
classification of cells based on their sensitivity or resistance to CAR-T treatment. Additionally, image-based predictions help assess cell sorting
(COSMOS), therapeutic response and immune synapse quality. CRS, Cytokine Release Syndrome; ICANS, Immune Effector Cell-Associated
Neurotoxicity Syndrome; ANNs, Artificial Neural Networks; GNNs, Graph Neural Networks.
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nanozymes) (29–32). Their surfaces can be further engineered with

functional ligands—such as pH-responsive polymers, polyethylene

glycol (PEG), lipids, and biomolecules including antibodies and

aptamers, to improve encapsulation efficiency, enhance

bioavailability, and enable targeted interactions with biological

systems (33–35). These characteristics make nanoparticles especially

valuable in biomedical applications, notably for drug delivery. Their

small size and surface engineering capabilities enable enhanced

permeability and retention (EPR) effects, as well as controlled and

sustained drug release. These features have significantly advanced

their use in cancer therapy and diagnostics (18, 36–39). Moreover,

nanoparticles can be designed to circumvent drug resistance—an

obstacle commonly encountered in conventional chemotherapy. By

conjugating ligands that selectively bind to receptors overexpressed on

cancer cells, nanoparticles can deliver therapeutic agents directly to

tumor sites (smart drug delivery systems). This targeted delivery

minimizes collateral damage to healthy tissues, improves therapeutic

efficacy, and enhances imaging precision (36, 40–44). Consequently,
TABLE 1 Glossary.

Term Definition

Advanced Therapies and Nanotechnology

Nanosymbiont A nanoparticle or nanoscale object that interacts symbiotically
with cells or biological systems.

LNP Lipid Nanoparticle. Lipid-based nanoparticles used to
deliver mRNA.

PEG Polyethylene Glycol. A polymer that enhances nanoparticle
stability and avoids immune recognition.

SPION Superparamagnetic Iron Oxide Nanoparticles. Used for
magnetic guidance and imaging-based monitoring.

Nanozyme A nanoparticle with catalytic properties similar to
natural enzymes.

Nanobodies
(VHH)

Antibody fragments derived from camelids, smaller and more
stable than conventional antibodies.

scFv Single-chain Variable Fragment. An antibody fragment
commonly used in CAR receptors.

PdI Polydispersity Index. A measure of size distribution
in nanoparticles.

Artificial Intelligence and informatics

AI Artificial Intelligence. Algorithms that emulate
human intelligence.

ML Machine Learning. A branch of AI that learns from
structured data.

DL Deep Learning. An advanced subfield of ML using deep
neural networks.

CNN Convolutional Neural Network. A DL model used for
image analysis.

RNN/LSTM Recurrent Neural Network/Long Short-Term Memory. Neural
networks for analyzing sequential data.

GNN Graph Neural Network. Analyzes structured data such as
protein-protein interactions.

XGBoost A decision tree-based algorithm used for high-accuracy
prediction and classification.

AGILE AI-Guided Ionizable Lipid Engineering. A DL platform for
discovering optimal lipids for mRNA delivery.

MHCnuggets A DL algorithm that predicts peptide binding to MHC
molecules, useful for neoantigen discovery.

NbAffinity An ML platform for predicting affinity between nanobodies
and their target ligands.

CAR-TONER An AI tool that optimizes the structural design of CAR
receptors, particularly positive charge patches (PCPs).

COSMOS Computational Sorting and Mapping of Single Cells. A DL
system for label-free cell classification.

RCMNet A neural network for precise identification of CAR-T cells in
peripheral blood.

M2-CRS An SVM-based ML model for predicting the risk of cytokine
release syndrome (CRS).

SHAP SHapley Additive exPlanations: method used to interpret
machine learning models by quantifying the contribution of
each input feature

(Continued)
TABLE 1 Continued

Term Definition

Artificial Intelligence and informatics

SERS Surface-Enhanced Raman Scattering: highly sensitive
spectroscopic technique that amplifies Raman signals of
molecules when they are in close proximity to nanostructured
metal surfaces (such as gold or silver nanoparticles).

MOBO Multi-Objective Bayesian Optimization. An algorithm for
optimizing multiple variables simultaneously.

Cell Biology and Immunotherapy

CRS Cytokine Release Syndrome. A common immune-related
complication in CAR-T therapy.

ICANS Immune Effector Cell-Associated Neurotoxicity Syndrome.
Neurotoxicity related to CAR-T therapy.

TME Tumor Microenvironment. The microenvironment around the
tumor, which may hinder immune efficacy.

TAMs Tumor-Associated Macrophages. Macrophages within the
TME that suppress immune responses.

MDSCs Myeloid-Derived Suppressor Cells. Myeloid cells that inhibit
immune response.

IL-15/IL-12 Interleukins used to boost T cell expansion and persistence.

TGF-b Transforming Growth Factor Beta. An immunosuppressive
molecule in the TME that inhibits CAR-T cell activity.

Manufacturing and Optimization

GMP Good Manufacturing Practice. Quality standards for drug and
therapy production.

Bioreactor A system used to culture and expand T cells under
controlled conditions.

Pd/Pt-
glucose sensor

A glucose sensor based on palladium/platinum for metabolic
control in cell cultures.

ANS Automated Nanoparticle Synthesizer. A robotic platform for
autonomous nanoparticle production.
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nanotechnology provides innovative strategies to enhance the efficacy,

specificity, and safety of cancer treatments, offering potential cost-

effective alternatives to traditional methodologies (45, 46). Synthetic

nanomachines (nanoconverters, Janus nanomotor, etc.) or nanorobots

(ultrasound-propelled biomimetic nanorobot) introduced into cells to

perform functions like detoxification, sensing, or energy generation

(47–49). Also, nanoparticles that help reprogram immune cells (like

CAR-T cells) or interact with microbiota to influence host health.

This field is transforming CAR T-cell design by creating precise,

multifunctional platforms that address key therapeutic challenges.

For instance, lipid-based and polymer nanoparticles have been

developed to deliver mRNA encoding CAR constructs directly into

T cells, circumventing safety concerns associated with viral vectors

and ensuring efficient delivery with reduced immunogenicity (50,

255). Furthermore, nanotechnology plays a crucial role in developing

in vivo CAR T-cell therapies, wherein nanoparticles deliver CAR-

encoding materials directly to circulating T cells within patients (51–

54). Additionally, nanomachines can selectively target different

lymphocyte subtypes via surface-attached antibodies, facilitating

precise genetic material delivery. Virus-like nanoparticles

engineered for systemic gene therapy demonstrate prolonged

circulation time, reduced immunogenicity, and efficient and safe

gene delivery to target cells (18).

There are numerous stages in the development of CAR-T cells

and aspects of tumor biology where nanotechnology can be

effectively integrated. The following are examples of how these

two technologies have been successfully combined. The immune

synapse (IS) is crucial for car t cell activation, triggering cytotoxic T

lymphocytes (CTLs) and CAR-IS shows higher expression of

molecules with antiapoptotic and antiproliferative (55, 56). To

potentiate this effect, agents like histone deacetylase inhibitors

(HDACi), such as panobinostat, can enhance Fas-mediated

apoptosis, improving antitumor efficacy (57). Nanocarriers, such

as poloxamer 407-based nano-micelles, enhance intracranial

delivery of panobinostat in glioma models, increasing therapeutic

concentration and tumor response (56).

Precise interaction between the CARs and tumor cell epitopes is

essential for CAR T cell function. The scFv fragment, the CAR’s

antigen-binding domain, can suffer from misfolding, aggregation,

and overstimulation of T cells, leading to early exhaustion.

Nanobodies, small, single-domain antibodies derived from

camelids, due to their compact size, high stability, and reduced

immunogenicity can avoid misfolding and aggregation ensuring a

more controlled activation of CAR T cells, preventing the

overexpression of cytotoxic signals that could prematurely

exhaust the T cells. Nanobodies improve antigen recognition,

leading to a stronger and more durable synapse between the CAR

T cells and tumor cells. They can also serve as modular structures

that facilitate the redirection of universal CAR T cells to target

various tumor antigens, further enhancing the precision and

adaptability of the therapy (55).

In solid tumors, interferon-g receptor (IFNgR) signaling is

critical for cell adhesion after CAR T cell treatment and its

impairment can derive in CAR T cell binding reduction and

resistance (58).
Frontiers in Immunology 05
SCH-58261-loaded cross-linked multilamellar liposomes with

maleimide functionalization on the surface of CAR T cells have

been designed in models of ovarian cancer and chronic

myelogenous leukemia to target the A2a adenosine receptor (A2aR)

inhibitory pathway involved in T cell receptor signaling inhibition and

IFNg production through elevated intracellular cyclic AMP adenosine

levels that are increased in the tumor microenvironment. These

liposomes enhance the colocalization of nanoparticles in sensitive

tumor areas and prolonging tumor growth inhibition by targeting the

A2a receptor pathway (59).

To broaden the targeting landscape, aptamers (short, single-

stranded nucleic acids capable of binding to target cancer cells with

high specificity and affinity) are functionalized with nanocarriers to

deliver cytokines, immune checkpoint inhibitors, or cytotoxic

agents directly to the tumor site. This expands the antigenic

repertoire beyond conventional antibody recognition. The SELEX

(Systematic Evolution of Ligands by Exponential Enrichment)

technique enables identification of high-affinity aptamers, which,

when combined with nanodevices, enhance immune synapse

formation and therapeutic delivery (60).

T cell exhaustion, one of the main concerns regarding efficacy

and resistance in CAR T cell therapy, occurs due to increased

inhibitory signals from molecules such as PD-1, Tim-3, LAG-3,

VISTA, CTLA-4, and TIGIT, affecting both tumor cells and T

lymphocytes (61). Magnetic nanoclusters, equipped with PD-1

antibodies, utilize a pH-sensitive bond for attachment and bind to

effector T cells through PD-1 receptors. In an acidic environment,

they release anti PD-L1 antibodies, blocking PD-1 interactions and

maintaining CTL functionality above 90% while delaying tumor

progression. The treatment also reduced the abundance of Tregs

and increased the abundance of CD8+ CTLs in tumor-bearing mice

(62). Moreover, the conjugation of liposomes and synthetic

nanoparticles with CD8+ T lymphocytes via maleimide-thiol

coupling provides continuous pseudoautocrine stimulation of

transferred cells. Following this rational, some research groups

have developed multilamellar lipid nanoparticle core loaded with

IL-15 and IL-21 to release cytokines in very low doses over several

days resulting in significantly higher proliferation compared to

systemic infusion (63).

Epitope spreading arises because of residual dying tumor cells

are captured and processed by APCs. This leads to the presentation

of novel peptides via MHC class I and II molecules, thereby priming

naïve T cells to recognize and attack tumor-associated antigens

distinct from those originally targeted by CAR T cells. This

secondary immune activation broadens the anti-tumor response

beyond the specificity of the initial CAR construct. Tumor cryptic

antigens must be presented on MHC Class I molecules, engaging

cytotoxic CD8+ T cell responses via cross-presentation, primarily

performed by specific APCs (64). Dendritic mesoporous silica

nanoparticles (DMSNs), modified with hyaluronic acid and

covalently bound to anti-CD3, anti-CD28, and anti-PD-1,

facilitate T cell activation and antigen cross-presentation,

enhancing IFN-b secretion and MHC upregulation and reducing

the likelihood of the cells escaping immune surveillance (65).

Additionally, dendritic cell-biomimetic nanoparticles and
frontiersin.org
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dendritic cell-mimicking nanovaccines (nanoDCs), fabricated from

mature bone marrow-derived DC membranes loaded with TAAs

improve CD8+ T cell priming, reduce tumor size, and inhibit

metastasis (66, 67). In parallel, other approaches have explored

the use of lipopolyplex platforms, in which mRNA molecules are

encapsulated within a polymeric polyplex core and subsequently

enclosed in a phospholipid bilayer shell. This architecture enables

the delivery of mRNA encoding multiple tumor-associated

antigens, while concurrently acting as an adjuvant by engaging

Toll-like receptor (TLR) signaling in APCs. These nanoconstructs

have demonstrated efficiente uptake by dendritic cells, promoting

robust antigen presentation, and the bilayer shell effectively

prevents nonspecific interactions of the mRNA core with non-

target cells, thereby reducing off –target effects and systemic

toxicity (68).

Moreover, the tumor microenvironment—through stromal and

myeloid cells, angiogenesis, and cytokines like TGF-b—impairs

CAR T cell trafficking, infiltration, and cytotoxic function,

significantly limiting their efficacy in solid tumors (69). Nano-

backpacks utilize T lymphocytes as vehicles to take loaded

nanoparticles to tumor microenvironment. Liposomes loading a

potent small molecule that works as an inhibitor of the TGF-b
receptor I restore granzyme B expression to a higher level than

systemic TGF-b inhibitors. Also, these liposomes promoted division

and expansion of T cells (70). In line with other backpacking

strategies, chemically tethering an interleukin-15 superagonist to

T cells via drug-releasing protein nanogels anchored to CD45 has

shown enhanced intratumoral expansion. These nanogels are

activated upon antigen engagement within the tumor

microenvironment, resulting in a 16-fold increase in T cell

proliferation compared to systemic cytokine delivery, and over

1,000-fold compared to T cells lacking cytokine support (71).

Other components of TME such as fibrotic stroma and

compressed vasculature can be bypassed through photothermal

strategies. CAR T cells engineered with indocyanine green

nanoparticles (CT-INPs) generate localized heating upon NIR

exposure, causing 98% tumor cell death and promoting

vasodilation and immune infiltration (72). In addition, vascular-

targeted nanorobotics offers a radical approach. DNA origami

nanobots loaded with thrombin selectively induce tumor

thrombosis by releasing their cargo upon receptor binding,

starving the tumor (73).

Strategies currently used by clinicians to follow activity of

infused CAR T cells are invasive and do not provide real-time

whole-body spatio-temporal distribution of infused T cells. There is

a clinical need for a technique that can monitor in vivo performance

of CAR T cells in tumors and off-target sites. Ferumoxytol (iron

oxide nanoparticles detected byMRI) can be used as a cell marker to

monitor real time in vivo CAR T cell in preclinical osteosarcoma

model. These CAR T cells are identified through MRI,

photoacoustic tomography (PAT), and magnetic particle imaging

(MPI). Tumor demonstrates iron enhancement on T2-weighted

MRI only in the ferumoxytol-labeled B7-H3 CAR T cell group

indicating enhanced infiltration of the T cells in the tumor tissue

(20). Similarly, CAR T cells co-expressing CD19 and luciferase can
Frontiers in Immunology 06
be radiolabeled with gold nanoparticles functionalized with copper-

64 and PEG (GNP-64Cu/PEG2000), allowing long-term PET

imaging that correlates with bioluminescent signal, confirming

the possibility of tracking CAR T cells using positron emitter

imaged by PET/CT scanner (21).

Finally, the conventional design of CAR T cells may elicit

unpredictable toxicities due to their inherent capacity for expansion,

persistence, and recognition of both malignant and non-malignant

cells expressing tumor-associated antigens. Reversible control of CAR

T activity has been demonstrated using the tyrosine kinase inhibitor

dasatinib (DAS), which blocks CD3z ITAM phosphorylation, thereby

suppressing CAR T effector function and mitigating acute toxicities.

However, DAS presents pharmacokinetic limitations, including poor

water solubility, pH-dependent absorption, and a short half-life (3–4

h). To address this, a pH-sensitive nanoparticle linking DAS to

hyaluronic acid (DAS-HA) enables targeted release in the acidic

tumor microenvironment, enhancing intracellular DAS

accumulation and improving the safety and efficacy of CAR T

modulation (74, 75).

Summary of the applications described in the text are found in

Table 2 and Graphical representation in Figure 2:
3 Machine intelligence in motion:
from algorithms to autonomy

AI encompasses a wide range of subfields and methodologies

aimed at replicating or augmenting human-like intelligence in

machines (89). Rather than representing a single technology, AI

consists of a diverse set of interconnected tools and systems with vast

potential, particularly in the healthcare domain (90). One of its most

prominent branches is machine learning (ML), which focuses on

developing systems capable of learning from historical data. These

systems leverage algorithms trained on context-specific features

within structured datasets to identify patterns and generate

predictions, using approaches such as supervised, unsupervised, or

reinforcement learning (24, 91). In healthcare, ML is commonly

applied to structured medical data for tasks such as early disease

detection, prediction of therapeutic responses, and optimization of

clinical resource allocation (92, 93). Within ML, deep learning (DL)

represents an advanced subcategory that employs artificial neural

network-based algorithms to process and analyze large-scale datasets

with complex structures (94). Unlike traditional ML techniques, DL

excels at uncovering intricate correlations that are often undetectable

using conventional methods. One of its core advantages lies in its

ability to autonomously perform feature extraction from

unstructured data such as medical imaging, genetic sequences, or

clinical text, thereby eliminating the need for manual preprocessing.

These capabilities have made DL particularly valuable in areas such

as drug discovery and the detection of cancerous lesions in

radiological images (92, 95, 96).

Among the algorithms encompassed within DL are

convolutional neural networks (CNNs) and recurrent neural

networks (RNNs), which are designed to replicate biological

processes for data analysis. CNNs process visual data by
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extracting local features at various levels of depth, enabling the

identification of complex patterns in images (97, 98). These

representations are typically complemented by Multilayer

Perceptron (MLP) layers (fully connected neural networks),

which are responsible for performing the final classification based

on the extracted features (99). In contrast, RNNs—including Long

Short-Term Memory (LSTM) networks—capture temporal

dependencies in tasks such as language modeling, DNA sequence

analysis, and continuous time series prediction, making them
Frontiers in Immunology 07
valuable for both classification and regression problems (100).

These architectures enhance drug–target interaction prediction,

pharmacokinetic modeling, and toxicity assessment (101, 102),

addressing the high expenses, time demands, and ethical concerns

of traditional experimental methods (101, 103). A summary of the

current AI-models utilized in healthcare are found in Table 3.

Integrating AI with CAR-T therapy and nanotechnology presents

remarkable opportunities for enhancing treatment design, delivery,

and development, driving advancements in personalized medicine.
TABLE 2 Nanotechnology application in CAR-T therapy.

Category Nano Strategy Description

Enhanced CAR-T Response and Persistence Nanobody replacement of scFv Smaller and more stable fragments reduce
immunogenicity and improve CAR-T specificity (76)

HDACi in nanocarriers Histone deacetylase inhibitors reinforce immune
synapse and CAR-T activity (77)

Bioengineered polymer matrices Controlled release of co-stimulatory signals to
maintain CAR-T function (78)

Anti-PD-L1 nanocarriers Blocking PD-1 interactions to prevent CAR-T
dysfunction (61)

Pseudoautocrine stimulation Nanoparticles provide continuous activation signals to
CAR-T cells (79)

Improved Tumor Infiltration and Adhesion Multilamellar liposomes Facilitate CAR-T localization in tumors, enhancing
adhesion and activation (72)

Aptamer-functionalized nanocarriers
Incorporating bioactive phospholipids into
LNP formulations

Direct CAR-T to multiple tumor antigens, improving
interaction with cancer cells (60)
Different phospholipids can alter the interaction of
LNPs with immune cells, potentially improving
adhesion to tumor sites (80)

Overcoming Tumor Escape mRNA lipopolyplexes Deliver mRNA encoding multiple tumor antigens to
prevent immune evasion (68)

Dendritic mesoporous silica nanoparticles Promote antigen spreading and enhance immune
response (66, 67, 81)

Tumor Microenvironment Modulation TGF-b inhibitor liposomes Block TGF-b signaling to restore CAR-T cytotoxicity
(70, 82)

Protein nanogels with IL-15 Localized CAR-T expansion in tumors without
systemic toxicity (83)

NIR-activated nanoparticles Generate localized heat to improve immune
infiltration and destroy tumor cells (84)

Gene Delivery and Manufacturing Optimization Liposomes carrying mRNA Temporarily induce CAR receptor expression in
tumor-infiltrating lymphocytes (85)

Gene-carrier nanoparticles Reprogram T cells in vivo, eliminating the need for ex
vivo manufacturing (54, 86)

Microfluidic and nanobioreactors Optimize CAR-T expansion to reduce costs and
improve quality (87)

Monitoring and Toxicity Reduction Iron oxide nanoparticles Real-time CAR-T tracking with imaging (20, 88)

Gold nanoparticles with Cu-64

pH-sensitive nanoparticles Drug release only in acidic tumor environments to
reduce systemic toxicity (74)

Nanoparticles with Dasatinib Regulate CAR-T activation outside tumors to
minimize adverse effects (75)
scFv, Single-chain Variable Fragment; HDACi, Histone Deacetylase Inhibitors; PD-1/PD-L1, Programmed Death-1/Programmed Death Ligand-1; LNP, Lipid Nanoparticle; TGF-b,
Transforming Growth Factor Beta; IL-15, Interleukin 15; NIR, Near-Infrared Radiation; MRI, Magnetic Resonance Imaging; PET/CT, Positron Emission Tomography/Computed Tomography.
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Current advances in AI for nanotechnology and CAR-T therapy,

independently, are shown in Figure 3.
4 Synergy of code and cell: AI-
powered revolution of CAR-T cell
therapies

The integration of AI into CAR-T cell therapies has opened a

transformative avenue toward precision oncology, significantly

enhancing therapeutic outcomes through optimized patient selection,

streamlined manufacturing, CAR design optimization, and accurate

prediction of adverse effects. By manipulating advanced computational

models and deep learning algorithms, AI addresses critical limitations
Frontiers in Immunology 08
within current CAR-T cell protocols, such as inconsistent patient

responses, complex manufacturing processes, receptor optimization

challenges, and treatment-associated toxicities. This section

systematically reviews current evidence and applications

demonstrating how AI-driven solutions for CAR-T therapy
4.1 Patient selection

Accurate patient selection is essential for the successful

implementation of advanced therapies such as CAR-T cell

treatment. AI improves patient selection by integrating and

analyzing clinical data, such as demographic variables, laboratory

results, imaging biomarkers, to identify complex, non-linear
FIGURE 2

The conventional CAR-T cell manufacturing model involves a complex ex vivo process with multiple steps, including leukapheresis, T-cell selection,
genetic modification using viral vectors, expansion, and cryopreservation before infusion, leading to high costs, long production times, and logistical
challenges. The “Addition by Subtraction Model: Smart CAR-T Nanosymbionts “ model integrates AI and nanotechnology to streamline production
by reducing process steps, replacing viral vectors with non-viral alternatives (e.g., nanoparticles), and leveraging in vivo genetic modification to
enhance efficiency. AI-driven patient selection analyzes clinical, biochemical, and imaging data to predict response, while AGILE-based discovery of
nanoparticles optimizes transfection and biodistribution for improved CAR-T functionality. AI-enhanced bioreactor control using nanosensors
ensures real-time monitoring and quality assessment and technologies like COSMOS helps in label-free sorting cells, refining the final CAR-T
product. Additionally, AI-driven protein analysis optimizes CAR structure by improving peptide-CAR interactions, refining co-stimulatory domains,
and identifying new neoantigens to enhance efficacy. Post-infusion, AI assists in predicting and managing adverse effects, while nanoadjuvants
dynamically regulate CAR-T function, mitigating toxicity, preventing exhaustion, promoting epitope spreading, and strengthening the immunological
synapse (IS). This AI- and nanotechnology-driven approach enhances CAR-T therapy by improving safety, reducing costs, and increasing
accessibility, marking a significant advancement in cancer immunotherapy. Created with BioRender.com.
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TABLE 3 Artificial Intelligence types and their applications.

Type of AI Key Characteristics Example Use Cases

y work mainly with structured data containing relevant
seen cases.

• Pathology classification
• Epidemiological pattern detection
• Diagnosing failures in complex systems
• Recommendation systems

plex features from large, often unstructured data. • Bioinformatics
• Drug design
• Computer vision
• Medical imaging
• Natural language processing

atial data.Uses convolutional layers to capture local • Image classification
• Object detection/segmentation
• Facial recognition
• Medical imaging analysis
• Pattern recognition

data, with neurons maintaining a ‘memory’ through • Language modeling
• Text generation (chatbots, predictive
typing)
• Physiological time-series forecasting
• Genomic sequence analysis
• Biomedical signals interpretation
• Pharmacokinetic modeling

actions between biological entities (e.g., proteins, drugs). • Protein–protein interaction networks,
biological pathways
• Multi-omic data integration
• Drug repositioning

ding GANs, VAEs, DDPMs, and LLMs like GPT. • Synthetic patient data generation
• Augmenting rare disease datasets
• Virtual clinical trial simulations

is. It can vercomes long-range dependency limitations of
t/image generation) tasks.

• Clinical natural language processing
(e.g., radiology report summarization)
• Patient outcome prediction
• Drug–target interaction modelling

itectures, computational requirements, and suitability for specific tasks across various domains. GANs, Generative
enerative Pre-trained Transformers.
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Machine Learning (ML) (24, 91, 93) Algorithms that identify patterns in historical data to generate predictions. Th
contextual features. By learning from past examples, they generalize to new, u

Deep Learning (DL) (92, 95) Advanced ML subset using neural networks inspired by the brain. Extracts co
Requires high computational power(GPUs or TPUs)

Convolutional Neural Networks (CNNs) (98) Deep learning model inspired by the visual cortex, optimized for visual and sp
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Recurrent Neural Networks (RNNs) (100) Deep-learning architecture specifically engineered for sequential or time-series
feedback loops.
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correlations that often go unnoticed by conventional statistical

methods. By training on large volumes of data, AI models can

learn patterns that link specific patient characteristics with

therapeutic response or toxicity risk. This enables the

stratification of patients based on response or clinical risk,

supporting more personalized and evidence-based decision-

making (107, 108).

In the pivotal JULIET trial, patients with relapsed or refractory

diffuse large B-cell lymphoma (DLBCL) who received a single

infusion of Tisagenlecleucel demonstrated a 53% overall response

rate (ORR) and a 39% complete response rate (CR). However,

significant challenges persisted, evidenced by a median progression-

free survival (PFS) of only 2.9 months, with 62% of patients

ultimately experiencing disease progression or death. To address
Frontiers in Immunology 10
these limitations, secondary analyses utilized AI to enhance

predictive outcomes and patient stratification. Integrating pre-

infusion FDG PET/CT imaging with clinicopathological data, AI

models, particularly attention-gated AG-CNNs, were applied to

delineate disease foci and improve outcome predictions. The AI

analysis revealed that 52.4% of patients exhibited a negative AI

signature, and all patients in this group experienced poor outcomes.

In contrast, 47.6% had a positive AI signature, of whom 55.6%

experienced poor outcomes (109). These findings highlight AI’s

ability to classify patients into distinct prognostic groups,

particularly those at high risk of poor outcomes.

Similarly, a study on 39 adult B-cell lymphoma patients treated

with CD19 CAR-T cells used transfer learning(a deep learning

technique) to analyze 770 lymph node lesions. Pre-treatment
FIGURE 3

Schematic representation of lipid, polymer, inorganic, and hybrid hydrophobic polymeric nanoparticles (NPs) and the possible advantages of using
nanotechnology in CAR T cells (1): Tumor microenvironment remodeling: using indocyanine green nanoparticles plus infrared light irradiation to
disrupt the ECM before CAR administration, using targeted nanocarriers with in vitro transcribed mRNA to reprogram TAMs and downregulate PD-
L1, and using nanozymes and nanoparticle backpacks. (2) Improving T cell proliferation and lifespan with mesoporous silica micro-rods secreting IL-
2, APC cell-membrane mimics, using RNA-LPX to activate T cells, and NPs linking APCs to prime and activate T cells. (3) Improving follow-up and
resistance with genetic programming using mRNA nanocarriers for targeted gene expression and NBiTE generation and radiolabeled NPS to track T
cells in vivo. APC, antigen-presenting cell; ECM, extracellular matrix; IL-2, interleukin-2; NBiTEs, nano-bispecific T cell engagers; NPs, nanoparticles;
PD-L1, programmed cell death ligand-1; TAMs, tumor-associated macrophages. Created with BioRender.com. Taken with permission from: Baena JC,
Pérez LM, Toro-Pedroza A, Kitawaki T, Loukanov A. CAR T Cell Nanosymbionts: Revealing the Boundless Potential of a New Dyad. Int J Mol Sci. 2024 Dec
7;25(23):13157. doi: 10.3390/ijms252313157. PMID: 39684867; PMCID: PMC11642191.
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diagnostic CT (dCT), low-dose CT (lCT) from PET/CT, and FDG-

PET images were assessed to predict responses at both lesion and

patient levels. Lesion response was defined by size or metabolic

activity reduction. Using AlexNet, a pre-trained CNN-MLP,

researchers achieved 82% accuracy in lesion-level predictions,

outperforming the International Prognostic Index (IPI) in

sensitivity, specificity, and accuracy (110).

Beyond imaging-based response prediction, researchers have

also applied AI for response prediction using RNA sequencing data.

A study of 39 mantle cell lymphoma patient samples (30 sensitive, 9

resistant to CAR-T treatment) employed single-cell RNA

sequencing and performed differential gene expression analysis to

identify genes that were expressed differently between sensitive and

resistant samples. A total of 1,236 different genes were identify. The

differentially expressed genes were used as inputs for a MLP. The

number of neurons in the input layer corresponds to the number of

differentially expressed genes, while the output layer consists of two

neurons representing the probability of the patient’s categorical

response labels (sensitive or resistant). The model achieved an

average accuracy of 90.07% in classifying cells based on the genes

expression as sensitive or resistant to therapy (111).

Collectively, these studies highlight AI’s role in improving

patient selection and outcome prediction for CAR-T therapy

compared to traditional methods and opens new avenues for

personalized treatment strategies.
4.2 CAR-T cell extraction, isolation and
quality assessment

CAR-T cell production is complex and demands strict quality

control to ensure safety and efficacy. As the demand for cell and

gene therapies increases, automating manufacturing processes will

become critical to achieve enhanced standardization. Innovations

that eliminate intermediary steps, such as T cell separation using

magnetic beads or nanomatrices coated with anti-CD3 and anti-

CD28 antibodies (112), can substantially reduce production

timelines, resource usage, and contamination risks inherent to

manufacturing processes (113). Traditional flow cytometry (FCM)

techniques also play an essential role in assessing cell populations;

however, conventional methods involving fluorescent staining with

antibodies and chemical reagents may compromise cell function,

introduce toxicity, and reduce viability (114). Additionally, meeting

Good Manufacturing Practice (GMP) standards necessitates

specialized personnel, further increasing costs and operational

variability (115, 116). These factors hinder the efficient scale-up of

CAR-T cell production.

AI-driven sorting systems like ghost cytometry (GC),

introduced by K. Sugimoto et al., offer a label-free alternative to

antibody-based cell sorting. With this tool developed in 2020, cells

are illuminated during imaging to produce distinct optical

signatures and waveforms, reflecting various aspects of cell

morphology and behavior. ML analyzes these aspects, enabling

high-speed sorting when integrated with microfluidics. By training

ML classifier with temporal and frequency-domain features
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extracted from the specific waveforms generated by each cell,

allowing the capture of relevant morphological information, GC

accurately distinguishes live from dead cells and identifies CD3-

positive T cells in peripheral blood mononuclear cells (PBMC)

populations (117). By 2024, label-free GC (LF-GC) further

improved precision, differentiating live vs. apoptotic cells, T cells

vs. non-T cells, and detecting particulate impurities. These

advancements enhance real-time cell monitoring and quality

control in cell therapy manufacturing without the need for

surface markers or stains (118).

Other approaches like COSMOS (Computational Sorting and

Mapping of Single Cells), combines high-resolution imaging, DL,

and microfluidics for real-time, label-free cell sorting. Using

brightfield microscopy, it captures cellular images and analyzes

size, shape, and structures. Using deep learning with CNNs and

MLPs, it classifies cells by mapping their features into a

representation space, enabling accurate and real-time

identification (119). Other AI-enhanced systems like DeepCell

integrate high-content imaging with neural networks to predict

cell identity and function in real time. These platforms enable

morphological profiling without staining and support cloud-

connected analytics for remote QC, offering potential scalability

for GMP-compliant CAR-T production (120).

Computer vision plays a fundamental role in enhancing these

image-based sorting technologies by enabling the automated

extraction of detailed morphological and structural features from

high-resolution cellular images. This field within deep learning

allows for accurate, real-time classification without the need for

chemical staining, significantly improving throughput, consistency,

and viability in CAR-T cell manufacturing. This integration

accelerates decision-making and ensures greater standardization

in cell quality assessment (121).
4.3 CAR design and optimization of T cell
function

A key goal is engineering T-cell phenotypes that enhance

cytotoxicity while maintaining a stem-like state for long-term

persistence, which its traditionally made on trial-and-error

methods (110). Neural networks can expedite CAR development

by analyzing large datasets that integrate receptor structures with

therapeutic outcomes.

One study constructed a library of costimulatory domains by

recombining 13 signaling motifs, generating 2,379 unique

combinations with distinct phenotypic traits. For instance, the 4-1BB

domain enhances persistence, while CD28 boosts cytotoxicity but

reduces longevity (122). ML models analyzed these motif interactions

and generated diverse T-cell phenotypes, including separate

cytotoxicity and stemness traits not typically observed with natural

domains. This predictive approach significantly expands exploration of

receptor combinations, potentially advancing the development of

precise and potent cellular therapies (123).

Costimulatory domains also influence IS quality, directly

affecting CAR-T activation and cytotoxicity. Unlike conventional
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T cells, CAR-T cells form disorganized IS structures, initiating rapid

signaling via Lck/ZAP70 and exhibiting “serial killer” activity (17,

55, 56, 124–126). Traditional prediction methods, such as flow

cytometry and in vivo models, are resource-intensive and

inconsistent (127). In response to these challenges, researchers

developed a DL tool that improves IS analysis using clinical trial

data. They employed a segmentation neural network to accurately

delineate kappa-CAR-T cells within the images, followed by a

classification network that predicted therapeutic response based

on the morphological analysis of the immunological synapse. This

approach proved effective even in low-contrast images, accurately

distinguishing between treatment responders and non-responders

(128). Other approaches use the images obtained by optical

diffraction tomography (ODT) combined with DL, which allows

automated 3D IS tracking by segmentation and classification,

further refining CAR-T assessments (129).

Beyond IS dynamics, tonic signaling is crucial for CAR-T function.

This baseline signaling, independent of antigen engagement, must be

carefully regulated—too little weakens persistence, while excessive

signaling induces exhaustion (130–132). CAR antigen-binding

domains with positive charge patches (PCPs) promote clustering,

influencing tonic signaling (130). AI-driven tools like CAR-Toner

leverage structural data from (Protein Data Bank)PDB and

AlphaFold to optimize PCP scores, improving CAR-T expansion

and reducing exhaustion. This method was validated in camelid

single-domain nanobody (VHH)-based CARs targeting CLL1 in

acute myeloid leukemia, identifying an optimal PCP score range

(43–52, 255) that correlates with superior CAR-T function (133).
4.4 Adverse effect prediction

CAR-T therapies represent a breakthrough in cancer treatment

but carry risks such as Cytokine Release Syndrome (CRS), Immune

Effector Cell-Associated Neurotoxicity Syndrome (ICANS), and

On-Target, Off-Tumor Toxicity (OTOT).These toxicities

significantly impact clinical outcomes, requiring effective

management strategies and early detection of this complications

often rely on clinical observation, scoring and are often subjective

and time-intensive (134, 135). CRS, the most common

complication, affects 30%–100% of patients, with severe cases

(grade ≥3) occurring in 10%–30% (136, 137). It results from

excessive cytokine release and endothelial activation, leading to

increased vascular permeability, hypoperfusion, coagulopathy, and

potential multi-organ dysfunction (138–141).

To enhance early detection, ML models like M2-CRS have been

developed. This meta-analysis-informed ML approach integrates

statistical data from clinical studies with ten predictive cytokine

biomarkers, including IL-2, IL-6, IFN-g, and GM-CSF. By

leveraging a robust Knowledge Base (KB) of cytokine interactions,

M2-CRS addresses data scarcity while maintaining high

interpretability. The model, based on Support Vector Machines,

consistently achieves accuracy and precision above 90%, making it a

promising tool for CRS risk stratification and timely intervention.

To further enhance interpretability, SHapley Additive exPlanations
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(SHAP) values were applied, allowing the identification of the most

influential features within the model. This analysis revealed IFN-g
and IL-10 as the most relevant proteins contributing to CRS risk

prediction in acute myeloid leukemia and B cell Lymphomas (142).

ICANS, another significant CAR-T toxicity, affects 30%–50% of

patients, with severe cases in 12%–30% (143). It arises from cerebral

endothelial activation, blood-brain barrier disruption, and

cytokine-induced astrocyte and pericyte dysfunction, leading to

cerebral edema, thrombosis, hemolysis, and disseminated

intravascular coagulation (DIC). Logistic regression model can

analyze longitudinal patient data faster, predicting ICANS onset

and severity with accuracy of 77%. By identifying key risk factors

such as age, fever, IL-6 levels, and procalcitonin, ML can forecast

ICANS progression up to three days in advance. This predictive

capability enhances clinical decision-making, optimizing resource

allocation, hospitalization planning, and early therapeutic

interventions (144).
5 Smart CAR-T Nanosymbionts: AI-
nanotech interface empowering living
CAR-T therapeutics

The features of nanotechnology and artificial intelligence, previously

applied independently in CAR-T therapy, can be seamlessly integrated,

offering transformative potential throughout CAR-T design and

functionality. Our interface “Smart CAR-T Nanosymbionts”

represents an advanced AI-nanotechnology boundary designed to

optimize many aspects of CAR-T therapy, including manufacturing,

in vivo efficacy, and patient monitoring. This model enhances scalability

and precision in nanoparticle formulation, facilitates structural

modeling and simulations for CAR engineering, and provides real-

time monitoring capabilities. Additionally, it proactively detects and

manages adverse effects, creating a comprehensive system that

maximizes therapeutic performance
5.1 AI-Driven optimization of CAR-T cell
and nanoparticle manufacturing: from
mRNA Delivery to antigen targeting

CAR-T cell and nanoparticle production are interdependent

biotechnological processes, requiring precise control for consistency

and efficacy. Nanoparticles are essential for mRNA-based CAR

expression, facilitating gene delivery to T cells, but large-scale

manufacturing faces challenges in maintaining size, charge, and

composition. Batch variability affects cellular uptake and gene

transfer, making precise formulation critical (145, 146). Similarly,

CAR-T cell production demands careful monitoring of viability and

expansion in bioreactors.

Integrating real-time monitoring with ML can optimize

synthesis parameters, reducing variability and enhancing

scalability in both nanoparticle formulation and CAR-T

manufacturing (147, 148). Lipid nanoparticles (LNPs) are
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currently the most widely utilized carriers for mRNA delivery,

comprising ionizable lipids, phospholipids, cholesterol, and PEG-

lipids (149–151). Ionizable lipids facilitate protein expression, while

nanoparticle size and charge critically influence cellular uptake,

immune responses, and delivery efficiency; therefore is essential to

ensure consistent and effective large-scale production (152–155).

XGBoost is a gradient boosting algorithm based on decision trees,

known for its high predictive accuracy and computational efficiency

in structured data. It builds models iteratively, adding new trees to

correct previous errors while balancing accuracy and complexity

through regularization. In the context of nanoparticle production,

XGBoost has demonstrated significant effectiveness in optimizing

nanoparticle production. Sato et al. used XGBoost to predict key

parameters in the manufacturing of lipid LNPs, such as particle size,

polydispersity index (encapsulation efficiency (EE Independent

regression models were built using process variables such as total

flow rate, pH, and concentrations of lipids, ethanol, mRNA, and

buffer. The models demonstrated high accuracy, with correlation

coefficients of 0.998 for particle size, 0.990 for PdI, and 0.977 for

EE (156).

Other notable advancement is presented by Amirreza

Mottafegh et al. Introducing an autonomous platform for rapidly

synthesizing drug-loaded nanoparticles, such as liposomes and

polymeric nanoparticles. Their system features an Automated

Nanoparticle Synthesizer (ANS) using nanoprecipitation to

precisely control flow rates and reactant concentrations. It also

incorporates a ML-driven multi-objective Bayesian optimization

(MOBO) algorithm, which dynamically adjusts parameters based

on real-time feedback. This innovation reduces production time

from hours or days to just 20 minutes while ensuring high

reproducibility and quality (157). AI-driven optimization in

nanoparticle manufacturing can enhance CAR-T therapy by

boosting initial production and improving efficiency.

Our proposed AI-revolution could also extend to cell

manufacturing with smart bioreactors equipped with nanosensors

enabling precise, real-time monitoring and adaptive control of

culture conditions. These advanced systems integrate thin-film

nanosensors—such as iridium oxide for pH, platinum-based for

oxygen, and graphene-coated for glucose—capable of detecting

even subtle environmental changes (158–161). For example, a Pd/

Pt-functionalized glucose sensor on graphene ensures continuous

nutrient monitoring, preventing both starvation and overfeeding.

When paired with wireless electronics, these sensors provide

continuous feedback, allowing automated adjustments to optimize

culture conditions, reduce costs, and enhance scalability without

compromising quality (160). AI analytics further enhance this

approach by enabling the interpretation of complex, high-

dimensional nanosensor data. In the work by Herpin et al., MLP

network was employed to disentangle overlapping infrared spectral

signals from proteins, lipids, nucleotides, and peptides, enabling

real-time monitoring of dynamic molecular interactions with high

accuracy (162, 163). Similarly, Leong et al. demonstrated the use of

CNNs to analyze multiplexed Surface-Enhanced Raman Scattering
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(SERS) spectra, achieving over 86.8% classification accuracy in

distinguishing small-molecule metabolites such as ATP, glucose,

and lactate in complex biological environments. These deep

learning models transform intricate biochemical signatures into

interpretable and actionable insights, paving the way for real-time

diagnostics and precise metabolite monitoring at the point of

need (164).

In bioreactors, AI models analyze cell growth, nutrient levels,

and environmental fluctuations, dynamically adjusting conditions

to optimize expansion. For example, in the work by Grzesik et al.

regression models (including Elastic Net and Random Forest) were

trained on donor-specific data to predict T cell viability and

expansion with high accuracy (R² > 0.92, RMSE < 1.5). These

models enabled the in-silico design of optimized culture media,

which were experimentally validated and outperformed traditional

regression approaches, illustrating how machine learning can

streamline media optimization and enhance bioprocess robustness

(165, 166).

Beyond manufacturing, it’s important to look at the molecular

level to integrate innovative approaches aimed at enhancing CAR-T

therapy. Initially, it is key to optimize mRNA delivery for CAR-T

therapy success. Within the acidic environment of endosomes, lipid

cores become charged, facilitating endosomal escape—a crucial step

for successful nucleic acid delivery (167, 168). However, not all

nanoparticle formulations perform equally well. Some formulations

may accumulate within sub-endosomal membranes, impeding

efficient release and consequently reducing transfection efficiency

(169). While nanoparticles show great potential, optimizing their

performance through conventional trial-and-error methods

remains challenging (170).

DL is a powerful tool for overcoming these bottlenecks,

enabling the analysis of molecular patterns, deciphering chemical

structures, and predicting the behavior of novel substances.

Computational models can simulate cationic polymer behavior

within endosomes, facilitating the design of more efficient gene

delivery systems (171). This significantly reduces the time and cost

involved in developing new platforms. AI-driven models also allow

detailed study of ion channel physiology and genomics, supporting

the design of systems that promote enhanced endosomal and

lysosomal escape (96, 172–174). AI can also evaluate critical

factors like cargo fusion rates after internalization, optimizing

vectors for better performance (26, 175). In this context,

multimodal neural networks (which integrate heterogeneous data

sources such as chemical structure, physicochemical descriptors,

biological response profiles, and imaging data) are emerging as

advanced tools for optimizing nanoparticle design. By jointly

analyzing multiple modalities, these models offer a more holistic

understanding of how structural and functional features interact,

allowing for more precise prediction of mRNA transfection

outcomes and nanoparticle behavior across complex biological

environments (176).

A prominent example of AI’s potential in gene delivery is the

AGILE platform, developed by Yue Xu and colleagues. AGILE uses
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DL, combining combinatorial chemistry with high-throughput

screening (HTS), to rapidly discover ionizable lipids optimized for

mRNA delivery. At the core of AGILE is a multimodal deep

learning model that integrates two complementary inputs:

molecular graphs and calculated descriptors. The graph encoder,

based on graph neural networks (GNNs), encodes the structural

topology of lipid molecules, while a molecular descriptor encoder

processes physicochemical features derived from each compound.

Initially, the GNN is pre-trained in a self-supervised manner on a

vast dataset of small molecules to capture generalizable structural

patterns. It is then fine-tuned with experimental data from 1.200

synthesized lipids formulated into lipid nanoparticles (LNPs) and

assessed for mRNA transfection potency (mTP) in specific cell lines.

This refined, multimodal model predicts the mTP of new lipid

candidates, enabling the prioritization and selection of high-

performing structures for experimental validation. AGILE

identified H9 and R6, ionizable lipids optimized for mRNA

delivery to muscle cells and macrophages, respectively. H9

outperformed industry-standard lipids like ALC-0315 (used in

Pfizer’s COVID-19 vaccine) in muscle tissue, minimizing liver

off-target effects, while R6 exhibited superior transfection

efficiency in macrophages (175). By rapidly screening extensive

lipid libraries, AI-driven platforms like AGILE can optimize

ionizable lipids for T-cell mRNA transfection, improving CAR

expression, T-cell expansion, and addressing critical factors for

broader clinical adoption.

Optimizing nanoparticle formulations is essential for effective

mRNA delivery; however, identifying optimal targets for immune

recognition is equally crucial for successful CAR-T therapies.

Neoantigens—tumor-specific antigens generated by cancer cell

mutations—are fundamental to CAR-T therapy design.

Integrating AI into this process can boost neoantigen discovery,

significantly improving therapeutic precision and safety.

Traditional neoantigen prediction tools primarily assess peptide-

MHC binding strengths to identify potential epitopes. While mouse

models utilize in vivo and ex vivo methods to assess

immunogenicity, equivalent approaches for humans remain

unavailable (177, 178). Additionally, predicted neoantigens often

exceed experimentally validated immunogenic peptides,

highlighting the need for advanced computational tools capable of

accurately predicting neoantigen immunogenicity (179, 180). Here,

bioinformatics plays a key role by enabling the integration and

interpretation of multi-omic data (such as transcriptomic,

proteomic, and genomic profiles) to uncover biologically relevant

patterns. When enhanced with AI, especially deep learning, these

bioinformatic pipelines become powerful tools capable of modeling

complex immune interactions, improving the prediction of truly

immunogenic neoantigens and accelerating the design of

personalized immunotherapies (181).

A study made by Fabiana Perna et al. demonstrated

computational discovery of potential antigens by identifying acute

myeloid leukemia (AML) targets—ADGRE2, CCR1, CD70, and

LILRB2—via surface proteomics and transcriptomics. These
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antigens showed high AML cell expression with minimal presence

in normal tissues (182). AI-based methods could enhance such

processes further by rapidly analyzing data and detecting complex

protein expression patterns, significantly improving prediction

accuracy and speed (183, 184). ML algorithms like Random

Forest and XGBoost effectively predict immunogenic peptide

responses. In one study, researchers trained models on a dataset

of immunogenic and non-immunogenic peptides, analyzing

characteristics like hydrophobicity, peptide size, and amino acid

preferences. This allowed the models to predict peptide

immunogenicity efficiently, accelerating antigen discovery for

immunotherapy (184).

Similarly, the DL-based tool MHCnuggets employs Long Short-

Term Memory (LSTM) neural networks to predict peptide binding

to MHC class I and II molecules. Its adaptable architecture handles

variable-length peptides and integrates both binding affinity

measurements and mass spectrometry-derived data, substantially

improving prediction performance. The model supports both

regression, estimating continuous IC50 binding affinity values,

and classification, identifying binders versus non-binders from

immunopeptidomic (HLAp) datasets. MHCnuggets rapidly

analyzes millions of peptide-MHC interactions, identifying

immunogenic mutations across various cancer types. Although

CAR-T therapies do not directly rely on MHC molecules,

adapting similar approaches could help identify highly specific

surface antigens, enriching overall immune responses and

enhancing therapy effectiveness (185). Likewise, nanotechnology

addresses challenges in neoantigen stability and immunogenicity,

improving antigen spreading and delivery. Zhao et al. Showed

myeloperoxidase nanovaccines capable of inducing immunogenic

cell death (ICD), triggering an immune response cascade,

enhancing neoantigen delivery to lymph nodes, and promoting a

pro-inflammatory tumor microenvironment. Integrating AI tools

like MHCnuggets could optimize this process further by rapidly

prioritizing immunogenic neoantigens for personalized cancer

immunotherapy (186–188).

It’simportant to mention that, besides the discovery of

neoantigens, the quest for highly specific and effective targeting

mechanisms leads us to explore alternative binders: Nbs present a

promising alternative to traditional scFvs in CAR-T therapy. Due to

their smaller size, enhanced stability, reduced immunogenicity, and

ability to target unique epitopes, nanobody-based CAR-T cells hold

significant potential to improve cancer treatments (76). CAR-Toner

has demonstrated that nanobodies-based CARs exhibit optimal

positive charge patch (PCP) scores, correlating with improved

CAR-T cell functionality (133). Accelerating the discovery of

high-affinity nanobodies enables more precise and effective

therapeutic interventions. Artificial intelligence further enhances

this process, notably through the ML-driven platform NbAffinity,

which predicts nanobody-target binding affinity by analyzing

critical molecular interactions such as hydrogen bonding,

aromatic stacking, and ionic interactions. NbAffinity integrates

advanced algorithms—including Random Forest (RF), Rotation
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Forest (RotF), and Support Vector Machines (SVMs)—to efficiently

analyze extensive structural data. Trained on a comprehensive

dataset of 991 nanobody-ligand complexes supplemented by 444

protein-protein interaction pairs, NbAffinity achieves robust,

generalizable predictions.On the test set, SVM reached an

accuracy of 75.87%, reflecting a strong ability to classify affinitive

versus non-affinitive nanobodies based on structural interaction

features (189).

Building on the precision offered by AI-driven nanobody

discovery, it becomes clear that understanding and enhancing

dynamic interactions within the tumor microenvironment is

equally crucial for advancing CAR-T therapies. Predicting real-

time interactions between CAR-T cells, nanoparticles, and tumor

cells remains a complex challenge. Emerging technologies like

digital twins and virtual patient models are poised to improve

cancer treatment by leveraging computational methodologies,

including quantitative systems pharmacology (QSP) and

physiologically based pharmacokinetics (PBPK), to simulate

complex biological processes (190–194). Digital twins provide

real-time, personalized tumor replicas, capturing distinct

biological and physical attributes. In contrast, virtual patient

models incorporate population-level variability, offering valuable

insights into diverse subgroup responses (195). These models

integrate multi-omics data, predicting tumor dynamics, immune

interactions, and therapeutic outcomes, thus enhancing targeting

accuracy and minimizing off-target effects (196–198). Such

approaches significantly improve simulation of interactions

within the CAR-T cell-nanoparticle-tumor axis, optimizing tumor

targeting and delivery efficiency (199–202).

Integrating AI further amplifies these capabilities by analyzing

tumor morphology, metabolism, and pharmacokinetic profiles (200).

This data-driven approach refines tumor microenvironment

simulations, optimizing CAR-T cell and nanoparticle design and

administration. Platforms such as TumorScopePredict illustrate

practical applications by generating dynamic 3D tumor models and

accurately predicting therapeutic responses from pre-treatment imaging

data processed via CNNs, simulating tumor behavior, drug sensitivity,

and resistance (203, 204). The adaptive nature of AI ensures these

models remain at the forefront of cancer research, continuously evolving

with new data (205, 206).
5.2 Precision remodeling of the solid
tumor microenvironment: the role of AI-
guided nanotechnology in CAR-T cell
therapy and vivo manufacturing

One significant challenge for CAR-T therapy in solid tumors is

overcoming physical and immunosuppressive barriers within the

tumor microenvironment (TME). Unlike hematologic

malignancies, solid tumors present dense extracellular matrices

(ECM) and aberrant vasculature, impeding T-cell migration.

Additionally, immunosuppressive cells such as tumor-associated

macrophages (TAMs), regulatory T cells (Tregs), and myeloid-

derived suppressor cells (MDSCs) create a hostile environment,
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limiting T-cell effectiveness through cytokine secretion and

checkpoint inhibition (207–213).

Nanotechnology addresses these challenges by remodeling the

TME, degrading ECM, and reprogramming immunosuppressive

cells like TAMs. It also facilitates targeted delivery of supportive

cytokines (e.g., IL-12, IL-15) and immune checkpoint inhibitors

(e.g., anti-PD-1) to enhance CAR-T cell performance. Additionally,

nanoparticles address antigen escape via multi-antigen targeting

and epitope spreading (17, 64, 84, 84, 214, 215). However, clinical

translation remains limited due to poor delivery efficiency (DE),

with only ~0.67% of nanoparticles reaching the tumor, while the

remainder accumulates off-target, primarily in the liver, spleen, and

lungs (216–221). This challenge highlights the necessity for

improved nanoparticle design to enhance tumor targeting while

minimizing systemic distribution.

AI-driven approaches can significantly enhance nanoparticle

design, optimizing physicochemical properties to improve tumor

targeting and reduce systemic distribution. A DNN utilizing the

Nano-Tumor Database (534 tumor datasets, 1972 tissue datasets)

accurately predicted nanoparticle DE in tumors and key organs

based on nanoparticle properties and therapy strategies. This AI-

driven approach identified core materials as critical determinants of

DE and provided a web-based tool, Nano-AI-QSAR, facilitating

nanoparticle optimization (222). Other organ-specific studies have

used AI to optimized brain-targeted nanoparticle delivery,

identifying influential factors such as release rate and molecular

weight, enhancing nanoparticle effectiveness (223). Additionally,

AI-driven optimization of mRNA nanovaccines demonstrated

significant improvements in transfection efficiency and lymphatic

delivery, successfully activating the stimulator of interferon genes

(STING) pathway and boosting antitumor immunity in vivo (224).

Given the high dimensionality, heterogeneity, and non-linear

relationships within biological and physicochemical data, deep

learning models are increasingly favored for their capacity to

capture complex patterns and interactions that traditional models

may overlook (225).

Based on the foundation of AI-optimized nanoparticle design

for improved delivery efficiency (DE), an exciting frontier lies in

magnetically guided nanoparticles, a strategy ripe for further

refinement through AI-driven models. Certain nanoparticles

possess magnetic properties that facilitate their targeted

redirection to tumor sites—a strategy that can be refined through

AI-driven models. Yasmeen Akhtar et al. developed computational

simulations integrating factors like magnetic field strength, blood

flow, and chemical dynamics to optimize delivery efficiency (DE)

and minimize off-target accumulation. Pulsatile flow experiments

revealed that stronger magnetic fields enhance nanoparticle

retention, while pulsatile conditions improve tumor penetration

(62, 226).

Such AI-driven magnetic guidance methodologies hold

considerable promise for CAR-T therapy, especially since

magnetic control has already demonstrated potential for directing

T-cell migration. This suggests substantial opportunities to further

apply AI techniques to optimize these processes. Innovative

strategies, such as CAR-T-cell-based microrobots (M-CAR Ts),
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which incorporate immunomagnetic beads onto CAR-T cells,

facilitate precise targeting and deep tumor infiltration through

sequential magnetic-acoustic actuation, markedly increasing T-

cell accumulation and therapeutic efficacy (227). Similarly, CAR-

T cells functionalized with superparamagnetic iron oxide

nanoparticles (SPIONs) can be magnetically guided to tumor

sites, enhancing localized cytolytic activity while simultaneously

reducing systemic cytokine release and associated toxicities (228).

Integrating AI-driven predictive modeling with advanced

nanoparticle engineering can actualize the therapeutic potential of

nanotechnology for solid tumors. AI can overcome critical barriers

in CAR-T therapy by optimizing nanoparticle properties for

superior delivery efficiency, precision targeting, and incorporating

complementary approaches such as magnetic guidance to achieve

robust and targeted therapeutic outcomes.

Now that the key components for precise and efficient targeted

delivery are in place—including AI-optimized nanoparticles and

advanced TME-modulating strategies—the prospect of in vivo

CAR-T cell generation could be within reach. Current CAR T-cell

production involves leukapheresis to isolate patient T cells,

activation with cytokines and co-stimulatory molecules, genetic

modification via lentiviral or g-retroviral vectors to introduce

CAR genes, and subsequent cell expansion into therapeutic

doses. This complex and costly procedure requires specialized

facilities and trained personnel (14, 229). In contrast, the proposed

in vivo CAR T-cell production, involving direct in-patient delivery

of CAR genes and activation signals, simplifies manufacturing,

reduces costs, and enhances accessibility. Preclinical studies in

mouse models have shown comparable antitumor efficacy

between in vivo-produced and ex vivo-engineered CAR-T cells

(53, 54, 230).

Successful in vivo CAR-T cell therapy must meet several critical

criteria: high gene-editing efficiency, precise T cell targeting, the

ability to overcome solid tumor barriers, sustained functionality and

persistence of CAR-T cells, and minimal toxicity (51, 231). CAR T

cells face major barriers in the tumor microenvironment (TME),

including physical, chemical, and immunological obstacles. To

overcome these, nanoparticles are being developed not just for

drug delivery but also to modulate the TME and create a

“theranostic window” where tumors are both treatable and

detectable. These particles (10–200 nm) accumulate in tumors via

the EPR effect and can be functionalized with ligands targeting

tumor or stromal cells. They can also carry enzymes like collagenase

to degrade the ECM, enhancing T cell infiltration and nanoparticle

penetration. Additionally, they can deliver siRNA, miRNA, or

inhibitors (e.g., TGF-b, IDO, checkpoint blockers) to reprogram

the immunosuppressive TME. The Smart CAR-T Nanosymbionts

interface exemplifies this advancement, integrating functionalities

for precise targeting, enhanced persistence, and minimized toxicity

by leveraging the advanced technologies discussed in this paper.

Furthermore, AI-driven platforms such as AGILE are being

employed to optimize the design of ionizable lipids, significantly

enhancing the transfection efficiency of gene delivery systems. This

ensures robust CAR expression in T cells, further supporting the

development of effective in vivo CAR-T therapies (175).
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Additionally, AI-guided nanoparticle design improves tumor-

specific targeting, minimizing off-target accumulation, facilitating

extracellular matrix degradation for improved tumor infiltration,

delivering targeted immunomodulatory agents (e.g., IL-12, anti-PD-

1), and enabling efficient mRNA delivery into T cells (222). Advanced

targeting strategies like magnetically guided M-CAR Ts and SPION-

functionalized CAR-T cells enhance tumor localization and deep

tissue penetration as necessary (228). Maintaining CAR-T cell

functionality involves localized cytokine delivery facilitated by

nanotechnology, complemented by AI-driven optimization tools

such as CAR-Toner, which refine tonic signaling, and

computational approaches optimizing co-stimulatory domains

(CD28, 4-1BB) to balance T-cell activation and memory formation

directly within the patient (55–60). Finally, addressing potential

toxicity necessitates a comprehensive strategy incorporating precise

targeting, tumor-specific neoantigen prediction, and controlled-

release systems for cytokines and checkpoint inhibitors, collectively

ensuring both safety and therapeutic efficacy (232–234). Figure 4

represents the congregation of these technologies in the “In vivo Smart

CAR-T Nanosymbionts manufacturing”.
5.3 Clinical applications of AI-enhanced
monitoring of CAR-T: imaging, tracking,
and toxicity detection

AI-driven image analysis has the potential to revolutionize

cancer imaging by shifting from qualitative interpretation to

objective, quantitative evaluations. This transformation facilitates

earlier detection, precise lesion characterization, and improved

monitoring of disease progression and treatment responses (235).

In CAR-T therapy specifically, multimodal network models

integrating imaging and clinical data have successfully predicted

treatment outcomes (109, 110).

Iron and gold nanoparticles have emerged as powerful contrast

agents for magnetic resonance (MR), computed tomography (CT),

and positron emission tomography (PET) imaging, significantly

enhancing the resolution and visibility of both solid tumors and

hematological malignancies. These advancements not only improve

diagnostic accuracy but also reduce imaging duration and resource

utilization (236–239). When combined with AI-driven innovations

in biodistribution and targeted delivery, nanoparticles further

amplify tumor contrast, enabling precise lesion delineation and

superior assessment of therapeutic responses. CNNs trained on

nanoparticle-enhanced imaging data refine tumor characterization

and support real-time clinical decision-making, fostering

automated and precise cancer monitoring (240). Additionally, in

vivo tracking of CAR-T cell distribution with contrast agents

enhances persistence and tumor targeting. This enables real-time

response assessment and better lesion characterization (228). The

previously mentioned CNN-based approach could further improve

non-invasive CAR-T tracking methods, such as ferumoxytol-

enhanced MRI for iron oxide- or gold-labeled CAR-T cells,

optimizing the evaluation of therapy distribution and effectiveness

(20, 21, 88).
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Besides imaging monitoring, tracking CAR-T cells in

peripheral blood is critical for assessing therapy efficacy and

ensuring patient safety, particularly in blood malignancies like

acute leukemia (241). Traditional identification methods are

limited due to the similarities between CAR-T cells and other

immune cells. However, the RCMNet model, which integrates

CNN-MLP trained on Peripheral Blood Cells (PBC) datasets,

achieves a top-1 accuracy of 99.63%, revolutionizing CAR-T cell

identification in blood samples. This approach alleviates manual

evaluation burdens, provides real-time automated analysis, and

markedly improves diagnostic accuracy (242). Transformers,

originally developed for natural language processing, rely on

self-attention mechanisms that allow the model to weigh the

importance of different input features relative to one another

(243). In this context, they enhance the model’s ability to focus on

subtle, context-dependent cellular traits that differentiate CAR-T

cells from other immune populations.

While monitoring therapeutic responses is crucial, it is equally

vital to detect adverse effects such as cytokine release syndrome

(CRS) and immune effector cell-associated neurotoxicity syndrome

(ICANS) at an early stage. Nanoelectronics biosensors, such as

silicon nanowire field-effect transistors (SiNW FETs), provide

highly sensitive, real-time detection capabilities that surpass
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traditional methods like ELISA (244, 245). These nanosensors

enable precise tracking of cytokines and toxicity markers,

facilitating rapid clinical intervention—all of which can be further

optimized and enhanced through AI-driven models (246). The

detailed data generated by these biosensors can strengthen AI-

driven predictive models, such as M2-CRS, facilitating early toxicity

predictions and personalized treatment management. Additionally,

machine learning algorithms, particularly Random Forest (RF), can

integrate nanoparticle physicochemical properties—such as size,

shape, surface coating, and zeta potential—along with exposure

conditions like dose, duration, and tissue type to accurately predict

nanoparticle-induced toxicity. Such predictive models improve

safety assessments, enabling proactive risk management and

tailored therapeutic adjustments (247).

6 Technological convergence in CAR-
T therapies: challenges, limitations,
and future directions

The convergence of CAR-T therapy with AI and nanotechnology

marks a turning point in personalized oncology. These technologies

offer complementary advantages: AI enables data-driven prediction
FIGURE 4

Illustrative schematic of the In Vivo Smart CAR-T Manufacturing, highlighting four key phases in targeted cancer therapy: 1. Infusion: Administration
of smart lipid nanoparticles optimized with artificial intelligence models such as XGBoost for improved scalability, AGILE for enhanced transfection
efficiency, and Nano-AI-QSAR to optimize delivery and gene expression in target organs. 2. In vivo manufacturing: Direct conversion of T cells into
CAR-T cells within the patient, eliminating the need for ex vivo manipulation, reducing production time and costs. 3. CAR-T enhancement:
Implementation of AI models to improve CAR-T cell persistence and cytotoxicity through strategies like CAR-Toner to prevent exhaustion, and AI-
improved IS + costimulatory domain to enhance cytotoxicity and memory formation. 3. Smart nano-adjuvants: Finally, independent strategies for
solid tumors can further be improve with AI(like target delivery) to act in key factors such as; Modulation of the tumor microenvironment using TGF-
b inhibitors and IL-15 nanogels, target monitoring and toxicity control with magnetic nanoparticles and Dasatinib, and enhanced CAR-T response
and persistence with PD-L1 inhibitors. Created with: Biorender.com. Abbreviations:.
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and adaptation, while nanotechnology facilitates controlled delivery

and improved CAR-T functionality. Yet, this synergy introduces

multilayered challenges that span scientific, ethical, and

regulatory domains.

At the scientific frontier, multiple ML and DL models have been

integrated across CAR-T development stages, from receptor design

to toxicity prediction. CNNs support high-resolution classification

and three-dimensional immunological synapse analysis (119, 129);

support vector machines (e.g., M2-CRS) can predict cytokine

release syndrome (142); MLPs aid signal separation (162); and

hybrid models like RCMNet blend CNNs with transformers to

identify CAR-T cells in blood samples (242). Platforms such as

AGILE combine GNNs and MLPs for lipid discovery in mRNA

transfection (175), while LSTM models like MHCnuggets predict

peptide–MHC binding (185). However, none of these approaches

have yet reached a level of technological maturity suitable for

commercial implementation (TRL ≤ 5), and at the time of writing

this paper, there is no clinical trials are on the way. A summary of

ML/DL models applied to CAR-T therapy can be found at Table 4.

A central concern is data integrity. Biased or incomplete

datasets can skew AI outputs, introducing disparities in

therapeutic prediction or patient stratification. Algorithmic bias—

driven by unbalanced training data or non-generalizable

architectures—threatens equity across population subgroups

(248). Moreover, the probabilistic nature of AI decisions

challenges established paradigms of clinical accountability and

informed consent. Interpretability tools have emerged to audit

these models (93), and explainable AI is gaining regulatory

traction (249), yet the gap between computational abstraction and

clinical utility remains.

To improve system robustness, data preprocessing, outlier

detection via unsupervised learning, and synthetic data generation

(e.g., augmentation) are actively explored. Still, generalization in

low-data settings remains a core limitation. This demands

interoperable clinical databases and the use of synthetic sampling

or generative AI to enrich training sets (250). Standardization of

model documentation and traceability is essential to harmonize

with emerging governance standards and enable consistent model

retraining in non-stationary biological environments.

At the nanoscale, delivery systems unlock new routes for CAR-

T engineering. Nanoparticle platforms enable the potential for in

vivo generation of CAR-T cells, bypassing the need for centralized

manufacturing. However, unresolved concerns around long-term

biocompatibility, off-target immune effects, and pharmacokinetic

variability persist. Efficiency of delivery to solid tumors remains a

major bottleneck, necessitating novel chemistries, adaptive

functionalization, and ligand-directed targeting to increase

specificity while minimizing systemic exposure (251).

The fusion of these technologies disrupts traditional regulatory

classification. CAR-T therapies enhanced by nanodevices and AI

systems defy existing frameworks, which were not designed to

evaluate dynamic, self-learning systems or hybrid constructs that

combine genetically modified cells, synthetic vectors, and

algorithmic decision layers. While they may theoretically qualify
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as combination products, the lack of harmonized guidance across

nanoparticle characterization, AI validation, and cell-processing

protocols hinders regulatory review. Existing pathways cannot

adjudicate how these components interact to affect dosing,

targeting, and real-time decision-making.

Compounding this, there is a dearth of standardized protocols

for validating AI-governed nanoparticle formulations under

physiological stress, particularly in immunologically diverse

populations. The absence of nano-toxicological assays capable of

modeling long-term safety profiles further constrains clinical

translation. In this context, regulatory frameworks established

for mRNA vaccines—already approved and deployed in humans

—could serve as a foundational reference to streamline the

evaluation of lipid-based delivery systems and accelerate safe

clinical adoption. Without robust retraining strategies, AI

systems are prone to model drift and loss of predictive

performance/failure modes that could compromise patient safety

in real-world settings.

Ethical and translational risks are also something to address. As

algorithms increasingly guide critical interventions, from patient

selection to adaptive dosing, they raise concerns about equity,

transparency, and liability. The opacity of high-dimensional

models challenges informed consent, while layered technological

mediation complicates assignment of clinical responsibility.

Regulatory bodies currently lack the tools to evaluate how these

algorithmic and biological elements co-evolve, necessitating novel

oversight structures that ensure longitudinal monitoring,

auditability, and preservation of clinician agency.

Moving forward, three strategic priorities must be addressed to

realize the promise of Smart CAR-T Nanosymbionts:

First, AI tools must be developed for generalization in data-

scarce, heterogeneous clinical environments. Centralized,

standardized repositories and controlled access to interoperable

datasets are foundational. Data augmentation techniques and

generative models can mitigate sampling limitations (250), but

interpretability remains vital. All outputs must be benchmarked

against clinical criteria to ensure trust and biomedical

validity (252).

Second, nanoparticle platforms require enhanced specificity

and safety. Efficient tumor targeting, high-fidelity gene

transfection, and reduced immunogenicity are prerequisites for in

vivo CAR-T generation. These aspects require mechanistic insight

into how nanoparticle properties influence cell activation,

exhaustion, and biodistribution. Standardized assays correlating

particle chemistry with toxicity and organ accumulation

are essential.

Third, interdisciplinary integration is paramount. Teams

spanning AI, nanomedicine, immunology, and clinical oncology

must co-develop scalable protocols and shared data infrastructures.

Regulatory harmonization should evolve in parallel to support

transparency, patient safety, and equitable access as these

technologies transition to clinical settings (253, 254).

In summary, the integration of AI and nanotechnology into

CAR-T therapy represents a technological opportunity. Despite
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this, only through ethical, scientifically rigorous, and regulatory-

aware frameworks can these multilayered platforms move from

conceptual models to safe, effective, and accesible next-

generation therapies.
7 Conclusions

CAR-T therapy has revolutionized modern oncology, but its

large-scale application faces significant challenges, including

complex manufacturing processes, high costs, limited efficacy in

solid tumors, and potentially severe toxicities. Emerging

technologies such as nanotechnology and AI offer innovative tools

to address these limitations, greatly enhancing therapeutic precision

and scalability. While both have demonstrated individual promise,

their full potential can only be realized through strategic and

synergistic integration. The Smart CAR-T Nanosymbionts

framework represents a paradigm shift in this direction. It is

designed to converge the capabilities of AI and nanotechnology

into a unified therapeutic interface that enhances every stage of

CAR-T therapy, from design and engineering of CAR constructs to

their delivery, in vivo behavior, and monitoring. By incorporating AI-

driven modeling and optimization, this approach enables dynamic
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adjustments to manufacturing conditions, personalized antigen

targeting, and real-time monitoring of patient-specific responses.

Simultaneously, the use of nanotechnology allows for non-viral

gene delivery, tumor-specific modulation of the microenvironment,

and spatially controlled release of cytokines and inhibitors that

enhance CAR-T cell persistence and reduce immune-related

toxicities. Moreover, the Smart CAR-T Nanosymbionts challenge

boundaries by introducing the possibility of in vivo CAR-T

generation. This vision leverages AI-optimized lipid nanoparticles

to deliver CAR constructs directly into patient T cells, bypassing the

need for ex vivomanipulation. Such a system could radically simplify

production, reduce timelines and costs, and expand access to cell-

based therapies, particularly in low-resource settings.

As a complementary conceptual tool, our group has previously

developed the Addition by Subtraction model, an operational

philosophy aimed at amplifying therapeutic outcomes by

systematically eliminating inefficiencies, redundancies, and

sources of toxicity across biological and technological layers

(17). Although originally proposed in a different context, this

model aligns with the foundational goals of Smart CAR-T

Nanosymbionts and serves as a guiding principle for integrating

innovation in a way that is both scalable and clinically actionable

(Figure 5; Table 5).
TABLE 4 Summary of ML/DL models applied to CAR-T therapy: applications, and TRL.

Model Type Application TRL Reference

ML Patient selection and response prediction (FDG PET/CT
in lymphoma)

5 (109)

ML - SVM M2-CRS model for predicting cytokine release syndrome 4 (142)

ML - XGBoost LNP optimization for size, PdI, and EE 4 (157)

ML & DL - Elastic Net and
Random Forest

T cell viability 5 (165, 166)

ML - Random Forest/RotF/SVM Affinity prediction in nanobodies (NbAffinity) 3 (189)

DL - AlexNet PET/CT image analysis for response prediction in lymphoma 4 (110)

DL - CNN Cell classification and 3D analysis of the immunological synapse 4 (119, 129)

DL – Segmentation + Classification Immunological synapse analysis 3 (128)

DL - CAR-Toner PCP optimization in CARs (structure-function) 3 (133)

DL - MLP Cellular signal separation 4 (162)

DL - AGILE (GNN + MLP) Ionizable lipid discovery for mRNA transfection 4 (175)

DL - LSTM (MHCnuggets) Peptide-MHC binding prediction 4 (185)

DL - RCMNet (CNN + Transformer) Identification of CAR-T cells in peripheral blood 4 (242)

DL Classification of sensitive or resistant cells using transcriptomics 4 (111)

ML – Logistic Regression ICANS prediction 3 (144)

ML - Random Forest, XGBoost Peptide immunogenicity prediction 3 (184)
Technology Readiness Levels (TRL) are a type of measurement system used to assess the maturity level of a particular technology.
1–3: Basic research or proof of concept.
4–6: Validation in laboratory or simulated environment.
7–9: Implementation in real-world or commercial environment.
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Ultimately, the integration of AI, nanotechnology, and CAR-T

therapy holds the promise of transforming cancer care by enabling

truly adaptive, intelligent, and personalized treatments. However,

realizing this vision requires not only scientific advancement, but

also regulatory evolution, ethical vigilance, and interdisciplinary

collaboration. Future research must prioritize the development of

robust translational pipelines, real-time monitoring systems, and

equitable frameworks to ensure that these next-generation
Frontiers in Immunology 20
therapies are safe, accessible, and impactful across global

health systems.

To clearly illustrate the transformative potential of this integrated

approach, we present a comparative framework between conventional

CAR-T therapy and the Smart CAR-T Nanosymbionts model. This

side-by-side analysis highlights how the convergence of artificial

intelligence and nanotechnology can address critical limitations in

manufacturing, safety, cost, and clinical scalability.
FIGURE 5

Graphical Abstract of Addition by Subtraction: Smart CART Nanosymbionts: AI serves as the central integrative engine, leveraging machine learning
and deep learning algorithms to drive decision-making, pattern recognition, and predictive modeling. This AI-driven framework enhances the design,
function and specificity of nanoparticles—such as lipid and -based nanoparticles—and improves CAR-T cell therapy by optimizing patient selection,
target specificity, response prediction, and toxicity control. Together, these elements enable the development of intelligent, adaptive, and
personalized cancer treatments.
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TABLE 5 Comparison between conventional CAR-T therapy and smart CAR-T nanosymbionts.

Feature Conventional CAR-T Therapy Smart CAR-T Nanosymbionts (Proposed)

s (e.g., AGILE, XGBoost) for better transfection efficiency

anoparticles and predictive algorithms for tumor localization

ade to validate time reduction with this approach, although, again Therapy initiation time would benefit from in vivo strategies, and
es and automating platforms.

ce the cost of therapy by 50%. Nanoparticles would support this model by having higher scalability and lower cost than viral vectors

controlled-release platforms, AI-optimized stimulation domains boosting cytotoxicity and improve longevity

vants, AI-enhanced targeting, magnetic guidance

aging, transcriptomics, CNN, MLP models) with higher response-prediction that standard models

(e.g., MHCnuggets, NbAffinity)

RNA via LNPs): enabling transient, non-integrative gene expression. This allows for multiple infusions to dynamically adjust gene
t treatment.

prediction and nanoparticle-mediated modulation (e.g., Dasatinib, PD-L1 inhibitors)

ano–cell therapy; regulatory precedents lacking
ndard regulatory process.
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