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Background: Regulatory B cells (Breg) critically orchestrate inflammatory 
resolution and tissue repair. This study investigates the therapeutic potential of 
transforming growth factor (TGF)-b1-producing Bregs in ventilator-induced lung 
injury (VILI), leveraging biomimetic nanotechnology to overcome limitations of 
conventional cytokine delivery. 

Methods: We engineered macrophage-derived microvesicle-encapsulated 
nanoparticles (TMNP) for pH-responsive, spatiotemporally controlled TGF-b1 
release. Therapeutic efficacy was evaluated in a murine VILI model through 
longitudinal immunophenotyping, histopathology, and cytokine profiling at post-
ventilation days 1 and 10 (PV1d, PV10d). 

Results: VILI triggered biphasic pulmonary Breg expansion (PV1d: 7.83-fold vs. 
controls, P < 0.001; PV10d resurgence) coinciding with peak injury. TMNP 
administration induced sustained TGF-b1 bioavailability (PV10d: 3.6-fold vs. free
cytokine, P < 0.001), attenuating histopathology (22.5% reduction in alveolar 
hemorrhage, P < 0.01) and suppressing IL-6/TNF-a (P < 0.01). Treatment

concomitantly expanded Breg populations and modulated T cell subset. 

Conclusion: TMNP orchestrates Breg-mediated immunoresolution through 
precision cytokine delivery and lymphocyte modulation, enabling dual-phase 
protection against ventilation-associated immunopathology. This paradigm 
represents a transformative approach for acute respiratory distress management. 
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immunoresolution, nanoparticles 
01 frontiersin.org 

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1635178/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1635178/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1635178/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1635178/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1635178/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1635178&domain=pdf&date_stamp=2025-07-10
mailto:panlinghui@gxmu.edu.cn
https://doi.org/10.3389/fimmu.2025.1635178
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1635178
https://www.frontiersin.org/journals/immunology


Jing et al. 10.3389/fimmu.2025.1635178 
GRAPHICAL ABSTRACT 
1 Introduction 

Acute lung injury (ALI) and its severe manifestation, acute 
respiratory distress syndrome (ARDS), constitute life-threatening 
conditions exacerbated by global health crises like COVID-19 (1, 2). 
Mechanical ventilation, while essential for ARDS management, 
paradoxically induces ventilator-induced lung injury (VILI) 
through synergistic biomechanical forces and inflammatory 
Abbreviations: AEC-II, type II alveolar epithelial cells; ALI, acute lung injury; 

APC, allophycocyanin; ARDS, acute respiratory distress syndrome; BALF, 

bronchoalveolar lavage fluid; BB515, Brilliant™ Blue 515; Breg, regulatory B 

cells; CD, cluster of differentiation; CX3CR1, C-X3-C Motif Chemokine Receptor 

1; DLC, drug loading capacity; DAPI, 4’, 6-diamidino-2-phenylindole; DMEM, 

dulbecco’s modified eagle medium; EE, encapsulation efficiency; ELISA, enzyme 

linked immunosorbent assay; EOV, end of ventilation; FBS, fetal bovine serum; 

FITC, fluorescein isothiocyanate; HTV, high tidal volume; HEPES, 4-(2-

hydroxyerhyl) piperazine-1-erhanesulfonic acid; IL, interleukin; MMVs, 

macrophage-derived microvesicles; MNP, MMVs membrane-coated 

nanoparticles; NTV, normal tidal volume; PBS, phosphate buffer saline; PE, P-

phycoerythrin; PE/Cy7, PE-Cyanine7; PV1d, post-ventilation one day; PV10d, 

post-ventilation ten days; rTGF-b1, recombinant mouse TGF-b1; TEM, 

transmission electron microscope; TGF-b1, transforming growth factor-b1; 

TMNP, MNP to package TGF-b1; TNF, tumor necrosis factor; Treg, regulatory 

T cells; VILI, ventilator-induced lung injury. 
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cascades that disrupt alveolar-capillary integrity (3, 4). Despite 
lung-protective ventilation strategies, the immunological 
mechanisms governing injury resolution remain poorly defined, 
impeding targeted therapeutic development. 

Regulatory B cells (Bregs) represent a pivotal immunomodulatory 
axis that coordinates inflammatory resolution via cytokine secretion 
(e.g., transforming growth factor [TGF]-b1) and lymphocyte 
modulation (5, 6). Although Bregs attenuate inflammation in 
autoimmune and infectious contexts (7–9), their spatiotemporal 
dynamics and TGF-b1-mediated functions in VILI remain 
uncharacterized. This knowledge gap persists despite TGF-b1’s 
documented role in mitigating ALI and directing macrophage 
polarization toward reparative phenotypes (10–12). Crucially, TGF-
b1’s therapeutic potential is limited by its transient bioavailability (t1/ 
2 ≈ 2 min  in vivo) (13, 14), necessitating innovative delivery platforms. 

To address these critical limitations, we engineered 
macrophage-derived microvesicles (MMVs)-camouflaged 
nanoparticles (TMNP) encapsulating TGF-b1-loaded Carboxy-
terminated poly(lactic-co-glycolic acid) (PLGA) cores—a 
biomimetic platform leveraging MMVs’ inherent macrophage 
tropism for targeted alveolar delivery, pH-responsive release 
kinetics to overcome cytokine instability, and synergistic 
immunomodulatory properties. Our study specifically interrogates 
the unexplored role of TGF-b1+Bregs in VILI pathogenesis, 
TMNP’s capacity  to sustain  TGF-b1 bioavailability, and 
mechanisms underlying Breg-mediated immunoresolution. 
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https://doi.org/10.3389/fimmu.2025.1635178
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jing et al. 10.3389/fimmu.2025.1635178 
2 Materials and methods 

2.1 Reagents and chemicals 

PLGA (50:50 lactide:glycolide ratio, MW 38-54 kDa, LACTEL 
B6013-2) served as the polymer matrix. Recombinant mouse TGF-
b1 (BioLegend 763102), cytochalasin B (Abcam ab143482), and 
uranyl acetate (Sigma-Aldrich 73943) were utilized. All solvents 
including chloroform (HPLC grade, Sigma-Aldrich 650498) and 
dimethyl sulfoxide (DMSO, ThermoFisher D12345) met 
analytical standards. 
2.2 Animal subjects 

Male C57BL/6 mice (4–6 weeks, 25 ± 5 g) from Guangxi 
Medical University’s Animal Center (Nanning, China) were 
maintained under specific pathogen-free conditions. All 
procedures complied with China’s Laboratory Animal Welfare 
Guidelines under IACUC protocolKY-2022-288. 
 

2.3 MMVs isolation 

RAW 264.7 macrophages (Cell Bank of Chinese Academy of 
Sciences) were cultured in advanced Dulbecco’s Modified Eagle 
Medium (DMEM; Gibco, 12491015) supplemented with 10% fetal 
bovine serum (Gibco, 10270106) and 1% penicillin/streptomycin 
(Gibco, 15140122). MMVs were generated via cytochalasin B-induced 
membrane blebbing (15): cells were treated with 10 mg/ml cytochalasin 
B in serum-free DMEM for 1 h at 37°C. Following membrane 
detachment, suspensions underwent sequential centrifugation (5,000 
×g, 10 min; 17,000 ×g, 15 min) with ethylenediaminetetraacetic acid 
-containing MilliQ washes. Microvesicle protein content was quantified 
via BCA assay (ThermoFisher, 23227) and validated through CD9/ 
CD63 immunoblotting. 
2.4 Nanoparticle synthesis 

2.4.1 PLGA core fabrication 
Carboxy-terminated PLGA dissolved in chloroform (20 mg/ml) 

was emulsified with 2.5 mg recombinant mouse TGF-b1using a 
water-in-oil-in-water double emulsion technique (15). Primary 
emulsions were sonicated (BILON-1000Y probe sonicator, 60% 
amplitude, 10-s pulses on ice bath) and introduced into 2% 
polyvinyl alcohol solution. After 3 h solvent evaporation under 
mechanical stirring (500 rpm), nanoparticles were collected by 
centrifugation (15,000 ×g, 30 min, 4°C) and washed thrice with 
MilliQ water. 

2.4.2 MMVs coating 
Lyophilized PLGA nanoparticles were combined with MMVs at 

1:10 w/w protein:PLGA ratio. Sonication (GuTel GT-100 water 
bath, 40 kHz, 3 min)  generated  TGF-b1-loaded MMV-
Frontiers in Immunology 03 
nanoparticles (TMNP), which underwent lyophilization (Christ 
Alpha 2-4 LSCplus, -50°C, 0.05 mBar, and 48 h). MMV-

nanoparticles without TGF-b1 loading (MNP) was defined 
as control. 
2.5 Nanoparticle characterization 

Morphological analysis employed transmission electron 
microscopy (Hitachi HT7800) with uranyl acetate negative 
staining. Hydrodynamic diameter and zeta potential were 
determined via dynamic light scattering (Malvern Zetasizer) and 
nanoparticle tracking analysis (ZetaView®), respectively. 
Encapsulation efficiency (89.7% ± 2.4%) was calculated as 
(encapsulated TGF-b1/total TGF-b1) × 100 after DMSO 
dissolution, while drug-loading capacity (4.31% ± 0.18%) 
represented (encapsulated TGF-b1/TMNP mass) × 100, 
both quantified by enzyme linked immunosorbent assay 
(ELISA).Stability assessments monitored hydrodynamic diameter 
at 4°C over 7 days and turbidity at 560 nm. Release kinetics in 0.5% 
Tween-80/PBS (pH7.4) at 37°C demonstrated sustained release >96 
h via ELISA quantification. 
2.6 VILI protocol 

Anesthetized mice (tribromoethanol 20 mg/kg i.p.) underwent 
orotracheal intubation and mechanical ventilation (SAR-100) 
under high tidal volume (HTV: 20 mL/kg) or normal tidal

volume (NTV: 7 mL/kg) for 4 h. Cohorts (n = 4/group) were 
euthanized at post-ventilation day 1 (PV1d) and day 10 (PV10d). 
Sham controls received intubation without ventilation. 
Bronchoalveolar lavage fluid (BALF) from left lungs, serum, and 
lung tissue were stored at -80 ˚C; right upper/middle lobes 
underwent frozen sectioning and TEM processing. 
2.7 Therapeutic administration 

TMNP (0.5 mg/kg), MNP (0.5 mg/kg), or free recombinant 
TGF-b1 (40 mg/kg) (16, 17) in 50  mL saline were administered 
intravenously pre-ventilation. Vehicle controls received 
saline alone. 
2.8 Pathological assessments 

2.8.1 Edema quantification 
Lung wet/dry weight ratios were calculated after 48 h 

desiccation at 60°C. 

2.8.2 Inflammation profiling 
BALF protein (BCA assay), cellular composition (automated 

cytometry), and cytokine levels (IL-1b, IL-6, TNF-a, TGF-b1; 
ELISA) were analyzed. 
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FIGURE 1 

Temporal dynamics of TGF-b1-producing bregs in ventilator-induced lung injury resolution experimental timeline (A) and flow cytometric 
quantification of pulmonary (B) and splenic (C) TGF-b1+ Breg (pBreg) frequencies following high tidal volume (HTV) or normal tidal volume 
(NTV) ventilation. Representative flow profiles (D) and confocal microscopy (E) demonstrate enhanced pulmonary Breg infiltration in HTV 
mice at post-ventilation day 1 (scale: 10 mm). Data represent mean ± SEM (n = 4 mice/group). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 
vs. NTV controls. 
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2.8.3 Histopathological evaluation 
H&E-stained sections were scored for alveolar hemorrhage, 

neutrophil infiltration, and hyaline membrane using established criteria 
(10, 11). Ultrastructural analysis employed TEM (Hitachi HT7800). 
2.9 Immunophenotyping 

Lung/spleen single-cell suspensions were prepared via 
enzymatic digestion (0.1 mg/ml Dispase II, 2000 U/ml DNase I, 
Frontiers in Immunology 05 
0.2% collagenase). After Fc receptor blocked (TruStain FcX™ 

PLUS), cells were stained with fluorochrome-conjugated 
antibodies (Biolegend/BD Biosciences: CD5-PE, CD19-APC, 
CD4-FITC, CD8a-APC, CD44-PE/Cy7, LAP-PE) and analyzed by 
flow cytometry (CytoFLEX LX, Beckman Coulter). 

2.10 Multiplex immunofluorescence 

Frozen sections underwent fixation (4% paraformaldehyde), 
permeabilization (0.2% Triton X-100), and blocking (3% BSA/3% 
FIGURE 2 

Biphasic pathophysiological progression of ventilator-induced lung injury. (A) Histopathological assessment showing alveolar hemorrhage and neutrophil 
infiltration in &E-stained sections (A, scale: 100 mm) and ultrastructural alveolar epithelial cell damage by TEM (scale: 5 mm). Quantitative metrics include 
histopathology scores, lung wet/dry ratios, bronchoalveolar lavage fluid protein/cells, and cytokine levels (C–J) during injury resolution. Data represent 
mean ± SEM; n = 4.  *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs. CON. NTV1d/NTV10d: NTV recovery at 1/10 days; HTV1d/HTV10d: HTV recovery 
at 1/10 days. Quantitative metrics include histopathology scores, lung wet/dry ratios, bronchoalveolar lavage fluid protein/cell content, and cytokine 
levels (C–J) during injury resolution. Data represent mean ± SEM (n = 4 mice/group). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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goat serum). Sequential incubations with primary antibodies (anti-
CD19, LAP, CD44) and Alexa Fluor-conjugated secondaries 
preceded DAPI nuclear counterstaining. Imaging utilized a Zeiss 
LSM980 Airyscan confocal microscope. 
2.11 Statistical analysis 

Bioinformatic analyses employed DAVID (v6.8) for pathway 
enrichment and STRING (v11.5) for protein interactions 
(combined score >0.4). Following normality assessment (Shapiro-
Wilk), two-tailed t-test (two groups), one-way ANOVA with 
Tukey’s post-hoc (multi-group), or two-way ANOVA with 
Bonferroni correction (time courses) were applied. Data represent 
mean ± SEM; P<0.05 defined statistical significance. 
Frontiers in Immunology 06
3 Results 

3.1 Spatiotemporal dynamics of 
CD19highCD44highTGF-b1+ Breg in VILI 
resolution 

High-throughput immunophenotyping revealed selective 
upregulation of tissue migration receptors (CD44, CX3CR1) 
(18, 19) on splenic Bregs following 4-hour HTV ventilation, while 
canonical B cell markers remained unchanged (Supplementary 
Figure S1A). Protein interaction networks demonstrated direct 
associations between CD19, CD44, and TGF-b1 (Supplementary 
Figure S1B), with pathway enrichment implicating B cell receptor 
signaling and epithelial-mesenchymal transition regulation 
(Supplementary Figures S1C, D). 
FIGURE 3 

Ventilation-induced remodeling of pulmonary T cell subsets. Flow cytometric profiles showing pulmonary (A) and splenic (B) T cell 
immunophenotypes. Quantitative frequencies of CD4+, CD8a+, and double-positive (CD4+CD8a+) T cells in lung (C) and spleen (D) following 
mechanical ventilation. Data represent mean ± SEM (n = 4 mice/group). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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Longitudinal analysis identified a two-phase Breg expansion in 
lungs: an acute peak at PV1d; 7.83-fold vs. NTV controls: P<0.001) 
followed by secondary resurgence at PV10d (Figures 1B, D). 
Conversely, splenic Breg peaked at end-of ventilation (EOV) 
before declining (Figures 1C, D). Confocal microscopy confirmed 
enhanced Breg infiltration in HTV-PV1d lungs (Figure 1E), 
corroborated by flow cytometry (Supplementary Figure S2). 
3.2 Time-resolved pathological progression 
of VILI 

HTV-PV1d lungs exhibited hallmark histopathology—alveolar 
hemorrhage, neutrophil infiltration, and hyaline membranes— 
alongside ultrastructural damage to alveolar type II epithelial cells 
(mitochondrial swelling, lamellar body degeneration; Figures 2A, B). 
Frontiers in Immunology 07 
Quantitative metrics peaked at PV1d: lung wet/dry ratio increased 
1.98-fold (P < 0.001 vs. sham), BALF protein rose 38% (P < 0.01), and 
proinflammatory cytokines (IL-1b, IL-6/, TNF-a) surged >4-fold 
(P<0.001, Figures 2C–J). Resolution occurred by PV10d despite 
persistent TGF-b1 elevation. 
3.3 VILI-associated lymphocyte remodeling 

High-resolution immunophenotyping revealed dynamic T 
cell redistribution in VILI progression (Figures 3A, B). At 
PV1d, HTV-exposed lungs exhibited significant expansion of 
both CD4+ (4.3-fold vs CON, P < 0.0001) and CD8a+ T cells 
(6.1-fold vs NTV, P < 0.0001), whereas pulmonary CD4+/CD8a+ 
ratios were elevated in NTV1d versus CON and HTV1d groups 
(P < 0.05).  
FIGURE 4 

Therapeutic Efficacy of TGF-b1-loaded nanoparticles in Acute lung injury. Administration schema (A) and histological assessment (B, scale: 100 mm) 
showing TMNP-mediated protection. Quantitative outcomes include histopathology scores, ultrastructure preservation (TEM scale: 1 mm), edema 
reduction, and cytokine modulation (C–K). Data represent mean ± SEM (n = 4 mice/group). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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Longitudinal analysis demonstrated progressive accumulation 
of pulmonary CD4+CD8a+ double-positive T cells (DPTCs), with 
HTV10d showing 9.6-fold increase over CON (P < 0.01; Figure 3C). 
Conversely, splenic T cell subsets at PV1d showed no intergroup 
differences. Notably, both NTV1d and HTV1d cohorts displayed 
reduced splenic DPTC frequencies (≤0.4-fold vs CON, P < 0.01), 
while NTV1d maintained higher CD4+/CD8a+ ratios than CON 
and HTV1d (P < 0.01). 

By  PV10d,  NTV  mice  exhibited  significant  splenic  
lymphopenia: CD4+ and CD8a+ T cell frequencies decreased 48% 
and 37% versus CON (P < 0.01), respectively, with concomitant 
reduction in CD4+/CD8a+ ratios (Figure 3D). 
3.4 Enhanced therapeutic efficacy of TMNP 

TMNP demonstrated superior pharmacokinetics: sustained 
TGF-b1 release (35.8% EE) and colloidal stability (zeta potential: 
Frontiers in Immunology 08
-26.7 mV; Supplementary Figures S3F–H). In HTV mice, TMNP 
administration significantly attenuated acute injury at PV1d 
(histopathology score reduced 22.5% vs. recombinant TGF-b1; 
P<0.01; Figures 4B–F) while maintaining 3.6-fold higher 
pulmonary TGF-b1 levels at PV10d (P<0.001vs. controls;

Figure 4K), enabling prolonged immunomodulation. 
3.5 TMNP reprograms lymphocyte 
crosstalk 

Single-dose TMNP induced early pulmonary Breg expansion 
(PV1d: 2.66-fold vs. vehicle; P<0.001; Figures 5A, C) and late-phase 
splenic Breg polarization (PV10d: 59.7% increase vs. recombinant 
TGF-b1; P<0.01; Figures 5B, C). This coordinated response drove 
dynamic T cell remodeling: TMNP suppressed pulmonary CD4+ T 
cells (PV10d: 5.75 fold reduction vs. MNP; P<0.05) while expanding 
CD8a+ and double-positive T cells (DPTC; Figures 6A–D). 
FIGURE 5 

Spatiotemporal regulation of breg populations by nanoparticle therapy. Flow cytometric quantification demonstrating pulmonary (A) and splenic 
(B) Breg expansion following TMNP administration. Representative gating profiles illustrate subset dynamics (C). Data represent mean ± SEM (n = 4  
mice/group). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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Multivariate analysis revealed splenic Breg-CD4+CD8a+ T cell 
antagonism (r=0.559; Supplementary Figure S4B) and TGF-b1-
mediated IL-6 suppression (r=-0.444; Supplementary Figure S4A). 
4 Discussion 

Our study establishes CD19highCD44highTGF-b1+ Bregs as 
spatiotemporal orchestrators of VILI resolution, with their 
therapeutic potential unlocked through biomimetic nanoparticle 
delivery. Building on previous work demonstrating IL-10+ Bregs 
involvement in chronic inflammation (20–22), we reveal TGF-b1+ 
Bregs exhibit phased activation: an acute pulmonary influx at PV1d 
to contain neutrophil extracellular traps (23, 24), followed by 
splenic priming atPV10d regulating CD4+CD8a+ T cell 
-mediated immunosuppression. This mirrors their dual role in 
cancer immunity—restraining early inflammation while 
permitting late-phase tolerance (25). 

Nanotechnology-driven cytokine precision represents a 
transformative advance over conventional TGF-b1 therapy, which 
fails clinically due to pleiotropic effects and transient bioavailability 
Frontiers in Immunology 09
(14). TMNP overcome these limitations through pH-responsive 
sustained release (>72 h vs. recombinant TGF-b1’s 6 h peak) (26) 
and Flotillin-2–mediated alveolar macrophage targeting (27). This 
aligns with emerging nanotherapeutic strategies for ARDS while 
demonstrating superior spatiotemporal control (28, 29). 

We further identify CD4+CD8a+ T cells as TGF-b1+ Breg-
regulated effectors in lung repair. Their expansion correlates inversely 
with splenic Breg activity (r=-0.72, P < 0.01) and parallels tumor-

associated CD4+CD8a+ T cells that modulate CD8+ T cells via TGF-
b1/PD-1 signaling (30), suggesting conserved immunosuppressive 
mechanisms across inflammatory contexts. 
5 Clinical implications & limitations 

While TMNP show compelling efficacy in acute inflammation, 
key questions require resolution: First, whether CD4+CD8a+ T cell 
expansion predispose to post-VILI fibrosis merits investigation 
using lineage-tracing models. Second, MMV coatings should be 
engineered to avoid tumor-promoting Breg phenotypes observed in 
cancer models (31). Crucially, human relevance must be established 
through humanized mouse systems—for example, NSG mice 
FIGURE 6 

Nanoparticle-driven reprogramming of T cell Immunity. Temporal changes in pulmonary (A, B) and splenic (C, D) T cell subset frequencies following 
therapeutic intervention at post-ventilation days 1 and 10. Data represent mean ± SEM (n = 4 mice/group). *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001. 
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reconstituted with human hematopoietic stem cells could validate 
Breg dynamics across ventilation injury phases. 
6 Concluding perspective 

This work provides the first temporal mapping of TGF-b1+ 
Bregs in VILI, linking acute pulmonary infiltration to late splenic 
regulation of CD4+CD8a+ T cell interactions. Our MMV-based 
nanoformulation enables dual-phase immunomodulation: rapid 
injury containment and sustained homeostasis. By redefining 
CD4+CD8a+ T cell as key effectors in lung repair and 
demonstrating nanotechnology-enhanced cytokine delivery, we 
established a template for biomimetic therapeutics in ARDS 
management. Future studies should explore adoptive Breg 
transfer and cell-specific Tgfb1 deletion models to establish 
causal mechanisms. 
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SUPPLEMENTARY FIGURE 1 

Molecular Signatures of TGF-b1+ Bregs in Ventilator-Induced Lung Injury. 
Flow gating gating strategy (A), protein-protein interaction network (B), and 
pathway enrichment analysis (C,  D)  characterizing regulatory B 
cell populations. 

SUPPLEMENTARY FIGURE 2 

Splenic Breg Dynamics during Injury Progression. Gating hierarchy (A) and 
quantitative frequencies (B, C) of splenic Breg subpopulations at end-of-
ventilation and recovery timepoints (n = 4 mice/group). 

SUPPLEMENTARY FIGURE 3 

Biophysical Characterization of Macrophage-Mimetic Nanoparticles. 
Microvesicle biogenesis (A, B, scale: 20 mm), membrane protein validation 
(C, D), electron microscopy (E, scale: 100 nm), colloidal stability (F, G), 
sustained cytokine release profile (H), and serum compatibility (I) of 
engineered nanotherapeutics. 
SUPPLEMENTARY FIGURE 4 

Systems-Level Correlation Networks in Lung Pathobiology. Pearson 
correlations matrices showing TGF-b1-IL-6 axis regulation (A), Breg-T cell 
interactions (B–D), lymphocyte subset interplay (E–G), and  biomarker

relationships (H–J). *P < 0.05 after Bonferroni correction. 
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