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Introduction: Non-classical neoantigens at the fusion junctions of chimeric

RNAs are tumor- specific with a low risk of autoimmunity and therefore

represent ideal targets for personalized vaccines. We present a platform to

discover immunogenic neoantigens that drive CD8+ T cell clonotypes from

chimeric RNA fusion junctions to promote tumor-reactive T cell expansion and

prevent tumor recurrence following immunotherapies.

Methods: RNA sequencing data from 15 Lung Adenocarcinoma and 15

Squamous Cell Carcinoma patients (tumor and adjacent normal tissues) were

analyzed. The KIF5B [Exon 1-15] | RET [Exon 12- 19] fusion was selected from a

patient-derived xenograft (PDX) model based on its established role as an

actionable cancer driver in an independent tumor with the same junction. We

assessed the affinity of neopeptides from the KIF5B-RET fusion to MHC Class I

molecules using in silico tools MHCNuggets and MixMHCPred 2.

Results: HLA-C07:02 showed the highest affinity for 9-mer peptideswith

NNDVKEDPK, which emerged as the strongest binder based on HLA-Arena

docking and binding energy calculations. Immunogenicity was evaluated by

IFNg Enzyme-Linked Immunosorbent Spot (ELISpot) assays using HLA-

C07:02- matched Peripheral Blood Mononuclear Cells (PBMCs) from two

donors. CD8+ T cells from both donors responded to specific junction

peptides. Single-cell 5’gene expression RNA sequencing and T Cell receptor

mapping of activated T cells identified 15 TCR clonotypes, five of which had high

activation. Key residues in CDR3a and CDR3b are crucial for CD8+ T cell

activation. NNDVKEDPK and KEDPKWEFP showed minimal cross-reactivity

with the normal tissues.

Discussion: This study demonstrates a robust pipeline for identifying and validating

immunogenic neoantigens from chimeric RNAs to design personalized cancer

vaccines with high immunogenicity and low cross-reactivity.
KEYWORDS

RNA fusions, chimeric RNAs, neoantigens, immunopeptides, KIF5B-RET fusion,
precision immunotherapy, cancer vaccine
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1 Introduction

Tumor-associated neoantigens accumulated during cancer

progression have been a growing focus of vaccine development in

the past decade. Studies assessing neoantigen load have observed

strong correlations with clinical responses to immunotherapy (1) as

well as high somatic mutational burden. Many candidate

neoantigens have also been shown to improve survival in patients

treated with immune checkpoint blockades for non-small cell lung

cancer (NSCLC) (2) and melanoma (3, 4). Here, we present a

platform that can extract non-classical neoantigens from fusion

junctions of chimeric RNAs generated through structural variants

from chromosomal translocations, inversions, and deletions, as well

as transplicing events following read-through transcription of

neighboring genes. The novel junctions in the fusion proteins

generated from chimeric RNA products provide reservoirs of

tumor-specific neopeptides that are selected for immunogenicity

using HLA-matched Peripheral Blood Mononuclear Cells (PBMCs)

and low autoimmunity based on a comprehensive screen of the

normal immunopeptidome of humans.

In a study by The Cancer Genome Atlas (TCGA) completed in

2020, a set of recurrent canonical fusions was identified and defined as

“actionable” based on the availability of a drug approved by the FDA

or in various stages of clinical trials available to target one or both gene

partners. Fourteen genes, including RET, were found to be part of the

canonical fusions targeted by 36 drugs in 21 different cancers (5). We

screened for actionable fusions in non–small cell lung cancer

(NSCLC), which accounts for nearly 80% of lung cancer cases and

exhibits a median survival of less than one year following diagnosis

(6). NSCLC can be divided into three main subtypes: adenocarcinoma

(LUAD), squamous cell carcinoma (LUSC), and large-cell carcinoma.

In this study, we focused on the KIF5B-RET fusion protein, which is

sensitive to vandetanib, a multi-kinase inhibitor (7). Several fusions

have been reported in LUAD, including that of the kinesin family

member 5B-RET proto-oncogene (KIF5B-RET) (8). Identified as a

chromosomal inversion in the liver metastases of an NSCLC patient in

2011, it has since been found in 1-2% of lung adenocarcinoma patient

cohorts (7). KIF5B-RET gene fusion results from chromosomal

inversion between the long and short arms of chromosome. Four

central fusion junction variants have been reported: KIF5B [exon15] –

RET [exon 12], KIF5B [exon 16] – RET [exon 12], KIF5B [exon23] –

RET [exon12], and KIF5B [exon14] – RET [exon 12]. These KIF5B-

RET variants are not expressed in normal lung tissue but are highly

expressed in certain adenocarcinoma lung cancer tissues. This fusion

protein has been reported to be responsible for overactive tyrosine

kinase activity in lung adenocarcinomas expressing protein. Due to

this expression, changes are observed in the morphology of the cells

along with increased proliferation, similar to the Kirsten Rat Sarcoma

viral oncogene homolog (KRAS) V12 mutant present in other cancer

types (8).

Previous studies have shown that cancer cells can efficiently

present their own antigens and act as antigen-presenting cells (9).

This study aimed to use peptides to prime the immune system to

recognize and respond to MHC Class 1 presented neoantigenic

peptide sequences from the KIF5B-RET fusion protein expressed in
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LUAD cancer patients. To do this, we leveraged several in silico

prediction pipelines to identify which neopeptides generated by the

junction of the KIF5B-RET protein are bioinformatically predicted

to be the best binders to available MHC Class-1 alleles, with the

lowest potential cross-reactivity with peptides expressed in normal

tissues across the body. In-vitro validation of selected peptides and

peptide pools was performed using an Enzyme-Linked

Immunosorbent Spot (ELISpot) assay with MHC Class-1

matched PBMCs. The top expanded TCR clonotypes in fusion

junction peptide-stimulated CD8+ T cell populations were

identified using scRNA-seq and TCR sequencing.
2 Materials and methods

2.1 Sample cohorts

2.1.1 Patient samples
Fifteen lung adenocarcinoma and fifteen lung squamous cell

carcinoma specimens, each matched to an adjacent normal frozen

tissue sample, were procured from the Houston Methodist

Biorepository under an IRB-approved protocol. The cohort

comprised 12 female and 18 male patients, ranging in age from

54 to 80 years. Tumor and adjacent normal regions were delineated

on hematoxylin & eosin–stained sections by a board-certified

pathologist, who selected only areas entirely devoid of histologic

evidence of malignancy. The RNA‐Seq data underlying this study is

available in the NCBI Gene Expression Omnibus at http://

www.ncbi.nlm.nih.gov/geo/ and can be accessed with accession

number GSE159857 (10).

2.1.2 Patient-derived xenograft samples
Overgrown tumor tissue was sourced from the patient-derived

xenograft (PDX) company XenoSTART.
2.2 RNA isolation and next generation
sequencing

RNA from patient samples was isolated from fresh-frozen,

pathologist-marked regions via laser-capture microdissection to

eliminate any potential admixture with tumor cells was extracted

using the Qiagen miRNeasy micro kit, followed by library

preparation using the QIAseq Stranded Total RNA library

preparation kit (Qiagen). RNA was extracted from the PDX tissue

block using the Qiagen miRNeasy mini kit, and sequencing libraries

were prepared using the QIAseq Stranded mRNA Library

Preparation Kit (Qiagen). All libraries were assessed for quality

using a High-Sensitivity D5000 chip on an Agilent 4200

TapeStation and quantified with a Qubit 4 fluorometer (Thermo

Fisher Scientific). Libraries generated from the RNA of patients with

lung cancer were sequenced on the NextSeq 500 at 20 million

paired-end reads per sample, whereas the libraries generated from

the PDX tissue paired-end were sequenced at >50 million reads per

sample on a NovaSeq 6000.
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2.3 Sequence alignment and fusion
detection

All fusions identified within the adjacent normal samples were

removed from the background. Fusions appearing only in tumor

samples called by all fusion callers together were considered positive

hits. Only split reads were considered when identifying the fusion

genes within a particular sample. To improve the clinical relevance

of the identified fusion genes, an additional filter was implemented

by identifying specific actionable fusion gene partners identified in

The Cancer Genome Atlas (TCGA) dataset (5). RNA-seq fastq data

were aligned using several fusion calling pipelines as detailed below.

The pipelines were chosen based on their specificity (confidence) in

their calls or sensitivity (fusion detection rate).

2.3.1 CLC genomics workbench 20 (Qiagen)
Illumina sequencing adaptors were trimmed, and reads were

mapped to the human reference genome hg38 Refseq (RRID:

SCR_003496) GRCh38.p9 from the Biomedical Genomics

Analysis Plugin 20.0.1 (Qiagen). RNA fusions were detected using

the detection fusion gene algorithm, which identifies fusion events

based on the number of fusion junction-crossing reads and fusion-

spanning reads. The refined fusion gene tool was used to re-count

the number of fusion junction crossing reads, and the novel RNA-

seq reads were mapped against a fusion reference created in the

initial detection fusion gene pipeline. Only fusion split (soft-

clipped) reads were considered when identifying fusion genes, as

fusion spanning (discordant) reads increased the probability of

false-positive fusion calls.

2.3.2 Illumina Dragen RNA
Illumina sequencing adaptors were trimmed, and reads were

mapped to the human reference genome hg38, no alts, and decoys.

Both “RNA Quantification” and “Gene Fusion Detection” were

enabled. Alignment output files were output in BAM format. All

other settings were set at default values.

2.3.3 Arriba, EasyFuse
Illumina sequencing adaptors were trimmed, and reads were

mapped to the human reference genome hg38. All pipelines were

run according to the default protocols specified in their respective

GitHub pages (11, 12).
2.3.4 HLA typing of RNA sequencing data
HLA typing of patient samples (GSE159857) was carried out

using the OptiType pipeline with the default settings (13). As the

sample data was from precious, clinical samples, the quality of several

samples was not high enough to generate a confident HLA type.
2.4 RT-PCR and sanger sequencing

Reverse transcription of RNA samples was used to generate

cDNA from PDX tissues after RNA extraction. The cDNA was then
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subjected to PCR amplification across the KIF5B-RET fusion

junction using forward (5’-GATGATGGCATCTTTACTAAAAG-

3) and reverse (5’-CGCCTTCTCCTAGAGTTTTTC-3’) primers.

DreamTaq DNA Polymerase (Cat. # EP0701) was used in the 30-

cycle PCR. Amplicon size was analyzed using a High-Sensitivity

DNA 1000 tape on a Tapestation 4200 (Agilent, RRID:

SCR_019398). Sanger sequencing was performed at the LoneStar

Laboratories, Houston, TX.
2.5 In-silico neopeptide affinity predictions

Class I MHC binding affinities for 9-mer peptides from the

KIF5B-RET fusion junction region were predicted using

MHCnuggets and MixMHCpred 2.2. MHCnuggets were executed

as previously described (14), while MixMHCpred 2.2 was run with

default settings (15). Wild-type peptides positioned two amino

acids away from the fusion junction served as controls. Peptides

spanning the major Open Reading Frame (ORF) generated from the

KIF5B-RET fusion were analyzed. MHCnuggets predicted MHC

class I binding affinities as IC50 values (nM), considering peptides

with IC50 < 500 nM as strong binders and ranked them

accordingly. MixMHCpred 2.2 evaluated affinity in %Rank, with a

cut-off of 10% indicating strong binding. The output data from both

pipelines were reviewed, and the optimal HLA Class I allele was

selected for further analysis.
2.6 Structure-based affinity predictions and
peptide docking

Eight junction-spanning peptides and two wild-type peptides

from the KIF5B-RET fusion gene were subjected to structural

modeling using HLA-Arena (16) and APE-GEN (17). APE-GEN

generated multiple models for each peptide, predicting their

binding energies to the HLA-C07:02 receptor. The receptor

structure was sourced from the Protein Data Bank (PDB ID:

5VGE) and processed with the R package Bio3d (RRID:

SCR_024266) to remove excess molecules and verify integrity.

The rigid receptor structure was prepared via PDB2PQR (18),

and energy minimization was done for the structures with

Gromacs (19–21). Molecular docking was performed for all 10

peptides against the rigid and energy-minimized (EM) structures of

HLA-C07:02. Workflow 0 in HLA-Arena was adapted to model

each peptide-receptor complex, and APE-GEN ensemble sampling

was used to calculate the binding energies for ranking the peptides.
2.7 Peptide – HLA modeling and
electrostatic potential calculations

ChimeraX was used to visualize the peptides docked with HLA-

C*07:02. The electrostatic potential (ESP) of the peptide structure

was calculated, and the molecular surfaces were colored red for

negative potential and white to blue for positive potential (22, 23).
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2.8 In-silico off-target toxicity assessment

For each 9-mer input from the KIF5B-RET fusion gene,

CrossDome (24) generated a list of unrelated self-derived peptides

that may have biochemically similar profiles to 9-mer inputs, which

could lead to toxici ty and adverse effects in cancer

immunotherapies. Additionally, CrossDome was used to yield

mRNA and tissue expression patterns for each 9-mer off-target

peptide associated with the 9-mer input peptides from the KIF5B-

RET fusion gene.
2.9 Peptide library generation

The fusion peptide library comprised eight neoantigens and two

wild-type 9-mer peptides from the KIF5B [exon 15]–RET [exon 12]

fusion gene open reading frame. Peptides were synthesized via

standard solid-phase peptide chemistry and purified using reverse-

phase high-performance liquid chromatography (Thermo Fisher

Scientific PEPotec). The solution was reconstituted at 1 mg/mL

under sterile conditions. A standardized 9-mer peptide supplied by

the manufacturer served as the negative control peptide (NCP), as

this peptide had no biological significance. A Cytomegalovirus

(CMV) peptide pool (Cat. # 3619-1) with 42 peptides (28 MHC

class I-and 14 MHC class II-restricted) was used as a positive control.
2.10 Human primary cells

HLA-C*07:02 allele-matched human PBMCs from two healthy

donors were acquired (STEMCELL Technologies) and stored in

liquid nitrogen until use. Donors were matched to the HLA-

C*07:02 allele and also expressed the following HLA alleles:

Donor 1 - A*02:01, A*24:02, B*15:13, B*38:02, C*08:01. Donor 2

- A*02:01, A*11:01, B*07:02, B*67:01.
2.11 Culture medium

The complete media consisted of RPMI-1640 growth medium

supplemented with L-glutamine (Cat. # 61870036) supplemented

with 10% heat-inactivated fetal bovine serum (Cat. # F0601-050),

0.1 mmol/L nonessential amino acids (Corning; Cat. # 25-025-CI),

10ug/ml Cellmaxin (Cat. # C3319-006), and 0.5 mg/mL

Amphotericin B (Cat. # 15290026).
2.12 In-vitro stimulation of PBMCs using
peptides

PBMCs were retrieved from liquid nitrogen, thawed in a water

bath at 37°C, and washed with culture medium warmed to 37°C as

described in the primary cell thawing protocol by Stem Cell

Technologies. The cells were incubated at 37°C and 5% CO2 for

24h (Cell Resting). After resting, the cells were seeded at a
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concentration of 1 × 106/mL in 6-well plates with culture

medium containing IL-2 (10 IU/ml), IL-7 (10 ng/ml), and IL-15

(10 ng/ml). The cells of the Non-Stimulated Control (NC) wells

were not treated with any peptides but were maintained under the

same growth conditions as the cells of wells treated with

neoantigenic peptides. The cells in the CMV-positive control

wells were treated with 1 mg/ml of the CMV peptide pool and

supplemented with media and growth conditions identical to the

test peptide wells. The eight neoantigenic and two wild-type 9-mer

test peptides were added to their respective wells at 2 mg/ml, and the

plates were incubated at 37°C and 5% CO2 for 4 days. On day 5,

50% of the medium was replaced with fresh medium, and cells were

cultured for an additional 5 days. A second round of peptide

restimulation was performed with the corresponding peptides

coupled with the cytokine medium before the cells were used for

the ELISpot assay.
2.13 Isolation of CD8+ T cells from PBMCs

On Day 13, untouched CD8+ T cells were isolated from PBMCs

by magnetic negative selection using a MojoSort™Human CD8+ T

Cell Isolation Kit (BioLegend; Cat. # 480012) according to the

manufacturer’s instructions.
2.14 IFN-g ELISpot assay

To evaluate the peptide-stimulated CD8+ T cell immune

response, IFN-g production by cells stimulated with the predicted

neoantigenic peptides was quantified using a commercially available

Human IFN-g ELISpot kit (CTL ImmunoSpot, Cellular Technology

Ltd.), following the manufacturer’s instructions. The plate was read

using an ELISpot reader (CTL Counter, Cellular Technology Ltd.).

The cell culture medium used to incubate the cells in the ELISpot

plate was augmented with the corresponding peptides and IL-2 (10

IU/ml), IL-7 (10 ng/ml), and IL-15 (10 ng/ml), which were

considered significant if >20 spots/1,000,000 cells were counted,

and the mean spot count was at least three-fold higher than the

mean spot count of the non-stimulated control.
2.15 5’ v2 HT single cell RNA-seq library
preparation and sequencing

CD8+ T cells were isolated from junction peptide pool

stimulated and non-stimulated PBMCs, spun at 500 rpm for 5

min, washed once in PBS (without calcium and magnesium) with

0.04% BSA, and then resuspended. Cell suspensions were loaded

onto a 10X Genomics chip N, following the Chromium Next GEM

Single Cell 5’ HT Reagent Kits v2 (Dual Index) protocol (CG000423|

Rev C). Modular kits for 10X Chromium Connect were used to

automate library preparation from cDNA. Gene Expression (GEX)

sequencing libraries were generated using the Chromium Next GEM

Automated Single Cell 5’ Reagent Kits v2 user guide (CG000384|Rev
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D). Libraries were assessed for quality using a High-Sensitivity

D5000 chip on an Agilent 4200 TapeStation and quantified with a

Qubit Flex Fluorometer (Thermo Fisher Scientific). Libraries were

pooled by donor and sequenced on NovaSeq X Plus (Illumina) to

obtain 150 base paired end reads.
2.16 Post-sequencing processing

The 10X Cloud Analysis portal was used to run CellRanger

v7.1.0 on all FASTQ files. The sequencing data were aligned to the

GRCh38 human reference genome.
2.17 Analysis of single cell gene expression
data

Single-cell RNA sequencing GEX data were obtained from

donors 1 and 2 under stimulated and non-stimulated conditions.

Filtered matrix files from CellRanger v7.1.0 were used as input into

R and converted into Seurat objects using the CreateSeuratObject

function from the Seurat package (25, 26). Seurat objects were

created and processed independently for each condition and donor.

Each Seurat object underwent SCT normalization using the

SCTransform function. Concurrently, the percentage of

mitochondrial genes was regressed from each object, with a final

5% mitochondrial cutoff implemented, as observed in other studies

on populations of cells from PBMCs (26). The cells were filtered

based on the number of expressed features, retaining those with a

feature count between 500 and 10,000. Principal Component

Analysis (PCA) and UMAP dimensionality reduction were

performed on each object using RunPCA and RunUMAP

functions, respectively. FindNeighbors and FindClusters functions

were used to define clusters in the data. The DoubletFinder (RRID:

SCR_018771) package was deployed on each Seurat object to

identify and remove doublets, followed by subsetting to retain

only the singlet cells (27). The objects were then annotated with

the relevant donor and condition metadata. Following individual

processing, the objects were integrated into a single Seurat object

using the Seurat package’s data-integration features.
2.18 Annotation of cell types

Cell types were assigned based on the expression of canonical

marker genes as defined in previous studies. All T-Cells were defined

based on their expression of CD3D, CD3G, and CD3E (28). CD8+ T

cells were defined based on CD8 expression (28). Naïve CD8 + T-

Cells were further clustered based on their expression of CCR7 and

SELL (28). Exhausted CD8 + T-Cells were annotated based on their

expression of PDCD1 and LAG3 (28). Cycling CD8 T Cells were

identified by the expression of TOP2A and MKI67 (29). Activated

CD8 T Cells were called using canonical markers of activation: IFNG,

TNF, GZMB, CCL3, and CCL4 (28). CD8+/CD4+ T cells were

characterized by co-expression of both CD8 and CD4 genes (30).
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Two Natural Killer (NK) cell populations were identified and defined

by the expression of KLRC1 (29, 31). Dendritic Cells were defined

using the marker gene LYZ (29). B Cells were defined by the

expression of MS4A1 (29).
2.19 Analysis of single cell immune
profiling data using Scanpy and Scirpy

Single-cell TCR sequence data were processed and analyzed

using Python packages Scanpy (32) and Scirpy (33). Individual

components of the integrated Seurat object, including Gene Names,

Metadata, PCA, and Matrix information, were prepared to

construct an. h5ad file that can be used in Scanpy. Scirpy was

then used to analyze the corresponding GEX and TCR data from

each sample by creating a merged object, followed by subsequent

analysis as described in the “Analysis of 3k T cells from cancer”

tutorial (33).
2.20 CDR3 sequence clustering,
characterization, and alignment

The top 15 variable sequences of CDR3-a and CDR3-b chains

were considered as the response-positive dataset and clustered using

the methodology previously described (28). Briefly, clustering was

performed in GibbsCluster 2.0, with MHC class I configurations and

a specified core size of the smallest variable sequence in the positive

dataset (34). CDR3 chains found only within naïve populations were

used as the negative datasets. The position-specific scoring matrices

(PSSMs) yielded fromGibbsCluster 2.0 clustering were used to conduct

a position-wise Pearson correlation between positive and negative

datasets. Correlation significance was assessed using Pearson’s

correlation test. Similarity and identity of variable sequences were

computed by pairwise sequence alignment using Clustal Omega

(RRID: SCR_001591) with standard configurations (35).
3 Results

3.1 Fusion identification

RNA-seq data from 15 Lung Adenocarcinoma (LUAD), 15

Squamous Cell Carcinoma (LUSC) tumors, and adjacent normal

samples from Houston Methodist were screened using multiple

fusion callers. Each of the four fusion calling pipelines were run

independently, and selection of fusions from each fusion caller were

done in parallel without using any one fusion calling pipeline as the

golden standard. We selected for this study, KIF5B-RET, found in a

patient with LUAD and corroborated by all four fusion calling

pipelines including CLC Genomics Browser Fusion Caller, Illumina

Dragen Fusion Caller, Arriba, and EasyFuse(Supplementary

Table 1). The fusion junction between exon 15 of KIF5B and

exon 12 of RET is shown in Figure 1A. The complete fusion

nucleotide sequence was constructed using the Hg38 reference
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sequence (Supplementary Figure 1), revealing 16 Open Reading

Frames (ORFs), with the longest being a 935 amino acid in-frame

sequence (Supplementary Figure 2). This fusion, previously

reported in patients with LUAD with a prevalence of 1-2% was

validated in previous studies and similarly identified as a

chromosomal inversion by the Arriba pipeline (7, 36).
3.2 Validation of fusion KIF5B-RET

Due to the limited tissue from the LUAD patient with a

bioinformatically confirmed KIF5B-RET fusion, the full RNA

sample was used to create a sequencing library and was not

confirmed using downstream methodology.
3.3 KIF5B-RET fusion in LUAD PDX model

The exon 15 KIF5B and exon 12 RET junction variants were

also found in the LUAD patient-derived xenograft (PDX) model

ST3952 from XenoSTART. This bioinformatically predicted fusion,
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identified across all fusion prediction pipelines, was similarly called

as chromosomal inversion by Arriba (Supplementary Figure 3). The

tissue block from XenoSTART allowed us to validate the fusion

junction in the PDX model ST3952 (Figure 1B). In silico analysis

confirmed the fusion, and in-vitro validation was achieved by

amplifying a 131-basepair amplicon, as shown in the TapeStation

Trace (Figure 1C). This band was absent in the normal human RNA

control. RT-PCR followed by Sanger sequencing confirmed the

fusion junction, which was consistent with the results of previous

studies (Figure 1D) (7, 36).
3.4 Neoantigen affinity prediction identify
HLA-C*07:02 binds strongly to junction
peptides in-silico

We employed MHCnuggets to predict IC50 values and

MixMHCpred 2.2 to rank peptides based on motif similarity

(Figure 2A). By comparing these two pipelines, we identified HLA

allotypes with high peptide-binding affinities for potential in vitro

validation. A %Rank cutoff of 10.00 in MixMHCpred, corresponding
FIGURE 1

KIF5B-RET fusion identification in an LUAD Patient and validation in PDX Model by RT-PCR and Sanger sequencing. (A) In-silico identification of
fusion KIF5B [Exon 15] – RET [Exon 12] from an LUAD patient sample. (B) In-silico fusion predictions in an LUAD PDX sample. (C, D) In-vitro
confirmation of the KIF5B [Exon 15] – RET [Exon 12] junction shown by RT-PCR and Sanger sequencing.
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to IC50 values ≤ 500 nM from MHCnuggets, was used to define

strong binders, as established in the literature (14, 15, 37).

MHCnuggets predicted ten unique HLA class I alleles with IC50 ≤

500 nM (Supplementary Table 2). Individual values for each Class I

HLA allele for all junctions and wild-type peptides are shown in

Supplementary Table 3. MixMHCpred identified 92 unique HLA

class I alleles with a% rank ≤ 10 (Supplementary Table 4).

Overlapping predictions identified a single junction peptide,

“VKEDPKWEF,” which binds to four HLA Class I alleles

(Supplementary Table 5). HLA-C*07:02 emerged as a strong binder

across multiple peptides (Figure 2B) and was consistently predicted

by both the pipelines. It showed robust binding to junction peptides

but not to wild-type KIF5B peptides (Supplementary Table 6).

Precision HLA typing of patient samples was performed using

RNA-seq data from GSE159857 (Supplementary File 2). HLA-

C*07:02 emerged as a potential HLA genotype of interest and

further supported exploring our in-silico predictions. Aside from

this HLA, other more prevalent HLA alleles in this cohort included

HLA C*06:02 and HLA C07*01 which showed moderate binding

affinity to junction peptide VGNNDVKED and were expressed by

the patient carrying the KIF5B-RET fusion (Supplementary Figure 4).
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3.5 Structural modeling and HLA-peptide
binding strength predictions using HLA-
arena

Using HLA-Arena, we investigated the binding strengths of

eight junction-spanning and two wild-type peptides from the

KIF5B-RET fusion gene to HLA-C*07:02, selected for its high

affinity in previous predictions. HLA-Arena integrates tools for

the structural modeling and analysis of peptide-HLA complexes,

providing a comprehensive environment for this study.

We docked the peptides to the HLA-C07:02 rigid receptor

structure using APE-GEN to generate multiple models and

predict the binding energies. The crystal structure of HLA-C07:02

was prepared using the Bio3d software (RRID: SCR_024266).

Ensemble sampling of each peptide-HLA complex was performed

and the binding energies for the best conformations were calculated.

Electrostatic potential analysis showed that the peptide

NNDVKEDPK, with the lowest binding energy, had positive

electrostatic potential regions oriented towards the binding pocket,

while DVKEDPKWE, with the highest binding energy, had negative

electrostatic potential regions facing inward (Figure 2C).
FIGURE 2

In-silico prediction of KIF5B – RET neopeptide binding affinities to HLA alleles and identification of possible cross-reactive responses. (A) Neopeptide
affinity prediction pipeline. (B) Binding of junction peptides to MHC Class 1 alleles. Lines in grey and black correspond to the peptide sequence
above and represent calls made by MHCNuggets and MixMHCPred respectively. (C) Peptides with highest and lowest average binding energy
prediction values across three replicates. Peptides are docked in HLA-C07:02 and are colored by their electrostatic potential. (D) Binding energy
predictions for junction peptides. Bars colored by majority contribution of amino acids in blue and red for KIF5B and RET respectively on top of the
bar plot. Total number of off target peptide hits for each 9-mer junction crossing peptide shown across the bottom of the plot.
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Figure 2D (upper panel) presents the binding energy results,

where lower binding energies correlate with stronger binding

affinities. NNDVKEDPK, KEDPKWEFP, and NDVKEDPKW

exhibit the lowest binding energies.
3.6 Off-target toxicity predictions of
neoantigenic peptide sequences using
CrossDome

One concern with peptide vaccines is the potential for cross-

reactivity, in which the immune system may recognize similar

peptides from host proteins, leading to autoimmune responses.

To assess the cross-reactivity of neoantigenic peptides from the

KIF5B-RET fusion junction, we utilized the bioinformatics tool

CrossDome. CrossDome identifies cross-reactive candidates based

on global sequence similarity rather than intrinsic MHC binding

affinity. Therefore, to strengthen biological relevance, we integrated

independent HLA-binding predictions (via HLA-Arena/

NetMHCpan) with the CrossDome hits.

We analyzed eight 9-mer neoantigenic peptides crossing the

fusion junction and two wild-type peptides from KIF5B and RET.

Using CrossDome’s default p-value cutoff of ≤ 0.005 yielded few

cross-reactivity results, with three peptides (GNNDVKEDP,

DVKEDPKWE, and KEDPKWEFP) showing no cross-reactivity

(Supplementary Table 7). We raised the p-value cutoff for lenient

identification, categorizing cross-reactive hits into p-value bins of ≤

0.01 and 0.01 - 0.05 [Figure 2D (lower panel)].

NNDVKEDPK had the least off-target hits, followed by

KEDPKWEFP, which correlated with its high binding strength.

For KEDPKWEFP, 18 of 19 off-target hits were in the 0.01 - 0.05

category, indicating low confidence in these results [Figure 2D

(lower panel)]. By cross-referencing immunopeptidomics data with

tissue expression levels, we identified cross-reactive peptides in the
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retina, skeletal muscle , spleen, l iver , and cerebel lum

(Supplementary Figure 5).
3.7 Assessment of immune stimulation
using the IFN-g ELISpot assay

Isolated CD8+ T-Cells stimulated with KIF5B-RET junction

peptides were assessed for activation using ELISpot assay to

measure IFN-g express ion (Supplementary Figure 6;

Supplementary Table 8). Variability in the immune response was

observed among donors, with certain 9-mer peptides within the

neoantigenic junction sequence eliciting strong responses in one

donor and weak responses in another (Figure 3).

For Donor 1, the peptide sequence KEDPKWEFP triggered a

significant immune response compared with the negative control

(NC) treatment (Figure 3), consistent with its second-highest

predicted binding strength according to HLA-Arena[(Figure 2D

(upper panel)]. Additionally, Donor 1 exhibited higher IFN-g
secretion when stimulated with the peptide VGNNDVKED,

although this was not considered a positive stimulation in all

replicates (Figure 3). This peptide has lower binding energies in

in in-silico predictions.

In contrast, Donor 2 showed a positive response to the pool of

junction neopeptides, particularly towards DVKEDPKWE, despite

its weaker binding strength as predicted by HLA-Arena, as shown

in Figure 3.
3.8 Clustering and cell type annotation in
Seurat

In conjunction with our ELISpot assays, isolated CD8+ T-Cells

stimulated with KIF5B-RET junction peptides were assayed via single
FIGURE 3

IFN-g ELISpot of CD8+ T-Cells Stimulated with KIF5B-RET Neoantigenic Junction Peptides. NC: Non-Stimulated Control, NCP: Non-Activation
Control Peptide, Pool: Neoantigen Junction Pool. T cell responses are considered positive if >20 spots/1M cells were counted, and the mean spot
count was at least three-fold higher than the mean spot count of the NC. (*significantly positive T cell responses). D1/D2: Donor 1/Donor 2. Peptides
colored in blue and red by representation of KIF5B or RET amino acids, respectively. Whiskers represent Standard Error of the Mean (SEM).
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cell transcriptomics to assess transcriptional changes within our

populations of interest. Seurat was used to cluster the cells

according to their respective gene expression signatures in a total of

28 unique clusters (Supplementary Figure 7A). The expression of

canonical markers identified previously in literature was used to

determine the cell populations within cells captured after peptide

stimulation (Supplementary Figure 7B, 8). T Cells were identified

based on the expression of CD3D, CD3G, and CD3E (28). Naïve CD8

T-Cells (clusters: 0, 14, 15, 17, 20, 21, and 25) were characterized by

the presence of the marker genes CCR7 and SELL (28). These

markers are associated with cells in a quiescent state and respond

to new antigens. Exhausted CD8 T-Cells (clusters 1, 2, 3, 4, 5, 6, 7, 12,

13, 16, 22, and 24) were denoted by the expression of LAG3 and TOX

(28). Cycling CD8 + T-Cells (Cluster 8), typically associated with T

cell activation, were marked by the genes TOP2A and MKI67 (29).

Activated CD8 T-Cells (clusters 9, 10, and 11) were identified using

the markers IFNG, TNF, GZMB, CCL3, and CCL4 (28). Two distinct

clusters of Natural Killer (NK) cells were identified. NK-1 (Cluster:

18) cells were characterized by the expression of KLRC1 (31) and

NK-2 (Cluster: 27). NK-2 cells, the secondary and smaller subset of

Natural Killer cells, expressed KLRC1 and NCAM1 (29). The

expression of the LYZ gene marked Dendritic Cells found in

(cluster 23), which play an integral role in antigen presentation to

T cells (29). B Cells (Cluster: 26) were identified by the expression of

MS4A1, a marker gene associated with B cell development and

differentiation (29). CD8/CD4 T Cells (cluster 19) co-expressed

CD8A, CD8B, and CD4 (30). Cluster identities were assigned based

on the above markers (Supplementary Figure 9).
3.9 CD8 T cell subset and re-clustering

While performing magnetic CD8 T cell isolation, it is known

that there is a margin of error in the captured cells. Clusters 18, 19,
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23, 26, and 27 had expression profiles that differed from those of the

CD8+ T cells we originally selected for (Supplementary Figure 7B).

These clusters correlated with the two identified NK cell

populations, B cells, dendritic cells, and the population of T cells

co-expressing CD4/CD8 markers. These populations were removed

from the CD8+ T cell population and the final cell populations of

interest were re-clustered using Seurat. Cell populations were

defined using markers described previously for naïve, exhausted,

and activated CD8+ T cells (Figure 4A).

Marker expression in the three significant CD8+ T cell

populations: Activated, Exhausted and Naïve states are presented

in Figure 4B. Although major exhaustion markers were expressed

within the active population, as seen in previous studies, the

diminished expression of activation markers within exhausted

populations allowed us to separate them into two states (28, 29).

UMAP embeddings utilizing marker scores were used to confirm

our cell identity assignments across the CD8 + T cell populations.

To quantify the key transcriptional programs in CD8+ T cells, we

computed per-cell module scores with Scanpy’s sc.tl.score_genes for

three gene sets. The exhaustion score was defined by LILRB1,

PDCD1, LAYN, HAVCR2, LAG3, CD244, CTLA4, TIGIT, TOX,

VSIR, BTLA, ENTPD1, CD160, LAIR1, and GZMK. The activation

score was defined by IFNG, TNF, GZMB, and CCL3. The naïve

score was defined by IL7R, CCR7, SELL, FOXO1, KLF2, KLF3,

LEF1, TCF7, ACTN1, and FOXP1. Higher module-score values

indicate greater enrichment of the corresponding program within

individual cells (28, 38, 39).
3.10 Donor-specific differences observed
within CD8 T cell populations

As identified in our ELISpot assays, the stimulation of CD8+ T

cells exhibited notable donor-specific effects in that they were
FIGURE 4

Activated, exhausted, and naive T-Cell populations identified using canonical markers. (A) CD8+ T cell populations identified by the expression of
canonical marker genes. (B) The expression levels of canonical marker genes used to identify CD8+ T cell populations are represented by dot plot.
Gene Score UMAPs of activation, exhaustion, and naive T Cell Markers across all CD8+ T Cell populations are shaded based on the expression
scores of cell state markers.
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stimulated at different levels by the peptides or peptide pool. This

coincides with previous literature demonstrating variability in

immune responses from donor to donor (40, 41). Cells from

Donor 1 and Donor 2 were compared, to compare the gene

expression profiles of each of the three major CD8+ T cell

populations between each donor (Figures 5A, B).

We found a statistically significant difference in the expression

of CCL4, TNF, and IFNG in active CD8+ T cells and LAG3 in

exhausted CD8+ T cells (Supplementary Figure 10). However,

while the adjusted p-values for these genes were significant and

less than 0.05 (41), the LFC for each marker gene was < 1-fold in

both cases. Given the slight differences in gene expression, we

wanted to push the question further to identify a possible

relationship with the difference in immune stimulation seen in

our ELISpot assays. To this end, we divided the populations of

cells by the donor and examined the percentage of each of the

three major cell populations (Figure 5C). Both intra- and inter-

donor differences were profiled in this way, making it clear that

there was a decrease in the proportion of cells within the
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Exhausted CD8+ T cell population in Donor 1 compared to

Donor 2. We also looked at the proportion of activated

exhausted, and naive CD8 T cells within stimulated and non-

stimulated populations for each donor (Supplementary Figure 11).

It was observed that cell population proportions were similar

within donors when comparing stimulated versus non-stimulated

samples, likely resulting from cytokine stimulation by IL-2, IL-7,

and IL-15 for all samples during ELISpot. These cytokines were

added to propagate our PBMCs throughout the 14-day ELISpot

workflow. This further prompted us to investigate any differences

in T cell clonotype expansion between stimulated versus non-

stimulated cells.
3.11 Investigation of TCR clonotype
expansion across CD8 T-cell populations

After exploring donor-specific effects based on gene expression

and changes in cell populations, we investigated clonal expansion
FIGURE 5

Querying donor-specific CD8 T cell population differences. (A) UMAP of CD8+ T cells colored by donor. (B) Dot plot of T cell markers across active,
exhausted, and naive CD8+ T cell populations between donors. (C) Bar plot representing the proportional composition of each cell type across both
donor’s CD8 T cell population.
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across each of the three major cell populations identified within the

CD8+ T-cell subset. The increase in clonotype count seen across

naïve, exhausted, and activated populations is illustrated in

(Figure 6A). The naïve population mainly expressed one

clonotype, whereas the exhausted and active populations

exhibited higher clonality. The clonotype count was calculated as

the number of TCR clonotypes exhibited by more than one cell.

Thus, the non-expanded naïve population is expected to have

unique TCR clonotypes across cells within the population.
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3.12 Identification and allocation of TCR
clonotypes

Confirming clonal expansion across the populations of CD8+ T

cells isolated after stimulation, we identified the top 15 TCR

clonotypes expressed primarily by stimulated cells. This required

examination of the proportions of stimulated versus non-stimulated

cells expressing each clonotype. We then ranked the clonotypes

based on the proportion of cells from the peptide pool stimulated
FIGURE 6

Characterization of Top Expanded TCR Clonotypes. (A) A bar chart shows the proportion of clonal expansion in active, exhausted, and naive
populations after peptide stimulation. (B) The top 15 TCR clonotypes expressed primarily in stimulated CD8+ T cells are displayed in a stacked bar
chart, colored by stimulated and non-stimulated status. (C) The top 15 TCR clonotypes expressed primarily in stimulated CD8+ T cells are displayed
in a stacked bar chart, colored by cell type. (D) The top 15 TCR clonotypes expressed primarily in stimulated CD8+ T cells are displayed in a bar
chart, colored by donor. (E) The CDR3-b chain of the top TCR sequences from Donor 1 and Donor 2 are denoted in dark green and light green,
respectively. Residues are colored based on chemical properties.
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samples vs. non-peptide-stimulated samples (Figure 6B). This

approach allowed us to assess which TCRs explicitly responded to

the junction peptide pool and not the cytokine media used during

the stimulation described in the methods. Following the rank

ordering of TCRs, we shifted our focus to the cell populations

that predominantly expressed these TCRs. The top five clonotypes,

ranked by the overall proportion of cells, were mainly found within

the active CD8+ T cell population (Figure 6C). This highlights the

possible role of these clonotypes in mediating the immune response

when exposed to the KIF5B-RET junction peptide pool. In contrast,

the remaining ten TCR clonotypes were predominantly correlated

with exhausted cell populations, with a singular clonotype

additionally being identified in the naive population. This

indicates varying responsiveness and potential functional

specialization among these clonotypes, potentially influencing the

immune response differently.

Given the donor-specific effects observed in this study, a

focused analysis was conducted to assess the prevalence of top

TCRs within each donor. This aspect of the data showed that the

first and second most prevalent TCR clonotypes were sourced from

donors 1 and 2, respectively (Figure 6D). This coincides with the

data from previous studies in that low rates of TCR sequence

overlap were found in stimulated samples (42, 43). However, it

should be noted that this assay included only two donors, and

testing on more donors would be necessary to validate this finding

thoroughly. Additionally, Donor 2 responded with the highest

clonal expansion to the junction peptide pool, as 11 of 15

clonotypes from the top 15 TCRs were sourced from this donor.

This reflects the results of our ELISpot assay, in which Donor 2

responded significantly to stimulation with a pool of

junction peptides.
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3.13 Characterization, clustering, and
position based Pearson analysis of top
expanded TCR sequences

Characterization and analysis of TCR sequence data from both

donors revealed regions of conserved residues or chemical

properties in the CDR3-a and CDR3-b sequences of the top

expanded TCR sequences. The sequences from different donors

showed noticeable chemical similarities, particularly in the regions

located on the exterior of the sequence. However, they were

considerably different as they progressed towards the central

region. The CDR3-a chains displayed aromatic and aliphatic

conservation, whereas the CDR3-b chains contained aromatic,

polar, and acidic residues (Figure 6E). Using the online software

GibbsCluster 2.0, we also performed a variable sequence clustering

analysis to generate sequence motifs of the CDR3-a and CDR3-b
chains from the top 15 expanded TCR clonotypes in active

populations, as well as the top 15 clonotypes that appeared

strictly within the naïve populations (Figure 7). This approach

allowed us to compare the motifs between these two populations,

with the final goal of identifying positions that differed. However,

discerning which residues were significantly different from the

motifs alone was challenging. To address this challenge, we used

a Position-Based Pearson Correlation (PBPC) analysis with the

underlying matrix files of the clustering as an input. Applying PBPC

allowed us to identify the residues with significant differences

between the CDR3-a and CDR3-b chains of the top expanded

and naïve TCRs (Figure 7). Specifically, one position within the

CDR3 alpha chain and five positions within the CDR3 beta chain

were identified to have Pearson correlation coefficients with p-

values greater than 0.05. This suggests a lack of correlation at these
FIGURE 7

Variable sequence clustering, motif generation, and Position Based Pearson correlations (PBPC) between the top 15 expanded and naive TCR
clonotypes. The online software GibbsCluster 2.0 was used to generate motifs. Underlying matrix files from the clustering were used as input to the
PBPC. Amino acid positions that were found to be non-correlative between the top expanded TCR clonotypes versus naïve TCR clonotypes were
identified by yielding a p ≥ 0.05.
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positions for each chain when comparing the top 15 expanded TCR

clones and clones found within naïve populations. When

comparing the conserved positions found by PBPC to a Clustal

residue alignment and conservation assessment, the overlapping

positions were found to be rich in glycine residues (Supplementary

Figure 12). This glycine-rich characterization provides crucial

insight into the distinctive nature of the top expanded TCR

sequences compared to the naïve sequences. Additionally, when

looking at the top expanded TCR sequences, we can highlight

specific clonotypes that respond to the junction peptide pool of the

KIF5B-RET fusion gene.
4 Discussion

4.1 The KIF5B [exon 15] – RET [exon 12]
fusion gene was identified in LUAD

Gene fusions found within tumor tissues, primarily those

driving tumor growth, provide an area of emerging interest for

cancer treatment and prevention. Significant advancements in next-

generation sequencing technologies and bioinformatics pipelines

have made it easier to explore this aspect and identify possible

targets. This study identified an actionable gene fusion, KIF5B-RET,

created by the fusion of exons 1–15 of KIF5B and 12–19 of RET in

LUAD patient samples and an independent LUAD PDX model. In

addition, this fusion gene has been previously reported (7) as a

chromosomal inversion on chromosome 10, which was confirmed

in our LUAD PDX sample, highlighting its potential applicability in

targeted therapeutic interventions.

Kohno et al. provided comprehensive insights into the origins

and functionalities of the fusion protein resulting from the KIF5B-

RET gene fusion event (7). The findings from this study revealed

that the fusion leads to an overactive tyrosine kinase due to the loss

of crucial domains of the RET protein, which morphologically

resembles a KRASV12 mutant phenotype characterized by

unrestrained cellular proliferation.

Further studies across a much larger cohort of lung

adenocarcinoma patient tissue samples add to our knowledge of

RET fusions by investigating the prevalence of RET gene fusion

partners. They found that the predominant partner was KIF5B (36).

This fusion has a consistent appearance rate across studies, typically

1-2% in patients with LUAD, emphasizing its significance as a

recurrent actionable mutation.

One of the significant goals of classical oncogenic science is to

identify common mutations that serve as broad therapeutic targets

for the most significant patient cohort. However, the relatively

unique and less prevalent nature of mutations, such as the

oncogenic driver KIF5B-RET fusion, should not deter studies

from examining it, but instead, prompt the development of

personalized treatments for each cancer type.

The identification of the KIF5B-RET fusion gene within a subset

of LUAD patients not only aligns with previous findings but also

paves the way for the development of personalized treatment

methods in the form of peptide or mRNA vaccines targeting the
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junctions of the fusion proteins and the neopeptides created

by them.

Recent evidence has supported that gene fusions generate novel

junction peptides that are absent from the normal proteome,

minimizing central tolerance and making them attractive vaccine

targets provided the junctional epitopes can be displayed by the

patient’s HLA alleles. Fusion-derived epitopes have been shown to

bind common HLA class I molecules and elicit T-cell responses as

seen with EML4-ALK-derived, HLA-A*02:01-restricted cytotoxic T

lymphocytes (44). Immunopeptidomics has also provided direct

mass-spectrometric evidence of HLA-bound peptides arising from

oncogenic fusion proteins like BCR-ABL (45). These data establish

biological plausibility that fusion junctions are naturally processed

and presented in human tumors.

Clinical feasibility in human patients has also been tested. In the

phase-I FusionVAC22_0 trial, individuals whose tumors harbor the

DNAJB1-PRKACA fusion are treated using a junction-derived

peptide vaccine (Fusion-VAC-XS15) combined with anti-PD-L1

(atezolizumab), explicitly employing HLA-restricted fusion-

neoantigen vaccination (46). In parallel, the first in-human

personalized mRNA neoantigen vaccines utilized each patient’s

peptides restricted to their own HLA repertoire. This vaccine has

shown to expand antigen-specific T cells with durable CD8+

memory reported on extended follow-up. This study provides a

strong clinical precedent that patient-specific, HLA-restricted

neoantigen vaccination is feasible and immunogenic in humans

(47, 48). Taken together, these mechanistic data and clinical trials

support our working hypothesis that a patient’s KIF5B-RET fusion

can yield HLA-presentable junctional epitopes suitable for inclusion

in a cancer vaccine contingent on restricting predictions to the

patient’s HLA type and validating top candidates where feasible.
4.2 In-silico predictions of junction peptide
binding affinity assist in identifying HLA-
C*07:02, best peptide binders, and lowest
cross-reactivity to wild type peptides

To assess the affinity of the junction neopeptides formed by the

KIF5B-RET fusion gene expressed and presented by the tumor, we

employed two sequence-based in-silico HLA affinity prediction

pipelines and a pipeline to examine Class I HLA affinity from a

structural standpoint (9, 49). HLA-C*07:02 was identified as the

best binder in silico—however, several other HLA alleles aligned

with binding affinities that were close in score. Along with the rarer

HLA-C allele class, the best ranking results in the more common

HLA- A and -B classes were HLA-A*68:23 and a tie between HLA-

B*45:01 and HLA-B*45:06 (50). In terms of junction neopeptides

from KIF5B-RET being incorporated into a future peptide vaccine,

this is a positive in silico finding. The ability of these neopeptides to

bind to a broader range of HLA alleles will increase the applicability

of this vaccine to cancer patients expressing the KIF5B-RET fusion.

We moved forward with the allele HLA-C*07:02 because of its

strong affinity and predicted a preference for binding to tumor-

derived peptides.
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In addition to assessing affinity, understanding the structural

features of peptide-HLA binding is essential for determining

whether the peptide will be presented. Insights from HLA-Arena

revealed the significance of electrostatic complementarity in the

efficient binding of peptides to HLA molecules, emphasizing the

importance of the positioning and orientation of peptides in the

HLA-binding cleft (51–53).

While investigating cross-reactivity, noticeable variability among

neopeptides was discovered, stressing the importance of sequence as

well as structure in a peptide’s capability to cross-react. Some peptides,

such as NNDVKEDPK, showed strong binding and minimal off-

target hits, which requires further validation through in-vitro assays.

While the data gained from these tools may provide an excellent look

into what may occur in-vitro, we also observed several limitations.

These tools, albeit efficient, may not emulate all the biological variables

present in living systems. The written algorithms and pre-existing

measurements used to create these pipelines comprised only known

variables. Thus, there may be components that have not been well

explored in the existing literature that are unaccounted for. The

fundamental understanding of the efficacy, safety, and off-target

effects of neoantigenic peptides will stem from rigorous in-vitro

experiments, which will allow for the validation of in-silico findings,

identification of false positives or negatives, and assurance of the

efficacy and safety profile of any specific neoantigen.

Combining sequence-based affinity predictions with structural

considerations gave us a multimodal look at neoantigen affinity and

cross-reactivity. Using these pipelines, we were able to efficiently

develop a neoantigen-based vaccine against LUAD tumor cells

expressing the KIF5B-RET fusion gene. Additionally, this

methodology can be quickly and affordably inserted into a

pipeline to validate fusion peptides for other cancer types.

However, we must stress the importance of validating these data

in-vitro to corroborate the results of the in-silico data. Notably,

precision HLA typing of patient RNA-seq samples is a highly

informative technique which would yield a more personalized

approach to peptide vaccine development. Utilization of the HLA

typing results from patient RNA-seq data could narrow our search

for an HLA of interest in future studies.
4.3 In-vitro assessment of immune
stimulation by KIF5B-RET junction peptides
identifies donor-specific immune
responses

This study utilized the ELISpot assay to measure the immune

response after stimulation with KIF5B-RET neopeptides. Along

with standard controls seen in the literature, we also used wild-type

peptides from the KIF5B and RET genes as negative controls to

further substantiate any positive results (28, 54, 55). This assay also

demonstrated well-documented aspects of donor variability in

peptide-based vaccines, with immune reactions varying distinctly

between donors. Although some peptides were effective in

provoking immune responses in one donor, they failed to
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produce similar results in another. These results push for more

personalized treatment methods instead of the “one size fits all’.

The comparative analysis of in-silico predictions and in-vitro

results allowed us to validate that while predictive tools, such as

those used in this study, offer good preliminary insights, the

biological responses may differ. This is not to say that these

pipelines are entirely off the mark, as the second-best binder in-

silico was the best CD8 + T-cell activator in-vitro.

The data obtained from this study provide evidence of the utility

of in-silico predictive tools, but also highlight the role of in-vitro

validations, developed controls, and the understanding of donor-

specific variations. It also contributes to the development of a

complete pipeline to probe the stimulation of the immune system

using immunogenic neopeptides from the junction of fusion

proteins caused by mutations within a cancer subtype.
4.4 Single cell RNA sequencing with
immune profiling reveals TCR sequences
and conserved residues which correlate
with immune response against KIF5B-RET
junction neopeptides

We used single-cell sequencing in partnership with immune

profiling of T Cell Receptors to identify specific TCR clonotypes

within CD8+ T cell populations responsive to stimulation by a pool

of neopeptides from the junction of the KIF5B-RET fusion protein.

Examination of individual immunological fingerprints revealed

donor-specific responses, with variations in the expression of

exhaustion markers, such as LAG3, possibly affecting the overall

immune response (28). It became evident that each donor’s

immunological makeup influences how their CD8+ T cells react

to stimuli, following previous literature, and further emphasizes the

relevance of individual differences in immune system functions (40,

43). These data further reinforce the potential of the KIF5B-RET

fusion junction neopeptides as targets for therapeutic approaches,

such as peptide and mRNA vaccines.

When focusing specifically on the sequences of the CDR3-a and

CDR3-b chains, we were able to identify conserved positions within

each chain that were unique to the TCRs of the stimulated cell

populations. We also found conserved glycine residues unique to

these positions, as observed in previous studies of T-cell responses

(56, 57). The data from this study defined TCR sequences and

sequence motifs, revealing key positions and residues that elevate

the probability of an immune response against specific peptides

within the KIF5B-RET fusion junction. This information can be

used to improve future therapeutic strategies, including adoptive T-

Cell therapies utilizing TCR engineering. This paves the way for

more personalized and effective treatment options for LUADs

expressing the KIF5B-RET fusion.

In summary, the culmination of the data covered in this study

contributes to the field of oncogenomics and immunology for the

development of HLA-matched peptide vaccines to target tumors

carrying oncogenic fusion KIF5B-RET. It also opens new avenues
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1635810
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Castillo et al. 10.3389/fimmu.2025.1635810
for developing patient-specific therapeutic strategies using the

pipeline established to predict and prevent disease recurrence in a

wide range of cancer types.
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