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Introduction: Non-classical neoantigens at the fusion junctions of chimeric
RNAs are tumor- specific with a low risk of autoimmunity and therefore
represent ideal targets for personalized vaccines. We present a platform to
discover immunogenic neoantigens that drive CD8+ T cell clonotypes from
chimeric RNA fusion junctions to promote tumor-reactive T cell expansion and
prevent tumor recurrence following immunotherapies.

Methods: RNA sequencing data from 15 Lung Adenocarcinoma and 15
Squamous Cell Carcinoma patients (tumor and adjacent normal tissues) were
analyzed. The KIF5B [Exon 1-15] | RET [Exon 12- 19] fusion was selected from a
patient-derived xenograft (PDX) model based on its established role as an
actionable cancer driver in an independent tumor with the same junction. We
assessed the affinity of neopeptides from the KIF5B-RET fusion to MHC Class |
molecules using in silico tools MHCNuggets and MixMHCPred 2.

Results: HLA-C07:02 showed the highest affinity for 9-mer peptideswith
NNDVKEDPK, which emerged as the strongest binder based on HLA-Arena
docking and binding energy calculations. Immunogenicity was evaluated by
IFNg Enzyme-Linked Immunosorbent Spot (ELISpot) assays using HLA-
C07:02- matched Peripheral Blood Mononuclear Cells (PBMCs) from two
donors. CD8+ T cells from both donors responded to specific junction
peptides. Single-cell 5'gene expression RNA sequencing and T Cell receptor
mapping of activated T cells identified 15 TCR clonotypes, five of which had high
activation. Key residues in CDR3a and CDR3b are crucial for CD8+ T cell
activation. NNDVKEDPK and KEDPKWEFP showed minimal cross-reactivity
with the normal tissues.

Discussion: This study demonstrates a robust pipeline for identifying and validating
immunogenic neoantigens from chimeric RNAs to design personalized cancer
vaccines with high immunogenicity and low cross-reactivity.

KEYWORDS

RNA fusions, chimeric RNAs, neoantigens, immunopeptides, KIF5B-RET fusion,
precision immunotherapy, cancer vaccine

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1635810/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1635810/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1635810/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1635810/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1635810&domain=pdf&date_stamp=2025-10-30
mailto:phgunaratne@uh.edu
https://doi.org/10.3389/fimmu.2025.1635810
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1635810
https://www.frontiersin.org/journals/immunology

Castillo et al.

1 Introduction

Tumor-associated neoantigens accumulated during cancer
progression have been a growing focus of vaccine development in
the past decade. Studies assessing neoantigen load have observed
strong correlations with clinical responses to immunotherapy (1) as
well as high somatic mutational burden. Many candidate
neoantigens have also been shown to improve survival in patients
treated with immune checkpoint blockades for non-small cell lung
cancer (NSCLC) (2) and melanoma (3, 4). Here, we present a
platform that can extract non-classical neoantigens from fusion
junctions of chimeric RNAs generated through structural variants
from chromosomal translocations, inversions, and deletions, as well
as transplicing events following read-through transcription of
neighboring genes. The novel junctions in the fusion proteins
generated from chimeric RNA products provide reservoirs of
tumor-specific neopeptides that are selected for immunogenicity
using HLA-matched Peripheral Blood Mononuclear Cells (PBMCs)
and low autoimmunity based on a comprehensive screen of the
normal immunopeptidome of humans.

In a study by The Cancer Genome Atlas (TCGA) completed in
2020, a set of recurrent canonical fusions was identified and defined as
“actionable” based on the availability of a drug approved by the FDA
or in various stages of clinical trials available to target one or both gene
partners. Fourteen genes, including RET, were found to be part of the
canonical fusions targeted by 36 drugs in 21 different cancers (5). We
screened for actionable fusions in non-small cell lung cancer
(NSCLC), which accounts for nearly 80% of lung cancer cases and
exhibits a median survival of less than one year following diagnosis
(6). NSCLC can be divided into three main subtypes: adenocarcinoma
(LUAD), squamous cell carcinoma (LUSC), and large-cell carcinoma.
In this study, we focused on the KIF5B-RET fusion protein, which is
sensitive to vandetanib, a multi-kinase inhibitor (7). Several fusions
have been reported in LUAD, including that of the kinesin family
member 5B-RET proto-oncogene (KIF5B-RET) (8). Identified as a
chromosomal inversion in the liver metastases of an NSCLC patient in
2011, it has since been found in 1-2% of lung adenocarcinoma patient
cohorts (7). KIF5B-RET gene fusion results from chromosomal
inversion between the long and short arms of chromosome. Four
central fusion junction variants have been reported: KIF5B [exon15] -
RET [exon 12], KIF5B [exon 16] — RET [exon 12], KIF5B [exon23] -
RET [exon12], and KIF5B [exonl14] - RET [exon 12]. These KIF5B-
RET variants are not expressed in normal lung tissue but are highly
expressed in certain adenocarcinoma lung cancer tissues. This fusion
protein has been reported to be responsible for overactive tyrosine
kinase activity in lung adenocarcinomas expressing protein. Due to
this expression, changes are observed in the morphology of the cells
along with increased proliferation, similar to the Kirsten Rat Sarcoma
viral oncogene homolog (KRAS) V12 mutant present in other cancer
types (8).

Previous studies have shown that cancer cells can efficiently
present their own antigens and act as antigen-presenting cells (9).
This study aimed to use peptides to prime the immune system to
recognize and respond to MHC Class 1 presented neoantigenic
peptide sequences from the KIF5B-RET fusion protein expressed in
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LUAD cancer patients. To do this, we leveraged several in silico
prediction pipelines to identify which neopeptides generated by the
junction of the KIF5B-RET protein are bioinformatically predicted
to be the best binders to available MHC Class-1 alleles, with the
lowest potential cross-reactivity with peptides expressed in normal
tissues across the body. In-vitro validation of selected peptides and
peptide pools was performed using an Enzyme-Linked
Immunosorbent Spot (ELISpot) assay with MHC Class-1
matched PBMCs. The top expanded TCR clonotypes in fusion
junction peptide-stimulated CD8+ T cell populations were
identified using scRNA-seq and TCR sequencing.

2 Materials and methods
2.1 Sample cohorts

2.1.1 Patient samples

Fifteen lung adenocarcinoma and fifteen lung squamous cell
carcinoma specimens, each matched to an adjacent normal frozen
tissue sample, were procured from the Houston Methodist
Biorepository under an IRB-approved protocol. The cohort
comprised 12 female and 18 male patients, ranging in age from
54 to 80 years. Tumor and adjacent normal regions were delineated
on hematoxylin & eosin-stained sections by a board-certified
pathologist, who selected only areas entirely devoid of histologic
evidence of malignancy. The RNA-Seq data underlying this study is
available in the NCBI Gene Expression Omnibus at http://
www.ncbi.nlm.nih.gov/geo/ and can be accessed with accession
number GSE159857 (10).

2.1.2 Patient-derived xenograft samples
Overgrown tumor tissue was sourced from the patient-derived
xenograft (PDX) company XenoSTART.

2.2 RNA isolation and next generation
sequencing

RNA from patient samples was isolated from fresh-frozen,
pathologist-marked regions via laser-capture microdissection to
eliminate any potential admixture with tumor cells was extracted
using the Qiagen miRNeasy micro kit, followed by library
preparation using the QIAseq Stranded Total RNA library
preparation kit (Qiagen). RNA was extracted from the PDX tissue
block using the Qiagen miRNeasy mini kit, and sequencing libraries
were prepared using the QIAseq Stranded mRNA Library
Preparation Kit (Qiagen). All libraries were assessed for quality
using a High-Sensitivity D5000 chip on an Agilent 4200
TapeStation and quantified with a Qubit 4 fluorometer (Thermo
Fisher Scientific). Libraries generated from the RNA of patients with
lung cancer were sequenced on the NextSeq 500 at 20 million
paired-end reads per sample, whereas the libraries generated from
the PDX tissue paired-end were sequenced at >50 million reads per
sample on a NovaSeq 6000.
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2.3 Sequence alignment and fusion
detection

All fusions identified within the adjacent normal samples were
removed from the background. Fusions appearing only in tumor
samples called by all fusion callers together were considered positive
hits. Only split reads were considered when identifying the fusion
genes within a particular sample. To improve the clinical relevance
of the identified fusion genes, an additional filter was implemented
by identifying specific actionable fusion gene partners identified in
The Cancer Genome Atlas (TCGA) dataset (5). RNA-seq fastq data
were aligned using several fusion calling pipelines as detailed below.
The pipelines were chosen based on their specificity (confidence) in
their calls or sensitivity (fusion detection rate).

2.3.1 CLC genomics workbench 20 (Qiagen)

Mlumina sequencing adaptors were trimmed, and reads were
mapped to the human reference genome hg38 Refseq (RRID:
SCR_003496) GRCh38.p9 from the Biomedical Genomics
Analysis Plugin 20.0.1 (Qiagen). RNA fusions were detected using
the detection fusion gene algorithm, which identifies fusion events
based on the number of fusion junction-crossing reads and fusion-
spanning reads. The refined fusion gene tool was used to re-count
the number of fusion junction crossing reads, and the novel RNA-
seq reads were mapped against a fusion reference created in the
initial detection fusion gene pipeline. Only fusion split (soft-
clipped) reads were considered when identifying fusion genes, as
fusion spanning (discordant) reads increased the probability of
false-positive fusion calls.

2.3.2 lllumina Dragen RNA

Ilumina sequencing adaptors were trimmed, and reads were
mapped to the human reference genome hg38, no alts, and decoys.
Both “RNA Quantification” and “Gene Fusion Detection” were
enabled. Alignment output files were output in BAM format. All
other settings were set at default values.

2.3.3 Arriba, EasyFuse

Ilumina sequencing adaptors were trimmed, and reads were
mapped to the human reference genome hg38. All pipelines were
run according to the default protocols specified in their respective
GitHub pages (11, 12).

2.3.4 HLA typing of RNA sequencing data

HLA typing of patient samples (GSE159857) was carried out
using the OptiType pipeline with the default settings (13). As the
sample data was from precious, clinical samples, the quality of several
samples was not high enough to generate a confident HLA type.

2.4 RT-PCR and sanger sequencing

Reverse transcription of RNA samples was used to generate
c¢DNA from PDX tissues after RNA extraction. The cDNA was then
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subjected to PCR amplification across the KIF5B-RET fusion
junction using forward (5-GATGATGGCATCTTTACTAAAAG-
3) and reverse (5-CGCCTTCTCCTAGAGTTTTTC-3’) primers.
DreamTaq DNA Polymerase (Cat. # EP0701) was used in the 30-
cycle PCR. Amplicon size was analyzed using a High-Sensitivity
DNA 1000 tape on a Tapestation 4200 (Agilent, RRID:
SCR_019398). Sanger sequencing was performed at the LoneStar
Laboratories, Houston, TX.

2.5 In-silico neopeptide affinity predictions

Class I MHC binding affinities for 9-mer peptides from the
KIF5B-RET fusion junction region were predicted using
MHCnuggets and MixMHCpred 2.2. MHCnuggets were executed
as previously described (14), while MixMHCpred 2.2 was run with
default settings (15). Wild-type peptides positioned two amino
acids away from the fusion junction served as controls. Peptides
spanning the major Open Reading Frame (ORF) generated from the
KIF5B-RET fusion were analyzed. MHCnuggets predicted MHC
class I binding affinities as IC50 values (nM), considering peptides
with IC50 < 500 nM as strong binders and ranked them
accordingly. MixMHCpred 2.2 evaluated affinity in %Rank, with a
cut-off of 10% indicating strong binding. The output data from both
pipelines were reviewed, and the optimal HLA Class I allele was
selected for further analysis.

2.6 Structure-based affinity predictions and
peptide docking

Eight junction-spanning peptides and two wild-type peptides
from the KIF5B-RET fusion gene were subjected to structural
modeling using HLA-Arena (16) and APE-GEN (17). APE-GEN
generated multiple models for each peptide, predicting their
binding energies to the HLA-C07:02 receptor. The receptor
structure was sourced from the Protein Data Bank (PDB ID:
5VGE) and processed with the R package Bio3d (RRID:
SCR_024266) to remove excess molecules and verify integrity.
The rigid receptor structure was prepared via PDB2PQR (18),
and energy minimization was done for the structures with
Gromacs (19-21). Molecular docking was performed for all 10
peptides against the rigid and energy-minimized (EM) structures of
HLA-C07:02. Workflow 0 in HLA-Arena was adapted to model
each peptide-receptor complex, and APE-GEN ensemble sampling
was used to calculate the binding energies for ranking the peptides.

2.7 Peptide — HLA modeling and
electrostatic potential calculations

ChimeraX was used to visualize the peptides docked with HLA-
C*07:02. The electrostatic potential (ESP) of the peptide structure
was calculated, and the molecular surfaces were colored red for
negative potential and white to blue for positive potential (22, 23).
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2.8 In-silico off-target toxicity assessment

For each 9-mer input from the KIF5B-RET fusion gene,
CrossDome (24) generated a list of unrelated self-derived peptides
that may have biochemically similar profiles to 9-mer inputs, which
could lead to toxicity and adverse effects in cancer
immunotherapies. Additionally, CrossDome was used to yield
mRNA and tissue expression patterns for each 9-mer off-target
peptide associated with the 9-mer input peptides from the KIF5B-
RET fusion gene.

2.9 Peptide library generation

The fusion peptide library comprised eight neoantigens and two
wild-type 9-mer peptides from the KIF5B [exon 15]-RET [exon 12]
fusion gene open reading frame. Peptides were synthesized via
standard solid-phase peptide chemistry and purified using reverse-
phase high-performance liquid chromatography (Thermo Fisher
Scientific PEPotec). The solution was reconstituted at 1 mg/mL
under sterile conditions. A standardized 9-mer peptide supplied by
the manufacturer served as the negative control peptide (NCP), as
this peptide had no biological significance. A Cytomegalovirus
(CMYV) peptide pool (Cat. # 3619-1) with 42 peptides (28 MHC
class I-and 14 MHC class II-restricted) was used as a positive control.

2.10 Human primary cells

HLA-C*07:02 allele-matched human PBMCs from two healthy
donors were acquired (STEMCELL Technologies) and stored in
liquid nitrogen until use. Donors were matched to the HLA-
C*07:02 allele and also expressed the following HLA alleles:
Donor 1 - A¥02:01, A*24:02, B*15:13, B*38:02, C*08:01. Donor 2
- A¥02:01, A*11:01, B*07:02, B*67:01.

2.11 Culture medium

The complete media consisted of RPMI-1640 growth medium
supplemented with L-glutamine (Cat. # 61870036) supplemented
with 10% heat-inactivated fetal bovine serum (Cat. # F0601-050),
0.1 mmol/L nonessential amino acids (Corning; Cat. # 25-025-CI),
10ug/ml Cellmaxin (Cat. # C3319-006), and 0.5 mg/mL
Amphotericin B (Cat. # 15290026).

2.12 In-vitro stimulation of PBMCs using
peptides

PBMCs were retrieved from liquid nitrogen, thawed in a water
bath at 37°C, and washed with culture medium warmed to 37°C as
described in the primary cell thawing protocol by Stem Cell
Technologies. The cells were incubated at 37°C and 5% CO, for
24h (Cell Resting). After resting, the cells were seeded at a
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concentration of 1 x 10°/mL in 6-well plates with culture
medium containing IL-2 (10 IU/ml), IL-7 (10 ng/ml), and IL-15
(10 ng/ml). The cells of the Non-Stimulated Control (NC) wells
were not treated with any peptides but were maintained under the
same growth conditions as the cells of wells treated with
neoantigenic peptides. The cells in the CMV-positive control
wells were treated with 1 pg/ml of the CMV peptide pool and
supplemented with media and growth conditions identical to the
test peptide wells. The eight neoantigenic and two wild-type 9-mer
test peptides were added to their respective wells at 2 pig/ml, and the
plates were incubated at 37°C and 5% CO, for 4 days. On day 5,
50% of the medium was replaced with fresh medium, and cells were
cultured for an additional 5 days. A second round of peptide
restimulation was performed with the corresponding peptides
coupled with the cytokine medium before the cells were used for
the ELISpot assay.

2.13 Isolation of CD8+ T cells from PBMCs

On Day 13, untouched CD8+ T cells were isolated from PBMCs
by magnetic negative selection using a MojoSortTM Human CD8+ T
Cell Isolation Kit (BioLegend; Cat. # 480012) according to the
manufacturer’s instructions.

2.14 IFN-y ELISpot assay

To evaluate the peptide-stimulated CD8+ T cell immune
response, IFN-y production by cells stimulated with the predicted
neoantigenic peptides was quantified using a commercially available
Human IFN-y ELISpot kit (CTL ImmunoSpot, Cellular Technology
Ltd.), following the manufacturer’s instructions. The plate was read
using an ELISpot reader (CTL Counter, Cellular Technology Ltd.).
The cell culture medium used to incubate the cells in the ELISpot
plate was augmented with the corresponding peptides and IL-2 (10
IU/ml), IL-7 (10 ng/ml), and IL-15 (10 ng/ml), which were
considered significant if >20 spots/1,000,000 cells were counted,
and the mean spot count was at least three-fold higher than the
mean spot count of the non-stimulated control.

2.15 5' v2 HT single cell RNA-seq library
preparation and sequencing

CD8+ T cells were isolated from junction peptide pool
stimulated and non-stimulated PBMCs, spun at 500 rpm for 5
min, washed once in PBS (without calcium and magnesium) with
0.04% BSA, and then resuspended. Cell suspensions were loaded
onto a 10X Genomics chip N, following the Chromium Next GEM
Single Cell 5> HT Reagent Kits v2 (Dual Index) protocol (CG000423|
Rev C). Modular kits for 10X Chromium Connect were used to
automate library preparation from cDNA. Gene Expression (GEX)
sequencing libraries were generated using the Chromium Next GEM
Automated Single Cell 5° Reagent Kits v2 user guide (CG000384|Rev
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D). Libraries were assessed for quality using a High-Sensitivity
D5000 chip on an Agilent 4200 TapeStation and quantified with a
Qubit Flex Fluorometer (Thermo Fisher Scientific). Libraries were
pooled by donor and sequenced on NovaSeq X Plus (Illumina) to
obtain 150 base paired end reads.

2.16 Post-sequencing processing

The 10X Cloud Analysis portal was used to run CellRanger
v7.1.0 on all FASTQ files. The sequencing data were aligned to the
GRCh38 human reference genome.

2.17 Analysis of single cell gene expression
data

Single-cell RNA sequencing GEX data were obtained from
donors 1 and 2 under stimulated and non-stimulated conditions.
Filtered matrix files from CellRanger v7.1.0 were used as input into
R and converted into Seurat objects using the CreateSeuratObject
function from the Seurat package (25, 26). Seurat objects were
created and processed independently for each condition and donor.
Each Seurat object underwent SCT normalization using the
SCTransform function. Concurrently, the percentage of
mitochondrial genes was regressed from each object, with a final
5% mitochondrial cutoff implemented, as observed in other studies
on populations of cells from PBMCs (26). The cells were filtered
based on the number of expressed features, retaining those with a
feature count between 500 and 10,000. Principal Component
Analysis (PCA) and UMAP dimensionality reduction were
performed on each object using RunPCA and RunUMAP
functions, respectively. FindNeighbors and FindClusters functions
were used to define clusters in the data. The DoubletFinder (RRID:
SCR_018771) package was deployed on each Seurat object to
identify and remove doublets, followed by subsetting to retain
only the singlet cells (27). The objects were then annotated with
the relevant donor and condition metadata. Following individual
processing, the objects were integrated into a single Seurat object
using the Seurat package’s data-integration features.

2.18 Annotation of cell types

Cell types were assigned based on the expression of canonical
marker genes as defined in previous studies. All T-Cells were defined
based on their expression of CD3D, CD3G, and CD3E (28). CD8+ T
cells were defined based on CD8 expression (28). Naive CD8 + T-
Cells were further clustered based on their expression of CCR7 and
SELL (28). Exhausted CD8 + T-Cells were annotated based on their
expression of PDCDI and LAG3 (28). Cycling CD8 T Cells were
identified by the expression of TOP2A and MKI67 (29). Activated
CD8 T Cells were called using canonical markers of activation: IFNG,
TNF, GZMB, CCL3, and CCL4 (28). CD8+/CD4+ T cells were
characterized by co-expression of both CD8 and CD4 genes (30).
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Two Natural Killer (NK) cell populations were identified and defined
by the expression of KLRC1 (29, 31). Dendritic Cells were defined
using the marker gene LYZ (29). B Cells were defined by the
expression of MS4A1 (29).

2.19 Analysis of single cell immune
profiling data using Scanpy and Scirpy

Single-cell TCR sequence data were processed and analyzed
using Python packages Scanpy (32) and Scirpy (33). Individual
components of the integrated Seurat object, including Gene Names,
Metadata, PCA, and Matrix information, were prepared to
construct an. h5ad file that can be used in Scanpy. Scirpy was
then used to analyze the corresponding GEX and TCR data from
each sample by creating a merged object, followed by subsequent
analysis as described in the “Analysis of 3k T cells from cancer”
tutorial (33).

2.20 CDR3 sequence clustering,
characterization, and alignment

The top 15 variable sequences of CDR3-0. and CDR3-f3 chains
were considered as the response-positive dataset and clustered using
the methodology previously described (28). Briefly, clustering was
performed in GibbsCluster 2.0, with MHC class I configurations and
a specified core size of the smallest variable sequence in the positive
dataset (34). CDR3 chains found only within naive populations were
used as the negative datasets. The position-specific scoring matrices
(PSSMs) yielded from GibbsCluster 2.0 clustering were used to conduct
a position-wise Pearson correlation between positive and negative
datasets. Correlation significance was assessed using Pearson’s
correlation test. Similarity and identity of variable sequences were
computed by pairwise sequence alignment using Clustal Omega
(RRID: SCR_001591) with standard configurations (35).

3 Results
3.1 Fusion identification

RNA-seq data from 15 Lung Adenocarcinoma (LUAD), 15
Squamous Cell Carcinoma (LUSC) tumors, and adjacent normal
samples from Houston Methodist were screened using multiple
fusion callers. Each of the four fusion calling pipelines were run
independently, and selection of fusions from each fusion caller were
done in parallel without using any one fusion calling pipeline as the
golden standard. We selected for this study, KIF5B-RET, found in a
patient with LUAD and corroborated by all four fusion calling
pipelines including CLC Genomics Browser Fusion Caller, Illumina
Dragen Fusion Caller, Arriba, and EasyFuse(Supplementary
Table 1). The fusion junction between exon 15 of KIF5B and
exon 12 of RET is shown in Figure 1A. The complete fusion
nucleotide sequence was constructed using the Hg38 reference
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sequence (Supplementary Figure 1), revealing 16 Open Reading
Frames (ORFs), with the longest being a 935 amino acid in-frame
sequence (Supplementary Figure 2). This fusion, previously
reported in patients with LUAD with a prevalence of 1-2% was
validated in previous studies and similarly identified as a
chromosomal inversion by the Arriba pipeline (7, 36).

3.2 Validation of fusion KIF5B-RET

Due to the limited tissue from the LUAD patient with a
bioinformatically confirmed KIF5B-RET fusion, the full RNA
sample was used to create a sequencing library and was not
confirmed using downstream methodology.

3.3 KIF5B-RET fusion in LUAD PDX model

The exon 15 KIF5B and exon 12 RET junction variants were
also found in the LUAD patient-derived xenograft (PDX) model
ST3952 from XenoSTART. This bioinformatically predicted fusion,

A.

KIF5B (Exons 1-26)

{26 | 2576

10.3389/fimmu.2025.1635810

identified across all fusion prediction pipelines, was similarly called
as chromosomal inversion by Arriba (Supplementary Figure 3). The
tissue block from XenoSTART allowed us to validate the fusion
junction in the PDX model ST3952 (Figure 1B). In silico analysis
confirmed the fusion, and in-vitro validation was achieved by
amplifying a 131-basepair amplicon, as shown in the TapeStation
Trace (Figure 1C). This band was absent in the normal human RNA
control. RT-PCR followed by Sanger sequencing confirmed the
fusion junction, which was consistent with the results of previous
studies (Figure 1D) (7, 36).

3.4 Neoantigen affinity prediction identify
HLA-C*07:02 binds strongly to junction
peptides in-silico

We employed MHCnuggets to predict IC50 values and
MixMHCpred 2.2 to rank peptides based on motif similarity
(Figure 2A). By comparing these two pipelines, we identified HLA
allotypes with high peptide-binding affinities for potential in vitro
validation. A %Rank cutoff of 10.00 in MixMHCpred, corresponding
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FIGURE 1

KIF5B-RET fusion identification in an LUAD Patient and validation in PDX Model by RT-PCR and Sanger sequencing. (A) In-silico identification of
fusion KIF5B [Exon 15] — RET [Exon 12] from an LUAD patient sample. (B) In-silico fusion predictions in an LUAD PDX sample. (C, D) In-vitro
confirmation of the KIF5B [Exon 15] — RET [Exon 12] junction shown by RT-PCR and Sanger sequencing.
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to IC50 values < 500 nM from MHCnuggets, was used to define
strong binders, as established in the literature (14, 15, 37).
MHCnuggets predicted ten unique HLA class I alleles with IC50 <
500 nM (Supplementary Table 2). Individual values for each Class I
HLA allele for all junctions and wild-type peptides are shown in
Supplementary Table 3. MixMHCpred identified 92 unique HLA
class T alleles with a% rank < 10 (Supplementary Table 4).
Overlapping predictions identified a single junction peptide,
“VKEDPKWEF,” which binds to four HLA Class I alleles
(Supplementary Table 5). HLA-C*07:02 emerged as a strong binder
across multiple peptides (Figure 2B) and was consistently predicted
by both the pipelines. It showed robust binding to junction peptides
but not to wild-type KIF5B peptides (Supplementary Table 6).
Precision HLA typing of patient samples was performed using
RNA-seq data from GSE159857 (Supplementary File 2). HLA-
C*07:02 emerged as a potential HLA genotype of interest and
further supported exploring our in-silico predictions. Aside from
this HLA, other more prevalent HLA alleles in this cohort included
HLA C*06:02 and HLA C07%01 which showed moderate binding
affinity to junction peptide VGNNDVKED and were expressed by
the patient carrying the KIF5B-RET fusion (Supplementary Figure 4).
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3.5 Structural modeling and HLA-peptide
binding strength predictions using HLA-
arena

Using HLA-Arena, we investigated the binding strengths of
eight junction-spanning and two wild-type peptides from the
KIF5B-RET fusion gene to HLA-C*07:02, selected for its high
affinity in previous predictions. HLA-Arena integrates tools for
the structural modeling and analysis of peptide-HLA complexes,
providing a comprehensive environment for this study.

We docked the peptides to the HLA-C07:02 rigid receptor
structure using APE-GEN to generate multiple models and
predict the binding energies. The crystal structure of HLA-C07:02
was prepared using the Bio3d software (RRID: SCR_024266).
Ensemble sampling of each peptide-HLA complex was performed
and the binding energies for the best conformations were calculated.

Electrostatic potential analysis showed that the peptide
NNDVKEDPK, with the lowest binding energy, had positive
electrostatic potential regions oriented towards the binding pocket,
while DVKEDPKWE, with the highest binding energy, had negative
electrostatic potential regions facing inward (Figure 2C).
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In-silico prediction of KIF5B — RET neopeptide binding affinities to HLA alleles and identification of possible cross-reactive responses. (A) Neopeptide
affinity prediction pipeline. (B) Binding of junction peptides to MHC Class 1 alleles. Lines in grey and black correspond to the peptide sequence
above and represent calls made by MHCNuggets and MixMHCPred respectively. (C) Peptides with highest and lowest average binding energy
prediction values across three replicates. Peptides are docked in HLA-C07:02 and are colored by their electrostatic potential. (D) Binding energy
predictions for junction peptides. Bars colored by majority contribution of amino acids in blue and red for KIF5B and RET respectively on top of the
bar plot. Total number of off target peptide hits for each 9-mer junction crossing peptide shown across the bottom of the plot.
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Figure 2D (upper panel) presents the binding energy results,
where lower binding energies correlate with stronger binding
affinities. NNDVKEDPK, KEDPKWEFP, and NDVKEDPKW
exhibit the lowest binding energies.

3.6 Off-target toxicity predictions of
neoantigenic peptide sequences using
CrossDome

One concern with peptide vaccines is the potential for cross-
reactivity, in which the immune system may recognize similar
peptides from host proteins, leading to autoimmune responses.
To assess the cross-reactivity of neoantigenic peptides from the
KIF5B-RET fusion junction, we utilized the bioinformatics tool
CrossDome. CrossDome identifies cross-reactive candidates based
on global sequence similarity rather than intrinsic MHC binding
affinity. Therefore, to strengthen biological relevance, we integrated
independent HLA-binding predictions (via HLA-Arena/
NetMHCpan) with the CrossDome hits.

We analyzed eight 9-mer neoantigenic peptides crossing the
fusion junction and two wild-type peptides from KIF5B and RET.
Using CrossDome’s default p-value cutoff of < 0.005 yielded few
cross-reactivity results, with three peptides (GNNDVKEDP,
DVKEDPKWE, and KEDPKWEFP) showing no cross-reactivity
(Supplementary Table 7). We raised the p-value cutoff for lenient
identification, categorizing cross-reactive hits into p-value bins of <
0.01 and 0.01 - 0.05 [Figure 2D (lower panel)].

NNDVKEDPK had the least off-target hits, followed by
KEDPKWEFP, which correlated with its high binding strength.
For KEDPKWEEFP, 18 of 19 off-target hits were in the 0.01 - 0.05
category, indicating low confidence in these results [Figure 2D
(lower panel)]. By cross-referencing immunopeptidomics data with
tissue expression levels, we identified cross-reactive peptides in the
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retina, skeletal muscle, spleen, liver, and cerebellum
(Supplementary Figure 5).

3.7 Assessment of immune stimulation
using the IFN-y ELISpot assay

Isolated CD8+ T-Cells stimulated with KIF5B-RET junction
peptides were assessed for activation using ELISpot assay to
measure IFN-y expression (Supplementary Figure 6;
Supplementary Table 8). Variability in the immune response was
observed among donors, with certain 9-mer peptides within the
neoantigenic junction sequence eliciting strong responses in one
donor and weak responses in another (Figure 3).

For Donor 1, the peptide sequence KEDPKWEFP triggered a
significant immune response compared with the negative control
(NC) treatment (Figure 3), consistent with its second-highest
predicted binding strength according to HLA-Arena[(Figure 2D
(upper panel)]. Additionally, Donor 1 exhibited higher IFN-y
secretion when stimulated with the peptide VGNNDVKED,
although this was not considered a positive stimulation in all
replicates (Figure 3). This peptide has lower binding energies in
in in-silico predictions.

In contrast, Donor 2 showed a positive response to the pool of
junction neopeptides, particularly towards DVKEDPKWE, despite
its weaker binding strength as predicted by HLA-Arena, as shown
in Figure 3.

3.8 Clustering and cell type annotation in
Seurat

In conjunction with our ELISpot assays, isolated CD8+ T-Cells
stimulated with KIF5B-RET junction peptides were assayed via single

|:| Donor 1
[ ponor 2

*

Peptide Treatment

FIGURE 3

IFN-v ELISpot of CD8+ T-Cells Stimulated with KIF5B-RET Neoantigenic Junction Peptides. NC: Non-Stimulated Control, NCP: Non-Activation
Control Peptide, Pool: Neoantigen Junction Pool. T cell responses are considered positive if >20 spots/1IM cells were counted, and the mean spot
count was at least three-fold higher than the mean spot count of the NC. (*significantly positive T cell responses). D1/D2: Donor 1/Donor 2. Peptides
colored in blue and red by representation of KIF5B or RET amino acids, respectively. Whiskers represent Standard Error of the Mean (SEM).
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cell transcriptomics to assess transcriptional changes within our
populations of interest. Seurat was used to cluster the cells
according to their respective gene expression signatures in a total of
28 unique clusters (Supplementary Figure 7A). The expression of
canonical markers identified previously in literature was used to
determine the cell populations within cells captured after peptide
stimulation (Supplementary Figure 7B, 8). T Cells were identified
based on the expression of CD3D, CD3G, and CD3E (28). Naive CD8
T-Cells (clusters: 0, 14, 15, 17, 20, 21, and 25) were characterized by
the presence of the marker genes CCR7 and SELL (28). These
markers are associated with cells in a quiescent state and respond
to new antigens. Exhausted CD8 T-Cells (clusters 1, 2, 3,4, 5,6, 7, 12,
13, 16, 22, and 24) were denoted by the expression of LAG3 and TOX
(28). Cycling CD8 + T-Cells (Cluster 8), typically associated with T
cell activation, were marked by the genes TOP2A and MKI67 (29).
Activated CD8 T-Cells (clusters 9, 10, and 11) were identified using
the markers IFNG, TNF, GZMB, CCL3, and CCL4 (28). Two distinct
clusters of Natural Killer (NK) cells were identified. NK-1 (Cluster:
18) cells were characterized by the expression of KLRC1 (31) and
NK-2 (Cluster: 27). NK-2 cells, the secondary and smaller subset of
Natural Killer cells, expressed KLRC1 and NCAMI1 (29). The
expression of the LYZ gene marked Dendritic Cells found in
(cluster 23), which play an integral role in antigen presentation to
T cells (29). B Cells (Cluster: 26) were identified by the expression of
MS4A1, a marker gene associated with B cell development and
differentiation (29). CD8/CD4 T Cells (cluster 19) co-expressed
CD8A, CD8B, and CD4 (30). Cluster identities were assigned based
on the above markers (Supplementary Figure 9).

3.9 CD8 T cell subset and re-clustering

While performing magnetic CD8 T cell isolation, it is known
that there is a margin of error in the captured cells. Clusters 18, 19,

10.3389/fimmu.2025.1635810

23,26, and 27 had expression profiles that differed from those of the
CD8+ T cells we originally selected for (Supplementary Figure 7B).
These clusters correlated with the two identified NK cell
populations, B cells, dendritic cells, and the population of T cells
co-expressing CD4/CD8 markers. These populations were removed
from the CD8+ T cell population and the final cell populations of
interest were re-clustered using Seurat. Cell populations were
defined using markers described previously for naive, exhausted,
and activated CD8+ T cells (Figure 4A).

Marker expression in the three significant CD8+ T cell
populations: Activated, Exhausted and Naive states are presented
in Figure 4B. Although major exhaustion markers were expressed
within the active population, as seen in previous studies, the
diminished expression of activation markers within exhausted
populations allowed us to separate them into two states (28, 29).
UMAP embeddings utilizing marker scores were used to confirm
our cell identity assignments across the CD8 + T cell populations.
To quantify the key transcriptional programs in CD8" T cells, we
computed per-cell module scores with Scanpy’s sc.tl.score_genes for
three gene sets. The exhaustion score was defined by LILRBI,
PDCD1, LAYN, HAVCR2, LAG3, CD244, CTLA4, TIGIT, TOX,
VSIR, BTLA, ENTPD1, CD160, LAIR1, and GZMK. The activation
score was defined by IFNG, TNF, GZMB, and CCL3. The naive
score was defined by IL7R, CCR7, SELL, FOXO1, KLF2, KLF3,
LEF1, TCF7, ACTN1, and FOXPI. Higher module-score values
indicate greater enrichment of the corresponding program within
individual cells (28, 38, 39).

3.10 Donor-specific differences observed
within CD8 T cell populations

As identified in our ELISpot assays, the stimulation of CD8+ T
cells exhibited notable donor-specific effects in that they were
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Activated, exhausted, and naive T-Cell populations identified using canonical markers. (A) CD8+ T cell populations identified by the expression of
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Gene Score UMAPs of activation, exhaustion, and naive T Cell Markers across all CD8+ T Cell populations are shaded based on the expression
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stimulated at different levels by the peptides or peptide pool. This
coincides with previous literature demonstrating variability in
immune responses from donor to donor (40, 41). Cells from
Donor 1 and Donor 2 were compared, to compare the gene
expression profiles of each of the three major CD8+ T cell
populations between each donor (Figures 5A, B).

We found a statistically significant difference in the expression
of CCL4, TNF, and IFNG in active CD8+ T cells and LAG3 in
exhausted CD8+ T cells (Supplementary Figure 10). However,
while the adjusted p-values for these genes were significant and
less than 0.05 (41), the LFC for each marker gene was < 1-fold in
both cases. Given the slight differences in gene expression, we
wanted to push the question further to identify a possible
relationship with the difference in immune stimulation seen in
our ELISpot assays. To this end, we divided the populations of
cells by the donor and examined the percentage of each of the
three major cell populations (Figure 5C). Both intra- and inter-
donor differences were profiled in this way, making it clear that
there was a decrease in the proportion of cells within the

10.3389/fimmu.2025.1635810

Exhausted CD8+ T cell population in Donor 1 compared to
Donor 2. We also looked at the proportion of activated
exhausted, and naive CD8 T cells within stimulated and non-
stimulated populations for each donor (Supplementary Figure 11).
It was observed that cell population proportions were similar
within donors when comparing stimulated versus non-stimulated
samples, likely resulting from cytokine stimulation by IL-2, IL-7,
and IL-15 for all samples during ELISpot. These cytokines were
added to propagate our PBMCs throughout the 14-day ELISpot
workflow. This further prompted us to investigate any differences
in T cell clonotype expansion between stimulated versus non-
stimulated cells.

3.11 Investigation of TCR clonotype
expansion across CD8 T-cell populations

After exploring donor-specific effects based on gene expression
and changes in cell populations, we investigated clonal expansion
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Querying donor-specific CD8 T cell population differences. (A) UMAP of CD8+ T cells colored by donor. (B) Dot plot of T cell markers across active,
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across each of the three major cell populations identified within the

CD8+ T-cell subset. The increase in clonotype count seen across

naive, exhausted, and activated populations is illustrated in

(Figure 6A). The naive population mainly expressed one

clonotype, whereas

the exhausted and active populations

exhibited higher clonality. The clonotype count was calculated as
the number of TCR clonotypes exhibited by more than one cell.

Thus, the non-expanded naive population is expected to have

unique TCR clonotyp
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3.12 Identification and allocation of TCR

clonotypes

Confirming clonal expansion across the populations of CD8+ T

cells isolated after

stimulation, we identified the top 15 TCR

clonotypes expressed primarily by stimulated cells. This required

examination of the proportions of stimulated versus non-stimulated

cells expressing each clonotype. We then ranked the clonotypes

based on the proportion of cells from the peptide pool stimulated
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Characterization of Top Expanded TCR Clonotypes. (A) A bar chart shows the proportion of clonal expansion in active, exhausted, and naive
populations after peptide stimulation. (B) The top 15 TCR clonotypes expressed primarily in stimulated CD8+ T cells are displayed in a stacked bar
chart, colored by stimulated and non-stimulated status. (C) The top 15 TCR clonotypes expressed primarily in stimulated CD8+ T cells are displayed
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samples vs. non-peptide-stimulated samples (Figure 6B). This
approach allowed us to assess which TCRs explicitly responded to
the junction peptide pool and not the cytokine media used during
the stimulation described in the methods. Following the rank
ordering of TCRs, we shifted our focus to the cell populations
that predominantly expressed these TCRs. The top five clonotypes,
ranked by the overall proportion of cells, were mainly found within
the active CD8+ T cell population (Figure 6C). This highlights the
possible role of these clonotypes in mediating the immune response
when exposed to the KIF5B-RET junction peptide pool. In contrast,
the remaining ten TCR clonotypes were predominantly correlated
with exhausted cell populations, with a singular clonotype
additionally being identified in the naive population. This
indicates varying responsiveness and potential functional
specialization among these clonotypes, potentially influencing the
immune response differently.

Given the donor-specific effects observed in this study, a
focused analysis was conducted to assess the prevalence of top
TCRs within each donor. This aspect of the data showed that the
first and second most prevalent TCR clonotypes were sourced from
donors 1 and 2, respectively (Figure 6D). This coincides with the
data from previous studies in that low rates of TCR sequence
overlap were found in stimulated samples (42, 43). However, it
should be noted that this assay included only two donors, and
testing on more donors would be necessary to validate this finding
thoroughly. Additionally, Donor 2 responded with the highest
clonal expansion to the junction peptide pool, as 11 of 15
clonotypes from the top 15 TCRs were sourced from this donor.
This reflects the results of our ELISpot assay, in which Donor 2
responded significantly to stimulation with a pool of
junction peptides.

10.3389/fimmu.2025.1635810

3.13 Characterization, clustering, and
position based Pearson analysis of top
expanded TCR sequences

Characterization and analysis of TCR sequence data from both
donors revealed regions of conserved residues or chemical
properties in the CDR3-o. and CDR3-f sequences of the top
expanded TCR sequences. The sequences from different donors
showed noticeable chemical similarities, particularly in the regions
located on the exterior of the sequence. However, they were
considerably different as they progressed towards the central
region. The CDR3-o chains displayed aromatic and aliphatic
conservation, whereas the CDR3-B chains contained aromatic,
polar, and acidic residues (Figure 6E). Using the online software
GibbsCluster 2.0, we also performed a variable sequence clustering
analysis to generate sequence motifs of the CDR3-o. and CDR3-f3
chains from the top 15 expanded TCR clonotypes in active
populations, as well as the top 15 clonotypes that appeared
strictly within the naive populations (Figure 7). This approach
allowed us to compare the motifs between these two populations,
with the final goal of identifying positions that differed. However,
discerning which residues were significantly different from the
motifs alone was challenging. To address this challenge, we used
a Position-Based Pearson Correlation (PBPC) analysis with the
underlying matrix files of the clustering as an input. Applying PBPC
allowed us to identify the residues with significant differences
between the CDR3-o. and CDR3-f chains of the top expanded
and naive TCRs (Figure 7). Specifically, one position within the
CDR3 alpha chain and five positions within the CDR3 beta chain
were identified to have Pearson correlation coefficients with p-
values greater than 0.05. This suggests a lack of correlation at these
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positions for each chain when comparing the top 15 expanded TCR
clones and clones found within naive populations. When
comparing the conserved positions found by PBPC to a Clustal
residue alignment and conservation assessment, the overlapping
positions were found to be rich in glycine residues (Supplementary
Figure 12). This glycine-rich characterization provides crucial
insight into the distinctive nature of the top expanded TCR
sequences compared to the naive sequences. Additionally, when
looking at the top expanded TCR sequences, we can highlight
specific clonotypes that respond to the junction peptide pool of the
KIF5B-RET fusion gene.

4 Discussion

4.1 The KIF5B [exon 15] — RET [exon 12]
fusion gene was identified in LUAD

Gene fusions found within tumor tissues, primarily those
driving tumor growth, provide an area of emerging interest for
cancer treatment and prevention. Significant advancements in next-
generation sequencing technologies and bioinformatics pipelines
have made it easier to explore this aspect and identify possible
targets. This study identified an actionable gene fusion, KIF5B-RET,
created by the fusion of exons 1-15 of KIF5B and 12-19 of RET in
LUAD patient samples and an independent LUAD PDX model. In
addition, this fusion gene has been previously reported (7) as a
chromosomal inversion on chromosome 10, which was confirmed
in our LUAD PDX sample, highlighting its potential applicability in
targeted therapeutic interventions.

Kohno et al. provided comprehensive insights into the origins
and functionalities of the fusion protein resulting from the KIF5B-
RET gene fusion event (7). The findings from this study revealed
that the fusion leads to an overactive tyrosine kinase due to the loss
of crucial domains of the RET protein, which morphologically
resembles a KRASV12 mutant phenotype characterized by
unrestrained cellular proliferation.

Further studies across a much larger cohort of lung
adenocarcinoma patient tissue samples add to our knowledge of
RET fusions by investigating the prevalence of RET gene fusion
partners. They found that the predominant partner was KIF5B (36).
This fusion has a consistent appearance rate across studies, typically
1-2% in patients with LUAD, emphasizing its significance as a
recurrent actionable mutation.

One of the significant goals of classical oncogenic science is to
identify common mutations that serve as broad therapeutic targets
for the most significant patient cohort. However, the relatively
unique and less prevalent nature of mutations, such as the
oncogenic driver KIF5B-RET fusion, should not deter studies
from examining it, but instead, prompt the development of
personalized treatments for each cancer type.

The identification of the KIF5B-RET fusion gene within a subset
of LUAD patients not only aligns with previous findings but also
paves the way for the development of personalized treatment
methods in the form of peptide or mRNA vaccines targeting the
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junctions of the fusion proteins and the neopeptides created
by them.

Recent evidence has supported that gene fusions generate novel
junction peptides that are absent from the normal proteome,
minimizing central tolerance and making them attractive vaccine
targets provided the junctional epitopes can be displayed by the
patient’s HLA alleles. Fusion-derived epitopes have been shown to
bind common HLA class I molecules and elicit T-cell responses as
seen with EML4-ALK-derived, HLA-A*02:01-restricted cytotoxic T
lymphocytes (44). Immunopeptidomics has also provided direct
mass-spectrometric evidence of HLA-bound peptides arising from
oncogenic fusion proteins like BCR-ABL (45). These data establish
biological plausibility that fusion junctions are naturally processed
and presented in human tumors.

Clinical feasibility in human patients has also been tested. In the
phase-I FusionVAC22_0 trial, individuals whose tumors harbor the
DNAJB1-PRKACA fusion are treated using a junction-derived
peptide vaccine (Fusion-VAC-XS15) combined with anti-PD-L1
(atezolizumab), explicitly employing HLA-restricted fusion-
neoantigen vaccination (46). In parallel, the first in-human
personalized mRNA neoantigen vaccines utilized each patient’s
peptides restricted to their own HLA repertoire. This vaccine has
shown to expand antigen-specific T cells with durable CD8"
memory reported on extended follow-up. This study provides a
strong clinical precedent that patient-specific, HLA-restricted
neoantigen vaccination is feasible and immunogenic in humans
(47, 48). Taken together, these mechanistic data and clinical trials
support our working hypothesis that a patient’s KIF5B-RET fusion
can yield HLA-presentable junctional epitopes suitable for inclusion
in a cancer vaccine contingent on restricting predictions to the
patient’s HLA type and validating top candidates where feasible.

4.2 In-silico predictions of junction peptide
binding affinity assist in identifying HLA-
C*07:02, best peptide binders, and lowest
cross-reactivity to wild type peptides

To assess the affinity of the junction neopeptides formed by the
KIF5B-RET fusion gene expressed and presented by the tumor, we
employed two sequence-based in-silico HLA affinity prediction
pipelines and a pipeline to examine Class I HLA affinity from a
structural standpoint (9, 49). HLA-C*07:02 was identified as the
best binder in silico—however, several other HLA alleles aligned
with binding affinities that were close in score. Along with the rarer
HLA-C allele class, the best ranking results in the more common
HLA- A and -B classes were HLA-A*68:23 and a tie between HLA-
B*45:01 and HLA-B*45:06 (50). In terms of junction neopeptides
from KIF5B-RET being incorporated into a future peptide vaccine,
this is a positive in silico finding. The ability of these neopeptides to
bind to a broader range of HLA alleles will increase the applicability
of this vaccine to cancer patients expressing the KIF5B-RET fusion.
We moved forward with the allele HLA-C*07:02 because of its
strong affinity and predicted a preference for binding to tumor-
derived peptides.
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In addition to assessing affinity, understanding the structural
features of peptide-HLA binding is essential for determining
whether the peptide will be presented. Insights from HLA-Arena
revealed the significance of electrostatic complementarity in the
efficient binding of peptides to HLA molecules, emphasizing the
importance of the positioning and orientation of peptides in the
HLA-binding cleft (51-53).

While investigating cross-reactivity, noticeable variability among
neopeptides was discovered, stressing the importance of sequence as
well as structure in a peptide’s capability to cross-react. Some peptides,
such as NNDVKEDPK, showed strong binding and minimal off-
target hits, which requires further validation through in-vitro assays.
While the data gained from these tools may provide an excellent look
into what may occur in-vitro, we also observed several limitations.
These tools, albeit efficient, may not emulate all the biological variables
present in living systems. The written algorithms and pre-existing
measurements used to create these pipelines comprised only known
variables. Thus, there may be components that have not been well
explored in the existing literature that are unaccounted for. The
fundamental understanding of the efficacy, safety, and off-target
effects of neoantigenic peptides will stem from rigorous in-vitro
experiments, which will allow for the validation of in-silico findings,
identification of false positives or negatives, and assurance of the
efficacy and safety profile of any specific neoantigen.

Combining sequence-based affinity predictions with structural
considerations gave us a multimodal look at neoantigen affinity and
cross-reactivity. Using these pipelines, we were able to efficiently
develop a neoantigen-based vaccine against LUAD tumor cells
expressing the KIF5B-RET fusion gene. Additionally, this
methodology can be quickly and affordably inserted into a
pipeline to validate fusion peptides for other cancer types.
However, we must stress the importance of validating these data
in-vitro to corroborate the results of the in-silico data. Notably,
precision HLA typing of patient RNA-seq samples is a highly
informative technique which would yield a more personalized
approach to peptide vaccine development. Utilization of the HLA
typing results from patient RNA-seq data could narrow our search
for an HLA of interest in future studies.

4.3 In-vitro assessment of immune
stimulation by KIF5B-RET junction peptides
identifies donor-specific immune
responses

This study utilized the ELISpot assay to measure the immune
response after stimulation with KIF5B-RET neopeptides. Along
with standard controls seen in the literature, we also used wild-type
peptides from the KIF5B and RET genes as negative controls to
further substantiate any positive results (28, 54, 55). This assay also
demonstrated well-documented aspects of donor variability in
peptide-based vaccines, with immune reactions varying distinctly
between donors. Although some peptides were effective in
provoking immune responses in one donor, they failed to
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produce similar results in another. These results push for more
personalized treatment methods instead of the “one size fits all’.

The comparative analysis of in-silico predictions and in-vitro
results allowed us to validate that while predictive tools, such as
those used in this study, offer good preliminary insights, the
biological responses may differ. This is not to say that these
pipelines are entirely off the mark, as the second-best binder in-
silico was the best CD8 + T-cell activator in-vitro.

The data obtained from this study provide evidence of the utility
of in-silico predictive tools, but also highlight the role of in-vitro
validations, developed controls, and the understanding of donor-
specific variations. It also contributes to the development of a
complete pipeline to probe the stimulation of the immune system
using immunogenic neopeptides from the junction of fusion
proteins caused by mutations within a cancer subtype.

4.4 Single cell RNA sequencing with
immune profiling reveals TCR sequences
and conserved residues which correlate
with immune response against KIF5B-RET
junction neopeptides

We used single-cell sequencing in partnership with immune
profiling of T Cell Receptors to identify specific TCR clonotypes
within CD8+ T cell populations responsive to stimulation by a pool
of neopeptides from the junction of the KIF5B-RET fusion protein.

Examination of individual immunological fingerprints revealed
donor-specific responses, with variations in the expression of
exhaustion markers, such as LAG3, possibly affecting the overall
immune response (28). It became evident that each donor’s
immunological makeup influences how their CD8+ T cells react
to stimuli, following previous literature, and further emphasizes the
relevance of individual differences in immune system functions (40,
43). These data further reinforce the potential of the KIF5B-RET
fusion junction neopeptides as targets for therapeutic approaches,
such as peptide and mRNA vaccines.

When focusing specifically on the sequences of the CDR3-o. and
CDR3-f chains, we were able to identify conserved positions within
each chain that were unique to the TCRs of the stimulated cell
populations. We also found conserved glycine residues unique to
these positions, as observed in previous studies of T-cell responses
(56, 57). The data from this study defined TCR sequences and
sequence motifs, revealing key positions and residues that elevate
the probability of an immune response against specific peptides
within the KIF5B-RET fusion junction. This information can be
used to improve future therapeutic strategies, including adoptive T-
Cell therapies utilizing TCR engineering. This paves the way for
more personalized and effective treatment options for LUADs
expressing the KIF5B-RET fusion.

In summary, the culmination of the data covered in this study
contributes to the field of oncogenomics and immunology for the
development of HLA-matched peptide vaccines to target tumors
carrying oncogenic fusion KIF5B-RET. It also opens new avenues
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for developing patient-specific therapeutic strategies using the
pipeline established to predict and prevent disease recurrence in a
wide range of cancer types.
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