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T-cell-mediated severe aplastic anemia (SAA) is typically fatal without prompt

hematopoietic stem cell transplantation or intensive immunosuppressive therapy.

Although rare cases of spontaneous remission have been reported, the underlying

mechanisms remain poorly understood. A 24-year-old woman was incidentally

found to have mild pancytopenia during a routine workplace health checkup. Over

the subsequent 12 months, her pancytopenia gradually worsened, resulting in

exertional dyspnea, purpura, and a diagnosis of SAA. Remarkably, her blood

counts began to improve spontaneously 11 days after the diagnosis without any

treatment or transfusions. She no longer met the criteria for SAA by day 27 and

achieved complete hematologic normalization within three months. At 22 months,

flow cytometry and targeted sequencing revealed that 69% of her granulocytes

lacked the HLA-A*02:01-C*03:04-B*40:02-DRB1*14:54 haplotype due to acquired

loss of heterozygosity, while 23% were glycosylphosphatidylinositol-deficient owing

to PIGA mutations. Retrospective digital polymerase chain reaction of diagnostic

bone marrow demonstrated that nearly all non-lymphoid cells had already been

replaced by HLA allele-lacking clones, whereas glycosylphosphatidylinositol-

deficient erythrocytes constituted only 0.25%. These findings suggest that

hematologic recovery occurred through the selective expansion of mutant

hematopoietic stem cells capable of evading persistent T-cell-mediated

destruction. Early identification of HLA allele-lacking leukocytes may help predict

spontaneous remission and avoid unnecessary intensive therapy in patientswith SAA.
KEYWORDS

severe aplastic anemia, spontaneous remission, immune escape, HLA loss, paroxysmal
nocturnal hemoglobinuria, somatic mutation, chromosome 6p loss of heterozygosity
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Introduction

Aplastic anemia (AA) is a life-threatening bone marrow failure

disorder characterized by pancytopenia resulting from a marked

reduction in hematopoietic stem cells (HSCs) (1). Idiopathic severe

AA (SAA) is most commonly caused by T cell-mediated

destruction, for which prompt treatment with intensive

immunosuppressive therapy (IST) or hematopoietic stem cell

transplantation is essential for survival (2–4).

Although rare, spontaneous remission of SAA has been

reported (5–7). Lee et al. described 18 cases of AA, including

eight with SAA, in which spontaneous remission occurred at a

median of 14 days (range, 4–332) (5). However, they concluded that

most cases likely represented recovery from transient bone marrow

suppression triggered by external factors, such as medications or

infections, rather than true idiopathic SAA with an immune

pathogenesis. Similarly, spontaneous remission of pregnancy-

associated AA has been observed following delivery (6).

The peripheral blood of patients with immune-mediated SAA

often contains progeny of mutant HSCs that evade T-cell attacks.

These include blood cells deficient in glycosylphosphatidylinositol

(GPI) due to PIGA mutations (8, 9), as well as cells lacking

expression of HLA class I alleles due to copy-neutral loss of

heterozygosity on chromosome 6p (6pLOH) or loss-of-function

mutations in HLA genes (10–17). These immune escape HSC

clones may contribute to spontaneous remission, although

definitive evidence supporting this hypothesis is lacking.

We herein report the first documented case of spontaneous

remission in idiopathic SAA, attributed to the concurrent expansion

of HLA allele-lacking and GPI-deficient HSCs.
Case description

A 24-year-old woman underwent a routine physical

examination at her workplace every six months. Eighteen months

prior to presentation, her blood count was within normal range.

Twelve months prior, mild pancytopenia with macrocytic anemia

was first detected: white blood cell count (WBC), 3.54 × 109/L;

hemoglobin, 92 g/L; mean corpuscular volume, 110 fL; and platelet

count, 112 × 109/L. Over the subsequent six months, her

pancytopenia worsened: WBC, 2.71 × 109/L; hemoglobin, 72 g/L;

and platelet count, 59 × 109/L. Despite developing exertional

dyspnea and petechiae in her lower extremities, she did not seek

medical attention, as her symptoms remained mild. Two weeks

before her admission to our hospital, she visited a local clinic

because of a fever that had lasted for a week. A blood test

revealed worsening leukopenia (WBC, 2.10 × 109/L) and

thrombocytopenia (platelet count, 36 × 109/L), prompting referral

to our hospital for further evaluation.

By the time of admission, the fever had resolved. The patient

had no history of medication use, chemical exposure, or menstrual

irregularities. Physical examination was unremarkable, with no

signs of bleeding tendency, hepatosplenomegaly, or congenital

anomalies suggestive of inherited bone marrow failure syndrome.
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Laboratory tests revealed progression of pancytopenia with an

inadequate reticulocyte response: neutrophil count, 0.53 × 109/L;

hemoglobin, 76 g/L; reticulocyte count, 36 × 109/L; and platelet

count, 15 × 109/L (Table 1).

Bone marrow examination revealed severe hypocellularity

(Figure 1A), with no evidence of dysplasia or increased blasts,

and cytogenetic analysis showed normal karyotype. Magnetic

resonance imaging of the thoracolumbar spine revealed that most

of the marrow space was replaced by fatty tissue, with patchy areas

of residual hematopoietic activity (Figure 1B). Flow cytometry using

anti-CD55 and anti-CD59 monoclonal antibodies identified 0.25%

of erythrocytes and 0.2% of granulocytes as GPI-deficient

(Figure 1C). These findings were all consistent with a diagnosis of

idiopathic SAA.

During the 11-day diagnostic period, her reticulocyte and

platelet counts increased to 54 × 109/L and 18 × 109/L,

respectively, without any medication or blood transfusion. This

unexpected improvement led the attending physician to withhold

the planned IST. By day 27 after presentation, her blood counts no

longer met the criteria for SAA (neutrophil count, 1.58 × 109/L;

hemoglobin, 76 g/L; reticulocyte count, 66 × 109/L; platelet count,

46 × 109/L), and all parameters normalized within three

months (Figure 1D).

This hematologic recovery was accompanied by a gradual

increase in GPI-deficient erythrocytes, reaching 4.8% at 16

months and 11.9% at 24 months (Figure 1C), without signs of

intravascular hemolysis (lactate dehydrogenase at 24 months, 199

U/L). Follow-up magnetic resonance imaging at 16 months showed

partial resolution of the fatty marrow changes (Figure 1B). As of

May 2025, the patient has remained in complete remission without

any treatment for 30 months.
Diagnostic assessment

To investigate the mechanism underlying her spontaneous

remission, we assessed the presence of HLA allele-lacking and

GPI-deficient cells 22 months after the diagnosis. Flow cytometry

using anti-HLA-A2 monoclonal antibodies and fluorescently

labeled inactivated aerolysin, as previously described (15),

revealed that 69% of granulocytes and 75% of monocytes lacked

HLA-A0201 expression. In addition, GPI-deficient cells retaining

HLA expression accounted for 24% of granulocytes and 17% of

monocytes (Figure 2A). In contrast, 89% of lymphocytes retained

normal expression of both HLA and GPI, with only 10% lacking

HLA-A0201 and 0.8% being GPI-deficient.

Targeted sequencing and HLA genotyping of sorted cell

populations, using T cells expressing both GPI and HLA-A0201

as the germline control, revealed that all HLA-A0201-lacking

granulocytes lost the HLA haplotype A*02:01-C*03:04-B*40:02-

DRB1*14:54 due to 6pLOH (Table 2; Figure 2B). GPI-deficient

granulocytes harbored two distinct PIGA frameshift mutations:

c.577_581delGTACT (variant allele frequency, 43%) and

c.845delA (variant allele frequency, 4%). No mutations in any of

the 51 genes associated with myeloid malignancies were detected in
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the wild-type, GPI-deficient, or HLA-lacking granulocytes. At 28

months after the diagnosis—six months following the initial HLA

loss analysis —the percentages of HLA-A0201-lacking and GPI-

deficient cells remained unchanged.

To determine whether HLA allele-lacking cells due to 6pLOH

were present at the time of diagnosis, we extracted genomic DNA

from initial bone marrow smears and performed digital polymerase

chain reaction to quantify allele-specific copy numbers ofHLA-C, as

previously described (12). This analysis revealed that 41% of bone

marrow nucleated cells harbored 6pLOH (Figure 2C). Given that

lymphocytes accounted for 62% of the nucleated bone marrow cells,

it was estimated that nearly all non-lymphoid hematopoietic cells

had already been replaced by HLA allele-lacking cells at the time of

diagnosis. However, it is possible that bone marrow aspirates were

obtained from a hematopoietic niche dominated by HLA-A0201-

lacking stem cells, while wild-type cells continued to be produced at

other sites, as cells expressing both HLA and GPI accounted for 8%

of granulocytes and monocytes at 22 months after the diagnosis.
Discussion

HSCs deficient in HLA class I or GPI can evade T-cell-mediated

destruction and sustain clonal or oligoclonal hematopoiesis for an

extended period following IST (12, 15, 18–21). However, all

previously reported cases of remission with escape hematopoiesis

had been treated with immunosuppressive therapy or anabolic

steroids, spontaneous complete remission of SAA mediated by

such immune-escaping HSC clones has not been previously

reported. This phenomenon may be underrecognized, as most

patients receive standard therapy shortly after diagnosis in

accordance with current guidelines, and HLA loss is not routinely

assessed in clinical practice.
TABLE 1 Laboratory test results at the diagnosis.

Item Value
Reference

range

Hematology

White blood cell count, ×109/L 3.0 3.3–8.6

Neutrophil, % 17.8 40–70

Lymphocyte, % 76.3 20–50

Monocyte, % 5.3 2–9

Eosinophil, % 0.3 1–6

Basophil, % 0.3 0–2

Red blood cell count, ×10¹²/L 2.24 3.86–4.92

Hemoglobin, g/L 76 116–148

Mean corpuscular volume, fL 108 83.6–98.2

Mean corpuscular hemoglobin
concentration, g/L

314 317–353

Reticulocyte, % 1.6 0.5–2.0

Platelet count, ×109/L 15 158–348

Coagulation

Fibrinogen, g/L 24.2 16–35

Prothrombin time–international
normalized ratio

0.99 0.8–1.2

Activated partial thromboplastin time, sec 34.5 24–40

Biochemistry

Total protein, g/L 72 66–81

Albumin, g/L 39 41–51

Total bilirubin, mmol/L 8.6 7–26

Aspartate aminotransferase, U/L 36 13–30

Alanine aminotransferase, U/L 63 7–23

Alkaline phosphatase, U/L 69 38–113

g-Glutamyl transpeptidase, U/L 33 9–32

Lactate dehydrogenase, U/L 299 124–222

Blood urea nitrogen, mmol/L 3.93 2.86–7.14

Creatinine, mmol/L 48.6 40.7–69.8

Uric acid, mmol/L 161 155 – 327

Sodium, mmol/L 137 138–145

Potassium, mmol/L 3.6 3.6–4.8

Chloride, mmol/L 107 101–108

Calcium, mmol/L 2.05 2.20–2.53

Phosphate, mmol/L 2.6 2.7–4.6

Iron, mmol/L 38.8 7.2–33.7

Total iron binding capacity, mmol/L 53.7 44.0–73.4

Ferritin, mg/L 284.4 4.1–120.2

(Continued)
TABLE 1 Continued

Item Value
Reference

range

Biochemistry

Vitamin B12, pmol/L 184.5 180–914

Folic acid, nmol/L 19.5 >4

Copper, mmol/L 25.2 10.7–20.1

Zinc, mmol/L 14.2 9.9–16.8

Inflammation and hormones

C-reactive protein, mg/L <1.4 <1.4

Immunoglobulin G, g/L 14.41 8.61–17.5

Immunoglobulin A, g/L 3.52 0.93–3.93

Immunoglobulin M, g/L 2.05 0.50–2.69

Thyroid-stimulating hormone, mIU/L 1.64 0.61–4.23

Free thyroxine, pmol/L 12.1 9.1–19.6

Erythropoietin, IU/L 1810 4.2–23.7
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HLA loss due to copy-neutral 6pLOH in AA was first identified

in 2011 through copy number analysis using single nucleotide

polymorphism array (10, 11). Although 6pLOH provides evidence

of immune-mediated HSC depletion and can aid in diagnosing

bone marrow failure of autoimmune origin (22–24), the relatively
Frontiers in Immunology 04
low prevalence of this abnormality (~13%) among AA patients

limits its clinical utility (11, 25). More recent studies have identified

loss-of-function mutations in HLA class I genes as an additional

and more frequent mechanism of HLA loss (12–17). HLA allele-

lacking leukocytes, arising from either 6pLOH or loss-of-function
FIGURE 1

Diagnostic findings and the clinical course. (A) A bone marrow trephine biopsy at diagnosis showing severe hypocellularity with fatty replacement.
(B) T1-weighted magnetic resonance imaging (T1WI) of the thoracolumbar spine demonstrating fatty marrow conversion (high signal intensity) at the
diagnosis and improvement at 16 months. (C) Glycosylphosphatidylinositol-deficient (CD55–CD59–) erythrocytes detected by flow cytometry at the
diagnosis and at 16 and 24 months thereafter. (D) Trends in blood cell counts from 18 months before the diagnosis to 28 months after the diagnosis.
FITC, fluorescein isothiocyanate; PE, phycoerythrin.
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mutations, can be detected in 25-43% of patients with SAA using

sensitive flow cytometry with HLA allele-specific monoclonal

antibodies (15, 26). The impact of HLA loss on response to

immunosuppressive therapy and prognosis of AA differs

depending on the HLA class I alleles that is lost (13, 15).
Frontiers in Immunology 05
In our case, T-cell-mediated HSC destruction appears to have

begun 12–18 months prior to the diagnosis, potentially triggered by

the loss of tolerance to self-antigens presented by HLA-A0201 or

HLA-B4002 (11, 12). The gradual progression of the disease may

have allowed sufficient time for the selective expansion of
FIGURE 2

HLA loss analysis. (A) Flow cytometry at 22 months after the diagnosis showing HLA-A0201-lacking cells (left upper quadrant), GPI-deficient cells
(right lower quadrant), and wild-type cells expressing both HLA and GPI (right upper quadrant) across three leukocyte subsets: high side-scatter
(SSChi) CD45dimCD33dim granulocytes, high forward-scatter (FSChi) CD45hiCD33hi monocytes, and CD45hiCD33– lymphocytes. (B) Targeted
sequencing of HLA genes revealing loss of heterozygosity at the HLA-C locus in sorted HLA-A0201-lacking granulocytes, while heterozygosity was
preserved in HLA-A0201-expressing granulocytes and T cells. (C) Digital polymerase chain reaction analysis of a bone marrow smear obtained at the
diagnosis showing significantly fewer microwells containing HLA-C*03:04 (1600 orange dots) compared to those containing HLA-C*08:01 (4069
purple dots), indicating loss of HLA-C*03:04 due to 6pLOH. Green dots represent microwells containing both alleles and grey dots represent those
with neither allele. The estimated concentrations of HLA-C*03:04 and HLA-C*08:01 in the reaction mixture, calculated using the Poisson
distribution, were 240.6 copies/µL and 573.5 copies/µL, respectively. The clonal burden of the 6pLOH cells among total bone marrow nucleated
cells was calculated to be 40.9% using the following formula: Clonal burden (%) = (573.5 − 240.6)/(573.5 + 240.6) × 100. APC, allophycocyanin; FAM,
6-carboxyfluorescein; FLAER, fluorescently labeled inactivated aerolysin; GPI, glycosylphosphatidylinositol.
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immune-evading HSC clones. The steep recovery observed during

the first four weeks, which did not align with the subsequent

hematologic recovery, may have been influenced by the fever the

patient experienced prior to hospitalization. By the time of the

diagnosis, most residual HSCs had been replaced by 6pLOH clones,

along with a small population of GPI-deficient cells. These

immune-escaping clones jointly restored hematopoiesis in the

absence of any treatment, leading to complete recovery within

three months. The absence of driver gene mutations in HLA-

lacking or GPI-deficient granulocytes supports the notion that

immune pressure alone was sufficient to drive their expansion.

In AA patients who harbor both HLA allele-lacking and GPI-

deficient cell populations, one population can occasionally

outcompete the other; however, it remains unpredictable which

will preferentially expand (27). Nevertheless, we initially expected

that GPI-deficient cells in the present case would eventually

disappear during the expansion of HLA allele-lacking HSCs,

based on a previously reported case of SAA treated with

cyclosporine and methenolone (21). In that case, although the

initial treatment response was poor, durable remission was

ultimately achieved through the gradual expansion of HLA-

A*02:06-deficient cells, accompanied by a decline and eventual

disappearance of GPI-deficient cells. This pattern is thought to

reflect the complete immune evasion of HLA-lacking HSCs from

antigen-specific CD8+ T-cell-mediated cytotoxicity (22), whereas

GPI-deficient HSCs, which retain HLA expression, remain partially

susceptible to CD8+ T-cell attack.

In contrast, in our case, GPI-deficient cells gradually expanded

during spontaneous recovery. This observation may indicate the

coexistence of a distinct, yet incompletely understood, immune

mechanism—such as CD4+ T cell-mediated marrow suppression—

that selectively spares GPI-deficient HSCs while targeting HLA class

I allele-lacking HSCs (28–30). This raises concerns about the

potential for future relapse and progression to paroxysmal

nocturnal hemoglobinuria and highlights the need to explore

therapeutic strategies specifically targeting this mechanism.

This case report provides valuable clinical insight. A high

percentage of HLA allele-lacking leukocytes at the time of the AA

diagnosis may predict spontaneous remission. Even when the

percentage is low, treatment with thrombopoietin receptor

agonist, with or without cyclosporine, might facilitate the

proliferation of immune-escaping HSCs and reduce the need for
Frontiers in Immunology 06
intensive IST or hematopoietic stem cell transplantation. Therefore,

detection of HLA-lacking leukocytes may be considered as part of

the diagnostic evaluation of AA to help assess the potential for

spontaneous remission. Further studies are needed to clarify the

incidence and long-term outcomes of spontaneous remission

mediated by the immune-evading mutant HSCs. A nationwide

prospective study is currently underway to validate the prognostic

value of detecting the immune-escaping clones in treatment-naïve

patients with AA.
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