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Background: Lung adenocarcinoma (LUAD) represents a significant global health

burden. The absence of reliable biomarkers and the heterogeneity in treatment

responses continue to hinder improvements in patient prognosis. This study

aimed to identify novel biomarkers capable of predicting patient outcomes and

therapeutic responsiveness, while also assessing their potential as intervention

targets for LUAD.

Methods: Multiple cohorts from public databases were employed to screen key

prognostic genes, followed by external validations. Clinicopathological indicators

were integrated to analyze the independent prognostic role of the key gene

UBE2N and its association with LUAD progression. Functional enrichment

analysis elucidated the biological mechanisms regulated by UBE2N. Differences

in immunemicroenvironment components, immunoregulatory gene expression,

and immune functional activities between subgroups stratified by UBE2N

expression levels. The role of UBE2N in predicting tumor therapeutic

susceptibility was characterized using bioinformatics algorithms combined with

publicly available CRISPR screening datasets and immunotherapy cohorts.

Immunohistochemistry, cell viability, and apoptosis experiments were

conducted to verify the oncogenic effects of UBE2N.

Results: UBE2N was identified as an independent prognostic biomarker for

LUAD. Elevated UBE2N expression correlated with poorer patient survival rates

and advanced disease stages. Genes associated with UBE2N were significantly

enriched in critical cellular processes, including DNA replication, nucleosome

assembly, and neutrophil extracellular trap formation. High-UBE2N tumors

exhibited enhanced cell cycle, DNA replication, and oxidative phosphorylation

activities. Low-UBE2N tumors exhibit elevated proportions of intratumoral NK

cells, dendritic cells, effector T cells, and enhanced antigen processing and

presentation. UBE2N was a potential promoter of immune evasion and drug

resistance, with its high expression suggestive of low responsiveness to cancer

immunotherapy and targeted therapies. Three potential UBE2N-inhibiting

compounds were identified. Tissue microarrays confirmed UBE2N

overexpression in LUAD, correlating with tumor size, while UBE2N knockdown

suppressed tumor cell viability and induced apoptosis.
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Conclusions: UBE2N may serve as a promising prognostic biomarker and

therapeutic target for LUAD. Inhibition of UBE2N is expected to suppress LUAD

progression and enhance therapeutic efficacy.
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1 Introduction

The 2024 global cancer statistics revealed lung cancer as the most

commonly diagnosed malignancy, with close to 2.5 million new cases

reported, representing roughly 12.5% of all cancer diagnoses

worldwide (1, 2). Among its subtypes, lung adenocarcinoma

(LUAD) is the most prevalent subtype of non-small cell lung

cancer (NSCLC) (3, 4). Due to the absence of distinct early

symptoms, a large number of patients cannot be diagnosed at an

early stage, posing significant challenges for treatment and prognosis

(5–7). Despite recent advancements in detection methods and

targeted therapies, the therapeutic outlook for LUAD remains poor,

with five-year survival rates remaining at approximately 15% (8).

Recently, immune checkpoint blockade (ICB) therapy has

revolutionized NSCLC management (9). These therapies work by

inhibiting key immunosuppressive signals, such as PD-1/PD-L1, to

boost the anti-tumor immunity and achieve long-term remission in

some patients (10). Nevertheless, their widespread application is

hindered by limited response rates and a scarcity of predictive

biomarkers (9). Consequently, there is a critical need to uncover

novel and reliable biomarkers capable of accurately predicting patient

prognosis and immunotherapy response.

Viral infections, such as those caused by HBV, HPV, and EBV,

can lead to human cancer by manipulating the biological processes

of host cells (11). These include integrating viral genes, regulating

tumor suppressor and oncogenes, inducing genomic instability,

disrupting cell cycles and apoptosis, evading immune responses,

promoting chronic inflammation and oxidative stress, remodeling

the extracellular matrix, facilitating angiogenesis, and

reprogramming metabolism (12–19). Therefore, based on the

molecular mechanisms of antiviral immunity, the identification of

key molecules with the potential to predict tumor occurrence,

treatment, and prognosis represents a highly promising research

direction. This endeavor will provide novel insights into

deciphering the interplay between tumor immunity and

innate immunity.

Ubiquitination, a key post-translational modification (PTM),

fundamentally regulates multiple cellular processes. This enzymatic

cascade requires three primary components: E1 ubiquitin-activating

enzymes, E2 ubiquitin-conjugating enzymes, and E3 ubiquitin ligases

(20). Recent studies highlight the critical role of E2 enzymes in

tumor progression and immune regulation, making them potential

biomarkers for prognosis and targets for immunotherapy (21–23).
02
In NSCLC, elevated UBE2S levels enhance cellular proliferation,

migration, and stem-like properties, indicating its association with

unfavorable clinical outcomes (24). Similarly, UBE2C expression has

been linked to immune cell infiltration, potentially influencing

immunotherapy efficacy (25, 26). And UBE2N (also known as

UBC13), another member of the E2 enzyme family, was

characterized as a potential cancer target in the present study.

Multiple studies have demonstrated that UBE2N contributes to

DNA repair mechanisms through forming complexes with UEV

proteins (such as Mms2) to assemble K63-linked polyubiquitin

chains, which can promote cell proliferation (27, 28). Additionally,

researchers have confirmed UBE2N as a potential prognostic indicator,

with its expression profile correlating significantly with clinical

outcomes and therapeutic responses in melanoma, breast carcinoma,

and neuroblastoma (29–31). Nevertheless, its specific contributions to

lung adenocarcinoma (LUAD) pathogenesis, tumor immunity, and

therapeutic response remain poorly characterized.

This study aims to identify key molecules critically involved in

the prognosis and immunotherapy response of LUAD. Through

comprehensive multi-cohort screening, we discovered that UBE2N

acts as an oncogenic driver, accelerating disease progression,

remodeling the tumor immune microenvironment, and

conferring resistance to both immunotherapy and chemotherapy

in LUAD. Our findings demonstrate that UBE2N represents a

robust biomarker with significant associations with patient

prognosis, disease progression, tumor microenvironment

characteristics, and treatment sensitivity in LUAD. Collectively,

these findings implicate UBE2N as a potential therapeutic target for

the development of treatment modalities and the facilitation of

precision medicine in LUAD.
2 Materials and methods

2.1 Data sources and processing

We retrieved transcriptomic and clinicopathologic phenotype

data of LUAD cohorts for gene screening from two publicly

available repositories: The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo). The transcriptomic data in

transcripts per million (TPM) format and corresponding

clinicopathologic phenotypes of the TCGA-LUAD cohort were
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retrieved from UCSC Xena. Expression matrices obtained from the

GEO database had been normalized by the original researchers.

Genes with extremely low expression levels (average expression

value < 1) and those with missing values were further filtered out.

Additionally, samples lacking complete clinical information were

excluded from the analysis. No dataset merging was performed in

the present study, so batch correction was not involved.

Supplementary Table S1 lists the basic information and analytical

usage of the datasets used in this study. The antiviral-related gene

set was obtained from the MsigDB database (32).
2.2 Screening of key prognostic genes and
survival analysis

By integrating gene expression and survival data from multiple

datasets, we conducted univariable Cox regression analysis and

retained overlapping genes with significant prognostic relevance in

LUAD (P < 0.05). Given the close association between viral infections,

host antiviral immune responses, and lung cancer progression, we

further extracted key prognostic genes related to antiviral immunity

(33, 34). Subsequently, patients were stratified into high- and low-

expression subgroups based on median gene expression values,

followed by survival analyses across distinct cohorts.
2.3 Clinicopathological relevance analysis

The independent prognostic power of UBE2N was tested via

univariate and multivariate Cox proportional hazards models. The

clinical relevance of UBE2N was further explored by examining its

relationships with pathological variables and comparing the

expression of UBE2N in different clinicopathologic subgroups.

Finally, we developed a prognostic nomogram to facilitate precise

survival prediction in patients. To facilitate precise survival

prediction, a nomogram integrating pathological variables and

UBE2N expression was constructed.
2.4 Co-expression network construction

Pearson’s correlation coefficients were calculated to detect genes

exhibiting co-expression patterns with UBE2N, followed by a

heatmap visualization of these associations. Subsequently, the 50

most strongly correlated (both positively and negatively) genes were

chosen to establish a protein-protein interaction (PPI) network with

the use of the STRING platform.
2.5 Functional enrichment analysis

TCGA-LUAD samples were classified into high-UBE2N and

low-UBE2N subgroups. The DESeq2 package was implemented to

identify differentially expressed genes (DEGs), with protein-coding

genes meeting |log2FC| > 1 and p-value < 0.05 thresholds defined as
Frontiers in Immunology 03
statistically significant. Subsequent functional annotation was

performed using the clusterProfiler package, covering Gene

Ontology (GO) terms and KEGG pathways (35). Gene sets for

Gene Set Enrichment Analysis (GSEA) were retrieved from the

MSigDB (32). All genes were ranked by their fold changes, and

GSEA was further performed using the “org.Hs.eg.db” and

“clusterProfiler” packages with 10,000 permutations.
2.6 Characterization of the tumor immune
landscape

To reveal the immunologic significance of UBE2N, we

quantified tumor-infiltrating immune cell (TIICs) proportions

across samples stratified by gene expression levels using single-

sample gene set enrichment analysis (ssGSEA). Tumor

microenvironment scores and purity estimates were concurrently

calculated (36). Furthermore, we assessed correlations between

UBE2N and immunomodulators, with boxplots visualizing

expression differences across different subgroups. We also

systematically examined associations between UBE2N and

immune functional signatures using the GSVA and IOBR

packages (37, 38). Supplementary Table S2 lists the information

and analytical usage of the gene sets used in this study.
2.7 Immunotherapy responsiveness
analysis

We investigated the relationship between key genes and

immunotherapy response through an integrated approach

combining in vitro and in vivo CRISPR screening, real-world

immunotherapy cohorts, and immunotherapeutic sensitivity

algorithms. The role of UBE2N in immune evasion was analyzed

using three CRISPR screen datasets, including an in vitro tumor-

immune cell co-culture screening, an in vitro targeted screening of

immunoregulatory factors (MHC-I/PD-L1), and an in vivo CRISPR

screen in syngeneic mouse tumor models (39–41). Immunotherapy

sensitivity was evaluated using Immunophenoscore (IPS) and

multiple real-world immunotherapy cohorts (42–45). Cohort

survival analysis and expression profile comparison were

conducted to reveal the association between UBE2N level,

survival event, and treatment responsiveness in patients

undergoing immunotherapy (46, 47).
2.8 Chemosensitivity assessment

To evaluate potential associations between UBE2N expression

and chemosensitivity of LUAD, we employed computational

approaches utilizing both the oncopredict package and the CMAP

platform (48, 49). Tumor transcriptomic profiles were processed

using the oncopredict package, applying GDSC2-derived predictive

models to estimate treatment response probabilities. UBE2N-

associated differential gene expression profiles were uploaded to
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1636503
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yin et al. 10.3389/fimmu.2025.1636503
the CMAP platform, identifying compounds showing inverse

connectivity with UBE2N. Structures of the compounds were

derived from the PubChem database.
2.9 Pathologic and cellular experiments to
validate the oncogenic function of UBE2N

The expression and functional characteristics of UBE2N in

LUAD were validated using tissue microarrays (TMAs) and in

vitro experiments. A tissue microarray comprising 35 paired human

LUAD and adjacent non-tumor tissues was obtained from

Servicebio Technology (Wuhan, China). Monoclonal antibodies

against UBE2N (A9257) were purchased from Abclonal (Wuhan,

China). Immunohistochemical (IHC) staining was performed

following previously established protocols, and positive staining

was quantified using Aipathwell software (50). Images of publicly

available IHC sections of LUAD and normal lung tissue were

obtained from the Human Protein Atlas (HPA) database (51).

The A549 cell line was cultured in F-12K medium (Gibco, Cat.

21127022) supplemented with 10% fetal bovine serum (FBS) at

37°C under a 5% CO2 atmosphere. For gene knockdown, siRNA

transfection was conducted using Lipofectamine™ RNAiMAX

Reagent (Thermo Fisher Scientific). Effects of UBE2N on cellular

proliferation and apoptosis were examined using the CCK-8 assay

and an Annexin V-based apoptosis detection kit. The siRNA and

qPCR primer sequences for human UBE2N are provided in

Supplementary Table S3.
2.10 Statistical analysis

Statistical analyses were performed using R software (version

4.1.2), GraphPad Prism (version 8.0), and complementary online

tools (Kaplan-Meier Plotter, STRING, and Cmap). Survival

outcomes were assessed via Kaplan-Meier analysis. Group

comparisons were conducted using the Wilcoxon test or Student’s

t-test for two groups, and one-way ANOVA or Kruskal-Wallis test

for multiple groups. Pearson correlation analysis evaluated

associations between variables. A two-sided p-value < 0.05

defined statistical significance.
3 Results

3.1 Multi-cohort screen identified key
prognostic genes in LUAD

To uncover key genes with robust prognostic effects in LUAD, we

first utilized a multicohort-based univariate Cox regression screen.

There were 2226, 4409, and 1467 candidate genes with prognostic

effects in GSE31210, GSE30219, and TCGA-LUAD datasets,

respectively. Taking the intersection of the above three gene

groups, 557 key prognostic genes were initially identified

(Figure 1A). Considering the complex roles of viral infection and
Frontiers in Immunology 04
antiviral immune mechanisms in the pathogenesis of various cancers,

including NSCLC, we further extracted three key antiviral-related

prognostic genes (UBE2N, USP44, and SENP7) from those 557

candidate genes (Figure 1B). Subsequently, the association of these

three key genes with patient prognosis was assessed in multiple

LUAD cohorts, including TCGA-LUAD, GSE31210, and GSE30219.

Interestingly, high expression of UBE2N is associated with

unfavorable prognosis, while high expression of the other two

genes (USP44 and SENP7) is associated with favorable prognosis

(Figures 1C–E). Moreover, expression profiling analysis showed that

the expression of UBE2N in LUAD tissues was significantly up-

regulated compared with paired paracancerous tissues, while USP44

was significantly down-regulated, and SENP7 showed no differential

expression (Figure 1F). Pan-cancer expression analyses also showed

that UBE2N expression was upregulated in most cancers

(Supplementary Figures S1A, B). In summary, UBE2N and USP44

emerged as promising prognostic genes in LUAD.
3.2 Validating the prognostic roles of
UBE2N and USP44 in multiple external
cohorts

Subsequently, we validated the prognostic significance of UBE2N

and USP44 using multiple external cohorts. Consistent with results

from the aforementioned cohorts, elevated expression of UBE2N

remained significantly associated with shorter overall survival in

LUAD patients (P < 0.05; Figures 2A, B). Conversely, LUAD

patients with high USP44 expression exhibited prolonged overall

survival, although this association did not reach statistical

significance in the GSE19188 dataset (P = 0.06 and P < 0.05;

Figures 2C, D). Furthermore, we conducted additional analyses

examining the relationship between gene expression and disease-free

survival (DFS) as well as recurrence-free survival (RFS) in LUAD. The

results demonstrated that high UBE2N expression was significantly

correlated with both reduced DFS and RFS (Figures 2E, F). In contrast,

USP44 showed an opposing prognostic pattern (Figures 2G, H).

Collectively, through multi-cohort screening and validation, our

study has identified UBE2N and USP44 as two crucial prognostic

biomarkers in LUAD, with UBE2N emerging as a particularly robust

predictor of unfavorable outcomes.
3.3 Identification of the independent
prognostic role of UBE2N

We then analyzed the independent prognostic utility of UBE2N

and USP44, with UBE2N emerging as a robust, independent

prognostic factor in the TCGA-LUAD cohort. And its association

with disease progression remained statistically significant in the

multivariate model, indicating minimal confounding by other

clinical covariates (Figure 3A). The independent prognostic effect

of UBE2N was then verified in the GSE30219 cohort (Figure 3B).

However, while USP44 was identified as an independent indicator

in univariate analysis, it failed to demonstrate independent
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prognostic significance in multivariate regression models in both

cohorts (Figures 3A, B). Collectively, we focused our research on

UBE2N, as analyses established UBE2N as a robust independent

prognostic factor associated with adverse outcomes in LUAD.
3.4 UBE2N expression correlates with
LUAD clinicopathological progression

The relationship between UBE2N and the clinicopathological

progression of LUAD was further analyzed. Specifically, UBE2N

expression was significantly elevated in tumors from patients with

T2-T4 staging, stage II-IV disease, and M1 distant metastasis, but

showed no significant correlation with nodal involvement based on

the TCGA-LULAD cohort (Figures 3C–F). Furthermore, UBE2N

expression patterns were independent of patient age or smoking

status (Figures 3G, H). Notably, we observed marked upregulation

of tumoral UBE2N in patients with adverse outcomes and

progressive disease (PD) (Figures 3J, K).
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GSE31210, GSE48465, and GSE50081 cohorts. We confirmed the

independence of UBE2N expression pattern from patient age.

Moreover, a significant progressive increase in UBE2N expression

was observed corresponding to advancing T-stage, N-stage, and

overall stage (Figures 4A, B). In cohorts GSE48465 and GSE50081,

UBE2N also exhibited a tendency toward upregulation in tumors with

advanced T-stages (Supplementary Figures S2A, B). While UBE2N

expression appeared elevated in tumors with distant metastasis, this

difference did not reach statistical significance (P = 0.093, Figure 4A).

Most importantly, UBE2N showed strong clinical relevance to LUAD

progression and recurrence, demonstrating significant upregulation in

tumors from patients who experienced mortality or disease recurrence

compared to event-free survivors (Figures 4A, B). In addition, UBE2N

expression levels progressively decreased with advancing histologic

grade in the GSE48465 cohort, highlighting its potential inverse

association with tumor differentiation status (Figure 4C). These

results further verified the close correlation between UBE2N and the

development, progression, and occurrence of LUAD. Therefore, we
FIGURE 1

Screening of key prognostic genes in LUAD. (A) The Venn diagram for intersecting prognostic genes. (B) The Venn diagram for intersecting common
prognostic genes and anti-viral genes. (C–E) Survival curves generated by stratifying patients based on the median expression levels of key genes,
UBE2N (C), USP44 (D), and SENP7 (E). (F) Differential expression of key genes in LUAD and paired paracancerous tissues.
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further integrated UBE2N and other clinicopathologic indicators

collectively to develop a prognostic nomogram for accurate survival

prediction (Supplementary Figure S2C).
3.5 UBE2N-related gene regulatory
network and functional pathways

To analyze the molecular mechanism by which UBE2N

promotes tumor progression, we screened its co-expressed genes

and UBE2N-related DEGs. Firstly, the molecules showing

significant positive and negative correlations with UBE2N were

screened. The top 15 genes positively (including CCDC59) or

negatively (including MROH7) correlated with UBE2N were

presented in the heat map (Figure 5A). Potential UBE2N protein

regulatory networks were predicted using the STRING database to

further investigate possible functional relationships of UBE2N in

LUAD (Figure 5B).

UBE2N-related DEGs were also screened, and the volcano plot

demonstrated 507 down-regulated and 424 up-regulated genes

associated with UBE2N (Figure 5C). The enrichment results

demonstrated that UBE2N-associated DEGs were enriched in GO

terms including microtubule movement, DNA replication, nucleosome

assembly, extracellular matrix structure, and receptor ligand activity

(Figure 5D). Moreover, neuroactive ligand-receptor interaction and

neutrophil extracellular trap formation pathways were significantly

enriched (Figure 5D). These results suggest that UBE2N expression

may be involved in the regulation of biological processes related to cell

motility, DNA replication, extracellular matrix remodeling, and

neutrophil extracellular traps (NETs) formation.
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In addition, GSEA results showed that high-UBE2N tumors

were predominantly enriched with pathways associated with

ribosome, cell cycle, proteasome, oxidative phosphorylation, and

DNA replication (Figure 5E). GSVA results also demonstrated

higher activities of cell cycle, DNA replication, and DNA damage

repair in high-UBE2N tumors (Supplementary Figure S3A).

However, low-UBE2N tumors were strongly linked with

immunity-related pathways such as B cell receptor signaling

pathway, primary immunodeficiency, allograft rejection, and

asthma (Figure 5F). These results indicate that UBE2N-mediated

cancer progression may be attributable to cell cycle and DNA

replication, immune response, and immune cells. Elevated

UBE2N levels in LUAD might promote tumor proliferation and

suppress anti-tumor immune response.
3.6 Characterization of tumor immune
landscape in LUAD

The aforementioned results gave us a hint to explore the altered

immune characteristics of tumors caused by UBE2N. Firstly, we

analyzed the difference in TIIC abundance between low-UBE2N

and high-UBE2N groups. Notably, the high-UBE2N tumors

exhibited a higher level of neutrophils, gdT cells, and Th2 cells.

While low-UBE2N tumors showed increased infiltrative B cells,

CD8+ T cells, iDCs, mast cells, NK cells, pDCs, memory T cells, and

T follicular helper (TFH) cells (Figure 6A). Similarly, the high-

UBE2N group also exhibited elevated neutrophil and myeloid-

derived suppressor cell (MDSC) signature scores but reduced T-

cell signature scores (Supplementary Figure S3B). In addition,
FIGURE 2

Validation of the prognostic roles of UBE2N and USP44 across multiple cohorts. (A, B) Survival curves were plotted by grouping patients according
to UBE2N expression in the GSE3141 (A) and GSE50081 (B) cohorts. (C, D) Survival curves were plotted by grouping patients according to USP44
expression in the GSE19188 (C) and GSE50081 (D) cohorts. (E, F) DFS and RFS analyses based on UBE2N expression in the GSE30219 (E) and
GSE31210 (F) cohorts. (G, H) DFS and RFS analyses based on USP44 expression in the GSE30219 (G) and GSE31210 (H) cohorts.
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myeloid cells and chemokines associated with myeloid cell

recruitment, especially CXCL8, showed a significant positive

correlation with UBE2N. Thus, it is possible that UBE2N affects

T cell infiltration and function via myeloid cells (Supplementary

Figures S3C–E). Results based on the ESTIMATE algorithm showed

the low-UBE2N group demonstrated significantly elevated stromal,

immune, and ESTIMATE scores compared to the high-UBE2N

group (Figure 6B). Consistently, the high-UBE2N group displayed

markedly higher tumor purity (Figure 6C), further supporting the

association between UBE2N expression, tumor progression, and

immune suppression.

Apart from the association between UBE2N and TME (Tumor

microenvironment) remodeling, we further hypothesized that

UBE2N may regulate immune effector functions. Transcriptome
Frontiers in Immunology 07
analysis showed that the expression of immunomodulatory genes

such as LAGLS9, CD274, VTCN1, BTN2A2, TNFSF14, TNFRSF14,

CD40LG, and TNFSF15 was significantly up-regulated in low-

UBE2N tumors as compared to high-UBE2N tumors, whereas the

expression of PDCD1LG2, IDO1, TNFSF4, and TNFSF9 was

significantly down-regulated (Figures 6D, E). In addition, multiple

antigen-processing and presentation-related genes such as HLA-A,

HLA-E, HLA-DRB5, and HLA-DQB2 were significantly

upregulated in the low-UBE2N group (Figure 6F). Consistent

results were also observed in GSVA analysis (Supplementary

Figure S3B). These findings illustrated the involvement of UBE2N

in the TME remodeling, mainly in its ability to limit intratumoral

infiltration of effector immune cells and antigen processing

and presentation.
FIGURE 3

UBE2N was identified as an independent prognostic indicator of LUAD and correlates with clinicopathologic factors. (A, B) Prognostic independence
analyses of key genes and clinicopathologic factors in TCGA-LUAD (A) and GSE30219 (B) cohorts. (C–J) Correlation between the expression of
UBE2N and different clinicopathologic factors.
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3.7 UBE2N correlated with tumor immune
evasion and immunotherapy resistance

Given the important role of UBE2N inmediating cancer progression

and TME, we further integrated CRISPR screening, patient cohorts, and

immune function algorithms to investigate the association between

UBE2N and cancer immunotherapy responsiveness. The in vitro
Frontiers in Immunology 08
CRISPR screen showed that UBE2N knockdown promoted T cell-

mediated tumor killing (Figure 7A). Another in vitroCRISPR screen also

showed that UBE2N ranked highly among regulators of MHC-I and

PD-L1 expression (Figure 7B). UBE2N was also identified as a potential

tumor immune evasion promoter in an in vivo CRISPR screen

(Figure 7C). Kaplan-Meier survival analysis across multiple cohorts

demonstrated that cancer patients with low-UBE2N expression
FIGURE 4

Validation of the association between UBE2N and the clinicopathological progression of LUAD in multiple cohorts. (A, B) Violin plots depict the
correlation between UBE2N expression and clinical pathological parameters in cohorts GSE30219 (A) and GSE31210 (B). (C) Expression levels of
UBE2N in histologic grades with different degrees of differentiation in the GSE48465 dataset.
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exhibited significantly prolonged survival compared to those with high-

UBE2N expression when receiving immunotherapy. Low-UBE2N

patients showed superior survival probability (Figures 7D–F).

Consistent with our hypothesis, the low-UBE2N group demonstrated

significantly higher IPS than the high-UBE2N group, independent of

CTLA-4 expression patterns (Figure 7G). Analysis of UBE2N expression

across immunotherapy cohorts revealed its significant role in predicting

therapeutic outcomes. In the NSCLC andmelanoma cohorts, patients in
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the immunotherapy-responsive group exhibited lower tumoral UBE2N

expression (Figure 7H). Similarly, in another melanoma cohort, low

UBE2N levels were associated with complete response (CR) or partial

response (PR) of clinical treatment (Figure 7H). Moreover, ROC curves

based on three cohorts showed that UBE2N expression performed well

in assessing immunotherapy responsiveness (Supplementary Figure

S4A–C). These findings suggest UBE2N as a promising biomarker for

stratifying patients potentially benefiting from immunotherapy.
FIGURE 5

Investigation of the co-expressed gene network and associated functional pathways of UBE2N. (A) Heatmap showing the expression of co-expressed
genes of UBE2N. (B) PPI network involving UBE2N and its co-expressed genes. (C) Volcano plot of UBE2N-related differential genes. (D) Functional
enrichment analysis of UBE2N-related differential genes. (E, F) KEGG pathways enriched in high-UBE2N (E) and low-UBE2N groups (F).
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3.8 Value of UBE2N in predicting sensitivity
to LUAD chemotherapy

Chemotherapy remains a cornerstone of non-surgical

management in LUAD. To evaluate UBE2N’s potential in

stratifying chemotherapy response, we leveraged the oncoPredict

algorithm to calculate drug sensitivity scores (IC50) across LUAD
Frontiers in Immunology 10
cohorts. Interestingly, higher IC50 values for common

chemotherapeutic agents, including Docetaxel, 5-Fluorouracil,

Cisplatin, and Cyclophosphamide, were observed in low-UBE2N

tumors (Figures 8A–D). Notably, higher IC50 values directly

correlate with increased drug resistance. This indicated that,

although high expression of UBE2N is indeed associated with

poor prognosis and immunosuppression, it also shows sensitivity
FIGURE 6

UBE2N-related TME and immune functional phenotypes. (A) The violin plot of tumor-infiltrating immune cell abundance. (B) The violin plot of TME
scores. (C) The box plot of tumor purity. (D–F) Box plots of the expression of inhibitory immunomodulatory genes (D), stimulatory
immunomodulatory genes (E), and genes related to antigen presentation and processing (F).
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to these four common chemotherapeutic drugs. However, the

high-UBE2N tumors exhibited potential resistance to targeted

agents such as MN-64, Ribociclib, Selumetinib, Ibrutinib,

Axitinib, SB216763, and Doramapimod, as evidenced by the

higher IC50 values in the high-UBE2N groups (Figures 8E–L).

We further performed a connectivity mapping (CMap)-driven

screening of potential drugs for targeting UBE2N. Three

candidates (genistein, GSK-1059615, and 3-deazaadenosine)

exhibited inverse transcriptomic alterations with UBE2N, and

their chemical structures derived from the PubChem database

were shown in Figures 8M–Q. We have listed the relevant

information of the candidates in Supplementary Table S4.

Notably, the inhibitory effects of genistein and 3-deazaadenosine

on the growth of lung cancer have been reported, which

corroborates our findings to some extent (52, 53).
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3.9 Experimental validation of high UBE2N
expression in LUAD and its oncogenic
properties

We validated the expression and biological function of UBE2N

in LUAD by pathological assays based on tissue microarrays and

cellular experiments. IHC analysis revealed significantly elevated

UBE2N expression in LUAD tissues versus paired normal tissues

(Figure 9A). IHC slices from public databases also demonstrate

this pattern (Supplementary Figure S5). Furthermore, tumors

exceeding 5 cm in diameter also demonstrated significantly

elevated UBE2N expression compared to smaller tumors,

indicating the oncogenic role of UBE2N (Figure 9B). UBE2N

knockdown efficiency was validated in A549 cells, with siRNA-

mediated silencing reducing UBE2N expression by 75% compared
FIGURE 7

Role of UBE2N in tumor immune evasion and immunotherapy. (A–C) Publicly available CRISPR screen data reveal UBE2N as a promoter of tumor
immune evasion. (D–F) Role of UBE2N expression in suggesting prognosis in cancer patients receiving immunotherapy. (G) IPS scores in UBE2N
subgroups. (H) Role of UBE2N expression in predicting immunotherapy response in different cohorts.
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to the negative control (Figure 9C). Knockdown of UBE2N

significantly impaired cell proliferation, with the proliferative

capacity of UBE2N-depleted cells being progressively suppressed

over time (Figure 9D). Knockdown of UBE2N significantly

enhanced apoptosis in A549 cells. Compared to the negative

control, UBE2N-knockdown cells exhibited a marked increase in

late apoptosis and a modest rise in early apoptosis (Figures 9E–G).

Consequently, the total apoptotic cell population was significantly

increased after knockdown of UBE2N (Figures 9E–G). These data

nominate UBE2N as both a prognostic biomarker for LUAD
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aggres s i venes s and a therapeu t i c t a rge t to d i s rup t

oncogenic resilience.
4 Discussion

LUAD represents a significant global health burden with

substantial impacts on patient outcomes. Persistent challenges in

early-stage LUAD diagnosis stem largely from nonspecific clinical

presentation and insufficiently sensitive biomarkers (54).
FIGURE 8

Role of UBE2N in cancer chemotherapy and targeted therapy. (A–L) Box plots of differences in drug sensitivity of patients in different UBE2N
subgroups to chemotherapeutic and targeted agents including Docetaxel (A), 5-Fluorouracil (B), Cisplatin (C), Cyclophosphamide (D), MN-64 (E),
Selumetinib (F), Ibrutinib (G), Axitinib (H), SB216763 (I), Nelarabine (J), Doramapimod (K), and Ribociclib (L). (M–O) Chemical structure diagrams of
three potential compounds to inhibit UBE2N.
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Developing personalized, risk-stratified screening strategies is

essential for the early identification of LUAD. In addition, ICB

therapy has revolutionized the oncology treatment paradigm,

offering novel therapeutic options for patients with refractory,

metastatic, or advanced-stage malignancies while demonstrating

synergistic effects when combined with chemotherapy or

radiotherapy, leading to significantly improved clinical outcomes
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(55). However, current ICB approaches face substantial challenges,

including limited response rates and imperfect predictive

biomarkers (9, 55, 56). Systematic multi-omics data mining is

critical for the discovery of novel biomarkers with enhanced

predictive utility for patient prognosis and therapeutic

responsiveness, ultimately enabling precise patient stratification

and personalized therapeutic strategies.
FIGURE 9

Experimental validation of the expression profile and tumor biology of UBE2N. (A) IHC sections reveal high expression of UBE2N in LUAD tissues.
(B) IHC sections reveal a correlation between UBE2N expression and tumor diameter. (C) Knockdown of UBE2N expression with siRNA. (D) CCK-8 assay to
detect the effect of UBE2N on the proliferative viability of A549 cells. (E–G) Experimental detection of the impact of UBE2N on apoptosis in A549 cells.
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In this study, we screened key prognostic genes from multiple

patient cohorts and anti-viral gene sets. The interaction between the

antiviral immune response and cancer immunity has emerged as an

important research area (57, 58). Antiviral signaling pathways,

especially those mediated by pattern recognition receptors (PRRs)

and interferons (IFNs), not only serve as important intrinsic

immune barriers but also profoundly regulate antitumor

immunity through mechanisms such as viral mimicry and

modulation of immune cell function (59–62). Through multi-

cohort prognostic screening and differential analysis, we identified

the anti-viral related gene UBE2N as a robust prognostic predictor

of LUAD, and high expression of UBE2N could suggest

pathological progression and poor prognosis in LUAD patients.

Reportedly, elevated expression of UBE2N was observed in several

cancer types, such as prostate cancer, liver cancer, ovarian cancer, and

colorectal cancer (63–66). In prostate cancer, the high expression of

UBE2N predicted a poor prognosis for patients (63). UBE2N could

promote cell survival and glycolysis by activating the Wnt/b-catenin
signal in prostate carcinoma. UBE2N could also enhance tumor cell

survival and promote ovarian cancer progression and paclitaxel

resistance by modulating the Fos/p53 pathway (67). Furthermore, in

acute lymphoblastic leukemia models, UBE2N may be a key node of

oncogenic immune signaling, as blocking its mediated ubiquitination

of innate immune molecules can inhibit its oncogenic function (68).

Collectively, these cross-cancer comparisons reveal that role of UBE2N

in promoting malignancy might be conserved, but the signaling

pathways, cancer hallmarks, and TME interactions it modulates are

microenvironmentally and biologically adapted. In the present study,

we confirmed the high expression of UBE2N in LUAD and its ability to

suggest a poor prognosis for patients in multiple datasets and

dimensions, which is in line with a recent study observing the high

UBE2N expression suggesting a poor prognosis for LUAD patients

(69). However, the links between tumor microenvironment, immune

evasion and UBE2N-mediated tumor progression have not yet been

adequately revealed. This study not only revealed the association of

UBE2N expression with tumor clinicopathological progression but also

shed further light on the role and potential of UBE2N from the

perspective of tumor immunity and therapeutics, and suggested that

UBE2N could serve as a robust biomarker for tumor progression and

therapeutic susceptibility.

The enrichment of genes associated with UBE2N expression in

pathways related to metabolism and DNA repair provides a plausible

mechanism for its role in promoting tumor proliferation and

progression (63, 70). High UBE2N expression may lead to increased

metabolic activity and enhanced DNA repair capacity, enabling tumors

to survive and thrive under conditions of stress and damage (71). The

contrasting enrichment patterns of pathways between high and low

UBE2N expression tumors offer intriguing insights into the possible

mechanisms by which UBE2N regulates tumor progression and

immune response (72). The association of high UBE2N expression

with pathways related to metabolism and DNA repair suggests a pro-

tumorigenic role, while the enrichment of immune-related pathways in
Frontiers in Immunology 14
low UBE2N expression tumors suggests a potential link between

UBE2N expression and immune evasion.

TME is a complex environment composed of tumor cells,

immune cells, blood vessels, fibroblasts, extracellular matrix, and

a variety of soluble factors (73, 74). These factors interact with each

other to regulate cancer growth, invasion, metastasis, and response

to therapy. UBE2N may play a crucial role in regulating the TME

reshaping. The increased infiltration of neutrophils, gdT cells, and

Th2 cells in high-UBE2N tumors may promote the formation of a

pro-inflammatory and immunosuppressive microenvironment,

facilitating cancer growth and progression. Conversely, in tumors

with low UBE2N expression, increased infiltration of B cells, CD8+

T cells, and dendritic cells was observed. These cells are capable of

directly or indirectly eliminating tumor cells across numerous

cancer types (75–78). In addition, we observed that UBE2N

might regulate the chemokine-MDSC recruitment, which in turn

affects effector T cell infiltration and function. For example, CXCL8-

mediated recruitment of myeloid cells limits tumor infiltration of

effector T cells and shapes the immunosuppressive TME, thereby

hampering cancer immunotherapy (79, 80). The lower levels of

stromal components, immune cell infiltration, and comprehensive

stromal-immune score in high UBE2N expression tumors further

support the hypothesis that UBE2N suppresses the infiltration of

effector immune cells into the TME. The association of high UBE2N

expression with poor response to immunotherapy suggests that

UBE2Nmay contribute to immune evasion via mechanisms such as

shaping an immunosuppressive TME and inhibiting antigen

presentation. Previous studies have reported that E2 family

member UBE2J1 mediated the ubiquitination and degradation of

misfolded MHC-1 heavy chains (81). Ubc9 regulated MHC-II

expression in a SUMOylation-dependent manner (82). So, we

hypothesize that UBE2N may suppress antigen presentation

through ubiquitination-mediated regulation of key regulators in

antigen processing pathways. Targeting UBE2N could potentially

overcome these barriers and improve the immunotherapy efficacy

in LUAD patients.

We identified three potential therapeutic agents targeting

UBE2N: genistein, GSK-1059615, and 3-deazaadenosine. Existing

studies report that genistein suppresses lung cancer by

downregulating the anti-apoptotic factor Bcl-2, upregulating the

pro-apoptotic factor Bax, inhibiting proliferation, and inducing

apoptosis in lung adenocarcinoma A549 cells, consistent with

phenotypes generated by UBE2N inhibition in this study (83, 84);

GSK-1059615, as a PI3K and mTOR inhibitor, inhibits tumor cell

growth in feline injection-site sarcoma (FISS), though its role in lung

cancer remains unelucidated (85, 86); 3-deazaadenosine, functioning

as a methylation inhibitor, modulates gene expression through RNA

methylation regulation—while its roles in tumorigenesis have been

partially explored, its specific mechanisms and effects in lung cancer

require further clarification (53).

Some limitations also exist in this study. First, the present study

merely focuses on the role of UBE2N in LUAD, while its role in
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LUSC and other cancer types remains unaddressed. Additionally,

the molecular mechanisms underlying how UBE2N affects cancer

hallmarks and TME remodeling require further exploration in

future studies, and advanced techniques such as proteomics and

functional genomics could be employed better to understand the

specific functions of UBE2N in cancer. Moreover, the study has

inherent limitations including cohort biases from non-random

sampling and restricted causal inference due to its retrospective

design, which necessitate prospective validation through multi-

center cohort studies, longitudinal sampling, and interventional

trials; otherwise, the clinical applicability of its findings

remains theoretical.

In summary, this work presented UBE2N as a novel prognostic

biomarker of LUAD, with its expression levels significantly

associated with patient survival, disease progression, hallmark

cancer pathways, TME characteristics, and therapeutic response.
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SUPPLEMENTARY FIGURE 1

Pan-cancer expression analysis of UBE2N. (A) Differential expression of
UBE2N in pan-cancer and paracancerous tissues. (B) Differential expression
of UBE2N in pan-cancer and paired paracancerous tissues.

SUPPLEMENTARY FIGURE 2

Clinicopathologic correlation and prognostic nomogram of UBE2N. (A, B)
Association between UBE2N expression and tumor T-stage in GSE48465 (A)
and GSE50081 cohorts (B). (C) Comprehensive prognostic nomogram based
on UBE2N expression and clinicopathologic indicators.

SUPPLEMENTARY FIGURE 3

Differences in GSVA scores across UBE2N expression groups. (A)GSVA scores

of cell cycle and DNA damage repair-related gene sets. (B) GSVA scores of
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immune function gene sets. (C) Correlation of UBE2N expression with
common chemokines and cytokines. (D, E) Correlation of UBE2N

expression with CXCL8 expression (D) and MDSC signature scores (E).

SUPPLEMENTARY FIGURE 4

ROC curves for assessing the performance of UBE2N in predicting
immunotherapy response. The results of (A–C) were based on GSE126044,

BMS038, and Gide_2019 datasets, respectively.

SUPPLEMENTARY FIGURE 5

Validation of UBE2N expression profile in LUAD based on IHC data from the HPA

database. (A) IHC images of UBE2N expression in LUAD and normal lung tissues.
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Information on public datasets used in this study.
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