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Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with a

pivotal role in immune regulation, inflammation, and tumorigenesis. Originally

identified as a T cell-derived factor inhibiting macrophage migration, MIF has

since been recognized as a key player in the progression of a wide range of solid

tumors. This comprehensive review traces the historical discovery and evolving

understanding of MIF, highlighting its structural features, receptor interactions,

and intracellular signaling mechanisms. The review also explores the molecular

mechanisms of MIF involvement in tumor pathogenesis through promoting

proliferation, angiogenesis, immune evasion, and metastasis. Special focus is

given to MIF interplay with several oncogenic pathways, modulation of the tumor

microenvironment, and its dual role in both autocrine and paracrine signaling

within tumors. The review also discusses emerging insights into MIF’s

involvement in therapeutic resistance and its potential as a diagnostic

biomarker and therapeutic target. By consolidating current knowledge, the

authors aim to provide a detailed perspective on MIF’s multifaceted role in

sol id tumors and to out l ine future direct ions for research and

clinical intervention.
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GRAPHICAL ABSTRACT
1 Introduction

Macrophage migration inhibitory factor (MIF) is a multi-

functional cytokine that exerts a crucial role in immune and

inflammatory regulation (1). It is recognized as a pro-

inflammatory cytokine and hormone that performs vital roles in

stress responses. MIF is primarily produced in the anterior pituitary

gland; its secretion is induced by corticotrophin-releasing hormone

in response to stress (2). MIF is secreted by various cells including

monocytes, macrophages, B cells, T cells, in addition to endocrine,

endothelial, and epithelial cells (3) and is released by binding of toll-

like receptors or pattern recognition receptors to small molecular

motifs such as pathogen-associated molecular patterns (4). On the

functional level, MIF is involved in a variety of biological functions

including the production of inflammatory cytokines, such as tumor

necrosis factor, interleukin-6, interferon-g, and interleukin-1b;
hormone immunomodulation; muscle glucose catabolism

regulation; tumor growth promotion; and pathology of diseases

such as rheumatoid arthritis, asthma, lupus, and atherosclerosis (5).

Moreover, MIF exhibits chemokine-like activity besides stimulating

target cell migration and recruiting leukocytes to infectious and

inflammatory areas (6). The MIF journey, starting from its

discovery to its current role as one of the pivotal cytokines in

immunology, represents a remarkable odyssey that traces the
Frontiers in Immunology 02
evolution of concepts on immune regulation as illustrated in

Figure 1. In 1932, the Bulletin of the Johns Hopkins Hospital

described a formerly unrecognized biological activity attributing

to Mycobacteria-sensitized lymphocytes to arrest the migration of

tissue macrophages in vitro (7). In the late 1950s, MIF was first

identified as a product derived from activated T cells that inhibited

the random migration of macrophages which was related to

delayed-type hypersensitivity reactions (8). In 1962, MIF was

identified to quantitate the migration of peritoneal cells in

capillary tubes (9). Independently, in 1966, John David and Barry

Bloom reported that MIF is indeed a protein produced by activated

lymphocytes further establishing MIF as a unique cytokine (10).

Cloning of the human MIF gene in 1989 provided information

about its structure, biological roles, and functional features (11).

In 1996, the three-dimensional crystal structure of MIF was

identified unraveling a novel protein fold and nominating MIF as a

new superfamily. This structural insight suggested that the natural

form of MIF is a homotrimer with a molecular weight of about 37.5

kDa, thus providing a structural basis for understanding its

functional properties (12).

Human MIF depicts 90% sequence similarity with mouse MIF.

MIF gene is located on chromosome 22 (22q11.2) and consists of

three short exons and two introns. Besides, two promoter

polymorphisms -CATT5–8 and G/C- are located at positions –
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794 and –173, respectively (Figure 2) (13). MIF encodes an

evolutionarily conserved protein with a relative molecular mass of

~12.5 kDa, composed of 114–115 amino acids folded into an

enzymatically active homotrimer with four b-strands and two a-
helices (14). The catalytic function of MIF is attributed to a

distinctive N-terminal proline that enables the keto-enol

tautomerization of substrates such as D-dopachrome and L-

dopachrome methyl ester into their corresponding indole

derivatives (15). CD74 is a type II transmembrane protein with

an apparent molecular weight of 31–41 kDa (16). MIF interacts

with the extracellular domain of CD74 transmembrane receptor,

resulting in the activation of various signaling pathways such as

Extracellular Signal-Regulated Kinase (ERK), Phosphatidylinositol

3-Kinase (PI3K)-Akt, and Nuclear Factor-kappa B (NF-kB) (16).
The MIF-induced cellular functions are mostly mediated by

mitogen-activated protein kinases (MAPKs) (16). MIF-dependent

phosphorylation of extracellular signal-regulated kinases (ERK-1/

2), synthesis of prostaglandin E2, and cell proliferation rely on the

cell surface expression of CD74 (6). The cytoplasmic tail of CD74

lacks a signal transduction domain; however, CD44 constitutes

an essential part of the CD74 receptor complex through which MIF

signal transduction occurs. The interaction of MIF with this

receptor complex phosphorylates CD74 and CD44 in the

intracytoplasmic domain (17). CD74 is essential for MIF-

mediated protection against apoptosis, which requires the

presence of its receptor counterpart, CD44. The polymorphic

transmembrane protein CD44 has demonstrated tyrosine

kinase activation characteristics and activates Src-family

tyrosine kinases which in turn phosphorylate ERK (Figure 2)
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(17). In addition, MIF directly interacts with the chemokine

receptors CXCR2 and CXCR4, modulating cell migration and

inflammation by activating the ERK1/2 and PI3K/Akt

signaling pathways. MIF rapidly associates with CXCR2 and

competes with its ligands (18), which suggests that MIF signaling

pathway is mediated by the complex CD74/CXCR2 receptor

(Figure 2) (19).
2 Intracellular MIF mechanisms in
innate immunity, inflammation, and
autoimmunity

MIF interacts with intracellular proteins such as c-Jun

activation domain-binding protein 1 (JAB1) which is a

coactivator of the Activator Protein 1 (AP-1) transcription factor

(20). The MIF–JAB1 interaction inhibits the degradation of cyclin-

dependent kinase inhibitor p27Kip1 (21), which in turn results in

cell cycle arrest (22). MIF exerts control over its functions through

catalytic activities (23), where it exhibits both enzymatic thiol-

protein oxidoreductase and tautomerase/isomerase activities (24),

which are implicated in the catecholamine-converting activity of

MIF (25). We will further discuss the critical roles of MIF in

modulating the immune system.

MIF has a crucial role in the regulation of innate immunity (26,

27). The cytokine is constitutively expressed by most immune cells,

including macrophages, and is rapidly released in response to stress

and microbial stimulation (28). MIF induces the expression of pro-

inflammatory cytokines and up-regulates TLR4, thus facilitating the
FIGURE 1

Timeline of key discoveries related to macrophage migration inhibitory factor (MIF) This figure represents a schematic representation for the timeline
of MIF initial identification to the discovery of its receptor and roles in immunity.
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recognition of bacterial infections such as Salmonella typhimurium

(29). MIF triggers several signal pathways, including the activation

of the mitogen-activated protein kinase-analyzed ERK1/ERK2

pathway, necessary for macrophage activation and function (17).

It further suppresses p53-dependent apoptosis in macrophages to

allow continuous execution of pro-inflammatory functions as

shown in Figure 3 (30). MIF is implicated in numerous

inflammatory and autoimmune conditions, such as rheumatoid

arthritis, septic shock, and inflammatory bowel disease. Its

dysregulation can lead to exacerbation of the inflammatory

response and perpetuation of diseases (31). Furthermore, it plays

a pivotal role in the modulation of inflammatory response. By

activating immune cells through its receptor CD74, MIF modulates

the secretion of pro-inflammatory cytokines, such as TNF-a, IL-1b,
and IL-6 (32). This pro-inflammatory activity is crucial in response

to infection and injury, helping to coordinate defense mechanisms

(33). However, in chronic inflammatory conditions, sustained MIF

expression can contribute to pathological inflammation, leading to

tissue damage and autoimmune diseases.
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One of the hallmarks and unique characteristics of MIF is its

ability to counteract the immunosuppressive action of glucocorticoids,

thus preserving the immunological responses during conditions of

inflammation and stress and allowing a much more effective immune

response against pathogens (34). Furthermore, MIF promotes the

migration and recruitment of immune cells by inducing the

expression of chemokines and adhesion molecules as shown in

Figure 3. These functions are crucial for appropriate immune

surveillance and infection responses (35). Recently, MIF has been

implicated in tumor immunity; it can establish both pro-

inflammatory and immunosuppressive environments depending on

the context. MIF has a dual role in tumor development through

modulating tumor growth and angiogenesis (36). It promotes

angiogenesis, which is critical for tumor growth and metastasis,

through enhancing the release of vascular endothelial growth factor,

a key mediator of angiogenesis as shown in Figure 3. This role is

essential not only in the context of wound healing and tissue

regeneration but also in enabling tumors to establish their blood

supply, facilitating their growth and metastasis (37–39).
FIGURE 2

MIF Chromosomal location, genetic dissection and biological functions The migration inhibitory factor (MIF) gene is located on chromosome
22q11.2 and consists of three exons separated by two introns. Its transcription is regulated by two distinct promoter elements, CATT5–8 and G/C,
positioned at nucleotides 794 and 173, respectively. MIF exerts its biological functions through interactions with CD74, CD44, and chemokine
receptors CXCR2/4 on the cell surface. These interactions activate downstream signaling cascades, including the extracellular signal-regulated
kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and nuclear factor kappa B (NF-kB) pathways. These pathways
regulate key cellular processes such as proliferation, growth, angiogenesis, metastasis, and anti-apoptosis.
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3 Interactions of MIF with immune
cells in the tumor microenvironment

MIF acts on a wide array of immune cells, including

macrophages, T cells, dendritic cells, Tumor-Associated Neutrophils

(TANs), Myeloid-Derived Suppressor Cells (MDSCs), and natural

killers’ cells (40). The interaction with all these elements has a wide-

ranging effect on tumor development, and immune evasion.
Frontiers in Immunology 05
3.1 Macrophages

In the context of TME, MIF plays a very critical role in

polarizing macrophages toward an M2 immunosuppressive and

tissue repair phenotype (27, 41). Polarization mediates tumor

growth due to enhanced tumor angiogenesis and suppression of

anti-tumor immunity (42). MIF acts mainly through its receptor

CD74 together with co-receptors, including CD44 and CXCR4.
FIGURE 3

Mechanistic roles of MIF in various cellular processes. (A) Role of MIF in Cell Cycle: MIF interacts with JAB1, preventing the degradation of the
cyclin-dependent kinase inhibitor p27Kip1, thereby inducing cell cycle arrest. (B) Role of MIF in bacterial infection: MIF promotes the expression of
pro-inflammatory cytokines and upregulates TLR4, enhancing bacterial recognition. (C) Modulation of Glucocorticoid Activity by MIF: MIF
antagonizes the immunosuppressive effects of glucocorticoids by inhibiting glucocorticoid-induced IkB synthesis and mRNA destabilization. (D) Role
of MIF in Angiogenesis: MIF engages CD74 and CD44 receptors to promote the release of vascular endothelial growth factor (VEGF), thereby
facilitating angiogenesis. (E) Role of MIF in apoptosis: MIF activates ERK1/2 signaling, leading to suppression of pro-apoptotic proteins such as p53
and p16, ultimately inhibiting apoptosis.
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These complexes, upon binding with MIF, trigger the signaling

pathways that culminate in the release of various cytokines and

chemokines to promote an immunosuppressive milieu (43). The

activation of NF-kB mediates transcription of various pro-

inflammatory cytokines, including IL-10. MIF is able to increase

the secretion of IL-10 from macrophages and offers a more

permissive immunological milieu. Besides IL-10, MIF can induce

the release of other pro-inflammatory cytokines like TNF-a and IL-

1b. This dual role of stimulating pro-inflammatory cytokines while

enhancing anti-inflammatory signals underlines the very complex

nature of MIF influence on macrophage function within the TME

(Figure 4) (43).
3.2 T cells

MIF has a substantial impact on T cell functionality by

influencing the activation and differentiation of numerous T cell

subsets, including Th1, Th2, and Tregs (41, 44). High levels of MIF

can cause immunosuppressive phenotypes, which prevent efficient

anti-tumor responses. Previous studies have demonstrated that MIF

stimulates the development of Tregs by modulating IL-2

production, hence increasing tumor growth by generating an

environment permissive to immunological tolerance (45). CD74

is expressed on the surface of activated T lymphocytes, and its

binding to MIF causes important intracellular signaling events. This

involves the stimulation of pathways involved in T cell migration

3and proliferation. MIF’s interaction with CD74 increases Th17

differentiation, supporting a more aggressive immune response in

some circumstances and contributing to T cell exhaustion in others.

Of note, MIF increases Treg activities; thus, MIF increases the

formation of tumor-associated Tregs that are crucial in maintaining
Frontiers in Immunology 06
immunological tolerance in the TME. Notably, MIF knockout

models demonstrated a high reduction in Treg levels and

increased anti-tumor immunity (Figure 5) (19, 45).
3.3 Dendritic cells

MIF controls the function and maturation of DCs, which

represent one of the most powerful antigen-presenting cells of the

immune system. Through controlling the interaction of DC with T

cells, MIF alters the adaptive immune response toward tumors. The

major receptor through which MIF acts on DCs is the CD74

receptor, which represents the invariant chain of MHC class II

molecules (46). The interaction plays an important role in

triggering downstream signaling pathways that control DC

activity. MIF binding to CD74 suppresses the expression of key

co-stimulatory molecules on DCs. This downregulation inhibits T-

cell activation and proliferation. MIF acts through manipulating the

cytokine profile that is produced by DCs. Instead of secreting pro-

inflammatory cytokines such as IL-12, which induce Th1 responses,

MIF-exposed DCs may secrete immunosuppressive cytokines such

as IL-10. This further contributes to the tolerogenic environment

that allows tumor development (Figure 3) (47).

MIF interaction with CD74 triggers a number of intracellular

signaling pathways, including the PI3K/Akt pathway facilitates cell

survival, but it may also have immunosuppressive implications

when triggered in DCs. Activated ERK1/2 can lead to long-term

inflammatory reactions, but upon being influenced by MIF, it also

expresses the capability to induce tolerance. Binding of MIF to

CD74 downregulates key co-stimulatory molecule expression in

DCs. This results in impaired efficient T cell activation and

proliferation (Figure 5) (48).
FIGURE 4

Mechanism of MIF-Induced Polarization of M1 Macrophages to M2 Phenotype MIF promotes M2 macrophage polarization in the TME, enhancing
angiogenesis and suppressing anti-tumor immune responses, thereby facilitating tumor progression.
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The elevated levels of MIF may result in poor maturation and

functioning of DCs, thereby affecting their capability for activation of

CD8+ cytotoxic T lymphocytes (49). Mature DCs generally deliver

antigens in an efficient manner and provide the co-stimulatory cues

necessary for the activation of CTLs. However, where maturation of

DCs is impeded by MIF, owing to the inability to effectively present

tumor antigens, the activation of CTL cells is lowered, reducing anti-

tumor immunity. Poor effector function combined with increased

expression of inhibitory receptors, such as PD-1, is characteristic of T

cell exhaustion driven by chronic exposure to an immunosuppressive

environment. If T cell responses can be downregulated and blocked,

then tumors may escape immune surveillance eventually leading to

tumor progression and spread. In conclusion, MIF regulates the

production of immune suppressive factors by DCs and other immune

cells that promote tumor growth (48, 49).
3.4 Natural killer cells

MIF modulates the complex activities of NK cells, one of the

primary elements of the innate immune response that directly kill
Frontiers in Immunology 07
tumor cells (50, 51). Most of MIF functions are mediated with

CD74, which is expressed on NK cells (52). The interaction

induces downstream signaling that includes PI3K/Akt and

MAPK/ERK cascades, which are required for activation and

proliferation of NK cells (51, 53, 54). These pathways result in

the increased synthesis of cytotoxic chemicals such as perforins

and granzymes, which enhance the lysing capability of NK cells

against tumor cells (55). MIF can induce NK cells to produce pro-

inflammatory cytokines, including IFN-g. IFN-g, in turn, activates

macrophages and enhances Th1 responses, further augmenting

the antitumor immune response. MIF interacting with its

receptors on NK cells upregulates the cytotoxic activity of NK

cells. This includes the overexpression of activating receptors such

as natural killer group 2D (NKG2D) and DNAX accessory

molecule-1 (DNAM-1), which is needed for recognition and

killing of tumor cells (Figure 5). The high levels of MIF in TME

may evoke an immunosuppressive form leading to lower NK cell

cytotoxicity, as high levels of MIF inhibit the NK cell-activating

receptors, thus limiting its tumor cell recognition and killing

capability (40). Furthermore, high levels of MIF have been

associated with transcriptional down-regulation of NKG2D on
FIGURE 5

MIF-mediated modulation of immune cells in the tumor microenvironment (TME). This schematic illustration represents the role of MIF in
modulating several immune cells at the TME.
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the NK cells, hence impeding its cytotoxic activity against the

tumor cells (56).
3.5 Myeloid-derived suppressor cells

Myeloid-Derived Suppressor Cells (MDSCs) are generally

divided into two subsets, namely monocytic (M-MDSCs) and

granulocytic or polymorphonuclear (PMN-MDSCs). They are

characterized by their capability of inhibiting T cell proliferation

and promoting Tregs expansion, thus contributing to an immune

suppressive environment that favors tumor growth (57). MIF

significantly influences the recruitment and expansion of MDSCs

in the TME. Clinical evidence has shown that high levels of MIF are

accompanied by higher levels and activity of MDSCs, an integral

aspect of tumor immune survival. MIF promotes the expansion of

myeloid cells into MDSCs (58). Several reports have identified that

tumor-derived MIF can drive the expansion of both monocytic and

granulocytic populations, thus enhancing the overal l

immunosuppressive capability of the tumor. MIF also enhances

the production of key immunosuppressive molecules by MDSCs

including Arginase-1 which lowers the levels of L-arginine in the

microenvironment, thus directly inhibiting T cell activation

(Figure 5) (59).

MIF triggers the STAT3 signaling pathway, which is involved

in MDSC differentiation and function. Activation of STAT3

upregulates the production of various immunosuppressive

molecules and promotes the capability to impede T cell

responses from MDSCs. This mechanism also maintains

the immunosuppressive phenotype in these cells, which

enables their survival within the TME (60). MIF also acts by

triggering the production of TGF-b by MDSCs. TGF-b is an

immunosuppressive cytokine. It suppresses the function

of effector T cells while promoting the development and

proliferation of Tregs in parallel. TGF-b is present in the TME,

maintaining or enhancing the immunosuppressive environment

that enables tumors to escape immune recognition. The

interaction between MIF and its receptor CXCR2 on MDSCs

induces the migration of MDSCs toward the tumor sites. This

causes a chemotactic effect that can increase the concentration of

suppressor cells within the TME (Figure 3) (61).
3.6 Tumor-associated neutrophils

Upon infiltrating the TME, Tumor-Associated Neutrophils

(TANs) represent one subpopulation of neutrophils and express

either pro- or anti-tumor activities. The interaction between TANs

and MIF influences TAN activities and tumor progression,

structuring the immune compartment of TME (62). MIF

promotes neutrophil infiltration into tumors as a chemotactic

factor. This is further facilitated by the interaction with receptors

like CXCR2 on TANs, thereby favoring recruitment of the latter

within the TME (18).
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MIF and TANs communicate through several signaling

pathways, which comodulate their functions. MIF binds to CD74

on neutrophils, thereby activating downstream signaling cascades

that promote cell survival, proliferation, and activation. The

activation of pathways such as ERK1/2 and AKT due to this

interaction leads to an increased expression of pro-tumoral genes.

MIF may change the cytokine secretion profile of TAN. It could

induce the release of IL-6 and IL-8, which would attract more

immune cells to the TME and accelerate inflammatory responses

that support tumor growth (Figure 5) (46, 63).
4 Role of MIF in immune cells and
inflammation

MIF plays a role in various biological functions, such as

leukocyte recruitment, inflammation, immune responses, cell

proliferation, tumor development, and the counter-regulation of

glucocorticoids in both physiological and pathological processes.

Previous studies reported MIF’s role in inflammatory and immune

mediated diseases such as rheumatoid arthritis, cancer, multiple

sclerosis, systemic lupus erythematosus (SLE), and psoriasis (64–

68). A possible pathogenic mechanism is through the enhanced

production of inflammatory molecules such as TNF-a, nitric oxide,
IL-1, IL-6, IL-8, and cyclo-oxygenase (COX) (69).

MIF was initially identified as a product of T lymphocytes;

however, studies has shown that endotoxin-induced T cell-deficient

mice still exhibit circulating MIF (69). MIF is a pro-inflammatory

cytokine and immunomodulator that is rapidly released by both

immune cells such as monocytes/macrophages, B cells, and T cells

as well as non-immune cells including endocrine, endothelial, and

epithelial cells in response to various stimuli as shown in Figure 6

(3). Growing evidence has revealed that MIF is constitutively

expressed in a variety of immune cell types and its over secretion

was associated with various pathological conditions. MIF opposes

the anti-inflammatory and immunosuppressive effects of

glucocorticoids. Normally, glucocorticoids activate MAP kinase

phosphatase-1 (MKP-1), which inhibits inflammatory mediators,

thereby exerting anti-inflammatory effects (69).

MIF interacts with four membrane receptors: CD74, chemokine

receptor with CXC motif 2 (CXCR2), CXCR4, and CXCR7.

Depending on the inflammatory context, MIF could bind to

individual receptors or receptor complexes, which determine its

functional activity (70, 71). This might explain the chemokine-like

properties of MIF, thus facilitating the migration and recruitment of

leukocytes to sites of infection and inflammation (18, 72).

Once secreted, MIF can act in both autocrine and paracrine

manners by binding to these transmembrane receptors, triggering

intracellular signaling cascades (73, 74). When MIF binds to CD74,

the invariant chain of major histocompatibility complex II (MHC

II), it activates signaling through the extracellular signal-regulated

kinase (ERK)/MAP kinase pathway and CD44, promoting cellular

proliferation and prostaglandin E2 production (16, 75). When MIF

binds to CXCR2, it triggers chemotactic responses, driving the
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recruitment and migration of immune cells, such as monocytes and

neutrophils, to sites of inflammation, potentially contributing to the

early immune response against infections (18). Similarly, MIF

interaction with CXCR4 promotes the directed migration of T

cells, playing a role in the adaptive immune response to infections

(18). Additionally, the MIF-CXCR7 axis has been implicated in

inflammatory processes, particularly in B cell chemotaxis (70).

MIF is primarily secreted by macrophages. A study by Lee et al.

demonstrated that autophagy deficient monocytes and

macrophages release significantly high levels of MIF when

stimulated with LPS (76). Furthermore, MIF plays a crucial role

in regulating macrophage responses during infection. It promotes

the production of pro-inflammatory cytokines and other

inflammatory mediators, including TNF-a, IFN-g, IL-1b, IL-2, IL-
6, IL-8, nitric oxide, and COX2, to facilitate pathogen clearance (3,

77). Macrophage-derived MIF is both sufficient and necessary for

driving the angiogenic role of bone marrow-derived macrophages

in teratoma formation in mice, highlighting its critical role in

promoting M2 macrophage polarization (78). These findings were

later validated in mouse models of both primary and metastatic

melanoma, where macrophage-derived MIF was essential for the

maximal expression of angiogenic growth factors in M2-polarized
Frontiers in Immunology 09
macrophages and was required for the T-cell immunosuppressive

function of melanoma-associated TAMs. Notably, TAMs deficient

in MIF or treated with the small molecule MIF inhibitor, 4-IPP,

spontaneously shifted to an M1-like polarization profile (79, 80).

Collectively, these results demonstrate that loss or inhibition of MIF

in solid tumors effectively reprograms intra-tumoral TAMs from an

immunosuppressive, pro-angiogenic, tumor-promoting phenotype

to an immunostimulatory, non-angiogenic, anti-tumor phenotype

(79). Moreover, MIF plays a crucial role in the early innate immune

response to parasitic infections, as it facilitates the expression of

proinflammatory cytokines and their receptors, promotes parasite

recognition, supports macrophage-mediated microbial clearance,

and enhances effective antigen presentation (81).

Studies suggest that MIF contributes to immunosuppression by

inhibiting cross presentation of tumor antigens by DCs to CD8+ T

cells via MHC class I (82). Furthermore, MIF downregulates MHC

class II, implying that it also hinders the presentation of tumor

antigens to CD4+ T cells (83, 84). Such findings highlight MIF’s role

in promoting tumor-associated immune evasion by affecting DC

function and consequently CD4+ and CD8+ T cell responses.

Granulocytes such as unstimulated human circulating eosinophils

have performed cytosolic MIF. Upon stimulation with phorbol
FIGURE 6

Role of Macrophage Migration Inhibitory Factor (MIF) in Inflammation. This figure shows the pivotal role played by MIF in the regulation of immune
cell function and inflammation. MIF, secreted from immune (T cells, B cells, macrophages, and neutrophils) and non-immune cells, enhances
production of pro-inflammatory mediators like TNF-a, IL-1b, IL-6, IL-8, nitric oxide, and COX-2—mainly by macrophage MIF..
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myristate acetate, C5a or IL-5, eosinophils could secrete MIF in a

concentration and time-dependent manners (85). Similarly, human

neutrophils store preformed MIF, which could be released following

secondary necrosis (86). Chen et al. demonstrated that mast cells

constitutively express MIF and secrete it during degranulation to

modulate innate immune responses, drive fibrogenic activities, and

contribute to non-scleroderma-related fibrosis (3, 87). Human

eosinophils also possess significant amounts of stored MIF, and

elevated MIF levels were detected in the airways of individuals with

asthma. In experimental asthma models, mice lacking MIF exhibit

reduced pulmonary inflammation and decreased airway

hyperresponsiveness compared to their wild-type counterparts (85, 88).

Secreted MIF mediates evasion from NK cell-mediated cytolysis

in uveal melanoma, the most common intraocular cancer in adults

(89). On the other hand, MIF overexpression was reported to

facilitate immune evasion by downregulating NKG2D expression

on tumor cells, a key receptor involved in triggering NK-mediated

tumor cell cytolysis in ovarian cancer cell lines (90). Other studies

reported that MIF may inhibit NK cell function by competing with

NK-associated MHC class I molecules (40). Similarly, CTL-derived

MIF directly suppressed the anti-tumor activity of primed cytotoxic

T lymphocytes (CTLs). Additionally, tumor-derived MIF inhibits T

cell activation by inducing T cell death in an IFN-g-dependent
pathway (91).

Another reported mechanism of MIF is the generation and

expansion of CD4+CD25+FOXP3+ regulatory T cells by enhancing

IL-2 expression in activated splenocytes in mouse models of

mammary and colon carcinoma (92). Remarkably, a subset of

MIF−/− mice exhibited complete tumor rejection with a significant

decrease in Tregs and an increase in CD4+ and CD8+ lymphocytes.

Also, tumor-derived MIF enhances the expansion and migration of

Th17 cells through CXCR4 signaling. This increase in Th17 cells

was associated with improved clinical outcomes (93). Moreover,

MIF expression was elevated in advanced stages and more

aggressive molecular subtypes of breast cancer, showing a strong

correlation with IL-17 levels (94). Beyond cancer, MIF has been

linked to IL-17 expression in various autoimmune disorders, such

as Hashimoto’s thyroiditis and rheumatoid arthritis, where Th17-

mediated responses are known to drive pro-inflammatory processes

(95, 96).

The role of MIF in the immune response to microbial pathogens

have been extensively studied, revealing that it could either protect

the host or exacerbate tissue damage, depending on the specific

microorganism involved (29, 97–100). MIF could be protective by

activating immune cells, particularly macrophages, and promoting

the release of pro-inflammatory cytokines, thus facilitating the

efficient clearance of invading pathogens (101–103). Conversely,

MIF’s overactivity can exacerbate inflammation, leading to tissue

damage. This dual role is particularly evident in chronic

inflammatory and autoimmune diseases, where MIF is implicated

in sustaining inflammation, resulting in persistent tissue injury and

dysfunction (104). In certain viral infections, such as HIV, MIF can

create a microenvironment favorable to viral survival and
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replication, allowing the pathogen to evade immune defenses and

establish persistent infections. This detrimental effect may stem

from MIF’s ability to dysregulate immune responses, alter cytokine

profiles, and increase immune cell susceptibility to viral invasion

(105). The impact of MIF is highly context-dependent, influenced

by factors such as the specific pathogen, stage of infection, overall

immunological environment, and affected organ. Notably, MIF may

exhibit organ-specific protective effects in certain diseases, further

underscoring the complexity of its role in host-pathogen

interactions (106).

Beyond its involvement in infectious diseases, MIF plays a

significant role in various inflammatory and pathological

conditions, including asthma, atherosclerosis, cancer, autoimmune

diseases, burn injuries, and wound healing (107, 108). MIF is

implicated in a wide range of autoimmune diseases, reflecting its

diverse role in immune regulation (107, 109). High levels of MIF have

been observed in patients with SLE, systemic sclerosis, Wegener’s

granulomatosis, and relapsing polychondritis (110–112). Elevated

levels of MIF have been detected within inflamed synovial tissue of

rheumatoid arthritis patients, highlighting its involvement in

localized inflammation (113, 114). By counter-regulating the

immunosuppressive effects of glucocorticoids, MIF might also

contribute to the development of steroid resistance in conditions

such as asthma and autoimmune diseases (115).

MIF plays a critical role in amplifying inflammation during

carcinogenesis and the development of early-stage hyperplasia or

carcinoma as shown in Figure 6 (116). This is particularly evident in

inflammatory colitis, a contributing factor to the progression of

colorectal adenomas and adenocarcinomas (117). For instance, in

head and neck cancer, elevated MIF levels were associated with

increased expression of CD66b, a granulocyte/neutrophil marker, as

well as lymph node metastasis, and poorer overall survival (118).

Mechanistically, tumor-derived MIF drives neutrophil

chemotaxis via CXCR2 signaling and enhances neutrophil

production of CCL4 and MMP9 (118). These MIF-induced

factors would promote lymphangiogenesis and tumor-stromal

remodeling, thus contributing to tumor progression (119–121).

On the other hand, CCL4 can recruit various immune cells,

including T lymphocytes, into the TME through CCR5 (121).

Thus, the composition and activation state of infiltrating immune

cells within the tumor microenvironment would influence whether

the response to MIF is pro- or anti-tumorigenic.
5 MIF in solid tumors

Over the last two decades, MIF has been linked to

carcinogenesis (122), invasion (123), metastasis (124), tumor-

induced angiogenesis (125), and disease prognosis and diagnosis

(126, 127) of several solid malignancies. The function of MIF in

various solid tumors, their diagnostic and prognostic significance,

and their potential as a therapeutic target are summarized in Table 1

and discussed in this section.
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5.1 Breast cancer

Breast cancer (BC) is among the most frequently diagnosed

cancers in women (227, 228). MIF plays a crucial role in breast

cancer progression and has been the subject of multiple

investigations (229, 230). Studies have demonstrated that MIF is
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significantly overexpressed in non-invasive BC cell lines, such as

MDA-MB-468 and ZR75-1, when compared to benign cell lines like

MCF-12A. However, MIF expression is notably lower in highly

invasive BC cells (MDA-MB-231) even though the MIF receptor

CD74 is highly expressed. This suggests that MIF likely targets

invasive BC cells through its interaction with CD74. Blocking CD74
TABLE 1 Summarized role of MIF in different solid malignancies.

Cancer Role of MIFs Role as biomarkers
Drugs used to target

MIFs
Ref.

Head and
Neck
carcinomas

Play a vital role in cancer development, metastasis, invasion,
and deregulation of lipid metabolism

Can be used as diagnostic and
prognostic markers (but not in
all types)

- Eugenol f
- miR-451
- ISO-1

(123,
127–137)

Esophageal
cancer

Inducing cancer progression, migration, invasion, proliferation,
and angiogenesis

Can be used as prognostic and
predictive markers for the
effectiveness of treatment

- Anti-MIF Ab
(138–
143)

Gastric cancer
Increasing angiogenesis, lymph node metastasis, invasion,
growth and survival of cancer cells

Can be used as diagnostic and
prognostic markers

miR-1228
(144–
150)

Hepatocellular
carcinoma

Inducing migration, invasion,
immunosuppressive environment, and inhibiting drug-induced
apoptosis

Can be used as prognostic and
diagnostic markers

- miR-451a
- miR-608
- combination between MIF and/or
an anti-CD74 antibody and/or the
MIF inhibitor ISO-1

(151–
158)

Pancreatic
cancer

Increasing proliferation, metastasis, immunosuppressive
cells, and inhibiting apoptosis

Can be used as diagnostic and
prognostic markers

- ISO-1
- 4-IPP
- IPG1576

(159–
165)

Colorectal
cancer

Inducing migration,
proliferation, and promoting resistance against MEK inhibitor
and oxaliplatin

Can be used as diagnostic and
prognostic markers

- 4-IPP
-isothiocyanates

(124,
166–171)

Renal cell
carcinoma

Promoting tumor development, proliferation and colony
formation

Can be used as prognostic
markers

- miR-451
(172–
175)

Bladder cancer
Increasing proliferation, metastasis, angiogenesis,
immunosuppressive environment, and inhibiting apoptosis

Can be used as prognostic and
diagnostic markers

- CPSI-1306
- 4-IPP
- Anti-MIF Ab

(61, 122,
125,
176–179)

Breast cancer
Inducing proliferation, invasion, migration, promoting M2
macrophages, and increasing ROS production

Can be used as prognostic and
diagnostic markers

- CPSI-1306
- siMIF-NP

(180–
185)

Lung cancer
Inhibiting apoptosis, increasing angiogenesis, and promoting
tumor growth

Can be used as diagnostic
markers

- 4-IPP
(79, 186–
190)

Melanoma
Playing a vital role in sustaining tumor growth, increasing
angiogenesis, promoting metastasis, and inhibiting apoptosis

Can be used as prognostic
markers diagnostic markers

- Iso-66
- 4-IPP
- Milatuzumab

(191–
198)

Glioblastoma
Promoting tumor growth, metastasis, angiogensis and
inhibiting the anti-tumor activity of NK cells

Can be used as prognostic
markers

- Ibudilast
- 4-IPP

(199–
203)

Neuroblastoma
Increasing the expression of angiogenic factors, promoting
metastasis and migration, and inducing tumor growth

Can be used as prognostic
markers

- ISO-1
- 4-IPP
- miRNA-451

(204–
206)

Ovarian cancer Increasing tumor progression and inhibiting NK cell activity
Can be used as prognostic and
diagnostic markers

- Imalumab
(207–
210)

Prostate cancer Promoting tumor proliferation, metastasis, and invasion
Can be used as prognostic
markers

- ISO-1
(211–
216)

Cervical
cancer

Promoting proliferation, increasing metastasis and migration,
inhibiting apoptosis, and disrupting MHC class II antigen
presentation, enabling immune evasion

(217–
221)

Endometrial
cancer

Inducing tumor progression, metastasis, and angiogenesis
Can act as prognostic and
diagnostic markers

ISO-1
(222–
226)
fron
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has been shown to inhibit MDA-MB-231 cell proliferation,

highlighting the role of MIF/CD74 signaling in driving the

growth of both non-invasive and invasive cancer cells. Moreover,

MDA-MB-468 cells had a 2.1 times higher proliferation rate than

MCF-12A cells, yet MDA-MB-231 cells had the highest baseline

proliferation rate (approximately 7.8 times higher than that of

benign cells). When treated with recombinant MIF (rMIF) at

doses in the range of 0–150 ng/ml, MCF-12A and both tumor

cell lines demonstrated increased proliferation, with the strongest

effect observed in cells with the highest CD74 expression which are

MDA-MB-231. MIF not only supports cell growth but also

promotes the migration and invasion of cancer cells in a dose-

dependent manner. In MDA-MB-231 cells, MIF acts in a

chemokine-like manner to facilitate movement through basement

membrane-like layers, suggesting that MIF produced in the TME

contributes to cancer invasiveness (231). Interestingly, in mouse

models, when comparing 67NR non-metastatic cells to both a non-

tumorigenic control and the metastatic 4T1 cells, researchers

observed higher basal levels of MIF secretion in the 67NR cells.

However, this basal MIF secretion was not linked to the invasive

phenotype in the studied mouse breast cancer cell lines. Despite the

differences in MIF secretion levels, no clear relationship was

established between MIF secretion and invasiveness in these

models (180). Inhibition of autophagy in 66cl4 triple negative

breast cancer cell line led to increased intracellular ROS levels,

which further upregulated MIF expression, potentially through

ROS-dependent transcription factors. This mechanism

underscores MIF’s involvement in macrophage polarization,

particularly in promoting the M2 subtype. Research involving

MIF-deficient mouse macrophages revealed reduced M1

polarization, suggesting that MIF is essential for macrophage

function and amplifies both extracellular and intracellular

signaling (181). Additionally, MIF has been identified as a novel

3’ flap nuclease that helps remove unpaired 3’ flaps in DNA during

replication. It cooperates with nuclease-deficient polymerases, such

as Pol a, to ensure proper DNA elongation and fidelity. In cancer

cells, the absence of MIF’s nuclease activity results in increased

mutations, slower DNA replication, and cell cycle delays,

highlighting its role in helping cancer cells survive DNA

replication stress. Moreover, MIF’s recruitment to DNA

replication sites by PARP1(Poly(ADP-ribose) polymerase 1)

during the S phase further emphasizes its involvement in

maintaining cancer cell proliferation (182).

As a biomarker, MIF also has diagnostic and prognostic

implications in BC. Immunohistochemical studies have shown

that higher MIF levels correlate with larger tumors and more

advanced stages of the disease (227). Although MIF expression

alone does not significantly affect overall survival, CD163

expression—on tumor-associated macrophages—has been linked

to disease-free survival, suggesting that MIF influences the TME in

patients with triple-negative BC (183). Furthermore, elevated

mRNA levels of CXCR7, an extracellular MIF receptor, have been

associated with decreased overall survival, indicating that

extracellular MIF signaling plays a critical role in BC

progression (181).
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Given its wide-ranging physiological and pathological roles,

MIF represents a promising therapeutic target for the development

of small-molecule inhibitors and antibody-based therapies. In the

context of BC treatment, the small molecule CPSI-1306 (isoxazoline

drug), which has demonstrated the ability to suppress MIF’s

oncogenic activity (184), holds promise as a non-toxic, well-

tolerated therapy. CPSI-1306 induces apoptosis in triple-negative

BC cells by increasing ROS levels and inhibiting key signaling

pathways such as Akt, PDK, and RAF. Its ability to interfere with

MIF’s negative regulation of apoptosis further supports its potential

use in cancer treatment by promoting cell death while inhibiting

proliferation pathways (232). Moreover, a previous study

demonstrated the effects of CPSI-1306 treatment and MIF

reduction in human TNBC grafts, showing a decrease in the

infiltration of MDSCs in the tumor. Additionally, CPSI-1306

treatment appeared to enhance the infiltration of CD8+ T cells,

while reducing the levels of granulocyte colony-stimulating factor

(GCSF), granulocyte-macrophage colony-stimulating factor

(GMCSF), IL-2, and IL-4, when compared to the control group

(232). On the other hand, MIF knockdown using siRNA (siMIF-

NP) has proven to be an effective method for reducing

immunosuppression in tumors. Accordingly, MIF, which is

overexpressed in many solid tumors, is a suitable target for

siRNA-mediated knockdown. MIF knockdown not only decreases

the levels of CD206, a marker for M2 macrophages, but also

increases the expression of MHCII, which is crucial for antigen

presentation to CD8+ T cells. Accordingly, tumors treated with

siMIF-NP exhibit an elevated infiltration of CD8+ T cells,

enhancing the immune response and potentially improving

therapeutic outcomes (185). Consequently, the therapeutic

efficacy of immune checkpoint blockade, a strategy that aids the

body’s immune system in attacking tumor cells, was enhanced by

targeting MIF (233).
5.2 Lung cancer

MIF plays a pivotal role in inflammatory signaling and tumor

growth. Its enzymatic function, particularly at the tautomerase

active site, is essential for processes like ERK phosphorylation,

COX-2 induction, and p53 inhibition, which are crucial for tumor

development. Mutation of this active site or inhibition by chemical

compounds has been shown to dampen these critical pathways

(234). To further understand MIF’s role in lung cancer, researchers

explored its interaction with its receptor, CD74, which was found to

be widely expressed in lung cancers. In some tumors, CD74 was

primarily located in stromal cells, suggesting that MIF might

influence the TME. In other cases, CD74 expression was shared

between stromal and malignant epithelial cells, hinting at MIF’s

involvement in autocrine regulation of angiogenic factors or

inhibition of apoptosis in cancer cells. Co-expression of MIF and

CD74, detected using factor VII staining, correlated with elevated

levels of angiogenic CXC chemokines and greater tumor

vascularity, which reinforces MIF’s role in promoting tumor

angiogenesis. Inhibition of either MIF or CD74 in vitro led to a
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reduction in the production of these chemokines, further

supporting the previous findings (187).

As a biomarker, MIF demonstrates diagnostic potential due

to its consistent overexpression innon-small cell lung cancer

(NSCLC) tissues compared to normal lung samples. These

expression patterns, confirmed by western blotting and

immunohistochemistry (IHC), highlight MIF’s overexpression in

lung tumors, and its absence in healthy tissues (188). However, its

prognostic utility is limited: elevated MIF levels do not correlate

with chemotherapy response or overall survival in advanced-stage

patients (190). Nonetheless, elevated MIF levels have been

consistently associated with increased proliferation and migration

of lung cancer cells, reinforcing its potential as part of a diagnostic

biomarker panel for lung cancer (189).

On the therapeutic front, MIF inhibition has shown promise.

Lungs from MIF-deficient mice showed a noticeable reduction in

metastatic tumor burden, both visually and in terms of total lung

mass. To assess changes in macrophage polarization, F4/80+ cells

were isolated from the lungs of metastatic tumor-bearing MIF-

deficient and wild-type mice. Macrophages in MIF-deficient mice

exhibited a shift in polarization. The expression of M2 markers,

including ARG-1 and IL-10, was significantly elevated, while the

expression of M1 markers such as TNF-a was reduced in lung-

associated TAMs. Additionally, when 4-IPP was applied ex vivo to

TAMs from wild-type mice, it caused a similar shift, converting

TAMs from an M1-like profile to a more pro-inflammatory M2

profile, further supporting the role of MIF in regulating macrophage

polarization (235).
5.3 Melanoma

In melanoma cell lines, MIF knockdown led to reduction in the

cell number and viability over five days with a notable decline after

three days. Western blot analysis confirmed MIF knockdown across

six melanoma cell lines, with substantial reductions in Akt

phosphorylation in MelCV, Me1007, and MelRMu cells (40–70%

decrease), which corresponded with significant cell proliferation

inhibition. Notably, melanoma lines resistant to MIF depletion

(MelRM and MM200) displayed minimal changes in Akt activity,

while the most sensitive lines exhibited the greatest reduction in Akt

activity, underscoring a positive correlation between MIF

knockdown and Akt signaling (198). These findings demonstrate

that MIF plays a significant role in sustaining tumor growth and

survival. On the other hand, MIF–CD74 signaling plays a critical

role in enhancing melanoma cell survival by promoting a TME

favorable to malignancy. Activation of CD74 by MIF contributes to

melanoma progression (48), as presented by its influence on

immune responses like TNF-a signaling and apoptosis in the

TME (197). Additional in vivo studies have linked MIF with

angiogenesis in melanoma, where anti-MIF antibodies in mice

reduced angiogenesis (236). Depletion of MIF also protected mice

from lung metastasis by modulating the immune response and

reprogramming TAMs, indicating that MIF’s primary role in

metastasis is linked to immune system modification (235).
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Furthermore, high CD74 and MIF ratios correlated with

increased pro-inflammatory markers and immune cell infiltration,

suggesting that these ratios could serve as important indicators of

immune response in melanoma (47).

As biomarkers, MIF and CD74 were identified as key proteins

associated with melanoma prognosis. High CD74 and low MIF

expression correlated with improved survival outcomes and

progression-free survival supporting the idea that the MIF−/CD74

+ signature could serve as a prognostic marker in stage III

melanoma. This finding is particularly intriguing because these

two circulating proteins were able to sort patient outcomes as

effectively as tumor-based markers (79). Although results suggest

that serum sCD74 may not be a suitable diagnostic marker for

early-stage melanoma, its elevated levels in advanced disease

suggest a potential role in tumor progression. The increased

sCD74 levels could be attributed to secretion by tumor cells

themselves or by surrounding cells stimulated by the tumor (196).

In addition, poor response to immune checkpoint drugs is

substantially correlated with high MIF expression; this is

supported by patient data on melanoma that were derived from

the TCGA database (198).

Therapeutically, the MIF–CD74 axis presents a promising

target in melanoma treatment due to its role in promoting tumor

growth and survival. Several compounds have been developed to

inhibit MIF signaling (48). Iso-66, a fluorinated oxazoline derivative

that has great chemical stability and non-toxic characteristics, was

shown to reduce tumor burden in in vivo mouse models of

melanoma by enhancing antitumor immune responses through

the growth of antitumor-specific effector cells. It was also

observed in ex vivo studies to be associated with the restoration of

MIF activity. MIF inhibition suppresses the ability of CTLs and NK

cells to target tumors, but reactivating MIF can enhance their

antitumor activity (237).

Another inhibitor, 4-iodo-6-phenylpyrimidine (4-IPP), reduced

tumor cell proliferation and motility (238), improved survival in

melanoma-bearing mice (193) and enhanced the effectiveness of

anti-CTLA-4 therapy by increasing CD8+ T-cell infiltration and

metabolic reprogramming (194).

MIF-CD74 interaction has been identified as a major factor in

preserving a favorable tumor microenvironment for tumor cells and

as a regulator of PD-L1 expression. Therefore, a potential target for

the efficient treatment of melanoma patients could be the MIF-

CD74 interaction (192).

Furthermore, CD74-inhibiting antibodies such as the FDA

approved monoclonal antibody milatuzumab can suppress MIF;

thus, they can be employed in treatment approaches (191).
5.4 Glioblastoma

Glioblastoma (GBM) is an extremely aggressive brain tumor

known for its resistance to treatment (239). GBM exhibits marked

upregulation of MIF expression compared to lower-grade gliomas

(240). This upregulation is accompanied by significantly higher

levels of CD74, the MIF receptor, and its co-receptor CD44, as well
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as non-cognate receptors like CXCR2 and CXCR4. These receptors

are notably overexpressed in GBM compared to lower-grade

gliomas (241). The pro-tumorigenic role of MIF in GBM is

evident through its promotion of proliferation, migration,

angiogenesis, and contribution to the immunosuppressive

phenotype of glioma cells. High levels of MIF expression are

observed in WHO grade IV glioblastomas and high-grade WHO

grade III tumors, with the highest levels in the most malignant

variants of GBM. MIF is expressed variably in GBM cells, localized

primarily on the poles of the nuclei in early-stage cells, and its

expression varies with cell passage. Interestingly, while MIF

expression ranges between 5.12 and 82.04 ng/ml, it does not

correlate with cell proliferation rates, growth behavior, or cell

morphology (200). Additionally, MIF signaling through the

CD74/CD44 receptor complex activates the ERK MAP kinase

pathway, further promoting tumor cell proliferation (203).

MIF negatively regulates wild type p53 signaling in glioblastoma

cells, with higher MIF levels associated with functional p53, further

implicating MIF in gliomagenesis. Moreover, MIF inhibits the anti-

tumor activity of NK cells, reinforcing its role in immune

evasion (200).

As a biomarker, MIF shows a complex relationship with glioma

prognosis. While treatment groups with elevated MIF expression

exhibit poorer prognosis than those with low MIF expression levels

(203). However, there is an observed paradox where higher MIF

expression does not correlate with reduced overall survival, instead

showing a trend toward improved OS. Despite this, neoadjuvant

therapy significantly increases MIF expression, further complicating

its role in prognosis (241).

Therapeutically, targeting MIF has shown promise in inhibiting

pro-tumorigenic traits and restoring immune sensitivity, enhancing

the efficacy of radiation and chemotherapy (202). Ibudilast, a drug

that penetrates the blood-brain barrier, has been identified as an

agent that targets the MIF-CD74 interaction on MDSCs. In

preclinical studies, treatment with Ibudilast decreased CD74

expression and increased CD8+ T cell infiltration within the

tumor, suggesting its potential in treating brain malignancies (242).
5.5 Neuroblastoma

By studying AS-MIF-transfected cells, researchers have gained

insights into how MIF blockade may affect the expression of

molecules related to neuroblastoma. Western blot analysis

revealed that AS-MIF transfection significantly reduced N-Myc

expression, a gene crucial for neuroblastoma progression. MIF

was found in all 21 neuroblastoma samples studied, with both

MIF and c-Met (tumor progression related receptors) detected in

the cytoplasm of tumor cells. Double immunohistochemistry

staining demonstrated that neuroblastoma cells highly expressed

MIF and c-Met, with a strong positive correlation between their

expressions. Where MIF likely promotes neuroblastoma

development by regulating N-Myc and increasing the expression

of angiogenic factors. However, transfection of SK-N-DZ

neuroblastoma cells with an AS-MIF expression vector reduced
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MIF expression, leading to a decrease in pro-tumor genes such as

N-Myc, TrkB, Ras, and IL-8, while tumor-suppressing genes like

EPHB6 and BLU were elevated. In in vitro studies and nude mice

models , downregulation of MIF significantly reduced

neuroblastoma cell proliferation, tumor formation, and

metastasis (204).

The role of miR-451 in regulating MIF expression was also

studied. Transfection of miR-451 mimics into SK-N-SH and GI-

LA-N neuroblastoma cells reduced MIF protein levels, as confirmed

byWestern blot analysis. A luciferase reporter assay identified a direct

interaction between miR-451 and the 3’UTR of MIF transcript,

leading to reduced luciferase activity in cells co-transfected with

miR-451. This demonstrated that miR-451 negatively regulated

MIF expression by directly targeting its transcript. Moreover, the

suppression of neuroblastoma cell invasion and migration by miR-

451 was reversed when MIF was re-expressed, further supporting

MIF’s role as a direct target of miR-451 (243).

As prognostic markers, MIF and its associated receptors play a

significant role in neuroblastoma. Analysis of public gene

expression datasets revealed that both MIF and CXCR4 were

highly expressed in primary neuroblastoma tumors and BM-

derived disseminated neuroblastoma tumor cells. An RNA-seq

dataset (GSE62564) of 498 primary neuroblastoma samples, was

used to evaluate the expression profiles of MIF, CXCL12, and the

receptors CXCR4, CXCR2, CXCR7, CD74, and CD44, showed that

MIF expression was highest in stage 4 high-risk tumors, while

CXCR4 expression was lower in low-risk stage 4S tumor (206).

The biological hallmark of neuroblastomas is the complexity of

the genetic abnormalities acquired by the tumor cells. Some of these

abnormalities are powerful prognostic markers that are

independent of the clinical features (204). Higher MIF or CXCR4

expression was associated with worse overall survival, while elevated

levels of CD44, CXCL12, and CD74 were linked to better outcomes.

Patients were categorized based on their MIF expression levels, and

a survival curve was analyzed for overall survival; patients with

lower MIF expression exhibited improved overall survival (206).

Therapeutically, targeting MIF has shown promise in cancer

treatment. MIF antagonists, such as ISO-1 and 4-IPP, have been

explored as potential therapeutic agents for cancer. They can bind

to MIF’s catalytic active site and reduce its activity, leading to

decreased tumor growth and extended survival in animal models.

However, the cytotoxic effects of these antagonists vary, with ISO-1

showing higher toxicity compared to 4-IPP (206). Moreover a study

confirmed that tumor associated MIF suppresses T-cell activation

through suppressing three mechanisms of T-cell activation:

cytokine, solid-phase anti-CD3,and allogeneic MHC (91). MIF

can be targeted by knocking out or inhibitory molecules to

restore T cell activation; thus, it can be used as an

immunotherapeutic target.
5.6 Ovarian cancer

Studies have reported elevated levels of MIF in ovarian cancer

(OC) cells, leading to the hypothesis that higher MIF levels may
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characterize patients with ovarian cancer. Serum analysis from

patients with newly diagnosed OC, showed significantly increased

MIF levels in the cancer group compared to those in healthy age-

matched controls, suggesting a possible link between abnormal MIF

expression and ovarian cancer pathogenesis (207). MIF plays a role

in immune suppression by inhibiting NK cell function. Specifically,

MIF reduces the expression of NKG2D, an activating receptor on

NK cells, impairing their ability to lyse ovarian cancer cells.

Blocking MIF using anti-MIF antibodies resulted in enhanced

lytic activity of NK cells against ovarian cancer cells from ascites.

This effect was further confirmed in vitro, where NK cells pretreated

with supernatant from MIF-depleted ovarian cancer cells showed

improved activity against SK-OV-3 cells. In contrast, MIF-rich

supernatant reduced NK cell activity.

As a potential biomarker, MIF has emerged as a valuable tool in

the prognosis and diagnosis of ovarian cancer. Although MIF levels

were not significantly different between patients with early (Stage I/

II) and late-stage (Stage III/IV) ovarian cancer (207), higher MIF

levels were associated with poor overall survival in recurrent cases,

even though MIF had no correlation with progression-free survival

(208). These findings suggest that MIF might serve as a valuable

biomarker for prognosis in patients with ovarian cancer (209).

Furthermore, a proteomic analysis indicated the utility of MIF in

diagnostic screening, and a multiplex test combining MIF with

other biomarkers, including CA-125 and prolactin, demonstrated

high sensitivity (95.3%) and specificity (99.4%) for ovarian cancer

detection. In addition, recently a unique multiplex test for six blood

biomarkers—prolactin, MIF, insulin-like growth factor II,

osteopontin, and CA-125—was developed. This combination of

biomarkers appears to exhibit great sensitivity (95.3%) and

specificity (99.4%) for the identification of ovarian cancer (209).

Therapeutically, MIF represents a promising target for

enhancing anti-tumor immunity. Quantitative real-time PCR and

flow cytometry analysis also demonstrated that MIF significantly

downregulates NKG2D expression on both NK and CD8+ T cells,

supporting the hypothesis that MIF contributes to immune evasion

by modulating activating and inhibitory signals in these immune

cells (52). Thus, MIF could be a potential immunotherapeutic target

by reversing its anti-immune effect on NK and T cells. Furthermore,

MIF has been targeted therapeutically with monoclonal antibodies

like imalumab, which specifically inhibits oxidized MIF. Early

clinical trials have shown promising results, with imalumab being

well-tolerated and demonstrating stable disease in some patients.

Ongoing studies are further exploring its efficacy in patients with

ovarian cancer (244).
5.7 Prostate cancer

Previous studies highlight the critical role of MIF and its

interactions with chemokine receptors CXCR7 and CXCL12 in

tumor growth, prognosis, and treatment of prostate cancer. The

median MIF serum levels were significantly increased in patients

with PCa compared to those in non- PCa individuals (211). This

supports previous findings of elevated MIF in patients with CaP
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(212). In situ hybridization of 20 matched benign and malignant

prostate tissues showed that MIF mRNA levels were low in benign

epithelial cells and confined to the cytoplasm but increased in

malignant tissues (211).

Furthermore, the inhibition of the CXCR7 receptor blocked

MIF-induced proliferation, highlighting CXCR7’s role in cancer

progression. Reducing endogenous MIF levels using siRNA

significantly decreased C4-2B cell growth and migration, which

could be further suppressed by inhibiting CXCR7 with CCX771.

CXCL12 had no effect on cell migration in this PCa model (213).

As a prognostic biomarker, MIF has been implicated in cancer

progression and recurrence, particularly in castration-resistant

prostate cancer (CRPC). A study of 42 patients with PCa revealed

that those with high-expression MIF polymorphisms had a higher

recurrence rate (46.2%) compared to those with lower expression

(10.3%) within 5 years (214). Additionally, CXCR7 expression was

linked to poor prognosis, as patients with high CXCR7 expression

had shorter disease-free survival than those with low expression.

The related chemokine receptor, CXCR4, did not show a similar

correlation with biochemical recurrence, suggesting that CXCR7

plays a more pivotal role in castration-resistant prostate cancer

(CRPC) progression (213).

In terms of therapy, MIF raises the concentration of MDSCs in

the bloodstream of individuals with diverse malignancies and

employs multiple strategies to obstruct NK and T-cell activities,

hence reducing anti-tumor immunity (215). Moreover, the

malignant cells stimulated by MIF in PCa develop the capacity to

eliminate DC by apoptosis and suppress their generation,

preventing these cells from acting as antitumor activators. The

CXCR7 antagonist, CCX771, and MIF inhibitor, ISO-1, inhibited

CaP cell proliferation (213). ISO-1 preferentially targeted DU-145

cells, suggesting that targeting MIF could be a promising

therapeutic approach (216).
5.8 Cervical cancer

Using immunohistochemistry, MIF expression was examined in

surgical biopsy specimens from patients with CC and control

subjects. MIF expression was predominantly present in malignant

specimens, with most of the expression localized to the cytoplasm of

tumor cells (217). similarly, CD74 expression was mainly observed

in the cytoplasm (245). Functional assays demonstrate that MIF

knockdown (via shRNA) inhibits HeLa cell proliferation and

induces apoptosis at early and late stages (218, 219). MIF-CD74

signaling activates oncogenic pathways (e.g., Src, ERK1/2) while

dephosphorylating p53 to block apoptosis. CD74 overexpression

further disrupts MHC class II antigen presentation, enabling

immune evasion and metastasis (220).

As a biomarker, MIF shows limited standalone prognostic

utility in CC. Despite its overexpression in malignant tissues, no

significant differences in MIF levels or promoter allele frequencies

(-794CATT5–7) correlate with tumor differentiation grade (well/

moderate/poor) or clinical stage (I/II vs. III/IV) (217, 222). These

findings suggest MIF alone is insufficient for risk stratification but
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may comp l emen t mu l t i -marke r pane l s t o improve

diagnostic sensitivity.

Therapeutically, inhibiting the MIF-CD74 axis holds promise

for CC treatment. Preclinical studies show that MIF knockdown

reduces tumor cell viability and apoptosis resistance (178, 179).

Targeting CD74, overexpressed in CC, could restore MHC class II-

mediated antigen presentation to enhance CD4+ T cell activation

and block oncogenic signaling (e.g., ERK1/2, p53 suppression)

(220). Future strategies should prioritize CD74-directed

immunotherapies to counteract immune evasion and tumor

survival mechanisms.
5.9 Endometrial cancer

MIF plays a significant role in tumor growth and progression by

promoting tumor-associated angiogenesis. However, this

association has not been clearly observed in endometrial cancer

(EC). Research reported high expression of MIF in malignant

ascites, and in ovarian cancer cells. MIF enhances the release of

cytokines, chemokines, and angiogenesis factors, contributing to

tumor vascularization and angiogenesis (246). In EC, MIF mRNA

and protein were detectable in all endometrial samples, with

upregulation of MIF being associated with early FIGO stages,

absence of lymphovascular invasion, and low histological grade.

This suggests that MIF overexpression in EC may be linked to the

suppression of metastatic spread (247).

In terms of prognosis and diagnosis, research has shown a

correlation between MIF concentrations and the prognosis of

patients with EC (247). The mean MIF concentrations in the

serum of patients with EC (5.871 ± 3.37 ng/mL) were

significantly higher than those in healthy individuals (4.825 ±

1.05 ng/mL). ROC curves demonstrated that serum MIF levels

could effectively distinguish between EC patients and healthy

controls, with an area under the curve of 0.664 (248).

Therapeutically, targeting MIF has shown promising potential

in EC. RNAi-mediated knockdown of MIF reduced proliferation

and migration in EC cells (224). Additionally, the MIF inhibitor, (S,

R)-3-(4-hydroxyphenyl) 4,5-dihydro-5-isoxazole acetic acid methyl

ester demonstrated antiangiogenic effects (225). These findings

suggest that targeting MIF could be a potential therapeutic

strategy in EC (228).

To date, the immunotherapeutic role of MIF in EC is yet to be

stated. However, the progression of endometrial tumor cells are

thought to be the result of defective NK cells as well as reduced T

cell cytotoxicity (249). Previous studies reported the role of MIF on

suppressing the anti-tumor effect of NKs (52, 237) and inactivation

of T cells (91) in different solid tumors.
5.10 Head and neck cancers

Head and neck cancer (HNC) is one of the deadliest cancers

worldwide (250, 251). Recent research has illuminated the role of

MIF molecules in the progression of this malignancy (126, 252).
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Increased MIF expression has been observed in head and neck

squamous cell carcinomas (HNSCC), specifically in the

nasopharygeal carcinoma (NPC) (127), hypopharynx carcinoma

(132), laryngopharyngeal carcinoma (253), and oral squamous cell

carcinoma (OSCC) (129).

In OSCC, it has been reported that MIF increases the cancer

invasion and metastasis via the activation of MMP-2 and MMP-9

(129). Another study found a positive correlation between high MIF

expression in OSCC and second primary tumor recurrence (128).

Additionally, MIF played role in NPC, the most commonmalignant

tumor of the head and neck carcinomas (130). It was reported that,

exosomal MIF derived from NPC promotes metastasis to lung

through decreasing and repressing macrophages ferroptosis (130).

In another study it was found that, NPC increased in growth and

proliferation via MIF/CXCL8 (C-X-C motif chemokine ligand-8)/

CXCR2 (C-X-C motif chemokine receptor-2) axis (254).

Moreover, some investigations regarding the role of MIF

laryngopharyngeal tumor progression have been conducted (131,

253, 255). A study revealed that signaling axis of MIF-CD44-b1
integrin enhances the spread of laryngeal cancer (255). Another

research discovered that hypoxia-induced MIF causes deregulation

of lipid metabolism in Hep2 laryngocarcinoma via the IL-6/JAK-

STAT (signal transducer and activator of transcription) axis leading

to tumor progression (131).

On the other hand, hypopharyngeal squamous cell carcinoma

has received very little investigation (132). For instance, it has been

reported that increased expression of MIF influences the

development and growth of hypopharyngeal squamous cell

carcinoma (132).

As a biomarker, MIFs have showed promise as both diagnostic

and prognostic biomarkers for head and neck malignancies, with

higher levels related with disease presence and severity (126, 134,

256). Its ability to correlate with tumor aggressiveness and patient

outcomes demonstrates its value in influencing clinical decision-

making and improving patient care (126, 127). For instance, in NPC

cells, it was reported that MIF represents a potential non-EBV

(Epstein-Barr virus) plasma marker for the diagnosis of NPC (134).

In addition, the combination of MIF and the EBV viral capsid

antigen antibody (VCA-IgA) has been shown to enhance the

specificity and predictive value of detecting NPC and to improve

the diagnostic accuracy of NPC in high-risk individuals (134).

Furthermore, in a different study, it was found that MIF

overexpression in tumor cells is substantially linked to lymph

node metastases, advanced clinical stage, and a poor prognosis

and so increases its potential to be prognostic biomarker (256).

However, a different study found that having a high serum MIF

level was associated with a better prognosis and overall survival rate

(133). This appears controversial, so further research is necessary.

Additionally, studies showed that MIF could be a potential

biomarker in OSCC (135, 257). According to a study, it was revealed

that MIF overexpression in OSCC tissues is linked to perineural and

deeper tumor invasion as well as lymph node invasion, resulting in a

higher pathological stage and low overall survival rate and so it may

be a potential marker for poor prognosis (257). Similarly, in another

investigation, MIFs high levels have been linked to a worse overall
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survival rate in OSCC patients, suggesting that they may be a useful

prognostic marker for the disease (135).

According to some studies, MIF may also be a useful biomarker

for laryngopharyngeal cancers, providing information on the

existence and course of the tumor (137). For instance, it was

found that patients with laryngeal SCC overexpressing MIF were

positively correlated with poor survival and poor prognosis (137).

Current investigations into MIF as a biomarker in

hypopharyngeal carcinoma remain limited, highlighting a

significant scarce in the existing research and so need more

research and investigations.

Therapeutically, there is substantial data regarding MIF as a

target in head and neck cancers (131, 136). For instance, Eugenol

inhibits the malignant processes of OSCC cells by binding to MIF

and decreasing its level (136). In another study it was revealed that

ectopic production of miR-451 inhibited NPC proliferation and

invasion by targeting MIF mRNA and reducing its expression (123).

Moreover, in laryngocarcinomas, it was showed that the MIF

inhibitor ISO-1 reduced proliferation and invasion (131).

However, there is still a large information gap regarding the use

of MIFs as targets in hypopharyngeal cancer, and more

investigations are required.
5.11 Esophageal cancer

Esophageal cancer is one of most commonly diagnosed cancer

and one of the leading causes of cancer death worldwide (258, 259).

Similarly, like head and neck cancers, MIFs were found to

participate in promoting esophageal squamous cell carcinoma

(ESCC) progression (138, 139). According to an investigation, it

was found that in ESCC cell lines MIF promotes VEGF and IL-8

production, stimulating the angiogenesis process (143). In another

study it was reported that, MIF has been linked to esophageal cancer

growth through activating the Akt (Protein kinase B), MEK/ERK

(MAPK kinase/extracellular signal–regulated kinase), and NF-kB
(Nuclear factor kappa B) pathways, as well as decreasing the

expression of the tumor suppressor gene GSK3b (glycogen

synthase kinase 3 beta) (139). Moreover, it was found that MIF

bind to ACKR3 (atypical chemokine receptor 3) and increases

esophageal cancer migration and invasion (138).

As a biomarker, MIF demonstrates clinical relevance for

esophageal cancer (140, 142). In a study it was reported that the

expression of MIF and its receptor CXCR4 (C-X-C motif

chemokine receptor-4) in ESCC was positively correlated with

low overall survival rate as so can be used as a prognostic

biomarker (140). Another study revealed that MIF expression was

negatively correlated with the efficiency of anti-PD-l combined with

chemotherapy as a neoadjuvant therapy, suggesting that it could not

only be a biomarker for a bad prognosis in ESCC but also a

predictive biomarker for the effectiveness of the treatment for

ESCC (142).

Therapeutically, targeting MIF remains understudied but shows

early promise for esophageal cancer (141). For example, anti-

macrophage inhibitory factor 1 antibody has been shown to
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suppress the growth, proliferation and establishment of the

neovascularization lumen of esophageal squamous cell carcinoma

in nude mice (141). There is still a great lack of information

concerning the use of MIF as a target in esophageal cancer, which

calls for more studies and research.
5.12 Gastric cancer

Many investigations highlighted the role of MIF in gastric

cancer, which considered as one of the most leading causes of

cancer-related fatalities (147, 260, 261). For instance, it was found

that elevated MIF levels in gastric cancer boosted and improved the

angiogenesis process (147). In another study it was reported that,

overexpressed MIF in gastric adenocarcinoma increased lymph

node metastasis (261). Similarly, it was shown that MIF in gastric

cancer increase invasion and lymph node metastasis (148). Another

investigation found that the overexpression of ZFPM2-AS1

(ZFPM2 Antisense RNA 1) resulted in upregulation of MIF

which led to suppressing the activation and nuclear translocation

of the p53 protein which in turn enhanced growth and survival of

the tumor cells (146).

As a biomarker, MIF demonstrates diagnostic and prognostic

utility for gastric cancer (144, 150). In a study, it was shown that the

transcriptome data from CagA+ (cytotoxin-associated gene A

protein) gastric carcinomas showed that MIF released in the TME

(tumor microenvironment) causes TAM (tumor associated

macrophages) polarization, epithelial-mesenchymal transition,

and inhibition of MAPK4 pathways—all of which are associated

with poor prognosis (144). Another study reported that, elevated

levels of MIF were significantly associated with advanced tumor

stage, increased lymph node invasion, and poor survival and

prognosis, making it a possible prognostic biomarker (150).

According to another investigation, it was discovered that high

serum MIFs are more sensitive and selective than CEA and hence a

better diagnostic marker for gastric cancer (149).

Therapeutically, targeting MIF remains underexplored but

promising. In an investigation it was found that, gastric cancer

cells’ pro-angiogenic activity is inhibited by microRNA-1228 via

binding to MIF and decreasing its expression (145). Further

research and investigations are needed to fill up the large

knowledge scarce regarding MIF as a therapeutic target in

gastric cancer.
5.13 Hepatocellular carcinoma

MIFs were also found to have a role in hepatocellular carcinoma

(HCC) development, the predominant form of liver cancer (151,

152, 262). According to a study, MIF was found to regulate secreted

phosphoprotein 1 (SPP1) and increase TAM migration to HCC

cells, and resulted in increased cancer metastasis and invasion (151).

In another study, it was shown that MIF suppressed therapy-

induced HCC apoptosis (diethylnitrosamine/carbon tetrachloride)

and carried out CD74-mediated carcinogenic effects during
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hepatocarcinogenesis (152). In a single-cell transcriptome study, it

was found that CD36+ HCC-associated fibroblasts released MIF

through enhanced intratumor lipid oxidation, which improved the

immunosuppressive environment by increasing the number of

monocytic MDSCs (Myeloid-derived suppressor cells) within

tumors (154).

As a biomarker, MIF demonstrates clinical relevance in HCC

(153, 157). According to a study, it was found that MIF 755622–2

polymorphism is linked to HCCmetastasis and that the GC and CC

genotypes were positively correlated with decreased overall survival

rate and so can be a predictive marker for poor prognosis (153). In

another investigation, it was shown that patients with MIF-

794CATT high repetitive-sequence genotypes showed increased

metastasis, lower differentiation, and lower survival rate and so it

could be a biomarker for poor prognosis (157). Another study

reported that plasma MIF was inversely correlated with overall

survival rate and had a better value for distinguishing HCC patients

from controls (liver cirrhosis, benign lesions, and healthy people).

As a result, it may be used as a diagnostic and prognostic

marker (155).

Therapeutically, a number of studies suggested that MIFs could

be targets in HCC (152, 158). For instance, it was reported that miR-

608 decreased HCC progression through directly binding and

decreasing MIF expression (158). In another study, it was shown

that miR-451a bound to MIF and decreased its expression resulted

in inhibiting HCC progression (156). According to another

investigation it was found that combination between MIF and/or

an anti-CD74 antibody and/or the MIF inhibitor ISO-1 resulted in

decreased HCC development and growth (152).
5.14 Pancreatic cancer

Investigations have found that MIF also played role in

pancreatic cancer development (159, 165). According to a study,

it was reported that increased MIF in pancreatic cancer resulted in

increased proliferation and metastasis via decreasing P53

expression and translocation which led to decreased low-

densitylipoprotein receptor–related protein 1 (LRP1) (165). It was

discovered, in a separate research, that MIF tautomerase activity

controlled the expression of genes necessary for the recruitment,

differentiation, and activation of MDSCs, which led to the build-up

of immunosuppressive cells in TME of the pancreatic cancer (160).

Moreover, i t was shown that MIF helped pancreatic

adenocarcinoma cells to evade apoptosis (163). In another study

it was found that MIF increased pancreatic cancer progression and

metastasis via AKT/ERK (Extracellular signal-regulated protein

kinases)/CCND1 (Cyclin D1)/MMP-2 (Matrix metalloproteinase-

9) axis (159).

As a biomarker, it was shown that MIFs may have the potential

to be biomarkers in pancreatic cancer (159, 161). In a study, it was

found that high expression of MIF with correlated with decreased

overall survival rate and so associated with poor prognosis (159).

Another investigations reported that, serum MIF showed higher

levels in pancreatic cancer cells than normal cells and also
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correlated with poor survival and poor prognosis and so can be a

non-invasive diagnostic and prognostic biomarker for pancreatic

cancer (161).

Therapeutically, studies showed that MIFs can be a therapeutic

target in pancreatic cancer (160, 162, 164). For instance, a study

found that MIF inhibitor, ISO-1, decrease pancreatic ductal

adenocarcinoma cells proliferation, migration and invasion in

vitro and in vivo (162). Furthermore, in another investigation, it

was reported that tautomerase inhibitor, IPG1576 (inhibitor for

tautomerase activity of MIF) resulted in decreased exosome-

induced MDSCs activation and differentiation and pancreatic

tumor growth (160). Moreover, it was found that MIF inhibitor

(4-iodo-6-phenylpyrimidine; 4IPP) decreased PANC-1 (pancreatic

ductal cancer cells) cells growth and colony formation (164).
5.15 Colorectal cancer

MIFs have been frequently described in colorectal carcinoma

(CRC), the third most prevalent malignancy and the second-leading

cause of cancer death globally (124, 167, 263). In a study it was

reported that MIF induces metastasis and growth of CRC cells by

targeting SLC3A2 (solute carrier family 3 member 2) and regulating

the AKT/GSK- 3b axis (124). Similarly, in another research, it was

found that MIF increases proliferation and inhibits apoptosis of

colorectal cancer cells (168). Furthermore, it was discovered that

KRAS mutant CRC cells treated with refametinib, a MEK inhibitor,

stimulated MIF production and resulted in the activation of STAT3

(signal transducer and activator of transcription 3) and MAPK,

which promotes resistance to this medication (167). Another study

showed that MIF increased oxaliplatin resistance in colorectal

cancer by upregulating CXCR7 chemokine (169).

As a biomarker, MIF demonstrates significant clinical utility for

CRC (166, 171). MIF (-173 GC/CC) polymorphism, for example,

has been demonstrated to be associated with tumor

dedifferentiation, advanced illness and poor survival, suggesting

that it may be a useful prognostic biomarker for colorectal cancer

(171). Another study found that elevated MIF expression in

colorectal cancer was associated with an excellent AUC value of

0.933, suggesting that it may be a useful diagnostic marker (166).

Lee et al. (170), reported that MIF is a more sensitive but less

specific diagnostic biomarker than CEA in early colorectal cancer

detection so combination of these two biomarker could be a very

useful early diagnostic biomarker.

Therapeutically, targeting MIF shows promise in overcoming

resistance and suppressing tumor growth in CRC (167, 264). The

combination of refametinib with 4-IPP, significantly lowered

STAT3 and MAPK activity compared to single-agent therapy. As

a consequence, combination treatment was revealed to have a

synergistic growth inhibitory impact against refametinib-resistant

colorectal cancer cells via inhibiting MIF activation (167). In a

different research, it was demonstrated that isothiocyanates

decreased the proliferation of colorectal cell lines via inhibiting

MIF tautomerase activity via covalent bonding to the N-terminal

proline (264).
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5.16 Renal cell carcinoma

Renal cell carcinoma (RCC) is the most common type of kidney

cancer in adults, representing about 90% of all cases. Its incidence

has steadily increased over recent decades, making it a major global

health concern (265). Recent studies demonstrate that MIFs were

also found to contribute to renal cell carcinoma (RCC) progression

(172, 174). According to a study, it was found that MIF knockdown

led to decreased proliferation and colon forming ability of renal cell

carcinoma (172). Another study found that high MIF expression in

the kidney increases RCC development via interacting with HIF1a
(hypoxia-inducible factor-1 alpha) and HIF2a (hypoxia-inducible

factor-2 alpha) (174).

In terms of diagnostic and prognostic potential, MIF shows

promise as a biomarker RCC (173). For instance, high expression in

clear cell renal cell carcinoma (one of the most common renal cell

carcinomas) was positively correlated with low survival rate and

poor prognosis (173). MIF’s potential as a biomarker in renal cell

cancer remains largely unexplored and so needs more investigation.

Therapeutically, targeting MIF in RCC has shown early

experimental promise (175). According to an investigation, it was

found that miRNA-451 decreased and suppressed renal cell

carcinoma proliferation, migration and invasion by inhibiting

MIF expression via direct binding, highlighting MIF’s potential as

a therapeutic vulnerability (175). Despite these findings, the

development of MIF-targeted therapies for RCC is still in its

infancy, needs more mechanistic studies.
5.17 Bladder cancer

In many studies, it was found that MIFs could contribute to

bladder cancer progression (122, 179). According to a study, it was

reported that MIF can increase proliferation and growth of bladder

cancer cells via ERK pathway and also enhances angiogenesis via

increasing the expression of VEGF (Vascular endothelial growth

factor) (125). In another study it was shown that chimeric transcript

SLC2A11 (solute carrier family 2 member 11)–MIF promoted

metastasis, proliferation and inhibited apoptosis in bladder cancer

cells via PTBP1 (Polypyrimidine tract binding protein)-dependent

mechanism (122). Furthermore, it was reported that MIF was

increased in muscle invasive bladder cancer and this indicates

that MIF could be involved in bladder cancer invasion and

migration (179). Another investigation found that, CXCL2/MIF-

CXCR2 pathway increased and enhanced recruitment of MDSCs in

bladder cancer which produces high immunosuppressive molecules

including Arg1 (arginase 1), iNOS (inducible nitric oxide synthase),

PD-L1 (Programmed death-ligand 1) and P-STAT3 (266).

In terms of diagnostic and prognostic utility, MIF demonstrates

potential as a biomarker for bladder cancer (177, 266). For instance,

it was found that Urinary bladder cancer (UBC) was shown to have

considerably higher serum MIF levels than urinary bladder disease

(UBD) and higher than normal patients indicating that MIF could

be a potential diagnostic marker for bladder cancer (177). Another

study reported that MIF was negatively correlated with overall
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survival rate in bladder cancer, highlighting its prognostic

relevance (266).

Additionally, MIFs could be potential targets in bladder cancer

(176, 178). Anti-MIF antibody reduced the proliferation in HT-

1376 cell (human bladder cancer cell) (176). In another study it was

reported that CPSI-1306 decreased both tumor development and

neovascularization via blocking the enzymatic portion of MIF (125).

Furthermore, 4-IPP inhibits and blocks MIF-2 leading to decreased

tumor stage and tumor growth (178).

Collectively, these findings establish MIF not only as a driver of

tumor progression but also as a promising, though still

underexploited, target for therapeutic intervention. Having

established the widespread involvement of MIF in the biology of

solid tumors, it is essential to consider its potential as a clinical target.

The following sections will explore how MIF can be leveraged as a

biomarker and a therapeutic target, highlighting both current

progress and future opportunities in translational oncology.
6 Clinical implications of targeting MIF

MIF has emerged as a promising biomarker across multiple

solid tumor types as extensively discussed in the current review.

Elevated MIF expression in tumor tissue, serum, or plasma often

correlates with advanced disease stage, poor prognosis, and

resistance to therapy (155, 267–269). In BC, high MIF levels are

associated with more aggressive subtypes such as TNBC (183).

Similarly, MIF expression predicts poor survival and increased

metastatic potential in colorectal cancer as discussed earlier (270).

As a dynamic marker of tumor-immune interactions, MIF levels

may also guide patient selection for immunotherapy or

combination regimens. Efforts to therapeutically target MIF are

ongoing, with several classes of inhibitors under preclinical and

early clinical evaluation (271, 272). Strategies include direct

enzymatic inhibitors, neutralizing antibodies, and agents that

interfere with MIF-receptor interactions as summarized in

Table 2. Despite promising preclinical results, translation into

clinical efficacy remains a challenge, highlighting the need for

refined targeting strategies and combination approaches.

Small-molecule antagonists targeting MIF have been developed

by exploiting its tautomerase active site, which overlaps with the

CD74 binding domain (275, 276). Small molecule inhibitors such as

ISO-1 and 4-IPP target the tautomerase active site of MIF,

disrupting its interaction with receptors and downstream

signaling (Table 2). 4-IPP forms a covalent bond with MIF,

leading to irreversible inactivation (276). While these agents show

efficacy in reducing tumor growth in experimental models, issues

with specificity and off-target effects have limited their clinical

progression. Other small molecule inhibitors block MIF–CD74

binding and show therapeutic activity in mouse models of

systemic lupus erythematosus (273). The most advanced MIF

antagonist in cl inical tr ials is ibudilast , original ly a

phosphodiesterase inhibitor, which acts as an allosteric inhibitor

of MIF. Ibudilast binds to a dynamic site on MIF that is revealed

only upon binding, inducing conformational changes that inactivate
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MIF (277). It has shown efficacy in a Phase II trial for multiple

sclerosis, where high-expression MIF genotypes increase disease

risk (271). MIF’s dynamic properties also enable the discovery of

agonists, which could be useful in conditions where low-expression

MIF alleles are unfavorable.

Developing antibody-based therapies such as monoclonal

antibodies that neutralize extracellular MIF or block CD74–MIF

interaction is still under investigation (278). A number of

monoclonal antibodies targeting MIF have been developed;

BaxB01, BaxG03, and BaxM159 induced apoptosis in prostate

cancer cells in-vitro by inhibiting ERK1/2 signaling, leading to

reduced tumor growth in a xenograft mouse model (274, 279).

Additionally, Imalumab (Bax69) was evaluated in a Phase 1 clinical

trial, which demonstrated promising efficacy against solid tumors

such as colorectal carcinoma, non-small cell lung cancer, and

ovarian cancer as shown in Table 2. Approximately one-third of

the patients treated with Imalumab showed stable disease (191).

Since anti-MIF antibodies have demonstrated the ability to reduce

tumor burden and enhance immune cell infiltration in preclinical

studies, such approaches offer improved specificity compared to

small molecule inhibitors. However, anti-MIF antibodies still face

challenges related to tumor penetration and immunogenicity. Given

MIF’s role in immune suppression, combining MIF inhibitors with

immune checkpoint blockades such as anti-PD-1/PD-L1 is a

compelling strategy. Preclinical studies suggest that MIF

inhibition can sensitize tumors to immunotherapy by altering the

tumor microenvironment (280, 281). Future clinical trials will be

critical to validate these synergistic effects. Despite encouraging

advances in targeting MIF therapeutically, significant challenges

remain. MIF’s complex and sometimes paradoxical roles in tumor

biology, as well as the limitations of current therapeutic approaches,

present important hurdles that must be addressed to fully realize its

clinical potential.
7 Challenges and controversies

Although predominantly characterized as a tumor promoter,

MIF may exert context-dependent tumor-suppressive effects in
Frontiers in Immunology 20
certain context (282). These dual roles complicate therapeutic

targeting and necessitate a nuanced understanding of tumor-

specific biology (283). Furthermore, MIF’s role varies significantly

across tumor types, stages, and even subclones within the same

tumor. Factors such as the local immune contexture, presence of

specific co-receptors, and tumor mutational burden influence

whether MIF acts primarily as a promoter or modulator of cancer

progression (284). Thus, personalized approaches to MIF targeting

will be necessary to overcome this heterogeneity. In addition, most

MIF inhibitors lack tumor specificity and can impact normal

physiological processes, leading to potential toxicity. Additionally,

compensatory mechanisms, such as upregulation of MIF homologs

such as D-DT/MIF-2, may reduce the effectiveness of MIF-targeted

therapies (285). Accordingly, there is a pressing need for next-

generation inhibitors with improved specificity and for strategies to

block redundancy in MIF family signaling. Addressing these

challenges requires innovative strategies that account for tumor

heterogeneity and the intricate functions of MIF. Emerging

technologies and combination therapies offer promising avenues

to overcome current barriers, paving the way for more effective and

personalized interventions.
8 Future perspectives and conclusion

Integrating MIF expressions and signaling profiles into

molecular diagnostic panels could help identify patients who are

most likely to benefit from MIF-targeted therapies. Genomic,

transcriptomic, and proteomic approaches may reveal actionable

MIF-driven tumor subtypes, enabling more precision medicine

tailored interventions. In addition, combining MIF inhibition

with immune checkpoint inhibitors, cancer vaccines, or T-cell

therapies holds great promise. MIF blockade may overcome

resistance mechanisms that currently limit the success of

immunotherapies in “cold” tumors, converting them into “hot”

immunologically active tumors. Finally, advanced delivery systems,

such as nanoparticle-based carriers, could enhance the precision

and efficacy of MIF-targeted therapies. Encapsulation of MIF

inhibitors within tumor-targeting nanoparticles may improve
TABLE 2 Clinical Targeting Approaches of MIF.

Drug used Type of the drug Cancer/disease
Preclinical or
clinical phase

Ref.

ISO-1
Small-molecule antagonists targeting tautomerase
active site

-Pancreatic cancer
-Systemic lupus erythematosus

-Pre-clinical phase
-Pre-clinical phase

(162,
273)

4-IPP
Small-molecule antagonists targeting tautomerase
active site

Tumor Pre-clinical phase (226)

Ibudilast
Small-molecule antagonists acting as allostric
inhibitor

Multiple sclerosis Phase II clinical trial (271)

Imalumab Monoclonal antibody neutralizing MIF
Colorectal carcinoma, non-small cell lung
cancer, and ovarian cancer

Phase I clinical trial (191)

BaxG03, BaxB01, and
BaxM159

Antibodies that neutralizing MIF and inhibiting MIF-
induced phosphorylation

Prostate cancer Pre-clinical phase (274)
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biodistribution, minimize off-target effects, and allow combination

payloads, such as immunomodulators or chemotherapeutics. As the

field continues to evolve, the integration of MIF-targeted therapies

into broader cancer treatment paradigms appears increasingly

feasible. A deeper understanding of MIF’s biology, coupled with

technological innovation, will be critical to translating research

advances into tangible clinical benefits for patients. In conclusion,

MIF plays a multifaceted role in the progression of solid tumors by

promoting inflammation, immune evasion, proliferation,

angiogenesis, and metastasis. Its expression correlates with poor

clinical outcomes across several major cancers, making it a

critical focus for diagnostic, prognostic, and therapeutic

research. While challenges remain, including tumor heterogeneity

and therapeutic specificity, the future for MIF-targeted

interventions is promising. Advances in precision medicine,

immunotherapy, and drug delivery technologies may unlock the

potential of MIF inhibition as a cornerstone of solid tumor therapy.

Continued preclinical exploration and carefully designed clinical

trials will be key to translating these insights into meaningful

patient benefit.
Author contributions

RY: Conceptualization, Writing – original draft, Writing –

review & editing, Project administration, Supervision, Funding

acquisition. NE: Conceptualization, Writing – original draft,

Writing – review & editing, Project administration, Supervision,

Funding acquisition. AA: Writing – original draft, Writing – review

& editing, Visualization. AM: Writing – original draft, Writing –

review & editing. LE: Writing – original draft, Writing – review &

editing. AR: Writing – original draft, Writing – review & editing,

Visualization. RA: Conceptualization, Writing – original draft,

Writing – review & editing, Project administration, Supervision,

Funding acquisition.
Frontiers in Immunology 21
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. RY and NE are recipients
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55. Fallone L, Walzer T, Marçais A. Signaling pathways leading to mTOR activation
downstream cytokine receptors in lymphocytes in health and disease. Int J Mol Sci.
(2023) 24:12736. doi: 10.3390/ijms241612736

56. Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, et al. Natural killer group 2D
receptor and its ligands in cancer immune escape. Mol Cancer. (2019) 18:29.
doi: 10.1186/s12943-019-0956-8

57. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the
era of increasing myeloid cell diversity. Nat Rev Immunol. (2021) 21:485–98.
doi: 10.1038/s41577-020-00490-y

58. Simpson KD, Cross JV. MIF: metastasis/MDSC-inducing factor?
Oncoimmunology. (2013) 2:e23337. doi: 10.4161/onci.23337

59. Lu J, Luo Y, Rao D, Wang T, Lei Z, Chen X, et al. Myeloid-derived suppressor
cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol
Oncol. (2024) 13:39. doi: 10.1186/s40164-024-00505-7
frontiersin.org

https://doi.org/10.1172/JCI93090
https://doi.org/10.1016/j.cytogfr.2012.08.001
https://doi.org/10.1084/jem.20030286
https://doi.org/10.1016/j.immuni.2006.08.020
https://doi.org/10.1038/nm1567
https://doi.org/10.3389/fimmu.2020.01273
https://doi.org/10.1038/35041591
https://doi.org/10.1038/sj.onc.1210318
https://doi.org/10.5483/BMBRep.2017.50.5.201
https://doi.org/10.1074/jbc.M112.385583
https://doi.org/10.1074/jbc.M203220200
https://doi.org/10.1074/jbc.M112.341321
https://doi.org/10.1016/j.tranon.2025.102365
https://doi.org/10.1088/1748-605X/aca85d
https://doi.org/10.1073/pnas.212488699
https://doi.org/10.1073/pnas.212488699
https://doi.org/10.1371/journal.pone.0099795
https://doi.org/10.18632/oncotarget.23208
https://doi.org/10.1016/j.esmoop.2025.104203
https://doi.org/10.1002/biof.27
https://doi.org/10.3389/fimmu.2019.01744
https://doi.org/10.1155/2010/106202
https://doi.org/10.3390/cancers11040529
https://doi.org/10.3390/cancers11040529
https://doi.org/10.1160/TH12-11-0831
https://doi.org/10.1038/s41419-021-03426-z
https://doi.org/10.1038/s41419-021-03426-z
https://doi.org/10.3389/fimmu.2020.609948
https://doi.org/10.1016/j.prp.2023.154579
https://doi.org/10.1016/j.prp.2023.154579
https://doi.org/10.3389/fimmu.2022.1026954
https://doi.org/10.3390/ijms22126526
https://doi.org/10.1007/16833_2024_429
https://doi.org/10.1016/j.bbadis.2024.167345
https://doi.org/10.1186/s12967-022-03528-y
https://doi.org/10.3389/fimmu.2018.01132
https://doi.org/10.1111/exd.15122
https://doi.org/10.3389/fimmu.2019.00670
https://doi.org/10.1016/j.prp.2024.155638
https://doi.org/10.1016/j.prp.2024.155638
https://doi.org/10.5306/wjco.v11.i7.464
https://doi.org/10.4049/jimmunol.180.11.7338
https://doi.org/10.1080/08977194.2017.1354859
https://doi.org/10.1080/08977194.2017.1354859
https://doi.org/10.1080/08977194.2016.1200571
https://doi.org/10.1080/08977194.2016.1200571
https://doi.org/10.3390/ijms241612736
https://doi.org/10.1186/s12943-019-0956-8
https://doi.org/10.1038/s41577-020-00490-y
https://doi.org/10.4161/onci.23337 
https://doi.org/10.1186/s40164-024-00505-7
https://doi.org/10.3389/fimmu.2025.1636839
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Youness et al. 10.3389/fimmu.2025.1636839
60. Cui H, Lan Z, Zou KL, Zhao YY, Yu GT. STAT3 promotes differentiation of
monocytes to MDSCs via CD39/CD73-adenosine signal pathway in oral squamous cell
carcinoma. Cancer Immunol Immunother. (2023) 72:1315–26. doi: 10.1007/s00262-
022-03336-9

61. Zhang H, Ye YL, Li MX, Ye SB, Huang WR, Cai TT, et al. CXCL2/MIF-CXCR2
signaling promotes the recruitment of myeloid-derived suppressor cells and is
correlated with prognosis in bladder cancer. Oncogene. (2017) 36:2095–104.
doi: 10.1038/onc.2016.367

62. Masucci MT, Minopoli M, Carriero MV. Tumor associated neutrophils. Their
role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol. (2019) 9:1146.
doi: 10.3389/fonc.2019.01146

63. Mora Barthelmess R, Stijlemans B, Van Ginderachter JA. Hallmarks of cancer
affected by the MIF cytokine family. Cancers. (2023) 15:395. doi: 10.3390/
cancers15020395

64. Kim H-R, Kim K-W, Jung HG, Yoon K-S, Oh H-J, Cho M-L, et al. Macrophage
migration inhibitory factor enhances osteoclastogenesis through upregulation of
RANKL expression from fibroblast-like synoviocytes in patients with rheumatoid
arthritis. Arthritis Res Ther. (2011) 13:1–13. doi: 10.1186/ar3279
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