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immune-related therapeutic 
targets for interstitial cystitis 
via multi-algorithm machine 
learning: transcriptomic 
profiling and in vivo 
experimental validation 
Yifan Wang1†, Chuanzan Zhou1†, Facai Zhang1†, Yunkai Yang1, 
Jia Miao2, Xuanhan Hu2, Xinyu Zhang1, Alin Ji1* and Qi Zhang1* 

1Urology and Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, 
Hangzhou Medical College, Hangzhou, Zhejiang, China, 2The Second Clinical Medical College, 
Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China 
Background: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a complex 
urological disorder characterized by chronic pelvic pain and urinary dysfunction, 
with limited diagnostic biomarkers and therapeutic options. Emerging evidence 
implicates immune microenvironment dysregulation in its pathogenesis, yet the 
identification of key driver genes and cross-omics integration remains underexplored. 

Methods: This study integrated three transcriptomic datasets to identify 
immune-related gene modules via weighted gene co-expression network 
analysis (WGCNA). A diagnostic model was constructed using 113 machine 
learning algorithms. Immune cell infiltration was assessed via CIBERSORT, and 
single cell sequencing elucidated cellular heterogeneity. Drug candidates were 
predicted using DSigdb and validated through molecular docking and dynamics 
simulations. A cyclophosphamide (CYP)/lipopolysaccharide (LPS)-induced IC/ 
BPS murine model was established to evaluate therapeutic efficacy of prioritized 
compounds (Resiniferatoxin and Acetohexamide) via histopathology, ELISA, 
and immunohistochemistry. 

Results: Eight core immune-related genes were identified. The machine learning 
model achieved AUC >0.9 in both training and validation cohorts. Single-cell 
analysis revealed IFI27 overexpression in epithelial and immune cells, correlating 
positively with M1 macrophages and activated CD4+ T cells (p<0.05). Molecular 
docking demonstrated strong binding affinity between IFI27 and Acetohexamide 
(-19.91 ± 0.98 kcal/mol) or Resiniferatoxin (-32.98 ± 1.74 kcal/mol), with 
dynamics simulations confirming structural stability. In vivo, both compounds 
significantly reduced bladder inflammation (p<0.05), with Acetohexamide 
showing superior efficacy in downregulating IFI27 expression and systemic 
pro-inflammatory cytokines. 
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Conclusions: This multi-omics study deciphered immune dysregulation in IC/ 
BPS and established a robust diagnostic framework. The validation of IFI27­
targeting compounds in alleviating inflammation highlights translational potential 
for repurposed therapeutics. Our findings advance precision immunotherapy 
strategies for IC/BPS. 
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1 Introduction 

Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a complex 
urological disorder characterized by chronic pelvic pain and urinary 
frequency/urgency, with a global prevalence ranging from 0.01% to 
6.5% and a significantly higher incidence in women than in men (1–3). 
According to the European Society for the Study of Bladder Pain 
Syndrome (ESSIC) classification, IC/BPS can be categorized into 
Hunner-type and non-Hunner-type, with the former accounting for 
10%-20% of cases and exhibiting characteristic erythematous mucosal 
lesions under cystoscopy (4). Although the etiology of IC/BPS remains 
unclear, studies have identified key pathological features, including 
disruption of the bladder mucosal barrier, mast cell activation, and 
neurogenic inflammation (5). Diagnosis primarily relies on clinical 
symptom exclusion, with the absence of specific biomarkers leading  to  
a misdiagnosis rate of up to 40% and a diagnostic delay of 2-11 years 
(6). Current treatments, such as oral pentosan polysulfate sodium and 
intravesical hyaluronic acid instillation, provide only symptomatic 
relief, while long-term efficacy of immunosuppressants (e.g., 
cyclosporine) and anti-TNF-a agents is limited, with approximately 
10% of patients ultimately requiring bladder augmentation or urinary 
diversion (7). Therefore, elucidating the molecular mechanisms of IC/ 
BPS and developing precision diagnostic and therapeutic strategies are 
urgent research priorities. 

Recent studies have demonstrated that aberrant immune 
activation is a critical pathological mechanism in IC/BPS. Single-cell 
transcriptomic analysis has revealed significant immune cell 
infiltration in the bladder mucosa of IC/BPS patients, including Th1­
polarized CD4+ T cells, reduced regulatory T cells (Tregs), imbalanced 
M1/M2 macrophage ratios, and abnormal B cell activation (8, 9). 
Hunner-type patients exhibit a 50-fold increase in plasma cells (CD138 
+) and a 28-fold increase in B cells (CD20+) in bladder tissue 
compared to healthy controls, accompanied by elevated urinary IL-6 
and TNF-a levels, indicating excessive local humoral immune 
responses (9). Spatial transcriptomics further reveals that immune 
cells in IC/BPS are preferentially enriched in the urothelial region, 
forming an immune-stromal interaction network with fibroblasts 
through TNF-TNFRSF1B and CD40-TNFSF13B signaling pathways 
(10). Additionally, autoantibodies against bladder epithelial antigens 
have been detected in patient sera, suggesting the potential 
02 
involvement of autoimmune responses in disease progression (11). 
These findings highlight the highly heterogeneous immune 
microenvironment of IC/BPS, targeting specific immune subsets  or
cytokines that emerge as potential therapeutic breakthroughs. 

Despite these advances, critical gaps remain in identifying key 
driver genes and integrating cross-omics data. Traditional methods, 
such as differential expression analysis, struggle to distinguish disease-
associated genes from background noise, whereas machine learning 
algorithms can enhance the accuracy of feature gene selection through 
multidimensional data integration (12). In this study, we 
systematically identified eight core immune-related genes, including 
IFI27, by integrating transcriptomic data from the GEO database with 
weighted gene co-expression network analysis (WGCNA) and 113 
machine learning algorithms. Then, quantitative real-time PCR (qRT-
PCR) experiments validated the expression of key genes. The immune 
infiltration characteristics of these key genes were analyzed using the 
CIBERSORT algorithm, and single-cell analysis was employed to 
explore cellular heterogeneity and the immune microenvironment in 
IC/BPS. Furthermore, the Drug Signatures Database (DSigdb) 
predicted acetohexamide and resiniferatoxin as potential therapeutic 
agents, with molecular docking and molecular dynamics simulations 
confirming their strong binding affinity to IFI27. Finally, 
inflammatory factor expression in blood and bladder tissues was 
measured after administration of the drug to mice, and changes in 
immunohistochemical sections and IFI27 expression levels in the 
bladder of mice before and after administration of the drug were 
detected to determine the efficacy of the drug preliminarily. By 
combining machine learning with multi-omics data, this study 
provides novel insights into molecular subtyping of IC/BPS and 
lays the foundation for targeted drug development and 
optimization of immunotherapeutic strategies, offering significant 
clinical translational value. 
2 Materials and methods 

2.1 Microarray data acquisition and analysis 

We retrieved Interstitial Cystitis/Bladder Pain Syndrome (IC/ 
BPS)-related datasets from the Gene Expression Omnibus (GEO) 
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database and downloaded three independent public datasets 
(GSE11783, GSE28242, and GSE57560). To address batch effects 
and ensure data consistency, we first performed batch effect 
correction using the “SVA” R package. The datasets from each 
group were merged, and principal component analysis (PCA) was 
applied to reduce dimensionality and eliminate potential batch 
effects. The integrated dataset includes 31 IC/BPS samples (10 from 
GSE11783, 8 from GSE28242, and 13 from GSE57560) and 14 
normal bladder samples (6 from GSE11783, 5 from GSE28242, and 
3 from GSE57560). Subsequently, differential expression analysis was 
conducted on the integrated dataset using the “Limma” R package, 
identifying differentially expressed genes (DEGs) that met the criteria 
of |logFC| > 1 and p.adjust < 0.05. These DEGs were visualized as a 
heatmap using the “Pheatmap” package. 

Immune-related genes were obtained from the GeneCards 
database (https://www.genecards.org/) using the screening criteria 
of “Protein Coding” and a relevance score > 2, yielding 8,314 related 
genes. A Venn diagram was employed to identify the intersection 
between immune-related genes and IC/BPS-specific DEGs, thereby 
pinpointing immune-related DEGs associated with IC/BPS. 
2.2 Construction of weighted gene co­
expression networks and identification of 
key module genes 

WGCNA constructs scale-free networks by correlating gene 
expression levels with clinical traits. Using the “WGCNA” R 
package, we first removed apparent outliers from the dataset. An 
optimal soft threshold was selected to generate an adjacency matrix 
based on the topological overlap matrix (TOM). Subsequently, genes 
with similar expression patterns were clustered into gene modules 
through average linkage hierarchical clustering, using TOM-based 
dissimilarity measures. Finally, the modules with the most significant 
positive and negative correlations to clinical traits were identified. 
Module membership (MM) and gene significance (GS) were 
calculated to assess the relationships between co-expressed genes 
and clinical traits. Genes with higher MM and GS values exhibited 
stronger correlations with their respective modules and clinical traits. 
Applying the screening criteria of MM > 0.5 and GS > 0.5, we 
identified key genes within the most relevant modules. 
 
2.3 Functional enrichment analysis and 
gene set variation analysis 

To gain deeper insights into the functional roles of immune-

related IC/BPS-DEGs, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses were performed using the “ClusterProfiler” R package. 
GO enrichment analysis, a widely used bioinformatics tool 
categorizes gene functional annotations into molecular functions, 
biological processes, and cellular components (CC). Similarly, 
KEGG pathway enrichment analysis has been extensively 
employed to elucidate biological mechanisms and functions (13). 
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A threshold of p < 0.05 was considered statistically significant for 
enrichment. The results were visualized using circle plots and the 
“GOplot” package. 

The biological significance of IC core genes was evaluated using 
the “GSVA” R package based on gene sets from the MSigdb. This 
comprehensive approach provided a detailed understanding of the 
functional pathways and biological processes associated with 
immune-related IC/BPS-DEGs, offering valuable insights into the 
underlying mechanisms of IC/BPS. 
2.4 Integrative machine learning algorithms 
constructed an optimal model 

Based on the intersection feature genes identified through 
WGCNA, we employed an integrated machine learning approach 
to screen for core genes associated with IC/BPS. A total of 11 classical 
algorithms were utilized, including Lasso, Stepglm, glmBoost, SVM, 
Ridge, Enet, plsRglm, Random Forest, LDA, XGBoost, and 
NaiveBayes. The process for generating immune-related IC/BPS 
signatures (IRICs) was as follows: Within the test set, prediction 
models were fitted using a leave-one-out cross-validation framework 
with 113 algorithm combinations; All models were validated across 
three GEO cohorts (3); For each model, the Harrell’s concordance 
index (C-index) was calculated across all test sets and GEO datasets, 
and the model with the highest average C-index was selected as the 
optimal one. Additionally, receiver operating characteristic (ROC) 
curves were constructed for each diagnostic feature in the training 
and validation sets. The area under the curve (AUC) values were 
computed to evaluate the diagnostic performance of IRICs in 
distinguishing normal samples. To further quantify model 
performance, a confusion matrix was introduced, comparing 
predicted values with actual values to optimize the gene selection 
process. This rigorous approach ensured that the selected genes were 
both biologically meaningful and statistically reliable. 
2.5 Immune cell infiltration assessment and 
correlation analysis 

To investigate the immunological characteristics between IC/BPS 
samples and controls, we employed the CIBERSORT algorithm to 
quantify the infiltration levels of 28 immune cell types and to assess 
the correlations among these cells. Furthermore, Spearman’s rank

correlation test was utilized to evaluate the relationships between each 
core gene and immune cell types in IC/BPS samples. This 
comprehensive analysis provided insights into the immune 
microenvironment and its potential role in IC/BPS pathogenesis. 
2.6 Single-cell RNA-seq data collection 
and processing 

In this study, single-cell RNA sequencing (scRNA-seq) data 
from the GSE175526 dataset were processed using the “Seurat” R 
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package. Cells were filtered based on gene counts and the 
percentage of mitochondrial genes, excluding those with too few 
genes or excessively high mitochondrial gene content. The 
“NormalizeData” function was employed for data normalization, 
and the “FindVariableFeatures” function was used to identify the 
top 1,500 highly variable genes. Principal component analysis 
(PCA) was performed on the normalized data using the 
“RunPCA” function. Batch effects across different samples were 
corrected  using  the  “Harmony” function,  followed  by  
dimensionality reduction and cluster identification via uniform 
manifold approximation and projection (UMAP). The “SingleR” 
package was utilized to annotate different cell clusters into specific 
cell subpopulations. Subsequently, the expression levels of core 
biomarkers across various cell groups were analyzed and 
visualized. Finally, cell-cell interaction analysis was conducted 
using the “CellChat” package, providing insights into the 
intercel lular  communication  networks  within  the  IC/  
BPS microenvironment. 
2.7 Verification of key gene expression 

Total RNA was extracted from mouse bladder tissues using the 
SPARKeasyImprovedTissue/Cell RNA Extraction Kit II (AC0202, 
Shandong Sparkjade Biotechnology Co., Ltd.). Reverse transcription 
of mRNA was performed using the Evo M-MLV Plus 1st Strand 
cDNA Synthesis Kit (AG11615, ACCURATE BIOTECHNOLOGY 
(HUNAN) CO., LTD, Changsha, China). qRT-PCR was conducted 
using the GeniuScript III One Step Greener RT-qPCR Kit (Q1009A, 
U&G Biotech). Relative expression levels were calculated using the 
2-DDCT method. Specifically designed primers are listed in 
Supplementary Table 1. 
 

2.8 Potential drug prediction and 
molecular docking identification 

To further explore the clinical significance of IRICs, we utilized 
the DSigdb to predict  small-molecule drugs with potential 
therapeutic effects. Protein crystal structures for docking were 
obtained from the AlphaFold database, while the 3D structures of 
small molecules were downloaded from the PubChem database and 
energy-minimized under the MMFF94 force field. Molecular 
docking was performed using AutoDock Vina 1.2.3. Prior to 
docking, all receptor proteins were processed with PyMol 2.5.5, 
including the removal of water molecules, salt ions, and small 
molecules. The docking box was then defined using the PyMol 
plugin center_of_mass.py, with the box center based on the active 
site location and the box edge length set to 22.5 Å. Additionally, 
ADFRsuite 1.0 was employed to convert the processed small 
molecules and receptor proteins into the PDBQT format required 
for AutoDock Vina 1.2.5. During docking, the exhaustiveness of the 
global search was set to 32, while other parameters remained at their 
default settings. The highest-scoring docking conformation was 
Frontiers in Immunology 04
selected as the binding conformation for subsequent molecular 
dynamics simulations. 
 

2.9 Validation of molecular dynamics 
simulations 

Based on the small molecule-protein complexes obtained from 
the aforementioned docking results, all-atom molecular dynamics 
(MD) simulations were performed using the AMBER 22 software. 
Prior to the simulation, the charges of the small molecules were 
calculated using the antechamber module and Gaussian 09 software 
with the Hartree–Fock (HF) SCF/6-31G* method. The small 
molecules and proteins were described using the GAFF2 force 
field and the ff14SB protein force field, respectively. Hydrogen 
atoms were added to the systems using the LEaP module, and a 
truncated octahedral TIP3P water box with a 10 Å cutoff was added 
to solvate the systems. Na+/Cl- ions were incorporated to neutralize 
the system charge, and the topology and parameter files for the 
simulation were generated. 

The MD simulations were conducted using AMBER 22. The 
systems were first energy-minimized using 2,500 steps of steepest 
descent followed by 2,500 steps of conjugate gradient minimization. 
Subsequently, the systems gradually heated from 0 K to 298.15 K 
over 200 ps under constant volume and controlled temperature. 
After reaching the target temperature, the systems were equilibrated 
for 500 ps under the NVT (canonical) ensemble to ensure uniform 
solvent distribution. Finally, the systems were equilibrated for 500 
ps under the NPT (isothermal-isobaric) ensemble. The production 
run was performed for 100 ns under the NPT ensemble with 
periodic boundary conditions. During the  simulation, a non­

bonded cutoff of 10 Å was applied, long-range electrostatic 
interactions were calculated using the Particle Mesh Ewald (PME) 
method, hydrogen bond lengths were constrained using the SHAKE 
algorithm, and temperature control was achieved using the 
Langevin thermostat with a collision frequency (g) of  2  ps⁻¹. The 
system pressure was maintained at 1 atm, and the integration time 
step was set to 2 fs. Trajectories were saved every 10 ps for 
subsequent analysis. 

The binding free energies between the proteins and ligands in 
all systems were calculated using the MM/GBSA method. To ensure 
accuracy in MM/GBSA calculations, MD trajectories from 90 to 100 
ns were used for the analysis. The specific formula  for the

calculation is as follows: 

DGbind = DGcomplex −  (DGreceptor +  DGligand)
(1) 

= DEinternal + DEVDW + DEelec + DGGB + DGSA 

In Equation 1, DEinternal represents the internal energy, DEVDW 

denotes the van der Waals interactions, and DEelec corresponds to 
the electrostatic interactions. The internal energy includes 
contributions from bond energy (Ebond), angle energy (Eangle), and 
torsional energy (Etorsion). DG_GB and DG_SA collectively 
represent the solvation free energy, where DGGB is the polar 
solvation free energy and DGSA is the nonpolar solvation free 
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energy. For DGGB, the GB model developed by Nguyen et al. (igb = 
2) was employed. The nonpolar solvation free energy (DGSA) was 
calculated based on the product of the surface tension (g) and the 
solvent-accessible surface area (SASA), as DGSA = 0.0072 × DSASA. 
Due to the high computational cost and low accuracy associated 
with entropy calculations, entropy changes were not considered in 
this study. 
 

2.10 Animal models 

An interstitial cystitis/bladder pain syndrome (IC/BPS) model was 
established in 24 female C57BL/6 mice (10-week-old) through cyclic 
intravesical instillation of cyclophosphamide (CYP, 35 mg/kg) and 
lipopolysaccharide (LPS, 0.6 mg/kg) via transurethral catheterization 
under 1.5% isoflurane anesthesia. Animals were randomized into four 
groups (n=6/group): IC/BPS model, saline-instilled control, 
resiniferatoxin-treated (60 mg/kg), and acetohexamide-treated (30 
mg/kg) (14). Following urethral catheterization using a 24G 
indwelling needle with stylet guidance, chemical instillation was 
performed every 3 days for five cycles, with saline flushing 30 min 
post-administration. Two weeks post-modeling, the same regimen 
was used for intravesical perfusion of the therapeutic agent. Urine 
samples were collected during 48-h metabolic cage housing post­
treatment prior to CO2 euthanasia. Bladder tissues and blood were 
harvested for pathological evaluation, with inflammatory cytokines 
(IL-6, TNF-a) quantified using QuantiCyto® ELISA kits 
(Neobioscience: EMC004(H).96.2, EMC102a.96.2). Fixed paraffin-
embedded bladder sections underwent hematoxylin-eosin and 
immunohistochemical staining, with microscopic imaging 
conducted using an Olympus BX53 system. All procedures 
complied with institutional animal ethics guidelines (Hospital 
Animal Ethics Committee Approval No. 20250304829577). 
2.11 Statistical analysis 

All statistical analyses were performed using Perl version 5.32.1 
and R software version 4.4.1. Additionally, GraphPad Prism 8.0 
(GraphPad Software Inc., USA) was employed for statistical 
evaluation and the creation of visual data displays. The ELISA 
results were analyzed by one-way ANOVA. A P-value of <0.05 was 
considered statistically significant for all analyses. 
3 Results 

3.1 Microarray data collection and 
preprocessing 

The three microarray datasets, GSE11783, GSE28242, and 
GSE57560, were normalized and merged into a large training/ 
internal validation cohort. Batch effects were corrected using the 
Frontiers in Immunology 05 
“RemoveBatchEffect” function from the “Limma” package 
(Supplementary Figures 1A, B). After normalization, the data 
distribution of each dataset fell within a similar range, and batch 
effects between datasets were effectively mitigated (Supplementary 
Figures 1C, D). 
3.2 Identification of DEGs in IC/BPS 

DEGs were identified between 31 IC/BPS cases and 14 normal 
controls using the “limma” R package. To explore immune-related 
genes, we integrated genes obtained from the GeneCards database 
and relevant literature with the identified DEGs. As a result, 73 
immune-related differentially expressed genes were identified. 
These findings were visually represented in a heatmap 
(Supplementary Figure 2). 
3.3 Evaluating key modules in weighted 
gene co-expression network 

To comprehensively identify key genes associated with IC/BPS 
phenotypes, we performed WGCNA. Hierarchical clustering of all 
samples was conducted, and outliers were excluded, as shown in the 
sample dendrogram (Figure 1A). A soft threshold power (b) of  6
was selected to construct a scale-free topological network 
(Figure 1B). In this study, the minimum module gene count was 
set to 60, and the MEDissThres was set to 0.25, ultimately 
identifying 11 co-expression modules (Figure 1C). Our results 
revealed that the MEbrown module exhibited the strongest 
positive correlation with IC/BPS in the cohort (cor = 0.43, p = 
0.003, Figure 1D). Additionally, the gene significance (GS) of the 
MEbrown module was significantly correlated with module 
membership (MM) (cor = 0.73, p < 7.6e-139, Figure 1E). These 
findings suggest that genes within the MEbrown module may have 
functional relevance to IC/BPS. Based on the criteria of GS > 0.5 and 
MM > 0.5, we screened 829 key genes from the MEbrown module. 
By intersecting these with previously identified DEGs, we filtered 
out 27 Immune-related IC/BPS-DEGs (Figure 1F). 
3.4 Functional enrichment analysis 

To elucidate the immune response mechanisms in IC/BPS, 
functional enrichment analysis was performed on the initially 
screened genes (Supplementary Figure 3). GO analysis revealed 
that immune-related IC/BPS-DEGs were significantly enriched in 
biological processes such as defense response to viruses, regulation 
of phagocytosis, and humoral immune response, and played 
important roles in immunoglobulin binding and cytokine 
receptor activity. Additionally, KEGG pathway analysis identified 
significant associations with ABC transporters and antifolate 
resistance. These enrichment results suggest the presence of a 
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high level of stress and abnormal immune response activation 
during the progression of IC/BPS. 
 

3.5 Construction and validation of the 
diagnostic signatures based on integrative 
machine learning 

To construct an IRIC-based diagnostic signature, we employed 
113 combinations of 11 machine learning algorithms for variable 
selection and model development. The integrated cohort was 
divided into a training set and an internal validation set in a 7:3 
ratio to ensure balanced distribution of clinical features. Within the 
internal training set, 10-fold cross-validation was performed to 
evaluate each algorithm combination and calculate AUC values. 
The ranking of AUC values for all algorithms is shown in Figure 2A. 
Notably, the Stepglm[both]+Enet[alpha=0.5] combination 
demonstrated optimal performance across both internal and 
external datasets, with AUC values of 0.968 (95% CI: 0.912– 
1.000), 0.983 (95% CI: 0.900–1.000), 1.000 (95% CI: 1.000–1.000), 
and 0.949 (95% CI: 0.795–1.000) (Figure 2B). The confusion matrix 
can also be seen in Figure 2C, where the overall accuracy of the 
model on the training set is as high as (12 + 29)/(12 + 2 + 2+29) = 
91.1%. The model shows strong classification ability on all the sets 
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with high overall prediction accuracy. Eight core genes were 
identified: IFI27, CSF2RB, CDC25B, IGSF3, DUSP5, WNK3, 
DLG, and DCDC2. The AUC of IRICs surpassed that of 
individual gene diagnostic features, suggesting its potential benefit 
for IC/BPS patients (Figure 2D). 
3.6 Validation of core gene expression in 
IC/BPS 

The volcano plot further revealed the differential expression of the 
8 core genes, including  4 up-regulated and  4 down-regulated genes.

The boxplot demonstrated that IFI27, CSF2RB, CDC25B, and DUSP5 
were significantly up-regulated, while IGSF3, WNK3, DLG2, and 
DCDC2 were down-regulated (Figures 3A, B). The mRNA 
expression levels of the 8 core genes were further validated using 
qRT-PCR. Compared to the control group, the expression levels of 
IFI27 and DUSP5 were significantly up-regulated in the IC/BPS group 
(Figures 3C, F). Conversely, the expression of IGSF3 and WNK3 was 
significantly down-regulated in the IC/BPS group (Figures 3G, J). The 
mRNA expression of the remaining genes showed some differences but 
did not reach statistical significance (Figures 3D, E, H, I). These results 
indicate that the expression levels of the 8 core genes are largely 
consistent with the bioinformatics analysis. 
FIGURE 1
 

WGCNA screening for immune-related genes. (A) Sample clustering tree. (B) Soft threshold power and average connectivity of WGCNA.
 
(C) Clustering tree diagram. (D) Heatmap depicting the relationship between modules and clinical features, especially IC/BPS and control. (E) Scatter 
plot depicting the relationship between module affiliation (MM) and gene significance (GS) in brown modules. (F) Venn diagram of the intersection of 
DEGs, brown component genes, and immune-related candidate genes. 
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3.7 GSVA enrichment analysis of IRICs 

To  elucidate  the  potential  signaling  pathways  and  
mechanisms underlying IC/BPS, pathway enrichment analysis 
was performed on both up- and down-regulated IRICs. GSVA of 
Frontiers in Immunology 07 
IRICs indicated that upregulated pathways were primarily 
involved in cytokine-cytokine receptor interaction, RIG-I-like 
receptor signaling, and NOD-like receptor signaling, implying 
their potential roles in metabolic-immune crosstalk or stress 
responses (Figure 4). 
FIGURE 2 

Constructing and validating diagnostic features through integrated machine learning. (A) 113 combinations of predictive models using 10-fold cross-
validation and graded AUC indices. (B) Coefficients of Stepglm[both]+Enet[alpha=0.5] visualization and diagnostic features. (C) Confusion matrix 
plots for the training and validation sets. (D) ROC plots for each diagnostic feature. 
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3.8 Immune infiltration analysis and 
association with diagnostic signatures 

We employed the CIBERSORT algorithm to assess the 
correlation between the expression profiles of 22 immune cell 
types in IC/BPS and normal groups. Based on immune 
infiltration analysis and intergroup comparison boxplots, we 
analyzed and visualized the infiltration abundance of 22 immune 
cell types in both groups (Figure 5A). Significant differences were 
observed in the expression of T cells CD4 memory activated, T cells 
follicular helper, and Macrophages M0 between the two groups. 
Subsequently, the correlation between each core gene and immune 
Frontiers in Immunology 08
cells was displayed in a correlation network heatmap (Figure 5B). 
Notably, the IFI27 gene showed significant positive correlations 
with Macrophages M0, Macrophages M1, T cells CD4 memory 
activated, T cells follicular helper, and T cells regulatory (Tregs), 
while exhibiting a negative correlation with Macrophages M2 
(Figures 5C, D). 
3.9 Single cell analysis for IRICs in IC/BPS 

To comprehensively characterize the feature genes, we performed 
single-cell analysis using the GSE175526 dataset (Figure 6A). The 
FIGURE 3 

Identification of 8 candidate hub genes. (A) Volcano plot of IRICs between control and IC/BPS samples. (B) Expression analysis of IRICs in IC/BPS and 
controls based on the GEO dataset. (C–J) The mRNA expression levels of IRICs were verified using qRT-PCR. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no 
statistical difference. 
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data were clustered using the “Seurat” R package. Visualization via 
UMAP identified 10 distinct cell types, including endothelial cells, 
epithelial cells, fibroblasts, monocytes, neuronal cells, hematopoietic 
stem cells, adipocytes, neutrophils, B cells, and CD8+ T cells 
(Figure 6B). The expression patterns of each core gene in different 
cell types were then investigated, and t-SNE visualization showed that 
IFI27 exhibited dense expression in most cell types (Figure 6C). Dot 
plot analysis further demonstrated that IFI27 was highly expressed in 
epithelial cells, endothelial cells, and fibroblasts, with partial 
expression in monocytes and CD8+ T cells (Figure 6D). To explore 
biological feature differences, we investigated complex 
communication networks among the 10 annotated cell types. The 
results indicated increased communication strength between CD8+ T 
cells (as ligand cells) and monocytes as well as neutrophils. 
Monocytes also exhibited strong communication with endothelial 
cells, neutrophils, and B cells (Figure 6E). Additionally, the number of 
interactions between fibroblasts and other cell types was notably 
increased (Figure 6F). 
3.10 Prediction of potential small molecule 
drugs 

Molecular docking simulation is a convenient and effective 
approach for exploring the interactions between small molecules 
and target proteins. Here, we used Vina 1.2.3 software to perform 
docking studies on the compounds Acetohexamide, Resiniferatoxin, 
and the IFI27 protein. As shown in Figure 7A, hydrogen bond 
interactions were observed between the small molecules and THR­
103 on the protein, while hydrophobic interactions occurred with 
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ILE-106, LEU-99, VAL-41, ILE-33, and VAL-36. The formation of 
hydrogen bonds and hydrophobic interactions enhanced the binding 
affinity between the protein and small molecules. The interactions of 
the IFI27_Acetohexamide complex are illustrated in Figure 7B, 
revealing hydrogen bond formation with THR-103 and 
hydrophobic interactions with ILE-106, LEU-99, VAL-41, MET-44, 
and VAL-18 on the protein. 
3.11 Molecular dynamics modeling of 
potential drugs and targets 

The root mean square deviation (RMSD) in molecular 
dynamics simulations reflects the motion of complexes, where 
higher RMSD values and more pronounced fluctuations indicate 
greater motion, and vice versa. As shown in Figure 7C, the RMSD 
changes of the IFI27/Acetohexamide and IFI27/Resiniferatoxin 
complexes during the simulation are presented. During the 
simulation, the RMSD of the IFI27/Acetohexamide complex 
increased rapidly in the 0–20 ns range and then stabilized, 
maintaining fluctuations within 7–10 Å throughout the 
simulation. In contrast, the RMSD of the IFI27/Resiniferatoxin 
complex started from a lower initial value, continued to rise within 
the first 40 ns, and eventually stabilized at approximately 8 Å. The 
two complexes exhibited different RMSD trends during the 
dynamics process, indicating differences in their dynamic 
stability. Although both complexes showed relatively stable 
RMSD values in the later stages, the IFI27/Resiniferatoxin 
complex exhibited significantly smaller fluctuations, suggesting 
higher structural stability. 
FIGURE 4 

GSVA enrichment analysis of IRICs. 
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The root mean square fluctuation (RMSF) reflects the flexibility 
of proteins during molecular dynamics simulations. Typically, drug 
binding reduces protein flexibility, thereby stabilizing the protein 
and enhancing enzymatic activity. As shown in Figure 7D, the 
RMSF values of all proteins bound to different small molecules were 
low (<5 Å), except at the terminal regions, indicating good rigidity 
of the protein core structure. In summary, the low flexibility of the 
protein is the foundation for stable binding between small 
molecules and the protein. 

Based on the molecular dynamics simulation trajectories, we 
calculated the binding energy using the MM-GBSA method, which 
more accurately reflects the binding modes of small molecules to the 
target protein (Figure 7E). As shown in Table 1, the binding 
energies of the IFI27/Acetohexamide and IFI27/Resiniferatoxin 
complexes were −19.91 ± 0.98 and -32.98 ± 1.74 kcal/mol, 
respectively. Negative values indicate binding affinity between the 
molecules and the target protein, with lower values indicating 
stronger binding. Our calculations clearly demonstrate that these 
molecules have a binding affinity with the corresponding proteins, 
with IFI27/Resiniferatoxin exhibiting higher binding energy. The 
binding energy of these complexes is primarily contributed by van 
Frontiers in Immunology 10 
der Waals and electrostatic interactions, while solvation energy is 
unfavorable for their binding. 

Hydrogen bonds are one of the strongest non-covalent 
interactions, and a higher number of hydrogen bonds indicates 
better binding. As shown in Figure 7F, the IFI27/Acetohexamide 
complex had fewer hydrogen bonds (around 1) during the 
simulation, indicating a weak contribution of hydrogen bonds to 
their binding. In contrast, the IFI27/Resiniferatoxin complex had 
around 2 hydrogen bonds during the simulation, suggesting that 
hydrogen bonds play a significant role in their binding. 
3.12 Drug administration experiment in 
mice 

To validate the therapeutic efficacy of IFI27 and candidate drugs, 
histopathological evaluation of IC/BPS models revealed significant 
inflammatory cell infiltration within the lamina propria, accompanied 
by mild mucosal edema and partial epithelial denudation 
characterized by intercellular space widening (Figure 8A). 
Resiniferatoxin treatment marginally attenuated inflammatory 
FIGURE 5 

Immune infiltration analysis of IRICs. (A) 22 differences in immune infiltration of immune cells between the two groups. (B) ET-Link plots of different 
hub genes correlating with immune cells. (C, D) Analysis of the correlation between IFI27 and immune cells. *p < 0.05. 
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infiltration, whereas acetohexamide markedly reduced mucosal edema 
and inflammatory infiltration. Mechanistically, upregulated IFI27 
expression in IC/BPS models confirmed the pivotal role of innate 
immune activation, with immunohistochemical analysis 
demonstrating acetohexamide’s superior efficacy in downregulating 
IFI27 compared to resiniferatoxin (Figure 8B). Given the 
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characteristic immune dysregulation in IC/BPS, cytokine profiling 
via ELISA revealed significantly elevated IL-6 and TNF-a levels in 
serum and bladder tissues of model groups. Both therapeutics 
exhibited anti-inflammatory  effects,  yet  acetohexamide  
demonstrated significantly stronger suppression of proinflammatory 
cytokines than resiniferatoxin (Figures 9A, B). 
FIGURE 6 

Single-cell RNA sequencing (scRNA-seq) in GSE175526. (A) Scatter plots of characteristic genes regarding sample gene number, sequencing depth, 
and mitochondrial content. (B) Cluster analysis identified 10 distinct cell clusters, which were visualized and annotated using t-distribution random 
neighbor embedding (t-SNE). (C) The t-SNE plot illustrates the expression trends of biomarkers across cell types. (D) Bubble plot displaying the 
expression patterns of biomarkers across cell types. (E, F) Cellular communication networks illustrate the number (E) and strength (F) of interactions. 
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4 Discussion 

IC/BPS is a refractory disease with a complex etiology, 
characterized by severe pelvic pain and urinary symptoms. Due to 
the complexity of its disease process, IC/BPS lacks reliable 
characteristic biomarkers or effective treatments. Previous studies 
have demonstrated that abnormal immune responses are a 
significant histological feature of IC/BPS, with both innate and 
adaptive immune mechanisms potentially influencing its 
Frontiers in Immunology 12 
pathogenesis and progression. Therefore, exploring immune cell 
infiltration and immune-related genes is of great importance for 
understanding IC/BPS. 

In this study, we integrated publicly available datasets from the 
GEO database, combining gene expression profiles from 31 IC/BPS 
samples and 14 normal controls. WGCNA was employed to filter 
out 27 Immune-related IC/BPS-DEGs. Based on 113 different 
machine learning algorithms, 8 immune-related IC/BPS signature 
genes were identified for further investigation. Additionally, GSVA 
FIGURE 7 

Molecular docking and molecular dynamics simulation results. (A, B) Binding patterns of IFI27 with Acetohexamide and Resiniferatoxin were obtained 
based on docking. The left figure shows the overall view and the right figure shows the partial view, in which the yellow stick is the small molecule, 
the cyan cartoon is the protein, the blue line indicates the hydrogen bonding interaction, and the magenta dashed line indicates the salt bridge 
interaction. (C) RMSD of the complex over time during molecular dynamics simulations. (D) RMSF is calculated based on molecular dynamics 
simulation trajectories. (E) MM-GBSA binding energy and energy decomposition. (F) Change in the number of hydrogen bonds between small 
molecules and proteins during molecular dynamics simulations. 
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revealed associations of these genes with pathways such as cytokine­
cytokine receptor interaction, chemokine signaling, and NOD-like 
receptor signaling, indicating abnormal connections with immune 
responses and immune cell recruitment. 

Existing evidence suggests that these eight core genes exhibit 
multifaceted functions in immune regulatory networks, and their 
aberrant expression may contribute to the pathological processes of 
IC/BPS through various immune mechanisms. IFI27, a member of 
the interferon-induced gene family, plays a central role in antiviral 
innate immunity by activating the RIG-I signaling pathway (15). 
Studies have shown that it not only inhibits dengue virus replication 
but also influences immune infiltration characteristics of monocytes 
and plasmacytoid dendritic cells by regulating the JAK-STAT 
Frontiers in Immunology 13 
pathway, highlighting its dual role in immune microenvironment 
remodeling (16, 17). CSF2RB, the common beta chain of the IL-3/IL­
5/GM-CSF receptor, participates in inflammatory responses by 
regulating  monocyte-macrophage  differentiation  (18).  
Overexpression of CSF2RB in inflammatory bowel disease may 
exacerbate immune homeostasis imbalance by altering gut 
microbiota balance. CDC25B, a key cell cycle regulator, promotes 
tumor cell proliferation through the MAPK pathway, while its 
expression levels positively correlate with M1 macrophage and 
activated dendritic cell infiltration in the tumor microenvironment, 
suggesting its potential role in coordinating cell cycle progression and 
immune responses in anti-tumor immunity (19, 20). DUSP5, a 
negative regulator of MAPK signaling, may modulate T cell 
FIGURE 8 

Validation of mouse administration experiments for two drug candidates. (A) Representative H&E staining in different subgroups. (B) Representative 
immunohistochemical staining images of IFI27 expressed in different subgroups. 
TABLE 1 Binding free energies and energy components predicted by MM/GBSA (kcal/mol). 

System DEvdW DEelec DGGB DGSA DGbind 

IFI27/Acetohexamide -12.74 ± 1.21 -22.66 ± 1.37 16.99 ± 2.03 -1.51 ± 0.23 -19.91 ± 0.98 

IFI27/Resiniferatoxin -40.23 ± 2.24 -2.29 ± 1.63 15.33 ± 1.59 -5.80 ± 0.24 -32.98 ± 1.74 
DEvdW, van der Waals energy; DEelec, electrostatic energy; DGGB, electrostatic contribution to solvation; DGSA, non-polar contribution to solvation; DGbind, binding free energy. 
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activation thresholds by dephosphorylating ERK, although its 
specific role in the immune microenvironment requires further 
validation (21). IGSF3 in glioma inhibits Kir4.1-mediated 
potassium clearance, leading to neuronal depolarization and 
epileptiform discharges. This ion homeostasis imbalance may 
exacerbate neuroinflammation by activating microglia (22, 23). 
WNK3 regulates cell volume through ion cotransporters such as 
NKCC1, and its interaction with NKCC1 may be involved in 
intracellular chloride concentration regulation during T cell 
activation, suggesting its potential role in immune cell migration 
and effector functions (24, 25). Additionally, studies have shown that 
DLG2 expression is downregulated under inflammatory conditions, 
affecting inflammasome activation (26). Although DCDC2 is 
primarily associated with neuronal development, recent research 
has linked its polymorphisms to susceptibility to autoimmune 
diseases, potentially influencing immune system function through 
neuro-immune axis crosstalk (27). These genes form a regulatory 
network involving multiple levels, including innate immune 
signaling activation, cytokine responses, cell cycle regulation, and 
ion homeostasis maintenance, all of which are closely related to the 
dynamic balance of the immune microenvironment. 

In this study, immune infiltration analysis based on the 
CIBERSORT algorithm revealed that the expression patterns of 
IC/BPS core genes were significantly correlated with the activation 
states of various immune cell subsets, particularly showing positive 
correlations with T cells CD4 memory activated, T follicular helper 
Frontiers in Immunology 14 
(Tfh) cells, regulatory T cells (Tregs), and M0/M1 macrophages, 
while negatively correlating with anti-inflammatory M2 
macrophages.  This  finding  suggests  a  significant  pro-
inflammatory bias and immune regulatory imbalance in the IC/ 
BPS immune microenvironment. Previous studies have indicated 
that CD4+ T cell subsets in IC/BPS patients are highly 
heterogeneous, with Th1 cells activated by antigen-presenting 
cells through T cell receptor signaling, while Tregs exhibit a 
tendency to differentiate toward Th1 (28). This Treg dysfunction 
may weaken immune suppression, exacerbating local inflammatory 
responses. Additionally, significant Tfh cell infiltration is closely 
related to the enrichment of autoimmune disease pathways, 
potentially promoting B cell activation and antibody production 
in the formation of Hunner-type lesions (29, 30). Notably, 
macrophage polarization plays a critical role in disease 
progression, with the enrichment of M0/M1 macrophages 
associated with the release of pro-inflammatory factors (e.g., IL­
1b, TNF-a) and neutrophil recruitment, while the reduction of M2 
macrophages may impair tissue repair, collectively contributing to 
persistent inflammation and fibrosis of the bladder mucosa (31). 
This phenomenon is consistent with serological evidence—elevated 
levels of inflammatory markers such as CRP and IL-6 in IC/BPS 
patients suggest a synergistic effect between systemic inflammation 
and the local immune microenvironment. Overall, the pathological 
mechanisms of IC/BPS involve T cell subset dysfunction, 
macrophage polarization imbalance, and multi-dimensional 
FIGURE 9
 

ELISA to verify changes in inflammatory factor levels in serum and bladder tissue before and after administration. (A) Serum; (B) bladder tissue.
 
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; NS, no statistical difference.
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inflammatory mediator network activation, collectively driving 
chronic inflammation and clinical heterogeneity. 

Based on gene enrichment in transcriptomic data and qRT-
PCR results, we selected IFI27 as a drug target and identified two 
small-molecule compounds with strong and stable binding affinity 
using AutoDock Vina. Acetohexamide, also known as pentosan 
polysulfate sodium, is a synthetic heparinoid drug (32). A core 
pathology of IC/BPS is the defect in the glycosaminoglycan (GAG) 
layer of the bladder mucosa, allowing irritants (e.g., potassium 
ions) in urine to penetrate the bladder wall, triggering pain and 
inflammation (33). The core mechanism of acetohexamide 
involves its GAG-mimicking structure, which directly binds to 
and repairs defects within the GAG layer of the bladder 
urothelium, thereby reconstructing the critical urine-tissue 
barrier. This restoration of the barrier fundamentally prevents 
the penetration of urinary irritants into deeper bladder wall layers, 
reducing their persistent stimulation of sensory nerve endings and 
immune cells. Furthermore, acetohexamide’s inhibitory effect on 
mast cell activation significantly reduces the release of mediators 
such as histamine and tryptase (34). Our data suggests that 
treatment with acetohexamide reduced the level of inflammation 
in cystitis, and HE staining showed improved infiltration of 
inflammatory cells in bladder tissue. Clinical trials have shown 
that approximately 30-40% of patients experience significant 
improvement in pain and urinary frequency after 3-6 months of 
continuous treatment (35). Resiniferatoxin is an ultra-potent 
TRPV1 receptor agonist. TRPV1 receptors are highly expressed 
in C-fiber sensory nerves of the bladder and are closely associated 
with bladder pain transmission and inflammatory responses (36). 
Resiniferatoxin initially activates TRPV1 receptors, causing 
calcium influx and the release of neuropeptides such as 
substance P from nerve terminals, followed by receptor 
desensitization and functional inhibition of sensory nerve fibers. 
Long-term use can reduce bladder sensory nerve hypersensitivity 
(37). Resiniferatoxin has been used for intravesical instillation in 
treating overactive bladder, showing efficacy in relieving urgency 
and frequency (38). Therefore, it holds the potential for alleviating 
IC/BPS symptoms. 

It is necessary to admit that there are still some limitations in 
this study. First, the sample size is relatively small, and additional 
IC/BPS datasets are needed to validate our findings in larger 
cohorts. Secondly, although 2 small molecule compounds with 
potential therapeutic effects on IC/BPS were predicted and their 
efficacy was preliminarily validated in animal models, the alleviating 
effects of Resiniferatoxin on pain symptoms remain to be confirmed 
in long-term clinical trials. Therefore, future studies should include 
experimental validation of more small molecule compounds as well 
as in vitro validation at the protein level. Additionally, the specific 
mechanisms of IRICs in IC/BPS should be further explored. 
5 Conclusions 

In this study, we systematically resolved the immune signature 
of IC/BPS by integrating transcriptomics, single-cell sequencing, 
Frontiers in Immunology 15 
and machine learning algorithms. The study innovatively combines 
WGCNA with integrated machine learning to overcome the 
limitation that traditional differential analysis is susceptible to 
background noise interference. The diagnostic models constructed 
from the eight core genes obtained from the screening had AUCs 
above 0.9 in the external validation set, which were significantly 
better than a single biomarker. Among them, IFI27, as a key 
regulator, was involved in the disease process by activating the 
RIG-I signaling pathway and modulating macrophage polarization. 
Drug prediction revealed that Acetohexamide and Resiniferatoxin 
have a high affinity for IFI27, and molecular dynamics simulations 
confirmed their binding stability, providing a structural basis for the 
new use of old drugs. Finally, in vivo experiments validated and 
compared the inflammatory inhibitory effects of the two drugs on 
IC/BPS. This study provides an important theoretical basis for the 
development of diagnostic and targeted therapies for IC/BPS with 
significant clinical translational potential. 
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SUPPLEMENTARY FIGURE 1 

Dataset merge and calibration. (A) Box plot of the integrated dataset before 
calibration (B) and after calibration. (C) PCA map of the integrated dataset 
before  ca l ib ra t ion  and  (D)  af ter  ca l ib ra t ion .  PCA,  pr inc ipa l  
component analysis. 

SUPPLEMENTARY FIGURE 2 

Variance analysis of integrated datasets. (A) Heat map of DEGs. (B) Schematic 
of a volcano. 

SUPPLEMENTARY FIGURE 3 

Enrichment analysis of immune-related differential genes after initial 
screening. (A, B) GO enrichment analysis. (C) KEGG enrichment analysis. 
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