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Background: Clear cell renal cell carcinoma (KIRC) is the most aggressive renal

carcinoma subtype of renal carcinoma, characterized by high mortality, early

metastasis, and resistance to treatment. Ammonia-induced cell death (AICD) has

recently been identified as a novel metabolic mechanism influencing tumor

progression, yet its prognostic implication and regulatory networks in KIRC

remain underexplored.

Methods: Transcriptomic and clinical information from the TCGA-KIRC cohort

and the validation cohort (E-MTAB-1980) were analyzed. Differentially expressed

AICD-related genes were identified through differential expression analysis,

univariate Cox regression, and machine learning algorithms (LASSO, random

forest, and CoxBoost). A prognostic risk model was developed via multivariate

Cox regression. Spatial and single-cell transcriptomics were employed to

characterize the immune microenvironment heterogeneity. Cell-based

experiments were performed to investigate the potential involvement of

ATP1A1 in KIRC. Molecular docking and pan-cancer analyses were conducted

to identify therapeutic candidates and ATP1A1-related mechanisms.

Results: Five AICD-related genes (FOXM1, ANK3, ATP1A1, HADH, and PLG) were

identified and selected to construct a risk score model. The model demonstrated

high accuracy and was integrated into a nomogram for clinical application. High-

risk (HR) patients exhibited immunosuppressive microenvironments, elevated

tumor mutational burden (TMB), and genomic instability. In vitro functional

assays confirmed that ATP1A1 knockdown significantly enhanced the

proliferative, migratory, and invasive capabilities of renal carcinoma cells (A498

and 786-O), suggesting a suppressive role for ATP1A1 in malignant tumor

progression. ATP1A1 , a core gene, was associated with metabolic

reprogramming and chemotherapy sensitivity across multiple cancers.

Molecular docking revealed Emodinanthrone as a high-affinity ligand for

ATP1A1 (−6.8 kcal/mol).
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Conclusion: This study identifies an AICD-associated gene signature as a robust

prognostic tool for KIRC, revealing its interactions with immune evasion and

genomic instability. ATP1A1 is proposed as a promising therapeutic target, with

Emodinanthrone emerging as a novel drug candidate. These findings contribute

to the advancement of personalized treatment strategies for KIRC patients.
KEYWORDS
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1 Introduction

Renal cell carcinoma (RCC) represents one of the most

common malignancies of the urinary system and is associated

with a mortality rate ranging from 30% to 40% (1, 2). Among its

subtypes, clear cell renal cell carcinoma (KIRC) represents the most

frequent and aggressive form, constituting 70–80% of RCC cases

globally (3). Data from the American Cancer Society indicate that

the incidence of KIRC continues to rise annually, with significant

variability in patient prognosis; notably, a subset of patients

develops metastatic disease even at early stages (4). Despite recent

advancements in surgical techniques, targeted therapies, and

immunotherapies, the 5-year survival rate for KIRC patients

remains poor, particularly in advanced stages (5). Current

treatment options for advanced metastatic RCC include T-cell

checkpoint inhibitors and anti-angiogenic tyrosine kinase

inhibitors; however, treatment efficacy remains limited due to

considerable heterogeneity in drug tolerance and patient survival

outcomes. Furthermore, the response rate to immunotherapy

remains relatively low. Hence, there is an urgent need to identify

novel biomarkers to improve the stratification and personalization

of therapeutic strategies for KIRC patients.

The mechanisms of cell death are critically responsible for the

initiation, progression, and treatment response of cancer (6).

Cancer cells evade normal cell death pathways to facilitate

uncontrolled proliferation and metastasis. Diverse forms of

regulated cell death have been identified, including necroptosis,

apoptosis, autophagy, ferroptosis, and others, each characterized by

distinct the biological features and regulatory mechanisms (7–9). In

recent years, novel modes of cell death, particularly those triggered

by metabolic dysregulation, have emerged as a major focus of

research. Ammonia, a key metabolic byproduct, plays a pivotal

role in the pathogenesis, maintenance, and therapeutic

responsiveness of multiple diseases (10). Studies have

demonstrated that hyperammonemia can induce liver fibrosis and

RIPK1-b-mediated cell death, closely associated with urea cycle

dysfunction (11). In cancer, dysregulated ammonia metabolism is

increasingly recognized as a novel mechanism contributing to cell

death. For instance, glioblastoma cells release ammonia via

glutamine metabolism, which activates the SREBP-1 signaling
02
pathway, establishing a feedforward loop that enhances lipid

synthesis and promotes therapeutic resistance. Inhibition of the

glutamine transporter ASCT2 or glutaminase disrupts this loop,

and in combination with the lysosomal inhibitor pimozide, induces

mitochondrial oxidative stress, leading to tumor cell death (12).

Moreover, research by Bo Huang and colleagues has shown that

ammonia generated through mitochondrial glutamine catabolism

accumulates within lysosomes, leading to lysosomal alkalinization

and subsequent ammonia reflux into mitochondria. This cascade

results in mitochondrial swelling, autophagy impairment, and T cell

death (13). The elucidation of ammonia-induced cell death (AICD)

offers a novel framework for understanding tumor cell fate.

Nevertheless, although a strong association between ammonia

metabolism and cell death regulatory pathways has been

established, the precise molecular targets and the complete gene

regulatory networks remain largely undefined. Particularly in KIRC,

the expression profiles, dynamic regulatory mechanisms, and

clinical prognostic implications of AICD-related genes have yet to

be systematically characterized.

This study utilized transcriptomic data and clinical cohorts of

KIRC from The Cancer Genome Atlas (TCGA) to systematically

integrate differential expression analysis, univariate Cox regression

models, and multi-dimensional machine learning algorithms

(LASSO, Random Forest, and CoxBoost) for identifying AICD-

associated signature genes and constructing a prognostic risk

scoring model. The model’s predictive performance for overall

survival was validated using an independent cohort, and further

enhanced by incorporating clinicopathological parameters into a

nomogram to refine the prognostic stratification framework. A

comprehensive analysis of tumor immune microenvironment

heterogeneity between risk subgroups was conducted, including

evaluations of genomic instability and differential expression of

immune checkpoint molecules. Functional validation through in

vitro gene knockdown experiments revealed the regulatory roles of

key genes in promoting malignant phenotypes. Molecular docking

was employed to screen for potential therapeutic compounds and

assess ligand–receptor binding affinities. Additionally, pan-cancer

analysis explored multi-omics correlations between the target genes

and metabolic reprogramming, immune cell infiltration, and

chemotherapeutic sensitivity. Collectively, this study provides
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1636977
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2025.1636977
both theoretical insights and experimental evidence to support

improved prognostic evaluation and the development of targeted

therapies for KIRC.
2 Materials and methods

2.1 Cell culture

The human renal cell carcinoma cell lines A-498 and 786-O

were purchased from Cyagen Biosciences (Guangzhou) Inc. and

Seven Innovation (Beijing) Biotechnology Co., Ltd., respectively. All

cell lines were cultured in RPMI 1640 medium supplemented with

100 U/mL penicillin, 100 mg/mL streptomycin, and 10% fetal bovine

serum, in a humidified incubator at 37°C with 5% CO2.
2.2 Data collection

Overall, 1,120 AICD-related genes (DEARGS) were retrieved from

GeneCards (https://www.genecards.org/) based on a relevance score

>7 (14) (Supplementary Table S1). RNA-Seq expression data

(HTSeq-FPKM format), along with respective clinical and

survival data for KIRC patients, were obtained through UCSC

Xena (http://xena.ucsc.edu/) (15). In total, 522 KIRC tumor

specimens and 71 normal kidney tissue specimens were included

for analysis. E-MTAB-1980, an independent validation cohort, was

accessed via EMBL-EBI (https://www.ebi.ac.uk/) (16). To maintain

uniformity in the data, ENSEMBL Gene IDs were transformed into

Gene Symbol IDs, and genes exhibiting expression in <50% of the

specimens were excluded. Additionally, the single-cell RNA

sequencing (scRNA-seq) dataset GSE139555 (17) was

downloaded from the GEO database, and KIRC spatial

transcr iptomic data were retr ieved from GSE179572

(sample GSM5420752).
2.3 Human protein Atlas database analysis

HPA (http://www.proteinatlas.org) is a comprehensive and

widely utilized resource for assessing protein levels across human

cells and tissues, encompassing the Cell, Pathology, and Tissue

Atlas (18). Immunohistochemistry (IHC) data for the genes

included in the prognostic model were retrieved from the HPA

database, specifically for renal cancer and adjacent normal tissues.
2.4 CCLE database analysis

The Cancer Cell Line Encyclopedia (CCLE) database (https://

portals.broadinstitute.org/ccle) is a comprehensive resource

containing data from hundreds of cancer cell lines. It provides

valuable insights into various aspects of cancer biology, including

molecular characteristics, drug responses, and genetic profiles. In
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this study, we analyzed the expression of ATP1A1 across tumor cell

lines using data from the CCLE database.
2.5 Processing of KIRC spatially annotated
transcriptomic data

Spatial transcriptomic data were processed using the Seurat R

package (19). The workflow included normalization of unique

molecular identifier (UMI) counts, data scaling, and identification of

highly diverse traits using the “SCTransform” function. Dimensionality

reduction and unsupervised clustering were performed with

“RunPCA,” utilizing the top 30 principal components based on

significance. Default parameters were applied during clustering

analyses. Subgroup and gene feature visualization were conducted

using the “SpatialFeaturePlot” function. To assess AICD-related gene

activity at spatial resolution, the AUCell R package (20) was employed,

allowing quantification and visualization of localized gene

expression signatures.
2.6 scRNA-seq data analysis

The 10× scRNA-seq data were transformed into a Seurat object

using the Seurat R package. Quality control steps were implemented

to filter out clusters containing fewer than three cells, cells

expressing fewer than 50 genes, and cells in which mitochondrial

gene expression exceeded 5% of total gene expression. Principal

component analysis (PCA) was conducted based on the top 1,500

genes with the highest variability. Cell clustering was performed

using the “FindClusters” and “FindNeighbors” functions, utilizing

the top 15 principal components (PCs) for downstream analysis.

Cluster-specific differentially expressed genes were determined

using the “FindAllMarkers” function, applying a threshold of

false-discovery-rate (FDR)<0.1 and |log2 fold-change (log2FC)|>1.

Subsequent cluster annotation was performed by referencing the

CellMarker 2.0 database (21) to accurately assign cell types. To

quantify the activity of specific gene sets across individual cells, the

‘ssGSEA’ function integrated in the Seurat package was utilized.
2.7 Differential expression and functional
enrichment analyses

Differentially expressed AICD-related genes (DEARGS) between

KIRC and normal tissue specimens in the TCGA dataset were

identified using the limma R package (22). Significance thresholds

were set at FDR<0.5 and |log2 FC|>1. GO and KEGG pathway

analyses were subsequently conducted using the Metascape platform

(23), with an adjusted P<0.5 deemed statistically significant. Somatic

mutation profiles of the identified DEARGS were analyzed and

visualized using waterfall plots generated by the maftools R package

(24). In addition, a PPI network of the DEARGS was constructed via

STRING to explore potential functional interactions.
frontiersin.org

https://www.genecards.org/
http://xena.ucsc.edu/
https://www.ebi.ac.uk/
http://www.proteinatlas.org
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
https://doi.org/10.3389/fimmu.2025.1636977
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2025.1636977
2.8 Development of the ammonia cell
death scoring system

To identify the most prognostically relevant AICD genes, we

applied a combination of LASSO regression, random forest analysis,

CoxBoost regression, and stepwise Akaike information criterion

(stepAIC) Cox regression analyses to the DEARGS. Genes with the

strongest predictive value were subsequently incorporated into a

multivariate Cox regression model. An ammonia cell death scoring

system was constructed by linearly combining the regression

coefficients from the multivariate Cox model, weighted by the

normalized gene expression levels.

Risk score =oN
i=1(Expi� Coei)

Patients with KIRC were stratified into LR and HR cohorts in

accordance with the median risk score derived from the scoring

system. Overall survival (OS) differences between the two cohorts

were assessed using Kaplan–Meier method and the log-rank test. To

ensure the robustness and generalizability of the model, internal

and external validation were subsequently performed using the

TCGA and E-MTAB-1980 cohorts, respectively.
2.9 Application of a prognostic clinical
model for KIRC

The construction of a nomogram is a widely utilized method for

visualizing and implementing prognostic models in clinical

practice. In this study, we performed both univariate/multivariate

Cox regression analyses for identifying potential risk factors

associated with KIRC prognosis, applying a significance threshold

of P<0.5. These identified risk factors were subsequently

incorporated into the development of a nomogram using the

“rms” R package (25). The nomogram provides a graphical

representation that allows for the estimation of 1-, 3-, and 5-year

mortality probabilities based on cumulative points derived from the

selected input variables. To assess the predictive performance of the

nomogram, calibration curves for 1/3/5-year survival, as well as

cumulative hazard curves, were generated and analyzed.
2.10 Assessment of immune characteristics

The relative abundances of 22 immune cell types were

determined using the CIBERSORT R package (26). In addition,

the expression profiles of immune checkpoint related genes were

compared between risk groups to explore the potential for

immunotherapy efficacy. The maftools R package was employed

to generate waterfall plots, visualizing the pattern of genes with

elevated somatic mutation frequencies in KIRC patients.

Furthermore, the tumor mutation burden (TMB) for each

specimen was measured to investigate the correlation between the

risk score and TMB.
Frontiers in Immunology 04
2.11 RNA interference

ATP1A1-targeting siRNAs (siATP1A1#1, siATP1A1#2,

siATP1A1#3, siATP1A1#4) and a negative control siRNA were

obtained from GenePharma. The siRNA sequences were as follows:

siATP1A1#1: Sense 5′-GCCGACUUGGUCAUCUGUATT-3′,
Antisense 5′-UACAGAUGACCAAGUCGGCTT-3′; siATP1A1#2:
Sense 5′-CCGAGCAGCUGGAUGACAUTT-3′, Antisense 5′-AUG
UCAUCCAGCUGCUCGGTT-3′; siATP1A1#3: Sense 5′-CCAU
CCAAUCACAGCUAAATT-3′, Antisense 5′-UUUAGCUGUG
AUUGGAUGGTT-3′; siATP1A1#4: Sense 5′-GCUGACCUCAGA
AUCAUAUTT-3′ , Antisense 5′-AUAUGAUUCUGAGGU

CAGCTT-3′; siControl: Sense 5′-UUCUCCGAACGUGUCA

CGUTT-3′, Antisense 5′-ACGUGACACGUUCGGAGAATT-3′.
Briefly, cells were seeded in 6-well plates and transiently transfected

at 60–80% confluence using siRNA-Mate Plus transfection reagent

(GenePharma) following the manufacturer’s instructions. For each

well, 7.5 mL of transfection reagent was mixed with siRNA (at

concentrations optimized through preliminary experiments) to

form transfection complexes. After 12 hours of transfection, the

medium was replaced with fresh culture medium. Cells were

harvested 24 hours later for analysis of ATP1A1 mRNA and

protein levels by qPCR and western blotting, respectively.
2.12 Quantitative reverse transcription
polymerase chain reaction analysis

qRT-PCR was used to measure ATP1A1 mRNA expression

levels. Total RNA was first extracted from the cells using RNA-easy

Isolation Reagent (Vazyme, R701-01). The RNA was then reverse

transcribed into cDNA following the protocol for HiScript II Q RT

SuperMix for qPCR (+gDNA wiper) (Vazyme, R223-01). Finally,

qPCR was performed using ChamQ SYBR qPCR Master Mix

(Vazyme, Q711-02) to quantify ATP1A1 mRNA levels, with

GAPDH serving as the internal control. The primer sequences

used were as follows: ATP1A1 forward, 5’-GGATGACCGCTGGA

TCAACGATG-3’, ATP1A1 reverse, 5’-GCACCACCACGATACTG

ACGAAG-3’, GAPDH forward, 5’-CAGGAGGCATTGCTGAT

GAT-3’, GAPDH reverse, 5’-GAAGGCTGGGGCTCATTT-3’.
2.13 Western blotting

A498 and 786-O cells were transfected with siRNA for 48 h, then

harvested and lysed in RIPA buffer. Total protein (100 mg per sample)

was separated by SDS-PAGE and transferred onto PVDFmembranes

(Millipore). After blocking with 3% non-fat milk in TBST, the

membranes were incubated overnight at 4°C with primary

antibodies: anti-ATP1A1 (1:5000, Proteintech, 14418-1-AP) and

anti-b-actin (1:2000, Santa Cruz, sc-1616). Following this, HRP-

conjugated secondary antibody (1:5000, ZSGB-BIO) was applied

for 1 h at 37°C. Protein bands were detected using ECL reagent
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(Amersham Biosciences) and visualized with a chemiluminescence

imaging system. b-actin was used as the loading control.
2.14 Cell proliferation

A498 and 786-O cells in the logarithmic growth phase (control

and knockdown groups) were trypsinized, centrifuged, and

counted. Cell suspensions were prepared at a concentration of

1×104 cells/mL, and 100 mL was seeded into each well of 96-well

plates (five replicates per group, across four plates). After 24 h of

incubation, 10 mL of CCK-8 reagent diluted in 90 mL of fresh

medium was added to each well under light-protected conditions.

Following a 2-h incubation at 37°C, absorbance was measured at

450 nm using a microplate reader. This procedure was repeated

every 24 h for a total of 96 h. Cell growth curves were plotted with

time points (24, 48, 72, and 96 h) on the x-axis and normalized OD

values on the y-axis. Three independent experiments were

conducted. Data are presented as mean ± standard deviation

(SD). Statistical comparisons among multiple groups were

performed using one-way ANOVA followed by Dunnett’s post

hoc test. A p-value < 0.05 was considered statistically significant.
2.15 Cell invasion assays

The invasive capacity of transfected cells was assessed using

Transwell chambers (24-well format, 8.0 mm pore size; Corning,

#3422). For the invasion assays, chambers were precoated with

Matrigel (Corning, #354234). Transfected cells (1.0 × 105)

suspended in 150 mL of serum-free medium were seeded into the

upper chambers, while 600 mL of complete medium containing 10%

FBS was added to the lower chambers. After 24 h of incubation, the

invaded cells were fixed with methanol and stained with 0.1%

crystal violet for 10 minutes at room temperature. Cells in five

randomly selected fields per chamber (at 200× magnification)

were counted.
2.16 Wound healing assay

A-498 and 786-O cells were seeded evenly into six-well plates.

Once a confluent monolayer was formed, a straight scratch was made

using a 200 mL pipette tip to create a uniform wound. Detached cells

and debris were removed by gentle washing, and serum-free medium

was added. Plates were then incubated at 37°C. Scratch width was

measured, and images were captured at 0 and 48 hours using an

inverted microscope. The experiment was repeated three times to

evaluate the initial wound width and the extent of cell migration.
2.17 Molecular docking

The structures of the bioactive components were sourced from

the Traditional Chinese Medicine Active Compound Library and
Frontiers in Immunology 05
imported into ChemBio3D v14.0 for spatial conformation

adjustment, energy optimization, and export in the mol2 format.

After processing with AutoDock Tools 1.5.6, the 3D crystal

structures of target proteins were retrieved from UniProt. Water

molecules and bound organic molecules were eliminated using

Notedad2, and target proteins were subsequently prepared by

adding hydrogen atoms, assigning charge distributions, and

determining atomic types using AutoDock Tools 1.5.6. AutoDock

Vina was employed for molecular docking, and the resulting

docking poses were visualized and analyzed using PyMOL 2.6.1.
2.18 Pan-cancer analysis

The TCGAplot R package (27) was utilized to examine the

relationships between ATP1A1 expression levels among diverse

cancer types in a pan-cancer context. Pearson correlation analysis

was carried out to assess the statistical associations between

ATP1A1 expression and established immunotherapy biomarkers,

such as microsatellite instability (MSI), immune cell infiltration,

and other immune-associated genes among diverse cancer types.

The mutation landscape of ATP1A1 in various cancers was

determined through cBioPortal (http://www.cbioportal.org/).

Additionally, the cor.test R package was applied to evaluate the

Spearman correlation between ATP1A1 expression and the

sensitivity to different chemotherapy drugs, based on data from

the PRISM, GDSC, and CTRP databases. Methylation data was

retrieved from the TCGA database, and bubble plots were generated

to visualize variations in the methylation levels of ATP1A1 at

different loci across multiple cancers.
2.19 Statistical analyses

All statistical tests were performed using R software (v4.3.1).

The Wilcoxon rank-sum test was applied for two-group

comparisons, whereas the Kruskal-Wallis test was used for

comparisons involving more than two groups. Survival outcomes

were evaluated using Kaplan-Meier analysis, with differences

assessed via the log-rank test. P<0.05 was indicative of

statistical significance.
3 Results

3.1 Variant landscape of AICD genes in
KIRC patients

A schematic overview of the study design is depicted in Figure 1.

Overall, 228 DEARGs were identified between KIRC and normal

specimens from the TCGA database (Figure 2A). The expression

levels of each of the 228 DEARGs in the integrated dataset are

depicted in Figure 2B. Next, a PPI network was established through

Metascape, and critical modules within the network were analyzed

using the MCODE plugin. Ten significant modules were identified,
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as illustrated in Figures 2C, D. Furthermore, the molecular

alteration landscape of AICD-related DEARGs in KIRC was

assessed, with missense mutations being the most frequent

variant type, as shown in Figure 2E. Among these, the gene

ANK3 exhibited the highest mutation frequency. The analysis of

CNVmutations revealed the top 20 DEARGs with the most obvious

CNV alterations (Figure 2F). GO and KEGG enrichment analyses

demonstrated that the DEARGs are primarily involved in processes

such as carboxylic acid metabolism, the HIF-1 signaling pathway,

oxidoreductase activity, response to xenobiotic stimulus, response

to hypoxia, cellular homeostasis, and carbon metabolism

(Figures 2G, H).
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3.2 Immunogenic AICD characteristic in
spatial and single-cell transcriptomics

We applied the SCTransform method to adjust for variations in

spatial sequencing depth, followed by normalization procedures,

which ultimately led to the identification of 11 distinct cell types

through dimensionality reduction and clustering (Figure 3A). To

assess the role of AICD-related DEARGs in each cell subset, we

utilized the AUCell R package to evaluate AICD activity within each

subgroup (Figure 3B). Subsequently, Spearman correlation analysis

was conducted to examine the relationship between cell content and

AICD activity across all spatial spots (Figure 3C). We obtained
FIGURE 1

Flowchart of this study.
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FIGURE 2

Variant landscape and functional characterization of AICD genes in KIRC patients. (A) Volcano plot depicting differentially expressed AICD-
related genes (DEARGs) in KIRC (green: down-regulated DEARGS; yellow: up-regulated DEARGS; grey: unaltered genes), with FDR<0.5 and |
log2FC|>1. (B) PCA showing obvious differences between KIRC and normal samples. (C) PPI network of AICD-related DEARGS constructed based
on the Metascape database. (D) Identification of significant subnetworks through the MCODE algorithm. (E) Oncoplot of the top 20 AICD-related
DEARGs in the TCGA cohort. (F) Rates of CNV loss, gain, and no CNV among the top 20 AICD-related DEARGS. (G, H) Functional enrichment
analyses of AICD-related DEARGS.
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scRNA-seq data from 49,899 cells derived from three ccRCC

patients. To eliminate batch effects, we utilized the Harmony

package, achieving successful integration of the three samples.

Dimensionality reduction was then conducted using PCA and

UMAP based on the top 2,000 most variable genes. Clustering of
Frontiers in Immunology 08
the cells resulted in 26 distinct clusters at a resolution of 1.5

(Figure 3D). Cells were subsequently annotated into 11 major cell

types based on marker gene expression: B cells, CD4+ T

conventional cells (CD4Tconv), CD8+ T cells (CD8T), exhausted

CD8+ T cells (CD8Tex), mast cells, endothelial cells, dendritic cells,
FIGURE 3

Characterization of AICD activity in spatial transcriptomics and single-cell RNA sequencing. (A) Spatial transcriptomics data of KIRC. (B) Spatial
visualization of AICD intensity. (C) Spearman correlation assessment of the spatial profiles of AICD activity within the tumor microenvironment. (D, E)
Identification of single cell types using marker genes. (F) AICD-related enrichment scores. (G) Distribution of AICD activity across different cell types.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1636977
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2025.1636977
plasma cells, NK cells, monocytes/macrophages, and proliferating T

cells (Tprolif) (Figure 3E). To determine the immunogenic activities

of AICD across these cell types, the ssGSEA function within the

Seurat package was employed to compute expression scores for

AICD-related DEARGs for each cell (Figure 3F). Among the 11 cell

types, endothelial cells exhibited significantly higher AICD

activity (Figure 3G).
3.3 Establishment of an AICD-related
prognostic model

Univariate Cox regression analysis was used to identify 71 AICD-

related genes from the TCGA-KIRC cohort. These genes were further

evaluated through Kaplan-Meier survival analysis, leading to the

identification of 51 genes with significant prognostic value. To

mitigate overfitting risks and refine the selection of candidate

biomarkers, three machine learning algorithms were employed to

identify KIRC biomarkers with diagnostic significance. The CoxBoost

algorithm identified 14 genes (Figure 4A), the Random Forest model

identified 15 genes (Figure 4B), and LASSO regression analysis

yielded 8 genes (Figures 4C, D). A Venn diagram was used to

intersect these genes, revealing 6 robust core biomarkers: FOXM1,

ANK3, ATP1A1, HADH, THRB, and PLG (Figure 4E). Subsequently,

five genes, FOXM1, ANK3, ATP1A1, HADH, and PLG, were retained

to construct an AICD-associated prognostic model via stepAIC Cox

regression analysis (Figures 4F, G). The following formula was used

to calculate the risk score for each patient: RiskScore = (FOXM1

expression×0.5297) + (ANK3 expression×−0.3772) + (ATP1A1

expression×−0.4214) + (HADH expression×−0.3560) + (PLG

expression×−0.2366). Based on the median risk score, patients were

divided into LR and HR groups. Survival analysis indicated that

patients in the LR group had a significantly better OS than those in

the HR group, both in the TCGA-KIRC (Figure 5A, p<0.0001) and E-

MTAB-1980 (Figure 5B, p<0.0001) cohorts. Additionally, the AUC

for 1/3/5-year survival was assessed in both cohorts, revealing that the

risk score provided high accuracy in estimating survival outcomes

(Figures 5C, D). The risk scores and survival status distribution for

both cohorts are presented in Figures 5E, F. These results confirm the

robustness of the AICD-associated prognostic model in estimating

the prognostic outcomes of KIRC patients. Furthermore, IHC

analysis from the HPA database showed that the protein levels of

the core genes aligned with the prognostic profile, validating the

clinical relevance of the model (Figure 5G).
3.4 Development and evaluation of the
nomogram survival model

Univariate/multivariate Cox regression analyses revealed that

the risk score was an independent prognostic factor for KIRC

patients relative to other common clinical characteristics

(Figures 6A, B). In the TCGA-KIRC cohort, both univariate/
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multivariate Cox analyses identified risk score, TNM.M, neoplasm

status, and age as independent prognostic factors. The gene

expression profiles, risk scores, and clinical factors for KIRC

patients in the TCGA-KIRC cohort are visualized in Figure 6C.

To evaluate the clinical applicability of the risk model, variables

such as TNM stage, neoplasm status, and age were integrated into a

nomogram developed to predict overall survival in KIRC patients

from the TCGA-KIRC cohort (Figure 6D). The nomogram model

demonstrated excellent prognostic performance compared to the

gene signature model, with a significant prognostic difference

between the LR and HR groups (P<0.001, Figure 6E).

Additionally, the AUC for the combined model estimating 1/3/5-

year OS was 0.873, 0.833, and 0.833, respectively (Figure 6F).

Calibration curves further confirmed the accuracy of this model

in estimating 1/3/5-year OS (Figure 6G). Furthermore, decision

curve analysis (DCA) demonstrated that the nomogram model

provided superior predictive performance compared to all other

evaluated predictors (Figure 6H). Overall, the developed nomogram

exhibits strong predictive power and clinical applicability, providing

an effective tool for assessing the prognostic outcomes of KIRC

patients based on key clinical indicators.
3.5 Correlation between immune
microenvironment, immune characteristics,
and the AICD-related prognostic model

To examine the immune infiltration landscape in ccRCC

specimens, we quantified the abundance of tumor-infiltrating

immune cells via the CIBERSORT algorithm (Figure 7A). Our

analysis revealed that the LR cohort exhibited higher infiltration of

T follicular helper cells, monocytes, M2 macrophages, and activated

dendritic cells, while the HR cohort had elevated levels of activated

NK cells, M1 macrophages, and plasma cells. In addition, we

identified significant correlations between the prognostic model

genes and immune cell infiltration. Specifically, FOXM1 had a

positive correlation with M1 macrophages and activated CD4+

memory T cells, while ATP1A1 showed a positive correlation with

naive B cells (Figure 7B). To further explore the expression of model

genes in ccRCC patients, we analyzed scRNA-seq data (GSE139555).

The dot plot analysis indicated that ATP1A1 was predominantly

expressed in endothelial cells (Figure 7C). Given the increasing

clinical use of IC inhibitors (ICIs) as a form of immunotherapy, we

examined the expression of IC-related genes between the LR and HR

cohorts. The results showed significantly higher expression levels of

HAVCR2, CD274, and HHLA2 in the LR group, suggesting a

differential susceptibility to IC inhibition (Figure 7D). In addition,

we assessed the TIDE (Tumor Immune Dysfunction and Exclusion)

score for each ccRCC patient and observed that the HR cohort

exhibited a significantly higher TIDE score, suggesting a potential

resistance to immunotherapy in these patients (Figure 7E). These

data imply that ccRCC patients with an HR score may not benefit as

much from immunotherapeutic strategies.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1636977
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2025.1636977
3.6 Genomic alterations in LR and HR KIRC
patients based on AICD prognostic score

HR KIRC patients exhibited a significantly higher TMB in

protein-coding regions compared to LR patients (Figure 8A). The
Frontiers in Immunology 10
top 20 most frequently mutated genes were analyzed in both risk

groups (Figure 8B). Notably, mutations in VHL (56% in HR vs. 45%

in LR) and PBRM1 (46% in HR vs. 39% in LR) were frequently

observed in the HR group (Figure 8C). Copy number variation

(CNV) analysis revealed distinct CNV patterns between the LR and
FIGURE 4

Development and validation of an AICD-associated prognostic signature for KIRC patients. (A) Feature selection according to the CoxBoost
algorithm. (B) Identification of optimal biomarkers using the Random Forest (RF) algorithm. (C, D) Variable selection in the LASSO-Cox regression
model. (E) Venn diagram indicating overlapping identified by the three algorithms. (F) Forest plots of the final 5 prognostic genes selected through
stepAIC regression analysis. (G) Survival analysis of the prognostic genes in the TCGA-KIRC cohort.
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HR AICD groups (Figure 8D), with the fraction of genome altered

(FGA) significantly higher in the HR group (Figure 8E). These

mutations, particularly those located in the DNA-binding domains

of relevant proteins, may contribute to the compromised tumor-
Frontiers in Immunology 11
suppressive efficacy and reduced survival outcomes in patients.

Furthermore, a high AICD risk score was associated with elevated

microsatellite instability (MSI) status, which is recognized as a

predictive marker for IC inhibition therapy (Figure 8F).
FIGURE 5

Validation and prognostic performance of the AICD-related signature in KIRC patients. OS of LR and HR patients in the TCGA-KIRC (A) and E-MTAB-
1980 (B) cohorts. ROC curves of the prognostic model for estimating survival in the TCGA-KIRC (C) and E-MTAB-1980 (D) cohorts. (Risk score
distribution stratified by survival status and time in the TCGA-KIRC (E) and E-MTAB-1980 (F) cohorts. (G) Expression of core prognostic model genes
in renal cancer and normal tissues via the HPA database.
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FIGURE 6

Nomogram development and evaluation for prognostic prediction in KIRC patients. (A, B) Univariate/multivariate Cox analyses of clinicopathologic
traits and risk score in the TCGA-KIRC cohort. (C) Distribution of clinical characteristics and expression of model genes based on the AICD-related
risk score. (D) Nomogram for predicting the prognosis of KIRC patients. (E) Kaplan-Meier survival analysis comparing LR and HR groups based on the
nomogram score. (F) ROC curve analysis of the nomogram in the TCGA-KIRC cohort. (G) Calibration plots for predicting 1-, 3-, and 5-year overall
survival in TCGA-KIRC. (H) DCA showing the net benefits of the nomogram compared to other clinical characteristics.
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3.7 ATP1A1 knockdown promotes
proliferation, migration, and invasion in
renal cell carcinoma cells

Analysis of the tumor immune microenvironment revealed that

ATP1A1 expression was significantly correlated with endothelial cells

and naïve B cells. To explore the regulatory role of ATP1A1 in renal

cell carcinoma, four siRNA sequences targeting ATP1A1 were
Frontiers in Immunology 13
designed to downregulate its expression. CCLE data shows that

ATP1A1 is highly expressed in the A498 and 786-O cell lines

(Figure 9A). Subsequent qRT-PCR (Figure 9B) and western blot

analysis (Figure 9C) confirmed effective knockdown, with

siATP1A1#2 and siATP1A1#4 showing the highest silencing

efficiency; these two sequences were selected for further functional

experiments. CCK-8 assays (Figure 9D) demonstrated that ATP1A1

knockdown significantly enhanced the proliferative capacity of renal
FIGURE 7

Immune landscape analysis of LR and HR KIRC patients based on AICD-related prognostic model. (A) Boxplot showing the abundance of 22 infiltrating
immune cell types computed via CIBERSORT. (B) Correlation between TME infiltrating immune cells and genes in the AICD-related prognostic model. (C)
Bubble plot indicating the average and percentage expression of prognostic biomarkers among diverse cell subtypes. (D) Boxplot illustrating the expression
levels of IC-associated genes. (E) Violin plot of TIDE scores across risk groups. *p<0.5; **p<0.1; ***p<0.01; ****p<0.001.
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carcinoma cells. Transwell migration assays (Figure 9E) and wound

healing assays (Figure 9F) further showed that ATP1A1 suppression

markedly promoted cell invasion and migration compared to control

groups. These findings highlight the potential of ATP1A1 as a

therapeutic target in the treatment of KIRC.
3.8 Molecular docking analysis of
Emodinanthrone and ATP1A1

To begin the molecular docking analysis, we first prepared the

compound library of traditional Chinese medicine and the protein

structure using the methods described previously. High-throughput

virtual screening was then conducted to identify compounds with
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promising interactions. Based on the docking scores, the top 20

compounds with the strongest binding energy (as shown in

Supplementary Table S2) were selected for further analysis. A smaller

binding energy value generally indicates stronger binding affinity, with

values lower than -5 kcal/mol being considered favorable for binding.

Among the top compounds, Emodinanthrone exhibited the best

binding energy and was selected for a detailed 3D binding mode and

interaction analysis. The docking results revealed a favorable binding

energy of -6.800 kcal/mol between Emodinanthrone and ATP1A1.

Notably, Emodinanthrone interacts with several key amino acids on

ATP1A1, forming three hydrogen bonds with GLN-126, GLU-122, and

ASP-891. These interactions are critical for stabilizing the protein-ligand

complex and are likely to play a vital role in the compound’s biological

activity. The visual analysis of these interactions is depicted in Figure 10.
FIGURE 8

Mutation landscape of AICD-related prognostic subgroups in KIRC. (A) TMB analysis. (B) Waterfall plot depicting somatic mutation characteristics in
HR and LR groups. (C) Comparison of several mutation loci in VHL and PBRM1 between risk groups. (D) CNV patterns in LR and HR groups. (E) FGA
differences between risk groups. (F) Comparison of MSI across risk score categories.
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3.9 Pan-cancer analysis of ATP1A1
expression

RNA sequencing data from the TCGA database to assess the

expression of ATP1A1 across multiple cancer types using the
Frontiers in Immunology 15
TCGAplot R package. The results indicated that ATP1A1 was

significantly overexpressed in ESCA, HNSC, LIHC, STAD, and

CHOL, while its expression was notably lower in COAD, KIRP,

KIRC, KICH, THCA, and LUAD (Figure 11A). Protein expression

analysis revealed significant differences in ATP1A1 levels between
FIGURE 9

The effect of ATP1A1 gene knockdown on the malignant biological functions of RCC cells. (A) ATP1A1 expression across RCC cell lines based on CCLE data.
(B) mRNA level of ATP1A1 after siATP1A1 transfection. (C) Western blot analyses confirm the efficiency of ATP1A1 knockdown in A498 and 786-O cells. (D)
Cell proliferation after ATP1A1 knockdown. (E) A498 and 786-O cells transwell invasion image after ATP1A1 knockdown. (F) A498 and 786-O cells scratching
after ATP1A1 knockdown. 0.1234(ns), 0.0332(*), 0.0021(**), 0.0002(***), <0.0001(****).
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tumor and normal tissues. Specifically, ATP1A1 protein expression

was significantly reduced in the tumor samples of KIRC, GBM,

LUAD, and PAAD compared to normal tissues (Figure 11B).

Further, we examined the correlation between ATP1A1

expression and microsatellite instability (MSI). The radar chart

showed a positive correlation of ATP1A1 with MSI in CESC,

PRAD, SARC, and TGCT (Figure 11C). Similarly, analysis of the

correlation between ATP1A1 expression and tumor mutational

burden (TMB) revealed a positive association in SKCM

(Figure 11D). To explore the relationship between ATP1A1 and

the immune microenvironment, we investigated the correlation

between ATP1A1 expression and immune cell infiltration levels

(Figure 11E). ATP1A1 expression was negatively correlated with the

infiltration of regulatory T cells (Tregs), follicular helper T cells,

CD8+ T cells, CD4+ T cells, and memory B cells across most TCGA

cancers, while it showed a positive correlation with macrophage

infiltration in various cancers. Additionally, we examined the

methylation patterns of ATP1A1 across different cancer types and

genetic loci (Figure 11F). As shown in Figure 11G, ATP1A1

expression showed a positive correlation with sensitivity to several

chemotherapy drugs in pan-cancer. Finally, to assess the potential

clinical relevance of ATP1A1, univariate Cox regression analysis

identified ATP1A1 as a significant prognostic factor for OS in

cancer patients (Figure 11H).
4 Discussion

KIRC, the most aggressive and immunogenic subtype of RCC, is

characterized by high intratumoral heterogeneity, a strong

propensity for early metastasis, and profound metabolic

dysregulation within the TME, factors that collectively drive

treatment resistance and disease recurrence (28, 29). Although the

introduction of targeted therapies (e.g., pazopanib and sunitinib)

and ICIs (e.g., nivolumab) has markedly improved survival

outcomes for advanced-stage patients (30), the dynamic
Frontiers in Immunology 16
imbalance of metabolic byproducts such as lactate and ammonia

within the TMEmay compromise therapeutic efficacy by promoting

immune suppression and enabling tumor cells to evade cell

death (31).

Emerging evidence highlights the intricate molecular

mechanisms underpinning AICD and its critical role in tumor

progression. Elevated ammonia levels have been shown to disrupt

tricarboxylic acid (TCA) cycle flux by inducing glutamate

dehydrogenase 2 (GDH2)-mediated aberrant reductive amination

of a-ketoglutarate (a-KG), leading to simultaneous dysfunction of

mitochondrial oxidative phosphorylation and glycolysis (32). This

metabolic collapse is marked by inhibition of ATP synthase activity

and excessive accumulation of reactive oxygen species (ROS),

ultimately triggering mitochondrial membrane potential collapse

and activation of caspase-dependent apoptotic pathways (33).

Concurrently, ammonia-induced oxidative stress disrupts

intracellular redox balance, activating a sustained unfolded

protein response (UPR) through the PERK-eIF2a-ATF4 axis.

This response upregulates CHOP, a pro-apoptotic transcription

factor that simultaneously inhibits anti-apoptotic Bcl-2 family

proteins (e.g., Mcl-1) and activates pro-apoptotic factors (e.g.,

Bim), thereby facilitating endoplasmic reticulum (ER) stress-

mediated apoptosis (34–36). Importantly, ammonia exerts a

concentration-dependent, dynamic effect on cellular homeostasis.

At lower concentrations, it activates adaptive autophagy via the

AMPK/mTOR pathway to maintain metabolic equilibrium (37);

however, prolonged or excessive ammonia exposure leads to

lysosomal dysfunction, impaired autophagic flux, and pathological

accumulation of damaged organelles and misfolded proteins,

leading to irreversible cellular injury (38). Despite advances in

elucidating these mechanisms, the prognostic significance of

AICD-related genes in KIRC and their associated regulatory

networks has yet to be comprehensively explored through

systematic bioinformatics approaches.

This study systematically elucidates, for the first time, the

molecular features and clinical relevance of AICD-related genes in
FIGURE 10

Molecular docking analysis of ATP1A1 and Emodinanthrone. A detailed 3D molecular docking model illustrating the binding affinity and interaction
between ATP1A1 and Emodinanthrone. The protein is shown in blue, and the Emodinanthrone compound is depicted in cyan. Key residues are
represented as sticks, with hydrogen bond interactions between amino acids and Emodinanthrone indicated by yellow dashed lines.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1636977
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2025.1636977
FIGURE 11

Pan-cancer analysis of ATP1A1 expression, immune features, and genetic alterations. (A) ATP1A1 expression levels across TCGA tumor types and adjacent
normal tissues. (B) Differential ATP1A1 protein levels (mass spectrometry) between cancer and normal tissues in the CPTAC database. (C) Correlation
between ATP1A1 expression and MSI across TCGA datasets. (D) Association between ATP1A1 expression and TMB in TCGA datasets. (E) Heatmap showing
the relationship between ATP1A1 expression and immune cell infiltration among various cancers. (F) Pearson correlation between ATP1A1 expression and
immune-related genes in pan-cancer. (G) Spearman correlation between ATP1A1 expression and chemotherapy drug sensitivity across pan-cancer. (H) Pan-
cancer Cox regression analysis of ATP1A1 as a prognostic factor across TCGA cancers. *p < 0.05; ***p < 0.001; ****p < 0.0001.
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KIRC through comprehensive integration of multi-omics data. It

further investigates their associations with the tumor

microenvironment, immunotherapy responsiveness, potential

targeted therapeutic strategies, and pan-cancer characteristics.

Initially, we identified 228 DEARGs, among which ANK3

exhibited the highest mutation frequency. Functional assessment

indicated that these DEARGs are primarily responsible for key

biological processes such as carboxylic acid metabolism, the HIF-1

signaling pathway, hypoxic responses, and cellular homeostasis,

highlighting a potential mechanistic link between AICD, tumor

metabolic reprogramming, and microenvironmental adaptation.

The activation of the HIF-1 signaling pathway represents a pivotal

mechanism by which tumors adapt to hypoxic stress. Li et al.

demonstrated that HIF-1 signaling transcriptionally upregulates

MRPL52, thereby regulating mitochondrial autophagy, ROS

balance, and epithelial-mesenchymal transition (EMT), which

are critical for hypoxia-driven metastatic progression in breast

cancer (39). In our study, high-frequency mutations (56%) of the

VHL gene observed in the HR patient group likely contribute to

abnormal stabilization of HIF-a, resulting in persistent activation

of its downstream targets (40, 41). This dysregulation may

enhance glycolysis (the Warburg effect) (42) and upregulate

enzymes associated with ammonia metabol ism (e .g . ,

glutaminase), thereby promoting excessive intracellular

ammonia production. Furthermore, dysregulation of carboxylic

acid metabolic pathways may exacerbate ammonia accumulation,

establishing a “metabolism-hypoxia” positive feedback loop that

perpetuates metabolic imbalance. Critically, ammonia-driven

HIF-1 stabilization not only promotes glycolytic reprogramming

(the Warburg effect) but may also directly suppress mitochondrial

b-oxidation—a process central to HADH function—thereby

exacerbating lipid metabolic dysfunction. Concurrently,

plasminogen (PLG), a key regulator of proteolytic activity in the

tumor microenvironment, may facilitate ammonia-mediated

extracellular matrix remodeling through HIF-1-induced protease

activation, further amplifying invasive potential. This disruption

of metabolic homeostasis not only impairs cellular energy balance

but may also influence epigenetic regulation, such as histone

demethylation, through the depletion of key intermediates like

a-ketoglutarate, ultimately resulting in cell death. Additionally,

toxic ammonia accumulation can directly impair mitochondrial

function, augment ROS production, and dysregulate redox

enzyme activities, collectively amplifying oxidative stress (43).

Accumulation of ROS leads to oxidative degradation of lipids,

proteins, and DNA, resulting in lipid peroxidation, protein

misfolding, and genomic instability (44). Moreover, ammonia

has been shown to impair cellular antioxidant defenses by

inhibiting the activity of key antioxidant enzymes (45), further

compounding oxidative damage. This synergistic “oxidative-

ammonia toxicity” may activate non-canonical forms of

programmed cell death (e.g., necroptosis, ferroptosis), resulting

in disruption of the plasma membrane and the release of

intracellular components, thereby intensifying inflammatory

responses within the tumor microenvironment.
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Further analyses utilizing spatial transcriptomics and scRNA-

seq revealed distinct, cell type-specific expression patterns of AICD-

associated genes, with vascular endothelial cells exhibiting markedly

higher activation levels compared to other cellular subpopulations.

This observation is likely due to the dual functional roles of

endothelial cells within the tumor microenvironment: as principal

regulators of angiogenesis, endothelial cells likely modulate tumor

vascularization and nutrient delivery through pathways linked to

ammonia metabolism (46). Mechanistically, ammonia has been

shown to enhance endothelial angiogenic capacity via activation

of mTORC1 signaling, thereby promoting amino acid biosynthesis

(10), while an acidic microenvironment mitigates ammonia toxicity

to preserve vascular homeostasis and permeability (47). Conversely,

the elevated activation of AICD-related genes in endothelial cells

may also suggest that dysregulated ammonia metabolism

contributes to endothelial dysfunction, potentially fostering

abnormal tumor vasculature and remodeling the immune

microenvironment. Notably, the weak correlation observed

between CD8+ T cells and plasma cells may reflect mechanisms

of tumor immune evasion, possibly mediated by ammonia-driven

immunosuppressive processes. These findings propose new

therapeutic avenues for KIRC, including the targeting of high-

frequency mutated genes (e.g., ANK3) or endothelial-specific

metabolic vulnerabilities. Furthermore, they underscore the

central role of ammonia metabolism as a critical regulator of

tumor microenvironmental dynamics. Future studies should focus

on experimentally validating the functional impacts of ANK3

mutations within endothelial cells and further elucidating the

mechanistic interplay between ammonia metabolism and

IC regulation.

Based on the five core genes (FOXM1, ANK3, ATP1A1, HADH,

and PLG) identified from the TCGA-KIRC cohort, a prognostic risk

scoring model was successfully established. This model

demonstrated robust survival stratification and strong clinical

applicability across both external and internal validation cohorts.

According to the relative risk ratios, FOXM1 was identified as a risk

factor, whereas ANK3, ATP1A1, HADH, and PLG were classified as

protective factors. FOXM1, a critical regulator of the cell cycle,

governs the transitions between the S and G2/M phases (48).

Extensive research implicates FOXM1 in the progression of

various malignancies (49–53). Studies have demonstrated that

FOXM1 facilitates G2/M phase transition by directly regulating

CDC2 phosphorylation, thereby accelerating mitosis (54). ANK3,

which encodes an immunospecific member of the ankyrin family, is

widely expressed across nephron segments and functions as a tumor

suppressor in multiple cancer types (55, 56). Notably, a study by

Yunshan Zhu et al. demonstrated that ANK3 downregulation is

associated with cisplatin resistance in ovarian carcinoma (57).

ATP1A1, the core subunit of the sodium-potassium pump, may

contribute to ammonia-induced cell death and tumor immune

evasion by disrupting ionic homeostasis and reprogramming

ammonia metabolism. Although ATP1A1 exerts oncogenic

functions via the ERK5 pathway in colorectal cancer (58), it

prolongs survival in renal carcinoma by suppressing Raf/MEK/
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ERK signaling (59), consistent with our in vitro findings, where

ATP1A1 knockdown enhanced proliferation, migration, and

invasion in renal cancer cells. This functional dichotomy is likely

attributable to microenvironmental differences in ammonia

metabolism. Ammonia toxicity has been shown to directly induce

effector T-cell exhaustion through the collapse of mitochondrial

membrane potential and lysosomal damage (60). ATP1A1

dysregulation further exacerbates intracellular sodium-potassium

gradient disruption, compromising pH balance (61). Single-cell

sequencing data reveal endothelial-specific overexpression of

ATP1A1, suggesting a role in maintaining vascular barrier

integrity and modulating local ammonia clearance (62). This may

indirectly suppress CD8+ T-cell activity, contributing to a vicious

cycle of “ammonia accumulation– immune exhaustion.

Mechanistically, ATP1A1 triggers an immunosuppressive tumor

microenvironment through multidimensional crosstalk with the

ammonia metabolism-immune checkpoint axis. In melanoma,

ATP1A1 forms a complex with Cav-1 to activate Src/AKT

signaling (63), promoting therapeutic resistance and T-cell

suppression. In lung cancer, ATP1A1 stabilizes PD-L1 expression

(64) and regulates other immune checkpoints such as CEACAM-1

and B7-H3 (65), thereby inhibiting antigen presentation. ATP1A1

also governs macrophage polarization by interacting with Lyn

kinase to promote oxLDL-CD36-mediated lipid overload and M2

polarization (66), implicating metabolic reprogramming in

immunosuppressive cell recruitment. Clinically, ATP1A1

expression correlates with tumor T stage and venous invasion in

gastric cancer (67) and holds prognostic significance in ovarian

cancer (68). Its pan-cancer immunomodulatory effects may be

mediated through STAT1-IDO1 signaling (60) or NF-kB-driven
inflammatory pathways (65), ultimately promoting Treg infiltration

and immune checkpoint expression (64). Targeting the ATP1A1-

ammonia axis represents a promising therapeutic strategy for

overcoming treatment resistance. Bufalin disrupts the ATP1A1-

Cav-1 complex, reversing drug resistance in melanoma (63), while

cardiac glycosides inhibit STAT1-mediated IDO1 expression (60),

demonstrating synergy with immune checkpoint inhibitors.

ATP1A1 knockdown has also been shown to reverse ammonia-

induced mitochondrial dysfunction in T cells (60). Furthermore,

ammonia-scavenging agents, such as urea cycle activators, may help

reprogram the metabolic-immune landscape to enhance

therapeutic efficacy (69). Future research should focus on spatial

metabolomics to map ammonia distribution in ATP1A1-deficient

tumors, the development of isoform-selective inhibitors (e.g., a1-
targeting agents), and the exploration of combination therapies

involving epigenetic modulators or macrophage metabolic

reprogramming to overcome ammonia-induced immunotherapy

resistance. HADH , which encodes 3-hydroxyacyl-CoA

dehydrogenase, plays a pivotal role in mitochondrial fatty acid b-
oxidation (70). In colorectal cancer, HADH has been implicated in

non-canonical Wnt signaling, regulating tumor proliferation and

metabolic activity via the Wnt5a/b-Ror2/Dvl2-ATF2/4 axis (71).

Plasminogen (PLG), a glycoprotein synthesized in the liver, is

activated by plasminogen activators and is critically involved in

proteolytic processes within the tumor microenvironment (72).
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Elevated expression of plasminogen activators has been linked to

enhanced invasion and migration in pancreatic ductal

adenocarcinoma cells (73). Additionally, PLG has been implicated

in the development and progression of several malignancies,

including lung cancer (74), breast cancer (75), colorectal cancer

(76), and meningiomas (77).

Further analyses revealed extensive immune cell infiltration

within the TMEs across different risk subgroups. Notably, KIRC

displays distinct TME characteristics and clinical behavior

compared to most other solid tumors (78). While in many

malignancies high CD8+ T cell infiltration correlates with

favorable prognosis, KIRC exhibits a paradoxical association

where elevated CD8+ T cell presence is linked to poorer clinical

outcomes (79). This discrepancy may be attributed to the

concurrent enrichment of immunosuppressive cell types, such as

Tregs and TAMs, which can mitigate the antitumor efficacy of

cytotoxic T cells (80). In addition, gene-specific immune

associations were observed: FOXM1 showed significant positive

correlations with macrophage infiltration, while ATP1A1 was

notably associated with B cell populations. Mechanistic insights

from Rong Xu et al. (81)demonstrated that PLK1-mediated

phosphorylation activates FOXM1 to promote pro-tumorigenic

macrophage polarization by regulating inflammatory cytokine

production, while simultaneously upregulating PD-L1 expression,

thereby enhancing immune evasion and metastatic potential.

Moreover, we found that in the high-risk group of KIRC, the

negative correlation between CD8+ T cell infiltration and poor

prognosis is mainly due to the functional exhaustion of CD8+ T cells

rather than abnormal numbers: in the high-risk group, the

expression of the immune checkpoint molecule PDCD1 (PD-1) is

significantly upregulated, and the TIDE score is elevated, indicating

that CD8+ T cells are in a state of functional impairment due to

continuous immunosuppressive signals. Although they are

infiltrated, they cannot effectively exert anti-tumor effects. At the

same time, metabolic disorders such as ammonia accumulation and

hypoxia in the high-risk group further damage CD8+ T cell activity

by activating the HIF-1 signaling pathway, leading to a state of

“presence but paralysis” of function, which results in the negative

correlation, and this contradiction does not depend on the co-

infiltration of Tregs (82). Subsequently, we analyzed the expression

differences of immune checkpoint molecules in patients of different

risk groups. In contrast, the expression levels of CD274 (PD-L1),

HAVCR2 (TIM-3), and HHLA2 in the high-risk group were

significantly lower than those in the low-risk group, while the

expression of PDCD1 (PD-1), TMIGD2, and TIGIT was

significantly higher. The downregulation of PD-L1 may reflect the

tumor’s active avoidance of immune recognition by reducing

immune exposure and antigen presentation. In contrast, the high

expression of PD-1 and TIGIT indicates that immune cells are

under prolonged antigen stimulation, exhibiting a state of deep

exhaustion (83, 84). However, in this case, PD-1 is upregulated in

the high-risk group, while PD-L1 is downregulated, suggesting a

possible alteration in the immune evasion mechanism or a shift of

the tumor toward a PD-L1-independent inhibitory pathway.

Moreover, TIDE analysis indicated that HR patients exhibited
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significantly higher scores, suggesting an elevated propensity for

tumor immune escape and potentially reduced responsiveness to IC

blockade therapies. At the genomic level, HR patients demonstrated

significantly increased mutation frequencies in VHL (56% vs. 45%)

and PBRM1 (46% vs. 39%). Loss of VHL function activates hypoxia-

inducible factor (HIF) signaling by stabilizing HIF-a proteins,

t h e r eby p romot ing tumor ang iog ene s i s , me t abo l i c

reprogramming, and ammonia accumulation (85, 86).

Concurrently, PBRM1 mutations, by disrupting SWI/SNF

chromatin remodeling complex activity, may alter chromatin

accessibility and impact the transcriptional regulation of

ammonia metabolism-related genes (87). The synergistic effects of

these mutations contribute to enhanced tumor heterogeneity,

metabolic dysregulation, and adverse clinical outcomes.

Furthermore, the elevated TMB and increased MSI observed in

the HR group indicate a heightened level of genomic instability,

potentially enhancing tumor immunogenicity through increased

neoantigen generation (88). However, the presence of a profoundly

immunosuppressive tumor microenvironment (TME) in these

patients may attenuate the anticipated immunogenic benefits,

suggesting the potential therapeutic advantage of combinatorial

strategies that concurrently target DNA repair mechanisms (e.g.,

PARP inhibitors) and IC pathways (89). Copy number variation

(CNV) analysis revealed significantly greater genomic instability in

the HR subgroup compared to the LR cohort. Notably, lower

ATP1A1 expression was positively correlated with enhanced

sensitivity to certain chemotherapeutic agents. These data imply

that ATP1A1 expression levels could serve as a predictive

biomarker for chemotherapy response, potentially through its

regulatory effects on ion transport dynamics and membrane

integrity. Moreover, distinct CNV profiles between risk groups may

modulate drug target gene expression and key oncogenic signaling

pathways, offering novel insights for the development of personalized

therapeutic approaches. The implications of these differential CNV

landscapes in precision oncology warrant further investigation.

Natural compounds represent a promising reservoir for cancer

chemoprevention and therapy. In this study, molecular docking

analyses based on the structural configuration of ATP1A1

identified Emodinanthrone as a promising candidate compound.

Docking results demonstrated favorable binding affinity and robust

molecular interactions between ATP1A1 and Emodinanthrone.

While this computational prediction suggests strong binding

potential, functional inhibition of ATP1A1 requires further

validation through wet laboratory experiments. Previous research

has established that Emodinanthrone functions as a biosynthetic

precursor for hypericin (90), a photodynamic therapeutic agent with

demonstrated efficacy across various malignancies (91–94). These

findings suggest that Emodinanthrone holds potential for improving

clinical outcomes in cancer treatment. However, its direct therapeutic

application in KIRC remains to be fully validated, necessitating

further preclinical and clinical investigations to assess its efficacy

and safety profiles. Additionally, elucidating the mechanistic

interplay between Emodinanthrone’s binding to ATP1A1 and its

downstream pharmacodynamic effects will be essential for

determining its clinical relevance in oncological therapy.
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In the pan-cancer analysis of ATP1A1, we also discovered the

heterogeneity of ATP1A1, showing completely opposite effects in

different tumor types. For example, the expression of ATP1A1 is

significantly upregulated in liver hepatocellular carcinoma (LIHC),

exerting a carcinogenic effect. Pradeep Kumar Rajan et al.

demonstrated that physiological ATP1A1 expression in HCC cells

exerts antitumor effects via epigenetic regulation and enhancement of

autophagy, suggesting that ATP1A1 dysregulation may contribute to

metabolic reprogramming and tumor progression. Further

characterization of the immune microenvironment across

malignancies revealed distinct immunological patterns in KIRC,

typified by elevated infiltration of M2-polarized macrophages, resting

memory CD4+ T cells, and mast cells, alongside reduced infiltration of

Tregs and follicular helper T cells (Tfh). Flow cytometry-based

profiling of tumor-infiltrating lymphocytes across cancers confirmed

substantial infiltration of both CD8+ and CD4+ T cells in KIRC (95).

Notably, in head and neck cancers, high infiltration of M2

macrophages and resting memory CD4+ T cells is associated with

poor clinical outcomes (96), whereas Treg-mediated suppression of

effector T cell function can dampen antitumor immunity (97),

highlighting the complex and heterogeneous immunobiology across

different tumor types. Multivariate survival analyses established

ATP1A1 as a significant prognostic factor, highlighting the necessity

for functional verification experiments to further elucidate its

therapeutic potential in KIRC.

Although this research demonstrated the prognostic utility of

the AICD scoring system through multi-cohort validation and

revealed its associations with immune microenvironmental

features and genomic alterations, several limitations must be

acknowledged. First, the analyses were predominantly based on

retrospective datasets such as TCGA and E-MTAB-1980. Although

cross-validation across independent cohorts minimized potential

biases, the applicability of these findings to real-world, prospective

clinical populations remains to be confirmed. Second, although

bioinformatic analyses implicated AICD-related genes in pathways

(e.g., HIF-1 signaling and oxidative stress-mediated cell death), the

functional roles and regulatory networks of these genes have yet to

be validated through experimental approaches, such as patient-

derived organoid models or in vivo systems. Third, immune

microenvironment character izat ion rel ied heavi ly on

computat ional deconvolut ion algori thms and spat ia l

transcriptomic datasets with limited sample sizes (e.g.,

GSE139555 comprising only three patients), which may

inadequately represent the full heterogeneity of KIRC. Future

research should aim to incorporate larger sample sizes, multi-

omics integration, and experimental validation to strengthen the

biological and clinical relevance of these findings.

This study presents a comprehensive investigation into the

prognostic significance of AICD-related genes in KIRC. A

prognostic model centered on ATP1A1 exhibited strong

predictive performance in external validation cohorts. Notable

differences were observed between risk groups in terms of

immune microenvironment composition, genomic instability, and

immune checkpoint expression. Functional assays confirmed that

ATP1A1 knockdown significantly promoted tumor cell
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proliferation, migration, and invasion. Critically, molecular docking

identified the natural compound Emodinanthrone as a high-affinity

ligand for ATP1A1, suggesting its potential as a novel therapeutic

agent for targeting the ammonia-immunometabolic axis in KIRC.

Additionally, pan-cancer analyses revealed ATP1A1’s involvement

in metabolic regulation, therapeutic target, and immune cell

infiltration, offering mechanistic insights into KIRC pathogenesis.

Collectively, these findings identify ATP1A1 as a promising

prognostic biomarker and therapeutic target, paving the way for

personalized treatment strategies in KIRC.
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