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Background and aims: Artificial intelligence (AI) is rapidly gaining traction in

gastroenterology, particularly in the management of inflammatory bowel disease

(IBD). Given the complexity of IBD care, AI offers the potential to enhance

diagnosis, monitoring, and treatment. This review aims to summarize recent

developments in AI applications for IBD and identify key challenges and

opportunities for future research and clinical implementation.

Methods: A narrative literature review was conducted, incorporating recent

studies utilizing AI —including machine learning (ML) and deep learning (DL) —

across various aspects of IBD care.

Results: AI has demonstrated utility in multiple domains of IBD management,

including endoscopic disease activity assessment, histological evaluation,

imaging interpretation, prediction of disease course, treatment response, and

real-world data integration. Despite promising accuracy and utility, most models

remain in early development stages and lack widespread clinical validation.

Major barriers include data heterogeneity, limited generalizability, and

regulatory uncertainties.

Conclusion: AI has significant potential to revolutionize IBD care. Continued

multidisciplinary collaboration, validation in diverse clinical settings, and

integration into clinical workflows are critical for realizing its full impact.
KEYWORDS

artificial intelligence, inflammatory bowel disease, machine learning, digital biomarkers,
personalized medicine artificial neural network, APR: algorithm-predicted remission,
BPNN: back-propagation neural network, CART: classification and regression trees
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1 Introduction

Inflammatory Bowel Disease (IBD), encompassing Crohn’s

disease (CD) and ulcerative colitis (UC), is a chronic, immune-

mediated and relapsing condition that significantly impacts on

patients’ quality of life (1, 2). IBD is a multifactorial disease

influenced by genetic, immune, and environmental factors. While

UC typically presents with bloody diarrhea, CD is more often

associated with watery diarrhea and nonspecific symptoms.

Diagnosis relies primarily on colonoscopy with terminal ileum

intubation. Due to their low sensitivity and specificity, laboratory

tests are mainly supportive in ambiguous cases. Among imaging

techniques, magnetic resonance enterography (MRE) is preferred

for its enhanced sensitivity in perianal disease and its avoidance of

radiation exposure (3).

Despite significant advances in therapeutics, accurate disease

monitoring and personalized treatment strategies remain major

challenges in clinical practice. Patients frequently encounter

unpredictable disease flares, variable responses to therapy, and a

substantial burden related to frequent clinical visits and invasive

monitoring techniques (4).

Traditional biomarkers, such as C-reactive protein (CRP) and

fecal calprotectin (FC), endoscopy, imaging techniques (e.g.

ultrasonography, magnetic resonance), and histology play a role

in disease diagnosis and monitoring but have limitations in

providing real-time, patient-specific insights (5). However, their

utility is limited by poor accuracy, delayed response to

inflammatory changes, and an inability to provide continuous

real-time insights into disease activity predicting flares or

treatment success. Endoscopic evaluation remains the gold

standard for assessing mucosal healing (6), yet it is invasive,

costly, and impractical for frequent monitoring (7, 8).

Although mucosal healing is a major therapeutic target in IBD

and a reliable predictor of clinical outcomes, it does not necessarily

reflect histological remission. The clinical relevance of including

histological healing as an additional target is still under

investigation, and its incremental benefits remain to be clearly

defined (9). These limitations highlight the urgent need for more

advanced, patient-centered tools capable of offering dynamic

disease tracking (10).

The rapid evolution of digital health technologies, including

wearable sensors, smartphone applications, and remote monitoring

systems, has paved the way for digital biomarkers-quantifiable, patient-

generated data that provide objective insights into disease status (11).

When coupled with artificial intelligence (AI) and machine learning

(ML), these biomarkers can revolutionize IBD management by

enabling early detection of disease activity, predicting treatment

response, facilitating personalized interventions and decreasing

unnecessary healthcare utilization and costs (12). AI-driven models

can integrate multi-source data (e.g., symptom tracking, physiological

parameters) to refine risk stratification and therapeutic decision-

making, reducing the reliance on invasive procedures and episodic

clinical assessments (13).

This review aims to critically explore the potential role of

AI-powered digital biomarkers in transforming IBD management.
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We discuss current advancements, clinical applications, potential

benefits, and existing challenges, highlighting how these

innovations can contribute to a more precise, patient-centered

approach to IBD care. Furthermore, we address the limitations,

ethical considerations, and future research directions necessary to

fully harness the power of digital health in gastroenterology.
2 Digital biomarkers

While traditional clinical indices, biomarkers, and endoscopic

evaluations remain integral to patient care, they often fail to fully

capture the complex, fluctuating, and multidimensional nature of

IBD at the individual level. The advent of digital biomarkers,

particularly when integrated with AI, is revolutionizing

personalized care by facilitating continuous, real-time monitoring

and enabling earlier, more precise interventions (14).

Digital biomarkers are defined as objective, quantifiable

physiological and behavioral data collected and measured through

digital devices such as smartphones, wearable sensors, remote

monitoring tools, and advanced imaging technologies (15). In

contrast to conventional biomarkers, which provide episodic,

point-in-time data, digital biomarkers offer a dynamic,

continuous view of disease activity, detecting subtle physiological

changes that may precede clinical symptoms.

FC is a specific marker for intestinal mucosal inflammation and

is routinely measured in stool samples, while CRP and interleukin-6

(IL-6) are nonspecific markers of inflammation associated with

inflammatory bowel disease–related inflammation (16).

IBD management has historically relied on traditional

biomarkers such as FC, CRP, and endoscopic findings. While

these biomarkers remain fundamental, they provide episodic

snapshots of disease activity rather than a continuous picture

(17). Digital biomarkers can offer a powerful complement by

filling critical gaps in real-time disease monitoring and

patient engagement.

Traditional biomarker assessment is usually performed during

scheduled clinical visits, which can miss fluctuations in disease

activity between appointments. In contrast, digital biomarkers —

collected via wearables, smartphone apps, or remote sensors —

enable continuous, real-time monitoring of physiological and

behavioral changes. This dynamic tracking captures subtle shifts

in disease activity, facilitating earlier detection of disease flares,

enabling proactive interventions, and allowing for more precise,

individualized therapy adjustments (Table 1). However, continuous

real-time recording of physiological and behavioral changes may

cause some patients to become overly fixated on their data,

potentially increasing anxiety and undermining the intended

benefits of digital tracking by decreasing adherence (e.g. checking

CF at home).

In a study conducted by Hirten et al. 309 participants from 36

different states wore devices (Apple Watch, Fitbit, Oura Ring)

capable of non-invasively and passively acquiring longitudinal

heart rate (HR), resting heart rate (RHR), heart rate variability

(HRV), steps and oxygenation. HR and RHR are higher during
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1637159
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


De Deo et al. 10.3389/fimmu.2025.1637159
inflammatory and symptomatic phases while daily steps are lower

during inflammatory phases. Wearable metrics identify subclinical

inflammation and the presence of inflammation up to 7 weeks

before flare during symptomatic phases (18). In a one-year

prospective study on the use of biosensors by Yvellez et al., 91

outpatients and inpatients with IBD were analyzed. Daily steps, HR

and sleep data were collected with a Fitbit device and patients

entered daily information on a smart phone app using the Wong-

Baker FACES™ pain rating scale (WB) and visual analogue scale
Frontiers in Immunology 03
questions related to sleep quality and general well-being. No

association was found between median HR variability, steps or

number of awakenings and next-day WB score (OR 9.7, p = 0.685;

OR 0.89, p = 0.51; OR 1.05, p-value = 0.84 respectively). However,

resting HR was significantly associated with reported pain the next

day (OR 1.05, p = < 0.001); each 1 bpm increase in daily resting HR

increased the odds of experiencing pain the next day by 5% (19).

The reliance on periodic blood tests, stool sampling, and

invasive endoscopic procedures imposes both logistical and

psychological burdens on patients, potentially affecting adherence

and quality of life. Digital biomarkers provide a non-invasive,

passive alternative, collected without disrupting daily activities.

This patient-centered approach may promote adherence to

monitoring protocols, enhancing patient engagement and

supporting the principles of individualized care.
2.1 Correlation with standard biomarkers

Emerging evidence indicates strong correlations between specific

digital biomarkers and traditional indicators of IBD activity. For

example, continuous monitoring of physiological parameters such as

heart rate variability, sleep patterns, and localized skin temperature

has demonstrated potential to reflect systemic inflammatory states

associated with IBD (20, 21). Additionally, wearable devices capable

of measuring CRP and IL-6 in sweat demonstrated feasibility as real-

time inflammatory monitors, correlating well with serum-based
TABLE 1 Traditional biomarkers vs digital biomarkers in
IBD management.

Feature Traditional
Biomarkers

Digital
Biomarkers

Data Collection Episodic (clinic-based) Continuous (real-world,
remote)

Invasiveness Moderate to high (blood
draws, stool samples,

endoscopy)

Non-invasive
(wearables, apps,
remote sensors)

Patient Burden High Low

Response Time Delayed (dependent
on appointments)

Immediate or near
real-time

Clinical Correlation Established Emerging but promising
(e.g., correlated with

CRP, FC)

Personalisation Potential Moderate High
FIGURE 1

Key definitions in artificial intelligence and machine learning. Overview of the most commonly used terms in the field of AI as applied to healthcare,
including artificial intelligence (AI), machine learning (ML), supervised and unsupervised learning, deep learning (DL), and neural networks. These
definitions provide a conceptual framework for understanding how AI technologies can be developed and applied in clinical research and practice.
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assays (22). These data streams enable continuous and remote disease

monitoring, shifting from sporadic clinic-based evaluations to

dynamic, personalized care.

Shahub et al. in 2024 enrolled 33 IBD patients who weremonitored

for 40–130 minutes with a proprietary wearable sensor device used to

measure CRP, IL-6 and calprotectin. The analysis of the linear

relationship between sweating and serum calprotectin (R2 = 0.7195),

C-reactive protein (R2 = 0.615) and IL-6 (R2 = 0.5411) demonstrated a

strong to moderate relationship between the various means supporting

the clinical utility of sweating as a non-invasive means for continuous

measurement correlated with standard inflammatorymarkers in serum

and feces (22). Sossenheimer et al., in another one-year prospective

study on the use of biosensors in IBD, provided 194 outpatients and

inpatients with IBD with a Fitbit and a proprietary smartphone app for

data collection and compilation of patient-reported outcomes. Patients

recorded a lower number of daily steps (mean 6062 vs. 8541, p < 0.001)

in the week prior to CRP or HR elevation, predictive of elevated

biomarker collection within 7 days (area under the curve [AUC] for

steps = 0.70, 95%CI = 0.65-0.75). In contrast, there was no difference in

daily resting heart rate (mean 66.9 vs. 66.3, p = 0.42) (23).

By integrating digital biomarkers with conventional laboratory and

imaging data, clinicians can enhance diagnostic precision, refine disease

phenotyping, and strengthen predictive models for flare-ups and

treatment response. This convergence supports a shift from static,

visit-based assessments toward dynamic, remote disease management -

enabling earlier detection of relapses, timely therapeutic adjustments,

and more proactive, individualized care strategies (24).
3 The role of AI in IBD: unlocking
hidden patterns

Artificial intelligence refers to computational systems capable of

performing tasks traditionally requiring human intelligence, such as

learning, problem-solving, and prediction. AI encompasses ML and

its subfields, including supervised, unsupervised, reinforcement,

and deep learning (DL) (Figure 1). AI algorithms are trained on

diverse datasets; the larger and more heterogeneous the dataset, the

more accurate and generalizable the models are in clinical settings.

In the context of IBD, AI has the potential to advance precision

medicine by enhancing diagnostics and informing therapeutic

decisions (25). As illustrated in the Figure 1, ML is a key subfield

of AI, focused on algorithms that learn from structured data. Unlike

traditional rule-based AI systems, ML algorithms improve their

performance over time through data exposure, enabling them to

identify meaningful patterns and build predictive models. The

figure also provides a brief overview of ML applications in the

context of IBD, highlighting its potential to support digital

biomarker discovery and personalized disease monitoring.

The convergence of Digital Health (DH) and AI in the

management of IBD marks a paradigm shift, opening unprecedented

opportunities to enhance patient care and outcomes. DH includes

innovations such as mobile health platforms, wearable devices,

telehealth, and telemedicine, which make healthcare more accessible,

efficient, and patient-centered (26).
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Elkjaer et al. in the largest web-based intervention RCT,

randomized 333 patients (233 Danes and 100 Irish) with mild/

moderate UC and being treated with 5-aminosalicylic acid to a web

group that received disease-specific education and “Constant-care” via

http://www.constant-care.dk or to a control group that continued

standard of care (SoC) for 12 months. Overall, there was no notable

difference in hospitalizations, surgeries, or adverse events. In a

secondary analysis, the authors observed a numerically higher

frequency but significantly shorter duration of relapses in the

intervention group compared to the SoC group [Denmark:

median 18 days (95% CI, 10-21) vs 77 days (95% CI, 46-108),

p<0.001; Ireland: median 30 days (95% CI, 2-37) vs 70 days (95%

CI, 7-217), p<0.03]. The number of acute and routine visits to the

outpatient clinic was lower in the web group than in the control

group, saving 189 euros/patient/year (27). Using the same

“Constant-care” platform, Carlsen et al. evaluated the effectiveness

of web-based management versus SoC in two different cohorts. The

first included 53 non-biological treatment patients (27 eHealth/26

control) focused on monitoring disease activity in children/

adolescents with IBD (young.constant-care.com, YCC). They

found no differences between the groups in treatment escalation

and disease activity (e.g. symptoms, biomarkers). The number of

total outpatient visits (mean: eHealth 3.26, SEM 0.51; control 7.31,

SEM 0.69; P < 0.0001) and IBD-related school absences (mean days:

eHealth 1.6, SEM 0.5; control 16.5, SEM 4.4; P < 0.002) were

significantly lower in the eHealth group. No differences were found

in medical adherence and QoL, and none of the patients or parents

felt insecure in using the eHealth system (28). In the second cohort,

patients with IBD (19 CD and 10 UC in the eHealth group/16 CD, 4

UC and 1 IBD-Unclassified in the control one) aged 10 to 17 years

treated with infliximab (IFX) were prospectively included. Starting

4 weeks after the last infusion, patients reported weekly symptom

scores (via the abbreviated pediatric CD activity index, abbrPCDAI,

and the pediatric UC activity index, PUCAI) and provided a stool

sample for FC analysis, defining a new total inflammatory load

scoring algorithm (TIBS). Based on the scores obtained, the eHealth

program calculated a total inflammatory burden value that

determined the timing of the next IFX infusion with 94 infusions

in the eHealth group (mean interval 9.5 weeks; SD 2.3) compared

with 105 infusions in the control group (mean interval 6.9 weeks;

SD 1.4); treatment intervals were longer in the eHealth group

(P < 0.001) (29).

For individuals living with IBD, DH not only expands access to

care but also empowers them to take an active role in their health

journey, promoting preventive strategies, facilitating earlier

diagnosis, optimizing chronic disease management, and easing

the long-term financial burden. At the same time, AI is reshaping

the landscape of medical research and clinical practice (30).
3.1 Machine learning and predictive
analytics

ML, a core component of AI, decodes complex patterns within

large datasets, transforming raw data into actionable insights.
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ML models trained on real-world diagnostic and outcome data can

accurately predict disease trajectories, offering significant potential

for early intervention, personalized treatment, and continuous

monitoring in IBD (31).

Given the intricate and evolving nature of IBD, such predictive

capabilities could redefine early intervention, personalized

treatment planning, and continuous disease monitoring.

Together, DH and AI represent more than technological

advances: they embody a new era in which precision medicine

and patient empowerment converge to transform the future of

IBD care.

ML methodologies include supervised and unsupervised

learning. In supervised learning, models are trained on labeled

datasets, learning input-output relationships to predict novel

outcomes. Common approaches include Random Forest (RF) and

Support Vector Machines (SVM), widely used in biomedical fields

(31). Unsupervised learning, on the other hand, identifies patterns

autonomously in unlabeled data, revealing new disease phenotypes

and predictors.

DL, an advanced subset of ML, eliminates manual feature

engineering, using layered neural networks to extract and amplify

critical features. DL models excel in handling complex, high-

dimensional biomedical data, enhancing predictive power and

scalability (32).

For example, Gardiner et al. used an explainable ML approach

to integrate demographic, clinical, and multi-omic data (genomic

and transcriptomic) to predict differences in drug response among

patients. Their model highlighted how factors specific to each

patient — such as gender, age, and disease phenotype — affect

drug efficacy. Additionally, it identified genetic polymorphisms

linked to therapeutic responses, offering valuable insights for

developing personalized treatment strategies (33). Sahoo et al.

instead demonstrated how ML models offer the opportunity to

identify barrier-protective therapies and predict candidate agents

for clinical trials. They showed that AI can predict genes related to

epithelial barriers, such as PRKAB1, the b1 subunit of the metabolic

master regulator, AMPK, which might represent a novel target for

gut barrier-protective therapies (34).

In 2024, two notable studies examined the use of ML in

histological analysis for IBD. Peyrin-Biroulet et al. used an

automated image analysis approach combined with ML to

evaluate histological activity based on the Nancy Histological

Index (NHI) in 200 images from UC patients. Their AI system’s

performance was compared with that of four histopathologists,

showing strong correlations despite limitations in the training

dataset (35). In another study, Liu et al. explored AI-assisted

histology for predicting therapeutic responses in pediatric patients

with UC. Their ML model, through 18 histologic features,

accurately predicted steroid-free remission in patients receiving

mesalamine therapy, highlighting AI’s potential to customize

treatment strategies for IBD (36).

A growing body of research has explored the application of AI

in the management of IBD, with promising results across diagnostic

tasks , disease act ivi ty assessment , and predict ion of

therapeutic response.
Frontiers in Immunology 05
3.2 The expanding role of AI in IBD
detection and classification

AI is rapidly transforming the diagnostic landscape of IBD, with

ML algorithms and convolutional neural networks (CNNs)

increasingly applied to genomic, imaging, endoscopic, and

proteomic data to enhance diagnostic accuracy and efficiency

(37). A key challenge in IBD diagnosis is distinguishing CD from

UC, traditionally based on anatomical and clinical features. AI

models trained on molecular and omics data are showing promise

in improving differential diagnosis (38).

AI and ML are also being used to explore genetic variants’ role

in disease pathophysiology, supporting the shift toward molecularly

informed, precision diagnostics in IBD. Studies highlight the

potential of AI in improving diagnosis and risk prediction by

analyzing molecular and imaging data. Table 2 summarizes 23

studies, ordered chronologically, that employed various AI

techniques (e.g., support vector machines, random forest, artificial

neural networks, and deep learning) to assess IBD diagnosis and

risk prediction. Of 18 studies focused on IBD diagnosis, 11 focus on

both UC and CD (39, 40, 42, 44, 50, 54, 55, 60, 61), 4 only on CD

(45, 52, 56, 57), 3 only on UC (41, 58, 59) and 2 on pediatric IBD

(47, 51). Regarding risk prediction, 5 studies address both UC and

CD (43, 46, 49), with 2 focusing solely on CD (48, 53).

Studies such as that by Mossotto et al. achieved diagnostic

accuracies above 80% in differentiating CD from UC (47), while

image-based approaches (e.g., Tong et al.) reached precision values

as high as 99% for UC when using CNNs (60). In addition, multi-

omics integration and immunophenotyping strategies have

demonstrated high discriminatory power in classifying IBD as in

the study by Rubin et al. in which using CITRUS, a supervised ML

algorithm, they analyzed single-cell immunophenotyping data from

peripheral blood mononuclear cells and distinguished CD from UC

with an AUC of 0.845 (95% CI: 0.742-0.948) in a cohort of 68

patients with IBD (54). Romagnoni et al. analyzed gene expression

profiles from a large cross-sectional cohort (18,227 CD patients and

34,050 healthy controls) using gradient-boosted trees and artificial

neural networks. Their predictive model, based on single nucleotide

polymorphism data, yielded an AUC of 0.80 for CD diagnosis (53).

In a smaller study, Duttagupta et al. used a SVM classifier to analyze

microRNA expression profiles from 20 patients with UC and 20

healthy individuals. They achieved an impressive predictive

accuracy of 92.8%, with a specificity of 96.2% and sensitivity of

89.5% in distinguishing UC patients from healthy controls (41).

These models , incorporating diverse data such as

transcriptomics, microRNA profiles, immunogenetics, and

endoscopic imaging, demonstrate the feasibility of AI in

distinguishing between CD, UC, and healthy controls, achieving

high accuracy and AUC across various populations and study

designs. However, performance varies depending on AI

methodology and data modality (molecular vs. imaging),

underscoring the need to tailor AI tools to specific clinical contexts.

By the other hand, Five-Nations multinational survey study

evaluated the consistency of gastroenterologists in applying the

Montreal classification for Crohn’s disease. Involving 59 IBD
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TABLE 2 AI in diagnosis and risk prediction of IBD.

Author, Year AI classifier Modality Study Design Outcome, Study Results

Geurts et al., 2005 (39) RF vs SVM Proteomic
Mass Spectrometry

Prospective cohort, 30 CD,
30 UC

Diagnosis of IBD. RF model: sensitivity
81.67%, specificity 81.17%. SVM: sensitivity
87.92%, specificity 87.87%.

Bielecki et al., 2012 (40) SVM vs pathologist Raman spectroscopic
imaging of epithelium cells

Cross-selectional, 14 CD, 13
UC, 11 controls

Diagnosis of IBD. Using SVM, it was
possible to separate between healthy control
patients, patients with CD, and patients
with UC with an accuracy of 98.90%

Duttagupta et al., 2012 (41) SVM (no comparator) MicroRNAs Cross-sectional, 20 UC,
20 controls

Diagnosis of UC. Accuracy 92.8%,
specificity 96.2%, sensitivity 89.5% of SVM
classifier in distinguishing UC from
healthy individuals

Cui et al., 2013 (42) Recursive SVM vs
unsupervised
learning strategy

16s rRNA gene analysis Cross-selectional, 124 IBD,
99 controls

Diagnosis of IBD. Selection level of 200
features in the best leave-one-out cross-
validation result with accuracy = 88%,
sensitivity = 92%, specificity = 84%.

Wei et al., 2013 (43) SVM with GBT vs simple
log odds

Genetics, ImmunoChip Cross-sectional, 30,000 IBD,
22,000 controls

Risk of IBD. AUC = 0.862 (CD), 0.826
(UC) with SVM. AUC = 0.802 (CD), 0.782
(UC) with GBT, resulting in
comparable performance

Hübenthal et al., 2015 (44) SVM vs RF MicroRNAs Cross-sectional, 40 CD, 36
UC, 38 controls

Diagnosis of IBD. Median holdout-validated
accuracy ranging from 0.75 to 1.00 and 0.89
to 0.98, respectively with expected
classification error rates of 3.1 and 3.3%.

Daneshjou et al., 2017 (45) Naïve Bayes, NN, RF
vs CAGI

Exome sequencing Cross-sectional, 64 CD,
47 controls

Diagnosis of CD. In CAGI 111 exomes were
derived from CD patients with top AUC
= 0.87.

Isakov et al., 2017 (46) RF, SVM, XGB vs glmnet Microarray & RNA-seq
gene expression

Cross-sectional, 180 CD,
149 UC, 90 controls

Risk of IBD. Classifying score prediction of
16390 genes with AUC = 0.829; sensitivity
= 0.577, specificity = 0.88, accuracy = 0.808.

Mossotto et al., 2017 (47) SVM vs
Linear Discriminant

Endoscopic and
histologic inflammation

Prospective cohort, 287 IBD
pediatric patients

Diagnosis of IBD. Accuracy of 82.7% with
AUC of 0.87 diagnosing CD or UC.

Pal et al., 2017 (48) Naïve Bayes with ML vs
CAGI 4 method

Genotyper from Exome
Sequencing Data

Cross-selectional, 64 CD,
47 controls

Risk of CD. AUC = 0.72 for predicting risk
of Crohn’s disease using the SNP model.

Yuan et al., 2017 (49) Sequential Minimal
Optimization vs
DisGeNET (4.0)

Gene expression datasets Cross-sectional, 59 CD, 26
UC, 42 controls

Risk of IBD. Analyzing 21 genes using
minimum redundancy maximum relevance
and incremental feature selection with
highest total prediction accuracy = 97.64%
using feature set.

Han et al., 2018 (50) RF vs LR, CORG Gene expression profiles Cross-sectional, 24 CD, 59
UC, 76 controls

Diagnosis of IBD. Median AUC of gene-
based feature ranging from 0.6 to 0.76.

Abbas et al., 2019 (51) RF vs network-based
biomarker discovery

Metagenomic biopsy
samples datasets of new-
onset pediatric

Cross-sectional,
657pediatric IBD,
316 controls

Diagnosis of IBD. By Random Forest
classifiers the highest AUC = 0.77.

Aoki et al., 2019 (52) Deep CNN
(no comparator)

Wireless capsule
endoscopy image

Retrospective cohort, 115
IBD petients

Diagnosis of CD. AUC for detection of
erosions and ulcerations was 0.958 (95%CI:
0.947-0.968). The sensitivity, specificity, and
accuracy of the CNN were 88.2% (95%CI:
84.8-91.0), 90.9% (95%CI: 90.3-91.4), and
90.8% (95%CI: 90.2-91.3), respectively

Romagnoni et al., 2019 (53) ANNs vs penalized LR
and GBT

Genetics, ImmunoChip Cross-sectional, 18,227 CD,
34,050 controls

Risk of CD. Using SNPs final predictive
model achieved AUC = 0.80.

Rubin et al., 2019 (54) CITRUS supervised ML
(no comparator)

Mass cytometry peripheral
blood cells +
intestinal biopsies)

Cross-sectional, 68
IBD patients

Diagnosis of IBD. 8-parameter immune
signature distinguishing CD from UC; AUC
= 0.845 (CI: 0.742–0.948).

(Continued)
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experts from five countries, the study revealed substantial inter-

rater variability: agreement on disease location was only 59.4%, and

on disease behavior just 46.8%. When the same case scenarios were

analyzed using an AI-based algorithm, agreement levels improved

modestly (location 68.1%, behavior 59.4%). These findings highlight

both the promise and current limitations of IA in IBD classification.

While AI tools can enhance standardization and reduce human

variability, experienced gastroenterologists still achieved higher

accuracy, especially when considering clinical subtleties. Thus, AI

should be viewed as a valuable complement (but not a replacement)

for expert clinical judgment in complex diagnostic scenarios (62).
3.3 AI-driven assessment in IBD

Assessment of disease activity in IBD requires integration of

clinical, biochemical, endoscopic, and histologic parameters.

Traditional tools include clinical indices (e.g., Harvey-Bradshaw

Index for CD, Mayo Score for UC), biomarkers (CRP, FC),

endoscopic scores (e.g., Mayo Endoscopic Score for UC, Simple

Endoscopic Score for CD), and histologic indices (e.g., Nancy

Histological Index, Robarts Histopathology Index) (9, 63). While

foundational, these tools are limited by subjectivity, recall bias, and

interobserver variability. In this context, AI offers enhanced precision,

reproducibility, and integration of multidimensional data.
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Table 3 summarizes 23 studies applying AI to IBD activity and

severity assessment. There were 12 studies that focused on

endoscopic inflammation in IBD (84) of which 4 focused only on

CD (64, 65, 76, 78) and 7 on UC (71, 73, 75, 77, 79, 81, 86). Other

focuses were clinical disease activity (67), 4 studies that assessed

disease activity by biomarkers (68, 72, 74, 82), 3 studies on

radiological activity of disease (66, 69, 83), and 3 studies that

focused on histological inflammation (70, 80, 85). Data sources

included electronic health records, molecular datasets, endoscopy,

imaging, and histology from confocal endomicroscopy.

Iacucci et al. have developed a CNN from 1090 endoscopic

videos of 283 patients with IBD. The endoscopic activity of the UC

has been classified by experts using the Ulcerative Colitis

Endoscopic Index of Severity (UCEIS) and the Paddington

International virtual ChromoendoScopy ScOre (PICaSSO). The

AI system detected endoscopic remission (ER) (UCEIS ≤ 1) in

white light endoscopy (WLE) videos with a sensitivity of 72%,

specificity of 87% and area of receiver characteristic operating curve

(AUROC) of 0.85; for the detection of ER in virtual chromo-

endoscopy (VCE) videos (PICaSSO ≤ 3), sensitivity was 79%,

specificity 95% and AUROC 0.94. Histological remission

prediction was similar between WLE and VCE videos (accuracy

between 80% and 85%) and the stratification of flare risk performed

by the model was similar to that of endoscopic scores evaluated by

the physician (84). Likewise, in an ordinal CNN analysis of wireless
TABLE 2 Continued

Author, Year AI classifier Modality Study Design Outcome, Study Results

Smolander et al., 2019 (55) DBNs vs SVM Gene expression datasets Cross-sectional, 59 CD, 26
UC, 42 controls

Diagnosis of IBD. DBN accuracy: UC
97.06%, CD 97.07%. Combined DBN+SVM:
UC 97.06%, CD 97.03%.

Wang et al., 2019 (56) AVADx vs two GWAS-
based CD

Whole exome/Genome
sequncing data

Cross-sectional, 64 CD,
47 controls

Diagnosis of CD. AVADx highlighted
known CD genes, including NOD2, and
new potential genes identifying 16% (at
strict cutoff) of CD patients at 99%
precision and 58% (at default cutoff)
with 82%

Wingfield et al., 2019 (57) RF vs SVM Metagenomic data Cross-sectional, 668
CD patients

Diagnosis of CD. RPT score: CD RF = 0.60,
SVM = 0.58; UC RF = 0.70, SVM = 0.48.

Khorasani et al., 2020 (58) SVM vs RPT
feature selection

Gene expression datasets Cross-sectional, 146 UC,
60 controls

Diagnosis of UC. Perfect detection of active
cases with average precision of 0.62 in
inactive cases.

Li et al., 2020 (59) RF vs ANN Gene expression profiles Cross-sectional, 193 UC,
21 controls

Diagnosis of UC. RF (1 downregulated and
29 upregulated exspressed genes) & ANN
(expressed genes weights) both effective
with AUC = 0.9506.

Tong et al., 2020 (60) RF vs CNN Endoscopic images Retrospective cohort, 875
CD, 5128 UC

Diagnosis of IBD. RF sensitivities/
specificities of UC/CD were 0.89/0.84, 0.83/
0.82, and 0.72/0.77, respectively, while the
values for the CNN of CD was 0.90/0.77.

Kraszewski et al., 2021 (61) RF vs LR, kNN, GBC, SVC Biomarkers from blood,
urine and stool samples

Retrospective cohort, 180
UC, 192 CD

Early detection of IBD. The most robust RF
model achieved impressive mean average
precision scores of 97% for CD and 91%
for UC.
ANNs, Artificial neural networks; AUC, area under the curve; AVADx, Analysis of variation for association with disease; CAGI, Critical assessment of genome interpretation; CNN,
Convolutional neural network; CORG, conditionally responsive genes; DBNs, Deep belief networks; EGB, Extreme gradient boosting; GBC, Gradient boosting classifier; GBT, Gradient boosted
trees; GLMNET, Elastic net regularized generalized linear model; kNN, k-nearest neighbor; LR, Logistic regression; NN, Neural networks; RF, Random forest; RPT, Robustness performance
tradeoff; SNPs, Single nucleotide polymorphisms; SVC, support vector classifier; SVM, Support vector machines; XGB, extreme gradient boosting.
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TABLE 3 AI in assessment of disease activity and severity in IBD.

Author, Year AI classifier Modality Study Design Outcome, Study Results

Kumar et al., 2012 (64) SVM vs
human observers

Small bowel
capsule endoscopy

Cross-sectional; ~50000
capsule images

Endoscopic inflammation in CD. Good precision (lesion
detection) and recall > 90% for lesions of varying severity.

Charisis et al., 2016 (65) SVM vs human reader Wireless capsule
endoscopy images

Retrospective cohort, 13
CD patients

Endoscopic inflammation in CD. Hybrid adaptive filtering
via SVM approach providing higher classification results,
up to accuracy 93.8%, sensitivity 95.2%, specificity 92.4%
and precision 92.6%.

Mahapatra et al., 2016 (66) RF (no comparator) Abdominal MRI Cross-sectional, 35
CD patients

Segmentation intestinal inflammation in CD. Model
accuracy ranged from 82.7% to 92.2%.

Douglas et al., 2018 (67) RF (no comparator) Shotgun
metagenomics, 16S
rRNA gene sequencing

Cross-sectional, 20 CD,
20 controls

Relapse/remission in pediatric CD. MGS modules
significantly classified samples by disease state (accuracy =
68.4%, P = 0.043 and accuracy = 65.8%, P = 0.03,
respectively), 16S datasets had a maximum accuracy of
68.4% and P = 0.016 based on strain level for
disease state.

Biasci et al., 2019 (68) LR (adaptive
Elastic-Net)

Transcriptomics (CD8
+ T-cells,
whole blood)

Prospective cohort, 118
IBD patients

Disease severity, medication escalation in IBD. A 17-gene
qPCR-based classifier stratified two subgroups with earlier
need for treatment escalation [HR 2.65 (CD), 3.12 (UC)]
and more escalations over time [sensitivity=72.7% (CD),
100% (UC); negative predictive value = 90.9% (CD),
100% (UC)].

Lamash et al., 2019 (69) CNN vs semi-
supervised and
active models

Abdominal MRI Retrospective cohort, 23
CD patients

Activity disease in CD. CNN exhibited Dice similarity
coefficient of 75% ± 18%, 81% ± 8%, and 97% ± 2% for
the lumen, wall, and background, respectively. The
extracted markers of wall thickness at the location of min
radius (P = 0.0013) and the median value of relative
contrast enhancement (P = 0.0033) and segments with
strictures (P < 0.05) could differentiate active and
nonactive disease.

Maeda et al., 2019 (70) SVM vs human reader Endocytoscopy Retrospective cohort,
187 UC patients

Histological inflammation in UC. CAD provided
diagnostic sensitivity 74% (95%CI: 65-81), specificity 97%
(95%CI: 95-99), and accuracy 91% (95%CI: 83- 95) with
perfect reproducibility (k = 1).

Ozawa et al., 2019 (71) CNN vs endoscopist Colonoscopy images Retrospective cohort,
841 UC patients

MES in UC. CNN-based CAD system showed a high level
of performance with AUC of 0.86 and 0.98 to identify
Mayo 0 and 0-1, respectively and was better for the
rectum than for the right side and left side of the colon
when identifying Mayo 0 (AUC = 0.92, 0.83, and
0.83, respectively).

Reddy et al., 2019 (72) Gradient boosting
machine vs LR

Electronic
medical record

Retrospective, 3335
CD patients

Inflammation severity in CD (CRP). Machine-learning-
based analytic methods with a very high accuracy
= 92.82%

Stidham et al., 2019 (73) CNN vs human reader Colonoscopy images Retrospective cohort,
3082 UC patients

Endoscopic severity in UC. The CNN was excellent for
distinguishing remission from moderate-to-severe disease
with an AUC of 0.966 (95%CI: 0.967-0.972); a PPV of
0.87 (95%CI: 0.85-0.88) with a sensitivity of 83.0% (95%
CI: 80.8-85.4) and specificity of 96.0% (95%CI: 95.1-97.1);
and NPV of 0.94 (95%CI: 0.93- 0.95)

Waljee et al., 2019 (74) RF (no comparator) Clinical and laboratory
data from CT (UNITI-
1, UNITI-2, and
IM-UNITI)

Post-hoc trial analysis of
prospective CT, 401
CD patients

Remission in CD, CRP < 5 mg/L. A prediction model
using the week-6 albumin to CRP ratio had an AUC =
0.76 [95% CI: 0.71-0.82].

Bossuyt et al., 2020 (75) Computer algorithm
based on RD vs
blilnded
central readers

Colonoscopy images Prospective cohort, 29
UC patients, 6 controls

Endoscopic and histological inflammation in UC. RD
correlated with rhi (r = 0.74, P < 0.0001), MES (r = 0.76,
P < 0.0001) and Endoscopic index of severity scores (r =
0.74, P < 0.0001). The RD sensitivity to change had a
standardized effect size of 1.16. in the validation set, RD
correlated with rhi (r = 0.65, P = 0.00002)

(Continued)
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TABLE 3 Continued

Author, Year AI classifier Modality Study Design Outcome, Study Results

Klang et al., 2020 (76) CNN vs human reader Wireless capsule
endoscopy images

Retrospective cohort, 49
CD patients

Endoscopic inflammation in CD. 17640 CE images: 7391
with mucosal ulcers and 10249 of normal mucosa. For
randomly split images results, AUC was 0.99 with
accuracies ranging from 95.4% to 96.7%.

Takenaka et al., 2020 (77) Deep NN
vs endoscopist

Colonoscopy images Prospective cohort, 2012
UC patients

Endoscopic inflammation in UC. Deep NN identified
endoscopic remission with 90.1% accuracy (95%CI: 89.2-
90.9) and a kappa coefficient of 0.798 (95%CI: 0.780-
0.814), using findings reported by endoscopists as the
reference standard

Barash et al., 2021 (78) Ordinal CNN
(no comparator)

Wireless capsule
endoscopy images

Retrospective, 49
CD patients

Endoscopic severity in CD. The classification accuracy of
the algorithm was 0.91 (95%CI: 0.867-0.954) for grade 1
vs grade 3 ulcers, 0.78 (95%CI: 0.716-0.844) for grade 2 vs
grade 3, and 0.624 (95%CI: 0.547-0.701) for grade 1 vs
grade 2.

Bhambhvani et al.,
2021 (79)

CNN vs endoscopist Colonoscopy images Retrospective cohort,
777 UC patients

MES in UC. The final model classified MES 3 disease with
an AUC of 0.96, MES 2 disease with an AUC of 0.86, and
MES 1 disease with an AUC 0.89. Overall accuracy was
77.2%. Across MES 1, 2, and 3, average specificity was
85.7%, average sensitivity was 72.4%, average PPV was
77.7%, and the average NPV was 87.0%.

Bossuyt et al., 2021 (80) Automated CAD vs
human reader

Colonoscopy images
with confocal
laser endomicroscopy

Prospective cohort, 48
UC patients

Histological remission in UC. The CAD algorithm detects
histologic remission with a high performance (sensitivity
of 0.79 and specificity of 0.90) compared with the UCEIS
(sensitivity of 0.95 and specificity of 0.69) and MES
(sensitivity of 0.98 and specificity of 0.61).

Gottlieb et al., 2021 (81) NN vs human
central reader

Colonoscopy images Prospective cohort, 249
UC patients

Endoscopic severity in UC. The model’s agreement metric
was excellent, with a quadratic weighted kappa of 0.844
(95%CI: 0.787-0.901) for endoscopic Mayo Score and
0.855 (95%CI: 0.80-0.91) for UCEIS.

Ungaro et al., 2021 (82) Random survival
forest (no comparator)

Protein biomarkers
with proximity
extension assay

Retrospective case-
control, 265 patients

Penetrating/stricturing complications in pediatric CD. A
model with 5 protein markers predicted penetrating
complications with an AUC of 0.79 (95%CI: 0.76-0.82). A
model with 4 protein markers predicted structuring
complications with an AUC of 0.68 (95%CI: 0.65-0.71).

Guez et al., 2022 (83) Optimized multi-
modal ML vs
standard model

Magnetic resonance
enterography and
biochemical
biomarkers

Retrospective multi-
center, 121 CD patients

Noninvasively assess ileal endoscopic activity in CD. The
model performed better than the clinically recommended
one determined by both a better aggregated AUC over the
folds (0.84 vs. 0.8, DeLong’s test, p<1e-9) and median test
MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5).

Iacucci et al., 2023 (84) ResNet-50 deep
residual CNN
vs endoscopist

Colonoscopy videos
(WLE/VCE)

Prospective cohort, 1090
endoscopic videos from
283 IBD patients

Distinguish ER, HR and predict risk of flare. The model
detected ER in WLE/VCE videos with 72%/79%
sensitivity, 87%/95% specificity, and AUROC of 0.85/0.94.
The prediction of HR was similar between WLE and VCE
(accuracy 80%-85%) and the risk of flare was similar to
physician-assessed endoscopy scores.

Iacucci et al., 2023 (85) CNN vs
human assessment

Digital pathology Prospective multi-
center, 535 digitalized
biopsies (273
UC patients)

Distinguish histological remission/inflammation (PHRI,
RHI, NHI). Sensitivity and specificity of the model were
89% and 85% (PHRI), 94% and 76% (RHI), and 89% and
79% (NHI).

Ogata et al., 2024 (86) AI algorithm
MES assignment

Colonoscopy images Prospective multi-
center, 110 UC patients
in clinical remission

Predict clinical relapse (MES > 2). The clinical relapse rate
for patients with AI‐based MES = 1 (24.5%) was
significantly higher [log-rank test, p = 0.01] than that for
patients with AI‐based MES = 0 (3.2%). Relapse occurred
during the 12-month follow-up period in 16.2% of
patients with AI‐based MES = 0 or 1 and 50.0% of those
with AI‐based MES = 2 or 3 [log-rank test, p = 0.03].
F
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CAD, computer-aided detection and diagnosis; CNN, Convolutional neural network; CT, Clinical trials; ER, Endoscopic remission; HR, histologic remission; LR, Logistic regression; MES, Mayo
endoscopic subscore; MGS, Shotgun metagenomics; MRI, magnetic resonance imaging; MSE, mean-squared-error; NHI, Nancy histological index; NN, Neural networks; PHRI, PICaSSO
Histologic Remission Index; RD, red density; RF, Random forest; RHI, Robarts histological index; SVM, Support vector machines; VCE, Virtual chromoendoscopy; WLE, white-light endoscopy.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1637159
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


De Deo et al. 10.3389/fimmu.2025.1637159
capsule endoscopy images in a retrospective cohort of 49 CD

patients by Barash et al., the classification accuracy of the

algorithm was 0.91 for grade 1 vs grade 3 ulcers, 0.78 for grade 2

vs grade 3, and 0.624 for grade 1 vs grade 2 (78). Guez et al.

developed and evaluated a multimodal ML model to assess the

endoscopic activity of ileal CD by integrating information from

MRE and the biochemical biomarkers from the 121 subjects of the

multi-center database of the ImageKids study. Determined by both

a better median test mean-squared-error distribution (7.73 vs. 8.8,

Wilcoxon test, p < 1e-5) and a better aggregated AUC over the folds

(0.84 vs. 0.8, DeLong’s test, p < 1e-9), the optimized fusion model

performed better than the clinically recommended model (83).

CNNs and DL models have automated endoscopic scoring,

mucosal healing assessment, and histologic remission classification,

demonstrating high diagnostic accuracy and interobserver

consistency. AI-enhanced endoscopy, in particular, shows

potential for real-time decision support, standardization, and

reduced interpretive variability (38, 87).

In a single-center retrospective study Stidhman et al. developed

a NLP system to automatically identify and determine the activity

status of extraintestinal manifestations (EIMs) in IBD using

outpatient clinical notes. The NLP tool demonstrated high

accuracy (94.1%) and strong agreement with human chart review

(k = 0.76), significantly outperforming administrative coding. By

enabling automated, patient-level extraction of granular EIM data,

this approach may enhance individualized care, support biomarker

discovery, and improve prognostic precision in IBD (88).

These studies highlight AI’s clinical utility in evaluating IBD

activity across modalities. However, performance may vary with

inflammation location and subtle disease features, underscoring the

need for context-specific model optimization.
3.4 AI-Based prediction of treatment
response

Despite expanding therapeutic options, the heterogeneity of IBD

limits the effectiveness of one-size-fits-all treatment strategies.

Combination therapies targeting multiple inflammatory pathways

may improve long-term disease control; however, this requires a

deeper understanding of subtype-specific pathogenesis andmolecular

signatures. In this context, precision medicine— powered by AI and

ML —offers the potential to predict therapeutic response and tailor

treatment based on individual biological profiles.

Table 4 summarizes 22 studies evaluating AI applications in

predicting treatment response and disease prognosis in IBD. Thirteen

studies assessed therapeutic response (biologics and non-biologics),

including 7 in CD (67, 95, 104–106, 108, 109) and 4 in UC only (92,

99–101). Additional studies focused on extraintestinal manifestations

(91, 96), quality of life of affected patients (89, 98), surgical risk in CD

(97, 107), hospitalization risk (94), colorectal cancer risk (103) and

post-colectomy complications in UC in UC (102).

Venkatapurapu et al. developed a mechanistic-statistical hybrid

platform to predict biomarkers and tissue health time in patients (n =

69) with CD. The respondent’s classifier predicted endoscopic
Frontiers in Immunology 10
remission and mucosal healing for vedolizumab treatment over 26

weeks, with overall sensitivities of 80% and 75% and overall specificity

of 69% and 70%, respectively (109). ML models incorporating

routinely collected laboratory studies to predict surgical outcomes

in U.S. Veterans with CD were evaluated from Stidham et al. Their

optimized model from 2809 patients, among whom 256 had surgery,

achieved a mean AUROC of 0.78 (SD, 0.002). Anti-tumor necrosis

factor use was linked to a lower likelihood of surgery within one year,

making it the strongest predictor. Conversely, corticosteroid use

increased the probability of surgery. Key laboratory variables

associated with future surgery included high platelet counts,

elevated mean cell hemoglobin concentrations, low albumin levels,

and low blood urea nitrogen values (107). In a prospective study

Uttam et al. recruited 103 IBD patients undergoing surveillance

colonoscopy and measured submicroscopic alterations in aberrant

intrinsic nuclear architecture of epithelial cells from normal-

appearing rectal biopsies with nanoscale nuclear architecture

mapping (nanoNAM). Using nanoNAM-based structural

characterization as input features into a soft margin-based n-SVM
risk classifier, it has been shown to detect colon neoplasia with AUC

of 0.87 ± 0.04, sensitivity of 0.81 ± 0.09, and specificity of 0.82 ± 0.07

in the independent validation set. In addition, projecting nanoNAM

features onto a 2-sphere reveals patients with low-risk and high-risk

IBD colitis existing on separate hemispheres (103).

The endo-omics study evaluated the predictive value of a

computer aided confocal laser endomicroscopy (pCLE) image

analysis and fluorescent-labeled biologic binding in predicting

therapeutic response in IBD patients starting anti-TNF or anti-

integrin therapy. In vivo pCLE features—such as vessel tortuosity

and fluorescein leakage — were highly predictive of response in

both UC and CD. Ex vivo, increased mucosal binding of labeled

biologics predicted response in UC but not CD. Thus, the use of

pCLE and mucosal drug-binding profiles as tools for individualized

treatment strategies in IBD (110).

A recent review by Sedano et al. emphasizes the impact of AI in

improving IBD clinical trials. AI enhances patient recruitment (boosting

efficiency by up to 30%) and supports more accurate analysis of

complex clinical data. It also enables prediction of individual

treatment responses and allows real-time adjustments in adaptive trial

designs. These advances demonstrate AI’s potential to optimize trial

methodology and improve outcomes in IBD research (111).

These models integrate clinical, laboratory, and omics data to

predict outcomes such as corticosteroid or anti-TNF response, need

for surgery, and risk of complications. ML algorithms — including

LASSO regression, random forest, and gradient boosting — have

shown robust predictive performance, supporting their role in

individualized treatment planning and risk stratification.
4 Remote monitoring and predictive
analytics in IBD

Managing IBD remains challenging due to its fluctuating

course, frequent flares, and the frequent mismatch between

symptoms and underlying inflammation (112).
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TABLE 4 AI in prediction of therapy response and clinical outcomes in IBD.

Author, Year AI classifier Modality Study Design Outcome, Study Results

Babic et al., 1997 (89) CART vs BPNN EHR Cross-sectional, 200
IBD patients

Quality of life in IBD. Best reached classification accuracy
did not exceed 80% in any case. Other classifiers namely,
K-nearest-neighbor, learning vector quantization and
BPNN confirmed that outcome.

Waljee et al., 2010 (90) RF vs boosted
trees, RuleFit

EHR,
thiopurine metabolites

Cross-sectional, 774
IBD patients

Response to thiopurines therapy in IBD. A RF algorithm
using laboratory values and patient age differentiated
clinical response from nonresponse in the model
validation data set with an AUC of 0.856 (95%CI:
0.793-0.919).

Menti et al., 2016 (91) Naïve Bayes vs
Bayesian additive
regression trees vs
Bayesian networks

Genetic
polymorphism,
Ganomic DNA

Retrospective cohort,
152 IBD patients

Extra-intestinal manifestations in IBD. Bayesian networks
ouperforming the other techniques achieved accuracy of
82%, considering only clinical factors, and 89%, also with
genetic information.

Kang et al., 2017 (92) ANN vs LR Gene
expression profiles

Cross-sectional, 24
UC patients

Predict anti-TNF therapy response in UC. Balanced
accuracy in cross validation test was 82%.

Waljee et al., 2017 (93) RF (no comparator) EHR,
laboratory values

Retrospective cohort,
1080 IBD patients

Remission with thiopurines in IBD. AUC for algorithm-
predicted remission was 0.79. The mean number of
clinical events per year in patients with sustained APR
was 1.08 vs 3.95 in those that did not have sustained APR
(P < 1 × 10-5)

Douglas et al., 2018 (67) RF (no comparator) MGS + 16S rRNA
gene sequencing

Cross-sectional, 20 CD,
20 controls

Response to induction therapy in pediatric CD. 16S
genera were the top dataset (accuracy = 77.8%; P = 0.008)
for predicting response to therapy. MGS strain (P =
0.029), genus (P = 0.013), and KEGG pathway (P = 0.018)
datasets could also classify patients according to therapy
response with accuracy = 72.2%

Waljee et al., 2018 (94) RF (no comparator) Veteran’s Health
Administration EHR

Post-hoc analysis of
prospective CT, 20368
IBD patients

Inpatient hospitalization and outpatient steroid use in
IBD. AUC for the RF longitudinal model was 0.85 [95%
CI: 0.84–0.85] and for the model using previous
hospitalization or steroid use was 0.87 (95% CI: 0.87-0.88)

Waljee et al., 2018 (95) RF vs
baseline regression

EHR,
laboratory values

Retrospective cohort,
594 CD patients

Biologic remission with vedolizumab in CD. The AUC for
corticosteroid-free biologic remission at week 52 was only
0.65 (95%CI: 0.53-0.77) but was 0.75 (95%CI: 0.64-0.86)
with data through week-6 of vedolizumab.

Bottigliengo et al., 2019 (96) Bayesian ML vs LR EHR,
genetic
polymorphisms

Retrospective cohort,
142 IBD patients

Presence of extra-intestinal manifestations in IBD.
Bayesian ML had an AUC = 0.50.

Dong et al., 2019 (97) RF, SVM, ANN,
DT, LR

EHR, laboratory tests Retrospective cohort,
239 CD patients

Surgical prediction in CD. RF predictive model performed
better than LR model (sub-dataset 1) in terms of accuracy
(93.11% vs 91.15%), precision (53.42% vs 44.81%), F1
score (0.6016 vs 0.5763), TN rate (95.08% vs 92.00%), and
the AUC (0.8926 vs 0.8809). The AUCs were excellent at
0.9864 in RF, 0.9538 in LR, 0.8809 in DT, 0.9497 in SVM,
and 0.9059 in ANN, respectively (sub-dataset 2). RF
performed best on both sub-datasets

Lerrigo et al., 2019 (98) Latent Dirichlet
allocation,
unsupervised ML
(no comparator)

Online posts from the
Crohn’s and colitis
foundation
community forum

Retrospective cohort,
posts of IBD patients

Impact of online community posts on well-being in IBD.
10702 (20.8%) posts were identified expressing: gratitude
(40%), anxiety/fear (20.8%), empathy (18.2%), anger/
frustration (13.4%), hope (13.2%), happiness (10.0%),
sadness/depression (5.8%), shame/guilt (2.5%), and/or
loneliness (2.5%). A common subtheme was the
importance of fostering social support

Morilla et al., 2019 (99) Deep NN
(no comparator)

Colonic
microRNAs profiles

Retrospective cohort, 47
UC patients

Response to therapy in UC. A deep NN classifier
identified 9 microRNAs plus 5 clinical factors, routinely
recorded at time of hospital admission, to discriminate
responders to steroids from non-responders with 93%
accuracy (AUC, 0.91). Three algorithms, based on

(Continued)
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TABLE 4 Continued

Author, Year AI classifier Modality Study Design Outcome, Study Results

microRNA levels, identified responders to infliximab vs
non-responders (84% accuracy, AUC 0.82) and
responders to cyclosporine vs non-responders (80%
accuracy, AUC 0.79).

Ghoshal et al., 2020 (100) ANN vs multivariate
linear PCA

EHR Prospective cohort, 263
UC patients

Response to treatment in UC. The multilayer perceptron
neural network was trained by back-propagation
algorithm (10 networks retained out of 16 tested) with
accuracy rate of 73% in correctly classifying response to
medical treatment in UC.

Popa et al., 2020 (101) NN model
(no comparator)

Clinical parameters +
endoscopic
Mayo score

Prospective cohort, 55
UC patients

Predict 1-year response to anti-TNF in UC. The classifier
achieved an excellent performance with an accuracy of
90% and AUC 0.92 on the test set and an accuracy of
100% and an AUC of 1 on the validation set.

Sofo et al., 2020 (102) SVM leave-one-out
cross-validation
(no comparator)

EHR Retrospective cohort, 32
UC patients

Post-colectomy complications in UC. Evaluating
preoperative features, ML algorithms were able to predict
minor postoperative complications with a high strike rate
(84.3%), sensitivity (87.5%) and specificity (83.3%) during
the testing phase.

Uttam et al., 2019 (103) SVM vs NanoNAM 3-dimensional
NanoNAM of normal
rectal biopsies

Prospective cohort, 103
IBD patients

Colonic neoplasia in IBD. NanoNAM detects colonic
neoplasia with an AUC of 0.87 ± 0.04, sensitivity of 0.81
± 0.09, and specificity of 0.82 ± 0.07 in the independent
validation set.

Wang et al., 2020 (104) BPNN, SVM vs LR EHR Cross-sectional, 446
CD patients

Maintenance therapy nonadherence in CD. The average
classification accuracy and AUC of the three models were
85.9% and 0.912 for BPNN, and 87.7% and 0.930 for
SVM, respectively.

Con et al., 2021 (105) Feed-forward,
reccurrent NN (DL)
vs conventional

Laboratory values Retrospective cohort,
146 CD patients

Predict remission after anti-TNF in CD. The recurrent
NN showed stronger predictive performance than the
conventional statistical model with a significantly higher
area under the receiver operator characteristic curve
(AuROC; 0.754 [95% CI: 0.674–0.834] vs 0.659 [95% CI:
0.562–0.756]; p = 0.036).

He et al., 2021 (106) LASSO
regression analysis

Gene
transcription profiling

Retrospective cohort, 86
CD and 26 controls

Predict response to ustekinumab in CD. The gene
expression-prediction model’s (HSD3B1, MUC4, CF1, and
CCL11) AuROC for the training and testing datasets were
0.746 and 0.734, respectively.

Stidham et al., 2021 (107) LASSO regularized
logistic regression

Laboratory values Retrospective cohort,
2809 CD patients

Predict surgical outcome within 1 year in CD. The
optimized model achieved a mean AuROC of 0.78 (SD,
0.002). Anti-TNF use was the most influential predictor in
the model associated with a lower probability of surgery
within 1 year, and corticosteroid use was associated with a
higher probability of surgery. High platelet counts, high
mean cell hemoglobin concentrations, low albumin levels,
and low blood urea nitrogen values were identified as
having an elevated influence and association with
future surgery.

Park et al., 2022 (108) LASSO regression Imputed gene
expression features

Prospective cohort, 234
CD patients

Predict NDR to anti-TNF in CD. The LR of the NDR vs.
DR status in our cohort by the imputed expression levels
showed that the b coefficients were positive for DPY19L3
and GSTT1, and negative for NUCB1.

Venkatapurapu et al.,
2022 (109)

Hybrid mechanistic-
statistical platform

Data on baseline
disease characteristics,
treatment history,
biomarkers and
SES-CD

Retrospective cohort, 69
CD patients

Predict biomarker and mucosal healing with vedolizumab
treatment over 26 weeks in CD. The responder classifier
predicted ER and mucosal healing, with overall
sensitivities of 80% and 75% and overall specificities of
69% and 70%. Predictions for changes in tissue damage
over time were considered good (at least 70% of data
points matched), fair (at least 50%), and poor (less than
50%) for 71%, 23%, and 6% of patients, respectively
F
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ANN, artificial neural network; APR, algorithm-predicted remission; BPNN, back-propagation neural network; CART, classification and regression trees; DT, decision tree; DR, durable
response; EHR, Electronic Health Record; ER, Endoscopic remission; LASSO, least absolute shrinkage and selection operator; LR, Logistic regression; MGS, Shotgun metagenomics; NDR, non-
durable response; NN, Neural networks; PCA, principal component analysis; RF, Random forest; SVM, Support vector machines.
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Conventional monitoring — via patient-reported outcomes,

biomarkers (serologic and fecal), imaging, and endoscopy — is

episodic, invasive, and often dependent on patient compliance,

offering only static assessments of disease activity. These

limitations underscore the need for continuous, non-invasive, and

real-time monitoring tools. Digital health technologies— including

wearable devices, mobile health apps, and telemedicine — are

emerging as key components of proactive disease management

(Figure 2). By enabling continuous physiological and behavioral

monitoring, they facilitate earlier clinical interventions, improve

adherence, and support better long-term outcomes (18).
4.1 Wearable technologies: continuous
monitoring for proactive IBD care

Wearable devices enable non-invasive, passive, and continuous

acquisition of physiological data, supporting early detection of

inflammatory activity and potential preclinical diagnosis of IBD.

Data collection may be active (user-driven) or fully passive after

device application.

Jagannath et al. (2020) introduced a forearm-mounted sensor

(SWEATSENSER) capable of detecting interleukin-1b (IL-1b) and
CRP in sweat, demonstrating feasibility for real-time inflammatory

monitoring in IBD. The sensor device can detect IL-1b and CRP in

sweat over a dynamic range of 3 log orders with Pearson correlation

of r = 0.99 and r = 0.95 achieved for IL-1b and CRP, respectively,

with ELISA (113). Shahub et al. (2024) validated a similar device

(IBD AWARE) measuring CRP, IL-6, and FC, with expression of

FC that was significantly elevated in the active cohort compared

with the remission cohort in perspiration (P < 0.05; median =

906.69 ng/mL; active 95% confidence interval [CI], 466.0–1833 ng/

mL; remission 95% CI, 328.4-950.8 ng/mL), serum (median =

1860.82 ng/mL; active 95% CI, 1705–2985 ng/mL; remission 95%
Frontiers in Immunology 13
CI, 870.2–1786 ng/mL), and stool (P <.05; median = 126.74 µg/g;

active 95% CI, 77.08-347.1 µg/g; remission 95% CI, 5.038-

190.4 µg/g) (22).

In the IBD Forecast study, Hirten et al. showed that wearables

(Apple Watch, Fitbit, Oura Ring) could predict flares up to 7 weeks

in advance via changes in HR, HRV, RHR, oxygenation, and

circadian HRV patterns (18). These findings suggest wearable-

derived digital biomarkers can enable early, proactive

interventions and individualized disease management.

Cleveland et al. described the first use of handheld ultrasound by

a patient with UC for at-home monitoring during change of

therapy. By offering real-time insights into treatment response,

the handheld ultrasound by patients may support more timely

and informed therapeutic decisions by both patients and clinicians.

However, further studies and validation are awaited to determine its

broader applicability (114).
4.2 Mobile health applications

Mobile health (mHealth) applications play a pivotal role in IBD

management by facilitating self-monitoring, enhancing medication

adherence, improving disease literacy, and enabling early clinical

intervention (Figure 3).

Symptom tracking apps allow real-time logging of stool

frequency, abdominal pain, and fatigue—core indicators of disease

activity. Some incorporate AI to correlate dietary patterns with

symptoms, aiding identification of individual triggers and

differentiating from functional overlap. Adherence-focused

platforms use AI-driven reminders and behavioral prompts to

improve compliance — crucial in chronic disease care. Apps like

HealthPROMISE and TELE-IBD have shown reductions in

hospitalizations and emergency visits compared to standard care

(115). IBD-Home users had increased care engagement, highlighting
FIGURE 2

Wearable technologies and mobile health applications for remote monitoring in IBD. Illustration of digital health tools used for remote disease
monitoring in inflammatory bowel disease (IBD), including wearable devices (e.g., smartwatches, biosensors) and mobile health (mHealth)
applications. These technologies enable real-time tracking of physiological parameters, symptom reporting, medication adherence, and patient-
reported outcomes, supporting personalized and proactive disease management.
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the value of remote monitoring (24). IBDoc and IBDsmart reduced

outpatient visits without compromising outcomes (116).

However, a 2022 systematic review of 14 RCTs by Nguyen et al.

found that while digital interventions improved healthcare

utilization and cost metrics, impacts on disease activity,

adherence, and quality of life were variable (117). MHealth apps

thus serve as integral tools in digital IBD care, enhancing patient

autonomy, clinician oversight, and system efficiency.
4.3 Tele-medicine in IBD

Telemedicine has become an integral component of IBD care,

accelerated by the COVID-19 pandemic as a viable alternative to in-

person visits. Virtual consultations enhance accessibility, reduce

geographic and logistical barriers, and improve chronic disease

management efficiency (118). Recent platforms increasingly

integrate data from wearables and mHealth apps, enabling real-

time analysis of physiological and patient-reported outcomes to

support data-driven clinical decision-making.

The MyIBDcoach platform, evaluated by de Jong et al.,

demonstrated reduced outpatient visits and hospitalizations over

12 months compared to standard care, without compromising

disease monitoring (119). Similarly, Del Hoyo et al. showed that

the TECCU telemonitoring system significantly decreased clinic

visits and improved disease activity, achieving clinical remission in

81% of complex IBD patients, versus 71.4% and 66.7% with

standard and telephone care, respectively (120).

The CRONICA-UC study validated remote self-assessment of

disease activity in UC using the SCCAI, demonstrating strong

correlation with physician scores (r=0.79; k=0.66; 85%
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agreement) (109). Li et al. further showed that virtual IBD clinics

reduce costs (average $62 per visit saved) and time burden, while

maintaining care quality (121).

Recently, a prospective study evaluated the accuracy and

completeness of ChatGPT-3.5 responses to 38 real-world questions

from IBD patients, using ECCO guidelines as a reference. Fourteen

IBD experts assessed responses across topics including disease

management, pregnancy, vaccination, and complementary

therapies. While most replies were rated as largely accurate (mean

score 3.87/5), completeness was more limited (mean score 2.24/3),

with variability across questions. Highest accuracy and completeness

were seen in responses about smoking, while the lowest were for

malignancy screening and vaccination in immunosuppressed

patients (122).

With widespread mobile technology and improved

connectivity, telemedicine offers scalable, patient-centered care for

IBD, supporting continuous monitoring and timely interventions.

ChatGPT may be a useful adjunct for patient education, though

caution is warranted in complex clinical areas.
5 Challenges and future directions

ML models have been utilized to stratify patients based on

longitudinal digital health data, effectively identifying individuals at

high risk for disease flares who may benefit from early therapeutic

escalation, while distinguishing those in sustained remission. These

predictive analytics enable timely, individualized treatment decisions,

reducing overtreatment and enhancing clinical outcomes. As these

tools mature, they hold the potential to transition IBD management

from episodic, clinic-based encounters to continuous, precision-
FIGURE 3

Key functions of mobile health (mHealth) applications in IBD care. mHealth applications can support patients with inflammatory bowel disease (IBD)
by facilitating self-monitoring, enhancing medication adherence, improving disease literacy, and enabling early clinical intervention. These digital
tools empower patients and promote a more proactive, personalized approach to disease management.
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guided care (Figure 4). However, despite the promise of AI and digital

biomarkers, key barriers — such as data standardization, validation

across diverse populations, regulatory approval, and integration into

clinical workflows — must be addressed before widespread

implementation is achieved.
5.1 Challenges in implementing digital
biomarkers in IBD

DH tools require consistent and sustained patient engagement

to achieve their full potential, yet long-term adherence often

declines. Contributing factors include digital fatigue, perceived

depersonalization, and limited perceived clinical benefits.

Designing interfaces that are intuitive, gamified, and personalized

may mitigate attrition and enhance user engagement.

As DH solutions become increasingly integrated into IBD care

pathways, concerns surrounding data privacy, security, and ethical

oversight have emerged as key barriers to widespread adoption.

These concerns are particularly pronounced in IBD, where patients

routinely share sensitive clinical, behavioral, and biometric data

across interconnected platforms (123). Wearable devices, mobile

apps and artificial intelligence algorithms continuously collect data

on symptoms, biometrics, medication adherence and even

geolocation (30). The scale and granularity of this data amplify

the risks of unauthorized access, data breaches, and secondary

misuse. Notably, healthcare cybersecurity incidents are rising,

underscoring the urgent need for end-to-end encryption, secure

data storage, and robust authentication protocols (124).

Although frameworks such as the General Data Protection

Regulation (GDPR, EU) and Health Insurance Portability and

Accountability Act (HIPAA, US) provide foundational

protections, they were not designed for real-time, adaptive DH

and AI applications. A regulatory gap persists, particularly

concerning ML algorithms that evolve via unsupervised learning
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and lack fixed rule sets. Adaptive and context-specific compliance

strategies are under development, but global regulatory

harmonization remains elusive (125).

Moreover, the question of data ownership remains unresolved

— whether it resides with the patient, healthcare provider, or digital

platform. In some instances, aggregated data are leveraged for

secondary purposes such as pharmaceutical marketing or

insurance risk modeling, often without explicit patient consent.

Ethical implementation of AI in IBD must prioritize data

sovereignty, enforce transparent secondary use policies, and

guarantee informed patient control over personal data. In

summary, he ethical integration of DH and AI in IBD care

necessitates more than technological innovation — it demands

comprehensive regulatory reform, secure data governance, and a

patient-centered approach. Sustaining patient trust will be critical,

as ethical design becomes as important as clinical efficacy in shaping

the future of IBD management.
6 Discussion

The future of IBD management lies in the integration of AI,

remote monitoring technologies, and digital phenotyping into

routine clinical practice. This evolution should not be perceived

as a threat by patients or clinicians but embraced as an opportunity

to enhance individualized care. ML-driven clinical decision support

systems are poised to assist gastroenterologists in therapeutic

decision-making, early risk stratification, and outcome prediction,

enabling more timely and accurate interventions (26).

As mucosal healing is a central therapeutic target in IBD, AI-

based tools may offer less invasive and more continuous assessment

of disease activity. However, since mucosal healing does not always

reflect histological remission, future models may also help explore

digital correlates of histological healing, whose clinical value

remains under investigation (5).
FIGURE 4

The evolving model of IBD care through AI and remote monitoring. Artificial intelligence (AI) tools and remote monitoring technologies are
reshaping inflammatory bowel disease (IBD) management by shifting from episodic, clinic-centered visits to a model of continuous, precision-
guided care. This transition supports earlier intervention, personalized treatment adjustments, and improved long-term outcomes.
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To address challenges related to centralized data storage and

privacy, federated learning enables decentralized model training

across multiple institutions without the need to exchange raw

patient data. This approach preserves data confidentiality while

enhancing the generalizability and performance of predictive

algorithms. Moreover, the advent of edge computing — processing

data directly on or near the patient’s device—will enhance the speed,

scalability, and responsiveness of remote IBD monitoring systems.

Conversational AI tools, such as chatbots and virtual health

assistants, are also being deployed to support patient self-

management by addressing medication adherence, stress reduction,

dietary modifications, and other behavioral health components (31).

These tools offer continuous, scalable, and personalized support

aligned with integrative care principles. Looking ahead, a fully AI-

integrated ecosystem is anticipated— one that synthesizes genomic

data, wearable-derived digital biomarkers, and real-time analytics to

enable predictive, preventive, and precision-guided management

of IBD.
7 Conclusion

The integration of digital biomarkers and AI in IBD marks a

shift toward personalized, proactive, real-time medicine. Wearable

devices detecting subclinical inflammation and AI-driven

algorithms for patient stratification and treatment optimization

show considerable promise in terms of accuracy, scalability, and

patient engagement in early studies.

However, challenges persist, including data source heterogeneity,

lack of standardization, and limited large-scale validation of predictive

models. The reproducibility and generalizability of AI solutions across

diverse clinical settings and populations remain uncertain.

To ensure broad access to these innovations, further

prospective, multicenter trials are needed to assess the real-world

efficacy of digital biomarkers and AI tools. Additionally,

standardized data collection protocols and robust regulatory and

ethical frameworks are critical to balancing patient privacy with

technological advancement.

Moving forward, it is essential to validate, standardize, and

responsibly implement these tools in clinical practice.
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