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University and Shandong Academy of Medical Sciences, Jinan, China, 2Department of Outpatient
Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, China, 3Department of Radiation
Oncology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China,
4Department of Radiation Oncology, West China Hospital of Sichuan University, Sichuan, China
Background: Neoadjuvant immunotherapy combined with chemotherapy offers

significant benefits for patients with resectable non-small cell lung cancer

(NSCLC). However, its efficacy and safety in patients harboring driver gene

mutations remain unclear. This study aimed to assess the real-world efficacy

and safety of neoadjuvant immunotherapy plus chemotherapy in resectable

NSCLC with and without driver gene mutations.

Methods: We retrospectively analyzed patients with NSCLC who received

neoadjuvant immunotherapy plus chemotherapy followed by surgical resection.

Efficacy was evaluated based on the best radiological response (BRR), major

pathologic response (MPR), and pathological complete response (pCR). Survival

outcomes were assessed using event-free survival (EFS), and safety was evaluated

in all patients.

Results: The study included 73 patients, comprising 34 with driver gene

mutations and 39 without driver gene mutations. During the neoadjuvant

therapy phase, the BRR rate was 58.8% in the mutated group and 66.7% in the

wild-type group (p = 0.489). The MPR rate was 47.1% in the mutated group and

41.0% in the wild-type group (p = 0.604). The pCR rates were 32.4% and 33.3%,

respectively (p = 0.929). No significant differences were observed in EFS between

the mutated and wild-type groups (p = 0.83). Grade 3 treatment-related adverse

events occurred in 11.8% of patients with driver gene mutations and 17.9% of

patients without driver gene mutations; no Grade 4 or 5 adverse events

were reported.

Conclusion: Neoadjuvant immunotherapy plus chemotherapy remains a

promising treatment option for patients with resectable NSCLC, irrespective of

genetic mutation status.
KEYWORDS
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1 Introduction

Therapies involving immune checkpoint inhibitors (ICIs)

targeting programmed cell death protein 1 (PD-1) and

programmed death ligand 1 (PD-L1) have demonstrated

significant improvements in the overall survival (OS) of patients

with advanced non-small cell lung cancer (NSCLC) (1–4).

However, patients with driver gene mutations have traditionally

derived limited clinical benefit from ICIs (5–7). A retrospective

study evaluating the efficacy of ICIs in advanced NSCLC patients

with driver gene mutations reported a partial best response rate of

19%. Furthermore, the median progression-free survival was 2.8

months, and the median OS reached 13.3 months (5). The

disappointing outcomes observed in previous trials have led to

the exclusion of patients with driver gene mutations in most

registered trials (8–13).

ICIs have shown promise as neoadjuvant therapies in resectable

NSCLC. However, the exclusion of patients with driver gene

mutations from most clinical trials has resulted in limited clinical

evidence regarding their efficacy in this subgroup (8, 9, 13, 14). Based

on limited clinical trial data, we observed the unexpected benefits of

ICIs in patients harboring gene mutations in resectable NSCLC,

which contradicts the findings in advanced NSCLC (15–18). In the

epidermal growth factor receptor (EGFR) mutated subgroup analysis

of the KEYNOTE-091 (16), pembrolizumab exhibited markedly

greater efficacy in patients with EGFR-mutated tumors (hazard

ratio [HR]: 0.44, 95% confidence interval [CI]: 0.23–0.84) than

those with EGFR-negative tumors (HR: 0.78, 95% CI: 0.59–1.05) or

unknown-status tumors (HR: 0.82, 95% CI: 0.63–1.05). Similarly, in

the KEYNOTE-671 trial, subgroup analysis of event-free survival

(EFS) showed that pembrolizumab led to a pronounced benefit in

patients with EGFR mutations (HR: 0.09; 95% CI: 0.01–0.74) (17).

While these findings require cautious interpretation due to limited

sample sizes, they suggest that neoadjuvant immunotherapy may

confer differential benefits depending on specific driver

mutation profiles.

Motivated by these unexpected findings, the present study

focused on patients with resectable NSCLC harboring driver gene

mutations who received neoadjuvant immunotherapy combined

with chemotherapy. This study aimed to characterize the real-world

landscape of neoadjuvant immunotherapy plus chemotherapy in

resectable NSCLC with driver mutations and to evaluate its clinical

efficacy and safety in this specific population.
Abbreviations: AE, Adverse event; BRR, Best radiological response; CI,

Confidence interval; CR, Complete response; CT Computed tomography;

ECOG, Eastern Cooperative Oncology Group; EFS, Event-free survival; EGFR,

Epidermal growth factor receptor; HE, Hematoxylin and eosin; HR, Hazard ratio;

ICI, Immune checkpoint inhibitor; KRAS, Kirsten rat sarcoma viral oncogene

homolog; MPR, Major pathological response; NSCLC, Non-small cell lung

cancer; OS, Overall survival; pCR, Pathological complete response; PD,

Progressive disease; PD-1, Programmed cell death protein 1; PD-L1,

Programmed death ligand 1; PR, Partial response; SD, Stable disease; TME,

Tumor microenvironment; TPS, Tumor proportion score.
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2 Materials and methods

2.1 Patients

Between May 2021 and August 2023, we retrospectively

enrolled adults with untreated, biopsy-confirmed stage IB–IIIB

resectable NSCLC (staged according to the American Joint

Committee on Cancer, 8th edition) (19). A multidisciplinary team

at Shandong Cancer Hospital and Institute, certified these patients

as suitable for neoadjuvant immunotherapy combined with

chemotherapy. Patients without genetic testing results were

excluded from this study. Based on the genetic testing results,

patients were categorized into two groups: those with driver gene

mutations and without driver gene mutations. Medical records were

reviewed to collect the patients’ baseline characteristics, including

sex, age, Eastern Cooperative Oncology Group (ECOG)

performance status score, PD-L1 tumor proportion score (TPS)

assessed utilizing the PD-L1 IHC22C3 pharmDx assay, smoking

status, histological features, and follow-up data. The driver gene

mutation status was assessed using specimens obtained from the

Department of Pathology at Shandong Cancer Hospital and

Institute, with genetic testing performed on post-operative biopsy

samples in 62 patients (84.9%) and on pre-treatment specimens in

11 patients (15.1%).
2.2 Treatment

In this study, patients were treated with at least one cycle of

immunotherapy-based neoadjuvant therapy plus either albumin-

bound paclitaxel and platinum-based chemotherapy (in patients

with squamous histological features) or pemetrexed and platinum-

based chemotherapy (in those with non-squamous histological

features) every 3 weeks pre-surgical resection. Treatment could be

discontinued or delayed in cases of intolerable adverse events (AEs).

Surgery was performed within 4 weeks of the final dose of

neoadjuvant therapy. Supplementary Table S1 summarizes the

neoadjuvant immunotherapy regimens and surgical resection

procedures (See Supplementary Material).
2.3 Assessment

Tumor size changes were evaluated using contrast-enhanced

computed tomography (CT) at baseline, during the neoadjuvant

treatment phase, and prior to surgery, in accordance with the

Response Evaluation Criteria in Solid Tumors, version 1.1

(RECIST 1.1) (20). During the neoadjuvant therapy phase,

patients underwent weekly laboratory blood tests. The

pathological response was assessed by examining hematoxylin

and eosin (HE)-stained slides of the resected primary tumor and

lymph nodes. Laboratory abnormalities and treatment-related AEs

were documented in the medical records and graded according to

the Common Terminology Criteria for Adverse Events,

version 4.03.
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2.4 Outcomes

The primary endpoint of the neoadjuvant therapy phase was the

best radiological response (BRR) rate, defined as the proportion of

patients achieving either CR or PR in all evaluable local lesions, as

assessed radiologically. Primary postoperative endpoints included

pathological responses, specifically major pathologic response (MPR)

and pathological complete response (pCR). MPR was defined as ≤10%

residual viable tumor cells in HE slides from the primary tumor and

sampled lymph nodes. pCR was defined as the complete absence of

viable tumor cells in the resected lung specimen and associated lymph

nodes. Resected samples with >10% residual viable tumor cells were

defined as non-MPR. The secondary endpoint was EFS, defined as the

time from the initiation of neoadjuvant immunotherapy-based

treatment to recurrence at the surgical site, disease progression at

any site, or death from any cause.

During the postoperative follow-up period, patients underwent

CT scans at least once every 3 months for the first 2 years and every

6 months thereafter.
2.5 Statistical analyses

Continuous variables are presented as the median and

interquartile range. Categorical variables were compared using the

Chi-square test or Fisher’s exact test, as appropriate. EFS was

assessed using the Kaplan–Meier method and compared between

groups using the log-rank test. Statistical significance was set at p

<0.05. All analyses were performed using R software version 4.2.2.
Frontiers in Immunology 03
3 Results

3.1 Patients

Seventy-three patients were retrospectively enrolled between

May 2021 and August 2023 (Figure 1). Among them, 46.6% (n = 34)

harbored driver gene mutations and were assigned to the mutated

group, while 53.4% (n = 39) had wild-type tumors and were

assigned to the wild-type group.

Table 1 summarizes the baseline demographic and disease

characteristics of the patients. The median age of the patients was

62 years (range, 40–73). PD-L1 tumor proportion score (TPS) was

assessed in 63% of patients. Patients with PD-L1 assessment were

stratified into three categories based on expression levels: <1%, 1–

49%, and ≥50%. Baseline characteristics, such as age, sex, ECOG

performance status score, disease stage, tumor stage, nodal stage,

and PD-L1 TPS were well-balanced, with exceptions for smoking

status and pathological types. A history of smoking was reported in

38.2% (n = 13) of patients in the mutated group, compared with

74.4% (n = 29) in the wild-type group. Histologically, non-

squamous features were present in 32 (94.1%) patients in the

mutated group compared with only 18 (46.2%) patients in the

wild-type group.

The two most common driver gene mutations in the mutated

group were the Kirsten rat sarcoma viral oncogene homolog (KRAS;

n = 13, 38.2%) and EGFR (n = 11, 32.4%). Additional mutations

included Her-2, MET, STK11, ROS1, ALK, BRAF, and

NRAS (Table 1).
FIGURE 1

Recruitment and selection process of patients.
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3.2 Efficacy

3.2.1 Radiological outcomes
During the neoadjuvant immunotherapy phase, one patient

received only a single cycle of immunotherapy-based treatment,

which was discontinued because of a grade 3 AE. All other patients

completed two to four treatment cycles, with the specific number of

cycles determined by the treating physician based on clinical

judgment [Supplementary Table S1 (See Supplementary

Material)]. Among the 73 patients, 46 (63.0%) achieved a

radiological response, including 9 (12.3%) with CR and 37

(50.7%) with PR. Additionally, 25 (34.2%) patients exhibited

stable disease (SD) as their best response, and 2 (2.7%)

experienced progressive disease (PD). The BRR rate of all patients

was 63.0% (46/73; Table 2, Figures 2A, B). According to the RECIST

1.1 guidelines, in the mutated group, 20 patients had a radiological

response of CR (n = 3)/PR (n = 17), and 14 patients had SD (n =

12)/PD (n = 2). In the wild-type group, 26 patients had a

radiological response of CR (n = 6)/PR (n = 20), 13 patients

exhibited SD, and no patient experienced PD (Table 2,

Figures 2A, B). The BRR rate for the two groups was 58.8% (95%

CI, 40.7–75.4%) in the mutated group and 66.7% (95% CI, 49.8–

80.9%; p = 0.489) in the wild-type group, no significant differences

were found (Table 2, Figure 3A).

We further analyzed the BRR rate according to specific driver

gene mutations, focusing on the KRAS (n = 13) and EGFR (n = 11)

subgroups. In patients with KRAS mutations, the BRR rate was

69.2% (9/13; 95% CI: 38.6–90.9%), and no cases of PD were

observed. Among patients with EGFR mutations, the BRR rate

was 36.4% (4/11; 95% CI: 10.9–69.2%), with one patient

experiencing PD (Figure 3B). When compared with the wild-type

group (BRR rate: 66.7%), the KRAS-mutated subgroup showed a

similar BRR rate (69.2%), with no significant difference (p = 1.000;
TABLE 1 Patient demographics, disease characteristics, and mutations
at baseline.

Mutated
(n = 34)

Wild-type
(n = 39)

p-values

Age, years, n (%) 0.3336

<60 16 (47.1) 14 (35.9)

≥60 18 (52.9) 25 (64.1)

Male sex, n (%) 23 (67.6) 33 (84.6) 0.0871

ECOG performance status score, n (%) 0.2232

0 7 (20.6) 13 (33.3)

1 27 (79.4) 26 (66.7)

Smoking status, n (%) 0.0018

Never smoker 21 (61.8) 10 (25.6)

Former or
current smoker

13 (38.2) 29 (74.4)

Stage at baseline, n (%) a 0.5978

IB or IIA 1 (2.9) 3 (7.7)

IIB 6 (17.7) 5 (12.8)

IIIA 17 (50.0) 23 (59.0)

IIIB 10 (29.4) 8 (20.5)

Tumor stage, n (%) 0.3751

T1b 3 (8.8) 0

T1c 1 (2.9) 4 (10.3)

T2a 8 (23.5) 10 (25.6)

T2b 5 (14.7) 9 (23.1)

T3 9 (26.5) 9 (23.1)

T4 8 (23.5) 7 (17.9)

Node stage, n (%) 0.8856

N0 6 (17.6) 6 (15.4)

N1 6 (17.6) 8 (20.5)

N2 21 (61.8) 25 (64.1)

N3 1 (2.9) 0

PD-L1 tumor proportion score, n (%) 0.1916

≥50% 6 (17.6) 9 (23.1)

1–49% 7 (20.6) 12 (30.8)

<1% 4 (11.8) 8 (20.5)

Unknown 17 (50.0) 10 (25.6)

Histological features, n (%) <0.001

Nonsquamous 32 (94.1) 18 (46.2)

Squamous 2 (5.9) 21 (53.8)

Driver mutation statusb

KRAS 13 (38.2) /

(Continued)
TABLE 1 Continued

Mutated
(n = 34)

Wild-type
(n = 39)

p-values

EGFR 11 (32.4) /

Her-2 3 (8.8) /

MET 2 (5.9) /

STK11 2 (5.9) /

ROS1 2 (5.9) /

ALK 1 (2.9) /

BRAF 1 (2.9) /

NRAS 1 (2.9) /
Bold values indicate statistical significance (p < 0.05).
ECOG, Eastern Cooperative Oncology Group; KRAS, Kirsten rat sarcoma viral oncogene
homolog; EGFR, epidermal growth factor receptor; Her-2, human epidermal growth factor
receptor 2; MET, cellular-mesenchymal to epithelial transition factor; STK11, serine-
threonine kinase 11; ROS1, ROS proto-oncogene 1; ALK, anaplastic lymphoma kinase;
BRAF, v-RAF murine sarcoma viral oncogene homolog B1; NRAS, neuroblastoma RAS
viral oncogene homolog.
Percentages may not total 100 because of rounding.
aThe stage at baseline was evaluated according to the staging criteria of the American Joint
Committee on Cancer, 8th edition.
bSome patients have more than one mutation.
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Figure 3B). The BRR rate in the EGFR-mutated subgroup (36.4%)

was numerically lower than that in the wild-type group, although

the difference did not reach statistical significance (p =

0.143; Figure 3B).

3.2.2 Pathological outcomes
Lobectomy was the predominant surgical procedure performed

during the surgical phase. The complete resection (R0) rates were

89.5% and 97.1% in the two groups [Supplementary Table S1 (See

Supplementary Material)]. After surgical resection, 43.8% (32/73) of

patients achieved MPR, and 32.9% (24/73) reached pCR. Patients

who achieved BRR were more likely to achieve MPR or pCR,

demonstrating a correlation between the radiological response

and pathological outcomes (Table 2, Figure 2B).

In the mutated group, the MPR rate was 47.1% (95% CI: 29.8–

64.9%) compared to 41.0% (95% CI: 25.6–57.9%) in the wild-type

group, with no statistically significant difference (p = 0.604)

(Table 2, Figure 3A). Similarly, the pCR rates were 32.4% (95%

CI: 19.6–51.4%) in the mutated group and 33.3% (95% CI: 17.4–

50.5%) in the wild-type group, also showing no significant

difference (Table 2, Figure 3A).

In the KRAS-mutated subgroup, all individuals who achieved

MPR also achieved pCR. This trend was observed in 61.5% of cases

(8/13; 95% CI, 31.6–86.1%; Figure 3B). Compared with that in the

KRAS-mutated subgroup, the MPR rate in the EGFR-mutated

subgroup was significantly lower at 9.1% (1/11; 95% CI, 0.2–

41.2%; p = 0.026; Figure 3B). Additionally, none of the patients in

the EGFR-mutated subgroup achieved pCR (Figure 3B). When

compared with the wild-type group, the KRAS-mutated subgroup

had a numerically higher MPR rate, although the difference was not
Frontiers in Immunology 05
statistically significant (p = 0.199; Figure 3B). The wild-type group

had a better MPR rate than the EGFR-mutated subgroup, but this

difference also did not reach statistical significance (9.1% vs 41.0%; p

= 0.2296; Figure 3B). The pCR rate in the KRAS-mutated subgroup

was 61.5%, compared with 33.3% in the wild-type group (p = 0.105).

However, the pCR rate in the EGFR-mutated subgroup was

significantly lower at 0%, compared with 33.3% in the wild-type

group (p = 0.046; Figure 3B).

Representative radiological and pathological images from these

patients were selected to illustrate these findings. After receiving

neoadjuvant therapy, the patients with EGFR mutations achieved a

BRR of PR and a pathological response of non-MPR (Figure 3C).

However, in the patients with KRAS mutations, the tumor

disappeared radiologically, and the pathological response reached

pCR (Figure 3D).

3.2.3 Survival analysis
Following a period extending from the initiation of neoadjuvant

therapy to the cutoff date, compared with seven patients (17.9%) in

the wild-type group, eight (23.5%) patients in the mutated group

experienced relapse either at the surgical site or in other organs. The

median follow-up time was 11.1 months. The median EFS was not

reached in either group, and no significant difference was observed

between the groups (log-rank p = 0.83; Figure 4). An exploratory

analysis was conducted across various subgroups, including sex,

age, ECOG performance status, smoking status, histological

features, baseline stage, and PD-L1 TPS, to evaluate potential

associations with EFS (Supplementary Figure S1). No significant

differences in the EFS were observed between the mutated and wild-

type groups across the subgroups.
3.3 Safety

Treatment-related AEs of any grade were observed in 93.2%

(68/73) of patients, with 97.1% (33/34) in the mutated group and

87.2% (34/39) in the wild-type group experiencing such events. The

most common AEs were anemia (79.4% in the mutated group vs

64.1% in the wild-type group), nausea (50% vs 38.5%), fatigue

(38.2% vs 43.6%), and vomiting (38.2% vs 28.2%). Grade 3

treatment-related AEs occurred in 11.8% (4/34) of patients in the

mutated group and 17.9% (7 of 39) of patients in the wild-type

group. Only one patient discontinued neoadjuvant therapy due to a

grade 3 thrombocytopenia. No grade 4 or 5 AEs were reported, and

no new toxicity signals were observed [Supplementary Table S2 (See

Supplementary Material)].
4 Discussion

CheckMate-816 is the first Phase III study to show that

neoadjuvant immunotherapy combinations offer significant

clinical benefits for patients with NSCLC (9). However, patients
TABLE 2 Outcomes of the best radiological response and
pathological response.

Mutated (n = 34) Wild-type (n = 39) p-value

Best radiological response, n (%)a

CR 3 (8.8) 6 (15.4)

PR 17 (50.0) 20 (51.3)

SD 12 (35.3) 13 (33.3)

PD 2 (5.9) 0

BRR
(%)

20 (58.8) 26 (66.7) 0.489

Pathological response, n (%)

MPR 16 (47.1) 16 (41.0) 0.604

pCR 11 (32.4) 13 (33.3) 0.929
Data are presented as n (%) or percentage.
CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; BRR,
best radiological response rate; pCR, pathological complete response; MPR, major
pathological response.
Percentages may not total 100 because of rounding.
aEvaluated by radiological data from baseline to before surgical resection according to the
Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1).
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with EGFR mutations were not included in the CheckMate-816

study. In previous subgroup analyses of the large neoadjuvant

immunotherapy clinical trial KEYNOTE-671 in NSCLC (17),

patients with EGFR mutations exhibited favorable clinical

outcomes compared with those with wild-type or unknown EGFR

status. Additionally, subgroup analyses from the IMpower010 and

KEYNOTE-091 trials indicated that adjuvant ICI provided a DFS

benefit in the EGFR mutated-subgroup (15, 16). These findings

motivated us to investigate the efficacy and safety of neoadjuvant

immunotherapy in patients with resectable NSCLC harboring
Frontiers in Immunology 06
driver gene mutations. In our study, the mutated group included

several heterogeneous driver mutations, and this necessary

simplification might obscure mutation-specific effects. Contrary to

previous studies that reported limited efficacy of immunotherapy in

patients with NSCLC and driver gene mutations (5–7), neoadjuvant

immunotherapy demonstrated comparable efficacy in patients with

NSCLC and driver gene mutations, showing good safety profiles.

No significant differences in radiological and pathological responses

or EFS were observed between the mutated and wild-type groups.

These findings suggest that neoadjuvant immunotherapy is a viable
FIGURE 2

Waterfall plots of best neoadjuvant therapy response stratified by (A) driver gene status and (B) pathological response.
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treatment option for patients with resectable NSCLC, regardless of

their genetic mutation status. Adopting this strategy can prevent

treatment delays associated with waiting for genetic testing results

and mitigate the inaccuracies and economic costs associated with

preoperative genetic evaluations using biopsy specimens.

In our study, the BRR rate in the mutated group was

significantly higher than the rates reported in previous studies (5,

21). These contradictory results may be attributed to the distinct

tumor microenvironments (TME) observed in patients with

resectable versus advanced NSCLC (22, 23). Differences in the

TME can significantly influence the efficacy of treatment

modalities across different disease stages. In patients with

resectable NSCLC, the TME is more conducive to activating
Frontiers in Immunology 07
antitumor immunity. the TME in advanced disease is typically

more immunosuppressive, likely due to progressive tumor

evolution and chronic immune evasion, thereby diminishing the

efficacy of ICIs (24–26).

KRAS is the most prevalent oncogenic alteration in NSCLC,

occurring in approximately 30% of adenocarcinoma cases (27).

Previous studies have demonstrated that KRAS mutations in

NSCLC can activate downstream signaling pathways that promote

PD-L1 expression in tumor cells (28, 29). The increased expression of

PD-L1 facilitates immune evasion and drives tumor progression. The

expression of PD-L1 is significantly higher in KRAS-mutated tumors

than in wild-type tumors (38.9% vs 16.2%, p <0.001) (30), with high

PD-L1 expression (≥50%) observed in 17% of patients with KRAS
FIGURE 3

(A, B) Comparison of radiologic and pathological response. (C, D) Representative radiological and pathological images from patients with EGFR
mutations and KRAS mutations.
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mutation (31). We conducted an exploratory analysis to compare the

efficacy of neoadjuvant immunotherapy in patients with NSCLC

harboring EGFR and KRASmutations. The results demonstrated that

patients with KRAS mutations exhibited better radiological and

pathological responses than those with EGFR mutations and those

patients with KRAS mutations who achieved MPR also achieved

pCR. In contrast, none of the patients with EGFR mutations achieved

pCR. KRAS positively regulates PD-L1 expression in NSCLC, which

may explain the enhanced responsiveness to immunotherapy

observed in patients with KRAS mutations. Given the small

numbers in these subgroups (n=11 and n=13), these observations

should be validated in larger cohorts to confirm the clinical relevance.

Substantial evidence indicates that tumors with EGFR mutations

promote immune escape by upregulating PD-1, PD-L1, and other

tumor-promoting inflammatory cytokines. Preclinical models have

demonstrated that PD-L1 expression can be reduced by inhibiting

EGFR in EGFR-mutated NSCLC cell lines (32–34). Additionally, the

immunosuppressive TME associated with these mutations may

contribute to the poor response to ICIs observed in numerous

clinical trials (35–37).

Overall, this retrospective study confirmed that the response to

neoadjuvant immunotherapy plus chemotherapy in patients with

resectable NSCLC was not significantly affected by the presence of

driver gene mutations. Additionally, this study revealed no increase
Frontiers in Immunology 08
in the risk of AEs or impediments to surgical resection in patients

with driver gene mutations. The NeoADAURA trial demonstrated

that neoadjuvant targeted therapy significantly improved the MPR

rate compared to chemotherapy alone in resectable stage II–IIIB

NSCLC with EGFR mutations, highlighting that the optimal

neoadjuvant treatment for specific driver gene mutations remains

an evolving clinical question (38).

This study has some limitations. First, it was a retrospective

analysis conducted at a single institution with a limited sample size

and brief follow-up period. Future studies should ideally involve

larger, more diverse patient populations across multiple centers and

adopt a prospective clinical trial design with longer follow-up

durations. Second, another limitation of our study is the use of

different types of ICIs, which may introduce confounding variables.

Additionally, the relatively short follow-up period limited our

survival analysis to EFS. Future studies should include extended

follow-up periods to obtain OS data. This study did not further

stratify specific mutation subtypes, which limited the ability to

perform more detailed subgroup analyses.

In conclusion, neoadjuvant immunotherapy plus chemotherapy

did not show statistically significant differences in efficacy between the

mutated and wild-type groups. Neoadjuvant immunotherapy plus

chemotherapy remains a promising treatment option for patients

with resectable NSCLC, irrespective of genetic mutation status.
FIGURE 4

Kaplan–Meier survival curves of all patients.
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