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4Chest Hospital, Tianjin University, Tianjin, China, 5Department of Thoracic Surgery, Fujian Provincial 
Hospital Affiliated to Fuzhou University, Fuzhou, Fujian, China, 6Qingdao Hospital, University of Health 
and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China 
Background: Lymph node metastasis markedly worsens prognosis in lung 
adenocarcinoma (LUAD); however, the evolutionary dynamics and regulatory 
mechanisms underlying the heterogeneity of malignant epithelial cells during this 
process remain poorly understood and warrant comprehensive investigation. 

Methods: We performed a comprehensive single-cell transcriptomic analysis of 
epithelial cells from 18 samples comprising normal lung tissue and lymph node 
metastases. Malignant epithelial cells were identified via inferred copy number 
variation (CNV) profiles. Key malignant subpopulations were further 
characterized through trajectory inference, cell–cell communication mapping, 
gene set variation analysis (GSVA), and reconstruction of transcription factor 
regulatory networks. To assess clinical relevance, we developed and validated a 
prognostic model—termed the EAS score—based on the transcriptional 
signatures of malignant epithelial subsets, using integrated data from multiple 
TCGA and GEO cohorts. The functional role of the hub gene SELENBP1 was 
experimentally validated through quantitative PCR (qPCR), Western blotting, 
immunohistochemistry (IHC), Transwell migration assays, colony formation 
assays, flow cytometry, ROS quantification, and subcutaneous tumorigenesis 
assays in vivo. 

Results: Single-cell transcriptomic analysis identified four distinct malignant 
epithelial subtypes (Clusters 0–3), each characterized by unique patterns of 
CNV. Leveraging these defined cellular subpopulations, we constructed a highly 
accurate model for prognostication in LUAD, enabling reliable classification of 
patients based on clinical outcomes. Through detailed comparisons between 
groups with divergent prognostic risks, the study revealed notable differences 
across the tumor microenvironment (TME), including alterations in pathway 
activity, gene enrichment distributions, mutation profiles, and anticipated 
responses to immune checkpoint blockade. In addition, functional validation 
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experiments confirmed that SELENBP1 plays a tumor-suppressive role, further 
supporting its relevance as a potential intervention target in LUAD. 

Conclusion: This research provides insights into the evolutionary complexity and 
heterogeneity of malignant epithelial populations in lymph node metastatic sites 
of LUAD. It also presents a scoring system based on prognostic indicators, which 
serves as a reliable tool for forecasting patient survival outcomes. Moreover, the 
discovery of SELENBP1 as a candidate tumor suppressor emphasizes its 
importance in guiding both clinical risk categorization and the design of 
personalized treatment strategies for individuals classified as high-risk 
LUAD cases. 
KEYWORDS 

LUAD, lymph node metastasis, epithelial cell, SELENBP1, immunotherapy 
1 Introduction 

Lung cancer remains one of the most prevalent malignancies 
worldwide and is the leading cause of cancer-related mortality, 
posing a substantial threat to global public health (1, 2). 
Histologically, it is classified into small cell lung cancer (SCLC) 
and non-small cell lung cancer (NSCLC), with the latter accounting 
for approximately 80%–85% of all cases (3, 4). LUAD accounts for 
the highest proportion of NSCLC diagnoses, with lung squamous 
cell carcinoma (LUSC) being the next most prevalent subtype (5, 6). 
Lymph node metastasis frequently emerges during the early stages 
of disease progression and represents a principal route of tumor 
dissemination. It is a key determinant of prognosis, and despite 
advances in treatment, the five-year survival rate for patients with 
lymph node involvement remains dismal, at approximately 20%– 
30% (7). However, the evolutionary heterogeneity and regulatory 
dynamics of malignant epithelial cells during lymph node 
metastasis in LUAD remain poorly understood. Notably, few 
studies have systematically profiled these malignant populations 
at single-cell resolution within metastatic lesions (8). 

The TME is a highly dynamic and intricate ecosystem 
comprising malignant cells, immune infiltrates, fibroblasts, 
endothelial cells, extracellular matrix components, and a diverse 
array of cytokines and signaling molecules (9, 10). Beyond 
supporting tumor cell survival and proliferation, the TME 
orchestrates tumor initiation, progression, and metastasis through 
multilayered intercellular crosstalk. In solid tumors such as LUAD, 
the extent of immune infiltration, the degree of inflammatory 
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response, and the dynamic crosstalk between malignant cells and 
adjacent stromal components are increasingly recognized as pivotal 
factors shaping disease progression and influencing tumor biology 
(11). As insights into the TME have deepened, research has evolved 
from focusing on individual cell types to delineating the cooperative 
networks among multiple cellular and molecular constituents. 
While immune and stromal elements have traditionally been the 
primary focus (12–14), the regulatory roles of epithelial cells within 
the TME have garnered increasing interest. As the origin of most 
solid tumors, epithelial cells not only drive invasion and 
dissemination via epithelial–mesenchymal transition (EMT), but 
also  modulate immune recruitment, stromal remodeling, and 
angiogenesis by secreting cytokines and mediating cell–cell and 
cell–matrix interactions (15). Furthermore, aberrant intracellular 
signaling within epithelial cells can reshape the immunological and 
structural milieu of the TME through interactions with neighboring 
components. Thus, decoding the heterogeneity of epithelial cells 
during lymph node metastasis in LUAD is crucial for elucidating 
tumor pathogenesis, informing personalized therapies, and 
improving clinical outcomes (10). 

Single-cell omics technologies represent a cutting-edge 
approach characterized by high-throughput capabilities, 
facilitating comprehensive molecular profiling at the individual 
cell level. These platforms enable simultaneous analysis of 
genomic sequences and transcriptional activity within single cells, 
thereby revealing intricate gene regulatory networks and distinct 
cellular expression landscapes with unprecedented resolution (5, 
16). This approach enables the fine-grained classification of diverse 
cell populations and facilitates a comprehensive understanding of 
intratumoral molecular features. It plays a pivotal role in delineating 
tumor heterogeneity, identifying actionable therapeutic targets and 
clinical biomarkers, and supporting prognosis assessment and 
personalized treatment strategies (17). In contrast, bulk RNA 
sequencing captures average transcriptional signals across mixed 
cell populations within a tissue, thereby concealing the diversity of 
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individual cell types—especially in tumors, which exhibit extensive 
cellular heterogeneity. Compared to bulk RNA-seq, single-cell RNA 
sequencing (scRNA-seq) has uncovered drug-resistant subclones in 
melanoma (18) and has been employed to predict therapeutic 
responses, including to immunotherapy (19). When integrated 
with spatial transcriptomics (20), single-cell technologies offer a 
spatially resolved, multidimensional view of the tumor 
microenvironment. The remarkable resolution and high-
throughput capabilities of scRNA-seq allow for the identification 
of fine-scale transcriptional heterogeneity, thereby advancing 
insights into cancer cell molecular mechanisms and promoting 
the identification of both prognostic indicators and potential targets 
for therapeutic intervention (21). 

In summary, this study provides the first comprehensive single-
cell resolution map of epithelial cell heterogeneity in lymph node 
metastases of LUAD. Four malignant epithelial subpopulations, 
defined by distinct copy number variation patterns, were accurately 
identified. Their evolutionary dynamics and functional states within 
the tumor microenvironment were delineated through trajectory 
inference, intercellular communication analysis, and transcriptional 
regulatory network reconstruction. A robust prognostic scoring 
system (EAS) was developed based on the transcriptional 
signatures of key subpopulations, exhibiting strong predictive 
performance and generalizability across multiple independent 
cohorts. This model effectively stratifies patients by survival risk 
and potential benefit from immunotherapy, offering valuable 
insights for clinical decision-making and personalized treatment 
strategies. Mechanistically, SELENBP1 was identified and 
experimentally validated as a putative tumor suppressor that 
modulates LUAD cell proliferation, migration, oxidative stress, 
and apoptosis, both in vitro and in vivo, underscoring its 
potential as a therapeutic target. Collectively, these findings 
deepen  our  understanding  of  epithelial  cell  functional  
heterogeneity in LUAD metastasis and provide a theoretical and 
experimental framework for high-risk patient stratification, 
optimization of immunotherapeutic approaches, and the 
development of novel targeted interventions, highlighting 
substantial scientific and translational relevance. 
2 Methods 

2.1 Data acquisition 

ScRNA-seq datasets were obtained from a cohort of 18 LUAD 
patients who had not received prior treatment. The samples consisted 
of two distinct tissue types: peripheral normal lung tissues (nLung, 
n = 11) and metastatic lymph nodes (mLN, n = 7). These sequencing 
data were retrieved from the Gene Expression Omnibus (GEO) under 
the accession number GSE131907. 

To establish a robust prognostic model, multi-omics data 
including transcriptomic profiles, clinical parameters, and somatic 
mutation information of LUAD patients were collected from The 
Cancer Genome Atlas (TCGA) project via the Genomic Data 
Commons (GDC) portal. The RNA expression data were 
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normalized using the fragments per kilobase of transcript per 
million mapped reads (FPKM) methodology. To evaluate the 
model’s capacity for generalization and predictive accuracy, five 
publicly available validation datasets—GSE31210, GSE37745, 
GSE50081, GSE68465, and GSE3141—were further incorporated. 
These datasets, all obtained from GEO, encompassed both gene 
expression matrices and associated patient outcome data, enabling 
comprehensive validation of the proposed prognostic framework. 

To investigate potential responses to immunotherapy, 
Immunophenoscore (IPS) data were retrieved from The Cancer 
Immunome Atlas (TCIA) (https://tcia.at/patients), which integrates 
immune-relevant genomic features across diverse cancer types. 
Higher IPS values are typically indicative of enhanced immune 
responsiveness and improved therapeutic outcomes. 

To further investigate the mechanisms underlying immune 
evasion in LUAD, we utilized quantitative scores reflecting both 
immune cell dysfunction and rejection, which were derived from 
the Tumor Immune Dysfunction and Exclusion (TIDE) (22)(http:// 
tide.dfci.harvard.edu) platform. This integration enabled a 
comprehensive and systematic assessment of each tumor’s 
potential to escape immune surveillance, thus providing deeper 
insight into the immunological landscape associated with 
LUAD progression. 
2.2 Processing and quality control of 
single-cell transcriptomic data 

ScRNA-seq data were processed using the Seurat R package 
(version 4.4.0). Raw expression matrices were converted into Seurat 
objects, followed by quality control filtering. To ensure high-quality 
single-cell transcriptomic data, cells were filtered according to 
stringent quality control criteria. Specifically, cells exhibiting fewer 
than 300 or greater than 8,500 expressed genes, or showing 
mitochondrial gene expression that accounted for over 10% of total 
unique molecular identifiers (UMIs), were excluded from 
downstream analyses. Subsequently, data normalization and scaling 
were performed prior to dimensionality analysis. Principal 
component analysis (PCA)  was employed,  and the  first 20 
components extracted were retained for subsequent feature 
reduction and unsupervised clustering. The clustering step was 
performed using the “FindClusters” function from the Seurat 
package. During dimensionality reduction and clustering of distal 
normal lung tissue samples from 11 LUAD patients (n = 11) and 
untreated lymph node metastasis samples from 7 individuals (n = 7), 
the resolution parameter was set to 0.8. Low-dimensional 
embeddings were generated via Uniform Manifold Approximation 
and Projection (UMAP) for visualization purposes. Manual 
annotation of cell identities revealed 12 biologically distinct cell 
clusters, classified based on established marker gene expression 
profiles. To identify genes exhibiting differential expression across 
cellular populations, the Wilcoxon rank-sum test was employed as 
the statistical method. The analysis adhered to rigorous filtering 
conditions, including a minimum absolute log2 fold change 
threshold of 1, gene expression presence in no less than 25% of 
frontiersin.org 

https://tcia.at/patients
http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
https://doi.org/10.3389/fimmu.2025.1637625
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mu et al. 10.3389/fimmu.2025.1637625 
cells within a specified cell group, and an adjusted significance level 
set below 0.05. These stringent criteria ensured the robustness and 
biological relevance of the selected differentially expressed 
genes (DEGs). 
 

2.3 Inference of malignant epithelial cells 
in LUAD lymph node metastases 

In order to differentiate malignant epithelial cells from their 
non-malignant counterparts within lymph node metastatic lesions 
of LUAD, we utilized the InferCNV computational framework. This 
tool was employed to predict genome-wide alterations in copy 
number by leveraging gene expression signals and comparing 
them against a reference set of normal epithelial cells, which 
served as the baseline for identifying large-scale CNV events (23). 
Based on the InferCNV official guidelines, we further applied two 
stringent filtering criteria to ensure the specificity and robustness of 
malignant cell identification: (1) the inferred CNV profile of a given 
epithelial cell had to exhibit a Pearson correlation coefficient greater 
than 0.15 with the average CNV profile of the top 5% most 
aneuploid tumor cells; and (2) the cell’s average  CNV  signal
strength (average CNV score) had to exceed 0.25. Epithelial cells 
meeting both criteria were classified as malignant and selected for 
downstream analyses. To investigate their dynamic cellular states 
and potential lineage trajectories, the Monocle2 R package was used 
to reconstruct pseudotime developmental trajectories and assess 
differentiation hierarchies within the malignant epithelial 
population (24). 
 

2.4 Pathway and prognostic analysis based 
on malignant epithelial subclusters 

We constructed gene sets based on the marker genes of malignant 
epithelial subclusters (Cluster 0–3) and applied single-sample gene set 
enrichment analysis (ssGSEA) to calculate enrichment scores for each 
sample in the TCGA-LUAD cohort, using the GSVA package 
(v2.0.7). Kaplan–Meier survival analysis was  subsequently
conducted to evaluate the prognostic differences among the 
epithelial subpopulations. To further explore the functional 
heterogeneity of these malignant epithelial subclusters, 50 hallmark 
gene sets from the Molecular Signatures Database (MSigDB) were 
incorporated. Gene Set Variation Analysis (GSVA) was performed on 
a per-cell basis, and average scores were calculated by cell 
subpopulation to facilitate functional annotation and comparison at 
the subcluster level (25, 26). Additionally, the marker genes of Cluster 
1 and Cluster 2 were intersected with the differentially expressed 
genes (DEGs) between tumor and adjacent normal tissues in the 
TCGA-LUAD dataset to generate a core DEG set. This gene set was 
subsequently subjected to Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analyses using the clusterProfiler package (v4.12.0). 
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2.5 Deciphering cell–cell communication 
and regulatory networks 

To investigate intercellular signaling dynamics, we utilized the 
CellChat R toolkit to analyze the normalized gene expression matrix 
from the “RNA” assay in the Seurat object, and quantitatively infer 
alterations in cell–cell communication patterns (27). In accordance 
with the standard analytical workflow, CellChatDB was employed 
as the reference framework for ligand–receptor relationship 
inference. This resource comprises an expertly compiled 
collection of documented molecular interaction pairs, enabling 
systematic identification of communication signals between cell 
types based on expression profiles. Ligands and receptors with high 
expression levels were identified within each cell population, and 
significantly enriched ligand–receptor pairs were further analyzed 
to construct subtype-specific intercellular communication 
networks (28). 

To explore the underlying transcriptional regulatory 
landscape, we applied the SCENIC (Single-Cell rEgulatory 
Network Inference and Clustering) workflow in R to infer 
transcription factor activity and construct regulatory networks 
across cell populations (29, 30). This enabled the identification of 
key transcription factors governing cell fate and subtype-specific 
functional programs. 
2.6 Development and evaluation of the 
epithelial-associated signature prognostic 
model 

To investigate the prognostic significance of epithelial-related 
genes in LUAD, an initial univariate Cox regression analysis was 
performed to identify gene candidates correlated with patient 
survival outcomes. This step enabled the preliminary selection of 
survival-associated biomarkers for subsequent modeling. 
Leveraging the selected features, we constructed a robust 
prognostic signature, referred to as the epithelial-associated 
signature (EAS), by integrating 10 commonly employed machine 
learning approaches. These included Random Forest, CoxBoost, 
Elastic Net, Gradient Boosting Machine (GBM), Lasso, plsRcox, 
Ridge, StepCox, SuperPC, and Survival-SVM, along with 101 
pairwise algorithm combinations. The EAS signature (Epithelial-
Associated Signature) specifically refers to a prognostic scoring 
model constructed from a set of signature genes derived from 
malignant epithelial subpopulations (Cluster 1 and Cluster 2). It 
serves as a tool for assessing patient prognosis. 

The predictive accuracy of each individual model and 
combination was quantitatively assessed through receiver 
operating characteristic (ROC) curve evaluation, where the area 
under the curve (AUC) was designated as the key metric for 
performance comparison. All candidate models yielded AUC 
scores above 0.65, reflecting strong generalizability and predictive 
robustness across diverse algorithmic settings. 
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2.7 Mutation landscape analysis 

To characterize the somatic mutational landscape associated 
with the prognostic model, we employed the maftools R package to 
systematically analyze mutation frequency patterns across selected 
candidate gene sets. Using data from the TCGA-LUAD cohort, 
patients were stratified into four subgroups based on a combination 
of median EAS risk score and tumor mutational burden (TMB) 
levels. Kaplan–Meier survival analysis was then performed to 
compare overall survival among these subgroups, thereby 
assessing the prognostic implications of integrating EAS-based 
risk stratification with mutational burden status. 
2.8 Immune landscape profiling and 
therapeutic response estimation across risk 
groups 

To delineate immunological disparities between stratified risk 
populations, we examined transcriptional profiles related to 
immune checkpoints as well as major histocompatibility complex 
(MHC) components within both high- and low-risk subgroups 
(31). Statistically significant alterations in expression patterns were 
observed, suggesting differential immunogenic features across 
prognostic categories. 

Furthermore, the IPSmetric was utilized to quantify and 
compare the immune activity landscape between groups, thereby 
enabling inference of differential sensitivity to immune-based 
therapies. To enhance understanding of immune evasion 
pathways, the TIDE computational framework was employed to 
approximate the likelihood of immune escape in each subgroup. 
This approach revealed insights into resistance pathways associated 
with immune checkpoint therapy within the prognostic context. 

In parallel, drug response prediction was conducted using the 
oncoPredict package in R, enabling a comparative assessment of 
drug sensitivity across the risk-stratified cohorts. Collectively, these 
integrative analyses provide a rationale for individualized 
therapeutic strategies and support the advancement of precision 
immunotherapy in lung adenocarcinoma. 
2.9 Analysis of tumor microenvironmental 
differences 

To systematically evaluate immune cell composition across 
prognostic risk groups, seven immune cell infiltration inference 
algorithms were applied (32). These methods enabled robust 
quantification of immune landscape variability and provided 
insights into the differential distribution of immune cell subsets 
between high- and low-risk groups. To visualize the dynamic 
changes in immune infiltration, heatmaps were generated to 
intuitively display the relative abundance of immune cell 
populations across groups, thereby highlighting potentially relevant 
immunological differences underlying the risk stratification. To 
evaluate the immune microenvironment characteristics of LUAD 
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samples, we applied the “estimate” R package to the TCGA-LUAD 
dataset. This algorithm calculates four scores based on gene 
expression profiles: Stromal Score, Immune Score, ESTIMATE 
Score (the sum of stromal and immune scores), and Tumor Purity 
(inferred from the ESTIMATE Score). We then compared these 
scores between the high- and low-EAS risk groups to characterize 
their immune microenvironmental differences. 
2.10 Tissue acquisition, cell line 
construction, and ethical approval 

Approval for the utilization of human-derived tissue samples 
was obtained from the Ethics Committee of Tianjin Chest Hospital. 
Tumorous lesions and their corresponding adjacent non-tumor 
tissues were collected from individuals undergoing surgical excision 
for lung adenocarcinoma and were promptly snap-frozen in liquid 
nitrogen at −80 °C to preserve RNA integrity for downstream 
experimental applications. 

For in vitro investigations, a panel of cell lines was employed, 
comprising one normal human bronchial epithelial line (BEAS-2B) 
and four well-characterized lung adenocarcinoma lines, including 
A549, H1299, H1975, and H1650. All cell lines were obtained from 
the Cell Bank of the Chinese Academy of Sciences (Shanghai, 
China). These cells were cultured in RPMI-1640 medium (Gibco 
BRL), enriched with 10% fetal bovine serum (Cell-Box) and 1% 
penicillin–streptomycin (Biosharp), under standard growth 
parameters (37 °C, 5% CO2, and 95% relative humidity). 

To functionally validate the role of SELENBP1, recombinant 
lentiviral particles harboring the SELENBP1 construct or control 
vector were obtained from BrainVTA. A549 and H1299 cells were 
transduced to generate SELENBP1-overexpressing derivatives 
(A549-SELENBP1 and H1299-SELENBP1), with respective 
empty-vector controls. Selection of successfully transduced cells 
was performed using 2 mg/mL puromycin, followed by verification 
of SELENBP1 upregulation through quantitative real-time PCR and 
Western blotting. 
2.11 RNA isolation and quantitative reverse 
transcription PCR 

Total RNA was isolated from cultured cell lines utilizing the 
UNIQ-10 Column RNA Extraction Kit (Sangon Biotech, B511361) 
in strict accordance with the supplier’s recommended protocol. 
First-strand complementary DNA (cDNA) was generated using the 
gDNA Digester Plus Reagent (Yeasen, HB221101) to eliminate 
genomic DNA contamination. Quantitative reverse transcription 
PCR (qRT-PCR) was subsequently conducted with SYBR Green 
Master Mix (Yeasen, 11141ES) for fluorescence-based amplification 
detection. GAPDH served as the endogenous reference gene for 
data normalization. The relative quantification of mRNA 
expression levels was computed using the comparative Ct method 
(2^−DDCt). All primer pairs were custom-synthesized by Wuhan 
Servicebio Technology Co., Ltd. 
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2.12 Western blotting and 
immunohistochemistry 

Western blot analysis was carried out under conventional 
operating procedures. The primary and secondary antibodies used 
included SELENBP1 (1:1000), GAPDH (1:5000), goat anti-mouse 
IgG  (1:5000),  and  goat  anti-rabbit  IgG  (1:5000).  For  
immunohistochemical staining, clinical tissue sections were 
subjected to a series of preparatory steps, including formalin 
fixation, dehydration, paraffin embedding, and microtome 
sectioning. The paraffin-embedded slices were then deparaffinized, 
rehydrated,  and  treated  for  antigen  retrieval  prior  to  
immunostaining. SELENBP1-specific primary  antibody  was
applied at a working dilution of 1:200 to enable signal detection. 
2.13 Quantification of proliferation through 
colony formation assays 

To evaluate long-term proliferative capacity, cells were seeded 
into six-well plates at an initial density of 1 × 10³ cells per well and 
maintained under standard culture conditions for a total of 14 days. 
Upon completion of incubation, adherent colonies were washed 
thoroughly with phosphate-buffered saline (PBS), fixed using 4% 
paraformaldehyde, and subsequently stained with crystal violet 
solution (Solarbio, China) to enhance visibility. The number and 
size of colonies formed were assessed microscopically, providing a 
quantitative measure of proliferative ability. 
2.14 Characterization of cell migration and 
invasion via transwell-based functional 
assays 

Cellular migratory and invasive behaviors were investigated in 
LUAD cells using Transwell chamber-based assays. Specifically, 
H1299 and A549 cell lines were seeded into the upper 
compartments of Transwell inserts at a seeding density of 1 × 10⁵ 
cells per well. In invasion assays, membranes were pre-coated with a 
layer of Matrigel matrix (Corning, USA) to mimic the in vivo 
extracellular environment, whereas uncoated inserts were utilized 
for migration assays. Following incubation, cells that traversed the 
membrane barrier were fixed and stained using crystal violet 
solution (Solarbio, China). Migrated or invaded cells adhering to 
the lower membrane surface were imaged and counted to quantify 
their motility and invasive potential. 
2.15 Flow cytometric assessment of 
apoptosis 

To assess apoptosis, H1299 and A549 cells were harvested after 
transfection, and both cells and culture supernatants were collected. 
Cells were gently digested with trypsin lacking EDTA to preserve 
membrane integrity. Apoptosis was measured using the YF 488­
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Annexin V/PI apoptosis detection kit (UElandy) following the 
manufacturer’s protocol. Briefly, cells were resuspended in 100 mL 
of 1× binding buffer and incubated with 5 mL of Annexin V–FITC 
and 5 mL of propidium iodide (PI) in the dark at room temperature 
for 15 minutes. After staining, 400 mL of 1× binding buffer was 
added, and apoptosis was immediately analyzed by flow cytometry. 
2.16 Assessment of intracellular ROS 
accumulation via DHE staining 

Intracellular levels of ROS were assessed by employing 
dihydroethidium (DHE) fluorescence staining. A working 
solution was prepared by dissolving DHE in fresh culture 
medium to achieve a final concentration of 2 mM. The existing 
culture medium was replaced with the DHE staining solution, 
followed by incubation of the cells at 37 °C in the absence of light 
for 20 minutes. After staining, the cells were rinsed with fresh 
medium, and the intracellular ROS signal was visualized using a 
fluorescence microscope. Fluorescence intensity was used as a 
surrogate indicator of ROS accumulation. 
2.17 In vivo tumorigenesis assay using 
subcutaneous xenografts 

All animal procedures were conducted in accordance with 
ethical approval from the Animal Ethics Committee of Tianjin 
Chest Hospital. To assess the tumorigenic capability of cells in vivo, 
A549 cells stably expressing SELENBP1 (via lentiviral transduction) 
and their respective control counterparts were suspended in 
concentrated Matrigel and subcutaneously administered into the 
dorsal flanks of 5-week-old BALB/c nude mice. After approximately 
30 days of tumor growth, the animals were euthanized, and 
xenograft tumors were surgically excised and harvested for 
further experimental analysis. 
2.18 Statistical methods and data analysis 

Computational analyses related to bioinformatics were carried 
out using R programming language (version 4.4.0), while 
experimental data visualization and statistical evaluation were 
performed with GraphPad Prism and ImageJ software. For 
datasets conforming to normal distribution assumptions, 
intergroup comparisons were executed using either the unpaired 
Student’s t-test or one-way analysis of variance (ANOVA), 
depending on the number of groups involved. In cases where data 
exhibited non-normal distribution, the Wilcoxon rank-sum test (for 
two groups) or Kruskal–Wallis test (for multiple groups) was 
employed as the appropriate non-parametric alternative. Kaplan– 
Meier survival curves were generated for survival analysis, and 
differences between survival distributions were evaluated using the 
log-rank test. Correlation strength and direction between variables 
were assessed using Spearman’s rank correlation coefficient. All 
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statistical tests were two-tailed unless otherwise specified. A p-value 
< 0.05 was considered indicative of statistical significance. Levels of 
significance were annotated in the figures and results sections as 
follows: *p < 0.05; **p < 0.01; ***p < 0.001.In this study, different 
correlation metrics were applied based on the specific analytical 
purpose. Pearson correlation coefficients were primarily used to 
assess the linear similarity between inferred CNV profiles of 
individual cells and the average CNV profile of the top 5% of 
high-CNV tumor cells, thereby aiding in the identification of 
malignant cells. In contrast, Spearman’s rank correlation 
coefficients were employed to evaluate monotonic associations 
between molecular features and clinical parameters—such as the 
relationship between EAS risk scores and tumor mutation burden 
(TMB)—due to the potential non-normal distribution of 
these variables. 
3 Results 

3.1 Single-cell mapping of the LUAD tumor 
microenvironment 

To  investigate  epithelial  cell  heterogeneity  in  lung  
adenocarcinoma lymph node metastasis, we analyzed publicly 
available single-cell RNA sequencing (scRNA-seq) data derived 
from distal normal lung tissues of 11 LUAD patients (n = 11) 
and metastatic lymph node samples from 7 untreated individuals (n 
= 7).After implementing rigorous quality control procedures and 
correcting for batch effects (Supplementary Figure 1), cell identities 
were assigned by leveraging canonical marker gene signatures, as 
detailed in the Methods section. Dimensionality reduction via 
UMAP revealed 16 transcriptionally discrete cellular clusters, 
forming a high-resolution atlas of cellular heterogeneity 
(Figure 1A). Marker gene expression profiles representative of 
each cluster were visualized using bubble plots (Figure 1C), 
facilitating the categorization of 63,646 individual cells into 12 
distinct cell lineages (Figure 1B). These included macrophages, 
natural killer (NK) cells, T cells, epithelial cells, B cells, 
monocytes, fibroblasts, proliferative cells, endothelial cells, 
dendritic cells, mast cells, and neuroendocrine cells. To evaluate 
variations between samples, Figure 1D displays the distribution of 
cell type frequencies across all 18 tissue specimens. In Figure 1D, 
endothelial cells, mast cells, and fibroblasts appeared more enriched 
in distal normal lung tissues (nLung), whereas their proportions 
were relatively lower in lung adenocarcinoma lymph node 
metastases (mLN). The higher abundance of these cell types in 
nLung samples suggests a more intact stromal and vascular 
microenvironment. In contrast, immune cells were more 
dominant in mLN samples, indicating a relative reduction in 
stromal-associated cell populations during tumor metastasis. 
Figure 1E illustrates the distribution of cells from different tissue 
origins in the UMAP space, suggesting notable differences in 
cellular composition or states between the two sources. Figure 1F 
shows the distribution of cells from individual samples across the 
entire dataset. The even distribution of cells from each sample 
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among the clusters indicates that batch effects have been effectively 
eliminated after data integration, providing a solid foundation for 
subsequent cross-sample comparative analyses. 
3.2 Inference of malignant epithelial cells 
in LUAD lymph node metastasis 

To elucidate epithelial cell state transitions associated with 
lymph node metastasis in LUAD, epithelial cells were extracted 
from distal normal lung tissues (nLung) and metastatic lymph 
nodes (mLN) for integrative analysis. Dimensionality reduction 
and clustering using UMAP revealed distinct spatial organization 
within the epithelial compartment (Figure 2A). Notably, epithelial 
cells derived from mLN clustered predominantly within a specific 
region of the UMAP space (Figure 2B), suggesting a transcriptomic 
divergence associated with metastatic transformation. 

To determine the malignant potential of epithelial cells, 
chromosomal CNV analysis was performed using the inferCNV 
algorithm. In this approach, gene expression profiles from normal 
epithelial cells served as a reference baseline to infer CNV patterns 
within tumor samples (Figure 2C). Cells were designated as 
malignant  when  both  their  inferred  CNV  s ignatures  
demonstrated a Pearson correlation coefficient greater than 0.15 
relative to the mean CNV profile of the top 5% of high-CNV tumor 
cells, and their CNV signal intensity values exceeded a threshold of 
0.25 (Figure 2D).A summary of cell classifications derived from 
inferCNV analysis is presented in Figure 2E. 

Subsequent UMAP-based visualization and refined clustering of 
malignant epithelial cells revealed four discrete subclusters (Clusters 
0–3; Figure 2F), each characterized by distinct transcriptional 
features. These subgroups may represent different functional 
states, differentiation trajectories, or levels of metastatic 
competence. To elucidate the potential functional heterogeneity of 
the four malignant epithelial subpopulations (Cluster 0–3), we 
performed GSVA-based pathway enrichment analysis. The results 
revealed distinct biological features among the clusters: Cluster 0 
was predominantly enriched in pathways related to tissue 
differentiation and endocrine functions, such as MYOGENESIS 
and PANCREAS_BETA_CELL, suggesting that this group may 
exhibit tissue-like differentiation or visceral-like characteristics. 
Cluster 1 showed significant enrichment in cell cycle–associated 
pathways, including E2F_TARGETS and G2M_CHECKPOINT, 
indicating high proliferative activity. Cluster 2 was broadly 
enriched in inflammation, stress response, and metabolic 
reprogramming pathways, such as COMPLEMENT, HYPOXIA, 
PI3K_AKT_MTOR_SIGNALING, and UNFOLDED_PROTEIN_ 
RESPONSE, implying that this subgroup may be involved in 
stress adaptation and immune activation at metastatic sites. In 
contrast, Cluster 3 was enriched in developmental and stemness­

maintaining pathways such as WNT_BETA_CATENIN_ 
SIGNALING and KRAS_SIGNALING_DN, potentially representing 
an epithelial-plastic or basal-like phenotype. (Supplementary Figure 3B). 

To explore the potential clinical implications of these 
subpopulations, single-sample gene set enrichment analysis 
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FIGURE 1 

Single-cell transcriptomic landscape reveals the cellular composition and heterogeneity between lung adenocarcinoma lymph node metastases and 
distal normal lung tissues. (A) UMAP dimensionality reduction was performed on 63,646 single cells from 18 samples—including 11 distal normal lung 
tissues (nLung) and 7 untreated metastatic lymph node (mLN) samples—after rigorous quality control and batch effect correction using the Harmony 
algorithm (data source: GSE131907). Sixteen transcriptionally distinct cell clusters were identified. (B) Based on the expression patterns of canonical 
marker genes, the clusters were annotated into 12 major cell lineages: epithelial cells, macrophages, T cells, B cells, natural killer (NK) cells, dendritic 
cells, monocytes, mast cells, fibroblasts, endothelial cells, neuroendocrine cells, and proliferating cells. (C) Bubble plot displaying representative 
marker genes across clusters. The size of each bubble indicates the proportion of cells expressing the gene, while the color intensity reflects the 
average expression level. (D) Proportional distribution of each cell type across the 18 samples. (E) Distribution of cells based on tissue origin. UMAP 
projection of 63,646 cells color-coded by tissue type: yellow for cells from normal lung tissues (nLung, n = 42,516) and purple for cells from 
metastatic lymph nodes (mLN, n = 21,130). (F) Distribution of cells across individual samples. Each color represents a different patient sample. 
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FIGURE 2 

Identification and characterization of malignant epithelial subpopulations in LUAD lymph mode metastases. (A) UMAP plot showing 6,239 epithelial 
cells extracted from distal normal lung tissues and metastatic lymph nodes, which were clustered into 11 distinct subpopulations. (B) Spatial 
distribution of epithelial cells derived from normal lung tissues (nLung, blue) and metastatic lymph nodes (mLN, red). (C) Copy number variation 
(CNV) patterns of epithelial cells were inferred using the inferCNV algorithm, with normal epithelial cells as the reference. The heatmap illustrates 
regions of chromosomal amplification (red) and deletion (blue) in tumor cells. (D) Scatter plot showing the correlation between each epithelial cell 
and the top 5% of tumor cells with the highest CNV levels (x-axis: CNV value; y-axis: Pearson correlation coefficient). Cells with CNV > 0.25 and 
correlation > 0.15 were defined as malignant. (E) UMAP plot showing the inferred benign (blue) or malignant (red) status of epithelial cells based on 
inferCNV analysis. (F) Malignant epithelial cells were further clustered into four transcriptionally distinct subgroups (Clusters 0–3), which may 
represent different functional states or differentiation trajectories. (G) Signature gene sets for each cluster were constructed and analyzed using 
ssGSEA in the TCGA-LUAD cohort. Clusters 1 and 2 exhibited higher enrichment scores and were significantly associated with poor survival 
outcomes, suggesting their potential roles in tumor progression. 
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(ssGSEA) was conducted based on the signature gene expression 
patterns of each cluster, utilizing data from TCGA LUAD cohorts. 
Notably, Clusters 1 and 2 exhibited significantly higher enrichment 
scores, which were correlated with poor clinical outcomes 
(Figure 2G), implying their possible contribution to tumor 
progression and adverse prognosis. 
3.3 Pseudotemporal dynamics, intercellular 
communication, and transcriptional 
regulation in malignant epithelial cells 

To explore the dynamic progression of malignant epithelial cells 
in LUAD lymph node metastases, Monocle2 was employed to infer 
pseudotime trajectories (Figure 3A). The analysis revealed a decline 
in the proportion of Clusters 2 and 3 along the trajectory, while 
Clusters 0 and 1 showed increasing trends, suggesting divergent 
evolutionary paths. Pseudotime-dependent expression dynamics of 
three representative genes—ANXA1, AQP5, and AREG—are 
shown in Figure 3B, providing insights into key transcriptional 
shifts across malignant subpopulations (33). 

In addition, we performed enrichment analysis of key genes 
involved in the trajectory differentiation process to clarify the 
functional divergence between the two cell fate endpoints, as 
shown in Supplementary Figure 3C. Cell fate 1 was significantly 
enriched in pathways such as cytoplasmic translation and 
granulocyte chemotaxis, suggesting that this branch may be 
associated with immune activation or inflammatory responses. In 
contrast, Cell fate 2 was enriched in pathways including positive 
regulation of cell adhesion, miRNA catabolic process, and 
heterotypic cell-cell adhesion, indicating enhanced intercellular 
adhesion, active transcriptional regulation, and potential EMT-

like features. 
To further elucidate the functional dynamics along the 

pseudotime trajectory, we analyzed the progressive transition of 
cells from early to late states. Cells at the early pseudotime stage 
were enriched in pathways related to ribosome biogenesis, protein 
synthesis, and metabolism, reflecting a typically highly proliferative 
and biosynthetically active status. As pseudotime progressed, Cell 
fate 1 sustained high levels of protein translation, potentially 
supporting its acquisition of immune effector functions. 
Meanwhile, Cell fate 2 became progressively enriched in pathways 
associated with cell adhesion, transcriptional regulation, and 
cytoskeletal remodeling, indicating a gradual shift from a 
metabolically active progenitor state toward a migratory or EMT-

like fate. 
Cell–cell communication networks were constructed to 

compare intercellular signaling under normal and metastatic 
conditions. Figure 3C and Figure 3D illustrate the ligand–receptor 
interaction networks among different cell types in normal lung 
tissues and LUAD lymph node metastases, respectively. Specifically, 
Figure 3C illustrates the overall cell–cell communication networks 
in both groups. The results reveal markedly enhanced interactions 
between epithelial cells and immune cells (such as macrophages, T 
cells, and dendritic cells) in the tumor samples, suggesting a 
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potentially more central regulatory role of epithelial cells within 
the tumor microenvironment. In addition, endothelial cells 
exhibited stronger self-interactions as well as increased 
connections with other cell types, which may reflect tumor-

associated angiogenesis and tissue remodeling processes. 
Figure 3D further quantifies these changes using a dot plot, 
clearly demonstrating that both the number and strength of 
communications between epithelial cells and macrophages are 
significantly higher in tumor tissues compared to normal tissues, 
underscoring their more active role in signal transmission within 
the tumor immune microenvironment. 

To investigate transcriptional regulation within malignant 
subclusters, Figure 3E presents a heatmap of differentially expressed 
transcription factors, revealing distinct regulatory profiles across the 
four clusters. Additionally, Figure 3F illustrates the differential 
expression patterns of transcription factor (TF) regulons across the 
four malignant epithelial subclusters, revealing distinct functional 
states among them. In Cluster 0, transcription factors such as 
TFAP2D, FOXK2, and SMAD1 were significantly upregulated, 
which are associated with epithelial differentiation and anti-
proliferative functions. Meanwhile, the downregulation of 
HOXA10, HOXB7, and TEAD4 further suggests that this 
subcluster may represent a more differentiated and quiescent state, 
lacking stem-like or highly proliferative features. In Cluster 1, 
enriched expression of TEAD4, MYC, and SMAD3—key regulators 
of cell proliferation, survival, and epithelial–mesenchymal transition 
(EMT)—along with increased expression of ZFHX2 and TCF3, 
indicates a highly proliferative, invasive phenotype with enhanced 
stemness characteristics. Cluster 2 was marked by significant 
upregulation of CDX2, TGIF1, and ARID3A, suggesting possible 
lineage reprogramming or activation of WNT-associated 
transcriptional programs. Conversely, downregulation of FOXA2, 
BAD, and TFAP2A may reflect suppression of apoptotic pathways 
and epithelial maintenance mechanisms. In Cluster 3, upregulation of 
POU3F2, CEBPA, and GATA6 suggests potential involvement in 
immune modulation and cellular plasticity, while downregulation of 
MYC, FOXA2, and SMAD1 indicates reduced proliferative activity 
and a tendency toward immune evasion or a quiescent-like state. 
Collectively, these results highlight the pronounced transcriptional 
heterogeneity among malignant epithelial subpopulations and 
further support their functional divergence within the 
tumor microenvironment. 
3.4 Construction and independent 
validation of a prognostic model for lung 
adenocarcinoma based on the epithelial-
associated signature 

Prognostic models play a pivotal role in precision oncology by 
enabling clinicians to develop individualized treatment strategies 
based on the molecular characteristics of tumors, while minimizing 
adverse effects caused by ineffective therapies. Moreover, dynamic 
risk stratification supports longitudinal disease monitoring and 
facilitates early detection of recurrence or progression. 
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FIGURE 3 

Trajectory inference, cell–cell communication, and transcriptional regulation of malignant epithelial cells. (A) Pseudotime trajectory of malignant 
epithelial cells constructed using Monocle2, illustrating the developmental progression of different subclusters. (B) Expression trends of 
representative genes (ANXA1, AQP5, AREG) along the pseudotime axis. (C) Cell–cell communication networks among major cell types inferred by 
CellChat in normal lung tissues and metastatic lymph node samples. (D) Quantitative dot plots showing the strength of incoming and outgoing 
signals among different cell types in metastatic lymph node and distal normal lung samples. (E) Heatmap of differentially expressed transcription 
factors across malignant epithelial subclusters. (F) Visualization of transcription factor regulon activity patterns in each malignant epithelial 
subcluster. 
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In the TCGA-LUAD cohort, we evaluated the enrichment 
scores of signature genes from four malignant epithelial cell 
clusters using the ssGSEA method and assessed their association 
with patient survival. The results showed that high enrichment of 
Cluster 1 and Cluster 2 was significantly associated with worse 
prognosis (Figure 2G), indicating the potential clinical relevance of 
these two subpopulations. Based on this, we focused on the marker 
genes of Cluster 1 and Cluster 2 and intersected them with 
differentially expressed genes between tumor and adjacent normal 
tissues in the TCGA cohort, ultimately identifying 65 candidate 
epithelial-related genes. 

We then performed univariate Cox regression analysis on these 
65 candidate genes (p < 0.01) and identified 30 genes significantly 
associated with survival (10 protective and 20 risk-associated), 
which were visualized in a forest plot (Figure 4A), and used to 
construct the final prognostic model. During the modeling phase, 
we systematically compared 101 combinations of 10 mainstream 
machine learning algorithms, including Random Forest, CoxBoost, 
LASSO, Elastic Net, GBM, and Survival-SVM. Each model was 
optimized using default internal tuning strategies or grid search 
functions provided within R packages. Further comparison of 
different models revealed that the combination of RSF and GBM 
consistently demonstrated the best performance across all datasets 
(Figure 4B), with an average concordance index (C-index) of 0.626, 
the highest among all models. Therefore, this method was 
ultimately selected for constructing the EAS scoring system. The 
EAS signature (Epithelial-Associated Signature) specifically refers 
to a prognostic scoring model constructed from a set of signature 
genes derived from malignant epithelial subpopulations (Cluster 1 
and Cluster 2). It serves as a tool for assessing patient prognosis. 
Feature importance within the model is shown in Figure 4C. 

We systematically evaluated the predictive performance of the 
EAS model in comparison with several previously published 
prognostic models across five independent validation cohorts 
(TCGA, GSE31210, GSE3141, GSE50081, and GSE68485) (see 
Supplementary Figure 3D).These results demonstrate that the 
EAS model exhibits strong generalizability and stable prognostic 
predictive value across multiple independent datasets. By 
integrating features related to malignant epithelial heterogeneity 
derived from single-cell transcriptomic data, the EAS model 
complements existing immune- or epithelium-based prognostic 
signatures by capturing additional biological information that 
may otherwise be overlooked. This model thus offers a more 
biologically interpretable tool for individualized prognostic 
assessment in LUAD patients. 

Differentially expressed genes (DEGs) identified through 
comparisons between tumor and adjacent normal tissues were 
cross-referenced with the signature gene sets of Clusters 1 and 2 
(Figure 4D). Subsequent functional enrichment analysis (Figure 4E) 
revealed significant pathway involvement in angiogenesis 
regulation, extracellular matrix (ECM) remodeling, ligand-
receptor interactions, and integrin-mediated signaling. These 
results imply that tumor cells may contribute to the metastatic 
microenvironment by restructuring ECM components and 
activating pro-metastatic signaling cascades. 
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To evaluate the prognostic significance of the EAS signature, 
Kaplan–Meier survival analysis was applied, demonstrating that 
individuals with elevated EAS scores exhibited markedly poorer 
overall survival in the TCGA LUAD cohort. Additionally, 
validation using five independent GEO datasets (GSE31210, 
GSE37745, GSE50081, GSE68465, GSE3141) supported the 
model’s robustness, generalizability, and reproducibility across 
diverse clinical populations (Figure 5A–F). The prognostic 
model’s predictive accuracy was further substantiated by receiver 
operating characteristic (ROC) curve analysis, which confirmed its 
strong discriminative capacity and clinical relevance in lung 
adenocarcinoma prognosis. To externally validate the robustness 
of our model, we analyzed the independent scRNA-seq dataset 
GSE149655 using the AUCell algorithm. This method assesses the 
enrichment of model-involved genes in individual cells. The 
resulting t-SNE visualization (Supplementary Figure 3A) revealed 
that epithelial cells exhibited significantly higher AUCell scores 
compared to other cell types, indicating active expression of the 
model gene set. These findings confirm the cell-type specificity and 
external validity of our model. 
3.5 Characterization of the tumor immune 
microenvironment across EAS risk groups 

To explore immunological distinctions between patients with 
high and low EAS scores, a panel of seven distinct computational 
tools was applied to estimate immune cell infiltration. The resulting 
profiles were presented in the form of a heatmap (Supplementary 
Figure 2A), highlighting global immune infiltration patterns. 
Specifically, we found that B cell infiltration levels were 
consistently higher in the low EAS risk group across multiple 
immune inference algorithms, including TIMER, CIBERSORT, 
QUANTISEQ, xCell, and EPIC. Notably, memory B cells also 
showed an enrichment trend in the low-risk group according to 
the CIBERSORT and CIBERSORT-ABS tools. In addition, activated 
mast cells were found to be more abundant in the low-risk group 
based on both CIBERSORT and CIBERSORT-ABS analyses. The 
MCPcounter algorithm further indicated stronger infiltration of 
myeloid dendritic cells in the low-risk group. To deepen this 
investigation, ssGSEA was implemented to evaluate immune-

related pathway activity. The results indicate that, compared to 
the high-EAS group, the low-EAS group exhibits higher levels of 
infiltration by various immune cell subsets, particularly dendritic 
cells (DCs), mast cells, and natural killer (NK) cells. Additionally, 
enrichment results indicated stronger activation of several immune-

associated signaling pathways in the low-EAS group, such as those 
involved in major histocompatibility complex (HLA) processing 
and type II interferon (IFN) signaling cascades (Supplementary 
Figures 2B, C). These findings collectively suggest that the low-risk 
group is characterized by a more immunologically active 
tumor microenvironment. 

To further assess the composition of the immune and stromal 
compartments, the ESTIMATE algorithm was applied. Correlative 
analysis identified a significant inverse relationship between the 
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EAS risk score and immune score, while a positive correlation was 
observed between EAS score and tumor purity (Supplementary 
Figure 2D). A summary of these differences—including stromal 
score, immune score, ESTIMATE score, and tumor purity— 
between the high- and low-risk cohorts is provided in 
Supplementary Figure 2E. 
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3.6 Mutation analysis 

To investigate the genomic landscape underlying EAS-related 
risk stratification, tumor mutational burden (TMB) was evaluated 
across stratified risk cohorts. As illustrated in the heatmap 
(Figure 6A), individuals classified within the high-EAS score 
FIGURE 4 

Construction of the EAS scoring model based on signature genes of malignant epithelial cells. (A) Forest plot of 30 genes significantly associated 
with prognosis, identified by univariate Cox regression analysis. (B) Heatmap comparing the predictive performance (C-index) of 101 machine 
learning model combinations—including RSF, GBM, LASSO, CoxBoost, and others—across multiple datasets. (C) Feature importance ranking plot 
from the final GBM model, showing the relative contribution of each gene to the model’s predictive performance. (D) Volcano plot illustrating the 
intersection between differentially expressed genes (normal vs. tumor) from the TCGA-LUAD dataset and the signature genes of Clusters 1 and 2. 
(E) GO and KEGG functional enrichment analysis of the intersected genes between differentially expressed genes and the signature genes of Clusters 
1 and 2 in the TCGA-LUAD dataset. 
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subgroup displayed notably increased mutational loads. 
Quantitative assessments confirmed that TMB levels were 
significantly elevated in high-risk patients (Figure 6B). 
Furthermore, Spearman’s rank correlation analysis revealed a 
robust positive correlation between EAS risk scores and TMB 
values. Elevated TMB has been associated with enhanced 
neoantigen formation, which can facilitate immune surveillance 
by increasing tumor antigen visibility and promoting immune-

mediated clearance. In line with this notion, Kaplan–Meier survival 
curves indicated that patients harboring high TMB had 
substantially improved survival relative to those with lower TMB 
(Figure 6C). When integrating TMB with EAS scores, survival 
stratification showed that patients with a combination of high 
EAS score and low TMB had the poorest prognosis, while those 
with low EAS score and high TMB exhibited the most favorable 
clinical outcomes (Figure 6C), underscoring the synergistic 
prognostic value of these two variables. 

In addition, whole-exome mutation profiling revealed 
recurrently mutated hub genes, among which SLC34A2 exhibited 
the highest mutation frequency (Figure 6D). Co-mutation network 
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analysis further highlighted patterns of mutational co-occurrence 
between key hub genes and the ten most frequently mutated genes 
across the cohort (Figure 6E), providing insights into the 
mutational landscape of LUAD. 

Collectively, these findings underscore a complex interplay among 
EAS risk, tumormutationalburden, and genomic alterations inLUAD, 
emphasizing the importance of integrative mutation analysis for 
precise prognostication and therapeutic guidance. 
3.7 Immunotherapy response evaluation 
and drug prediction 

With the expanding clinical adoption of immunotherapy in LUAD, 
we conducted a comprehensive evaluation of immunotherapeutic 
responsiveness across EAS-stratified patient cohorts. Transcriptomic 
profiling revealed that individuals classified into the low-risk group 
demonstrated significantly elevated expression of the majority of 
immune checkpoint-associated genes compared to their high-risk 
counterparts (Figure 7A). A comparable expression pattern was also 
FIGURE 5 

Prognostic evaluation and external validation of the EAS scoring model. (A–F) Kaplan–Meier survival analysis and receiver operating characteristic 
(ROC) curve analysis were performed in the TCGA-LUAD cohort (A) and five external GEO validation cohorts (B–F) to evaluate the association 
between the EAS score and overall survival (OS), as well as the prognostic predictive performance of the model. 
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noted for genes related to the major histocompatibility complex 
(MHC), which were markedly upregulated in the low-risk 
cohort (Figure 7B). 

To further elucidate immunological functional differences, we 
incorporated results from the TIDE framework. This analysis 
indicated that high-risk patients exhibited a greater propensity for 
immune escape mechanisms (Figures 7C, D), suggesting 
diminished sensitivity to immunotherapeutic agents. Conversely, 
IPSassessment highlighted a more favorable immunological 
landscape among low-risk patients, particularly those exhibiting 
CTLA-4 positivity. These patients were predicted to derive greater 
clinical benefit from immune checkpoint inhibition (Figure 7E), 
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reinforcing the potential of EAS-based risk stratification in guiding 
immunotherapy decisions. 

Collectively, these findings underscore that the low-risk group is 
characterized by a more active and responsive immune microenvironment, 
with higher expression of checkpoint and antigen presentation genes, 
and greater likelihood of clinical benefit from immunotherapy— 
particularly in CTLA-4–positive individuals. These results support 
the utility of risk score–based stratification in guiding immunotherapy 
decisions and advancing personalized treatment strategies. 

In parallel, the oncoPredict R package was used to identify 
compounds with differential efficacy between risk groups (34). Six 
agents—Axitinib, Sinularin, BMS-754807, GSK269962A, AZD6482, 
FIGURE 6 

Tumor mutation burden (TMB) and mutation landscape analysis. (A) Genomic alteration profiles of patients in the high- and low-EAS score groups. 
The heatmap illustrates differences in tumor mutational burden (TMB), chromosomal instability (CIN), mutation signatures (MutSig), and other 
genomic features between the two groups. (B) Left: Violin plot comparing the distribution of TMB levels between the high- and low-EAS score 
groups. Right: Scatter plot showing a positive correlation between EAS scores and TMB levels. (C) Left: Kaplan–Meier survival curves comparing 
overall survival between high and low TMB groups. Right: Integration of EAS scores and TMB levels stratifies patients into four subgroups, illustrating 
the prognostic impact of different combinations. (D) The figure illustrates the mutation frequency and mutation types of EAS-associated core genes 
in the TCGA-LUAD cohort. (E) Co-mutation heatmap depicting the relationships between EAS genes and the top 10 most frequently mutated genes 
in the cohort. Color intensity indicates statistical significance (−log10 p-value) of co-occurrence or mutual exclusivity. 
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FIGURE 7 

Immunotherapy Response Evaluation and Potential Drug Screening Based on the EAS Score. (A) Expression differences of immune checkpoint– 
related genes between high and low EAS score groups. (B) Differential expression of MHC (major histocompatibility complex)–related genes across 
EAS-defined risk groups. (C, D) TIDE analysis evaluating immune dysfunction (C) and immune exclusion (D) scores to compare functional immune 
differences between risk groups. (E) Immunophenoscore (IPS)–based assessment of potential immunotherapy responsiveness under various immune 
contexts across EAS risk groups. (F) oncoPredict-based analysis of differential drug sensitivity between high and low EAS score groups, identifying 
candidate compounds with potential therapeutic value. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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and Doramapimod—were predicted to exhibit enhanced anti-
tumor efficacy in low-EAS patients (Figure 7F), highlighting their 
potential as therapeutic candidates for future clinical development. 
 

3.8 Enrichment analysis and immune 
checkpoints 

To better understand the biological processes underlying the 
EAS scoring system, we comprehensively assessed its associations 
with hallmark gene sets and the sequential stages of the cancer– 
immunity cycle. Correlation profiling indicated a prominent inverse 
relationship between the EAS risk score and most steps of the 
cancer–immunity cascade, suggesting impaired antitumor 
immunity in high-risk individuals. In contrast, a majority of 
hallmark gene pathways exhibited a positive correlation with the 
EAS score. (Figure 8A) Interestingly, elevated EAS scores were also 
associated with increased recruitment of granulocytic cell 
populations, including neutrophils and eosinophils, pointing to 
enhanced granulocyte infiltration within the high-risk subgroup. 
This may reflect an altered immune microenvironment favoring 
tumor progression. Additional pathway enrichment analysis 
revealed that patients in the high-EAS group  exhibited
upregulation of proliferative and cell cycle-associated signatures— 
such as those involving E2F targets, glycolytic metabolism, and G2/ 
M checkpoint regulation (Figure 8B)—indicative of hyperactive 
proliferation  and  energy  metabolism.  Conversely,  the  
transcriptomic profiles of the low-EAS cohort demonstrated 
significant enrichment of angiogenesis-related pathways and lipid 
metabolic processes, hinting at an alternative microenvironmental 
regulatory state. 

Gene Set Enrichment Analysis (GSEA) further confirmed that 
the high-risk group displayed enhanced activity in pathways 
associated with cell cycle progression, DNA synthesis, and 
proteasome-dependent protein degradation, indicative of a highly 
proliferative and potentially more aggressive tumor phenotype. In 
contrast, the low-risk group was enriched for immune-dominant 
pathways, including the IgA immune network and allograft 
rejection modules, alongside enhanced lipid metabolism 
(Figure 8C). These findings collectively suggest that the low-risk 
subgroup is characterized by a more immunologically active and 
metabolically balanced tumor microenvironment, which may 
impose constraints on tumor expansion and progression. 

Collectively, these findings demonstrate that EAS-based risk 
stratification is tightly linked to tumor cell cycle activity, immune 
regulation, and metabolic reprogramming—highlighting potential 
biological targets and therapeutic implications for different LUAD 
patient subgroups. 
3.9 Functional validation of SELENBP1 in 
LUAD via in vitro and in vivo assays 

To corroborate the computational predictions generated from 
publicly available transcriptomic datasets, we carried out a series of 
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experimental validations. Paired tumor and adjacent non-cancerous 
tissue specimens were obtained from six patients with LUAD who 
had undergone surgical resection at Tianjin Chest Hospital. 
Quantitative real-time PCR (qRT-PCR) was employed to 
experimentally verify the expression patterns of genes associated 
with the prognostic model. The qRT-PCR results revealed 
pronounced upregulation of TFF1, ITPKA, UBE2C, and IGFBP3, 
along with marked downregulation of SLC34A2 and SELENBP1 in 
tumor samples relative to adjacent normal tissues (Figures 9A–F), 
which was in strong agreement with the transcriptomic 
profiling outcomes. 

Although previous studies have suggested that SELENBP1 may 
exert tumor-suppressive functions, its role in lung adenocarcinoma 
(LUAD) has not been systematically elucidated, and the underlying 
mechanisms remain relatively unclear. In this study, SELENBP1 
was identified as a key protective gene within the EAS model. 
Moreover, based on differential expression analysis and functional 
enrichment results (Figure 4E), SELENBP1 was found to be 
significantly associated with pathways related to angiogenesis 
regulation and extracellular matrix (ECM) remodeling, suggesting 
its potential involvement in the formation and progression of 
LUAD metastases. Among the candidate genes, SELENBP1 was 
prioritized for further investigation due to its experimental 
feasibility, well-established biological rationale, and promising 
value in both basic and translational research. Expression analysis 
via qRT-PCR and Western blotting consistently demonstrated that 
SELENBP1 expression was substantially lower in four widely used 
LUAD cell lines (A549, H1650, H1975, and H1299) than in the 
non-tumorigenic bronchial epithelial cell line BEAS-2B 
(Figures 10A, B). Moreover, this pattern of reduced expression 
was also observed in primary LUAD tumor tissues as compared to 
their matched non-cancerous counterparts (Figures 10A–C), 
further validating the robustness of the in silico findings. 

To assess the biological effects of SELENBP1 downregulation, 
we performed RNA interference using siRNA. Knockdown 
efficiency was verified by qRT-PCR and Western blotting 
(Figures 10D–G). Functional assays demonstrated that 
SELENBP1 silencing significantly enhanced LUAD cell migration 
and proliferation (Figures 11A–C), increased colony formation 
(Figures 11D, E), and reduced apoptosis in both A549 and H1299 
cells (Figures 11F–I). 

Conversely, lentivirus-mediated overexpression of SELENBP1 
significantly suppressed LUAD cell migratory and proliferative 
capacity, as shown by Transwell (Figure 12E) and colony formation 
assays (Figure 12F). qRT-PCR and Western blotting confirmed 
successful overexpression (Figures 12A–D). Additionally, SELENBP1 
overexpression significantly reduced intracellular ROS levels 
(Figure 12G), suggesting a role in oxidative stress modulation. 

To investigate the in vivo effects of SELENBP1, A549 cells stably 
overexpressing SELENBP1 were subcutaneously injected into 
BALB/c nude mice to establish xenograft tumors. Tumor volumes 
were monitored weekly. Tumors derived from SELENBP1­

overexpressing cells exhibited significantly reduced growth 
compared to controls (Figure 12H), further supporting its tumor-

suppressive role in LUAD. 
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4 Discussion 

Lymph node metastasis in LUAD is strongly associated with 
poor clinical outcomes. It reflects not only enhanced tumor 
aggressiveness, but also increased risks of recurrence and distant 
dissemination, thereby serving as a critical determinant of 
prognosis. In recent years, advances in single-cell transcriptomics 
have enabled high-resolution dissection of tumor heterogeneity, 
reconstruction of metastatic evolutionary trajectories, and 
interrogation of tumor–microenvironment interactions (35). For 
LUAD patients with lymph node metastases, comprehensive single-
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cell characterization of epithelial cells within metastatic lesions 
provides key insights into their molecular features and 
developmental hierarchies. This approach facilitates the 
identification of metastasis- and therapy resistance–related 
drivers, as well as epithelial subpopulations potentially predictive 
of immunotherapy response (36), thereby laying the groundwork 
for constructing precise prognostic and therapeutic response 
models. Clinically, such multidimensional analyses at the single-
cell level offer a transformative alternative to traditional 
prognostication methods, which often rely on single markers or 
static pathological staging. These insights enable a shift toward 
FIGURE 8 

Relationship analysis between EAS score, pathway enrichment, and cancer-immunity cycle. (A) Correlation heatmap showing the relationships 
between the EAS score and different steps of the cancer–immunity cycle as well as hallmark gene sets. (B) GSVA-based analysis comparing hallmark 
pathway enrichment between high and low EAS score groups. (C) Gene Set Enrichment Analysis (GSEA) comparing pathway activities between high 
and low EAS score subgroups. 
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personalized therapeutic decision-making based on molecular 
subtyping and dynamic immune profiling—ultimately aiming to 
improve survival in high-risk LUAD patients with nodal 
involvement (37). Given the generally poor prognosis in this 
patient population, there is urgent scientific and clinical value in 
advancing single-cell–based investigations of epithelial 
heterogeneity. When coupled with large-scale clinical data 
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integration, such efforts hold great promise for developing robust 
prognostic tools and guiding immunotherapy strategies, 
representing a pivotal step toward improving personalized 
outcomes in metastatic LUAD (38). 

In this investigation, UMAP was employed to perform 
dimensionality reduction on single-cell transcriptomic datasets 
derived from lymph node metastases of LUAD, which facilitated 
FIGURE 9 

Expression validation of key model genes in clinical samples. (A–F) Expression levels of key genes in tumor and normal tissue samples. Left panel: 
Expression distribution of key genes in the TCGA database. Middle and right panels: Expression of key genes in collected tumor and normal tissue 
samples. **P < 0.01, ***P < 0.001. 
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the identification of four transcriptionally distinct epithelial 
subpopulations. Building upon this foundation, we incorporated 
Cox proportional hazards regression and an ensemble of machine 
learning methodologies to pinpoint 30 prognostic gene candidates. 
These core genes were subsequently integrated into the EAS scoring 
framework—a novel risk assessment model designed to enable 
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refined patient stratification. The resulting EAS-based stratification 
system demonstrated strong capacity to distinguish LUAD patients 
by survival status, tumor immune landscape, mutational load, and 
predicted response to immunotherapeutics. Notably, patients 
categorized into the high-risk group exhibited significantly inferior 
survival outcomes compared to their low-risk counterparts. 
FIGURE 10 

Expression and knockdown validation of SELENBP1 in LUAD tissues and cell lines. (A, B)qRT-PCR and Western blotting reveal significantly reduced SELENBP1 expression in four LUAD cell lines (A549, H1650, H1975, and H1299) 
compared to normal lung epithelial cells (BEAS-2B). (C) SELENBP1 expression is significantly decreased in LUAD tumor tissues compared to adjacent normal tissues. (D, E) qRT-PCR validation of SELENBP1 siRNA knockdown efficiency 
in H1299 and A549 cells. (F, G) Western blot further confirms decreased protein expression following knockdown. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Validation across both the TCGA training cohort and multiple 
external GEO datasets affirmed the robust predictive performance 
of the model, as evaluated using receiver operating characteristic 
(ROC) curve analysis. Further immune profiling revealed that 
individuals in the low-EAS group exhibited markedly elevated 
expression of immune checkpoint-related and MHC-associated 
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genes, particularly within CTLA-4–positive subsets. These features 
were indicative of enhanced immunological responsiveness and 
predicted greater clinical benefit from immune checkpoint blockade 
therapies. Additionally, drug sensitivity screening identified six 
promising small-molecule agents—Axitinib, Sinularin, BMS­

754807, GSK269962A, AZD6482, and Doramapimod—with higher 
FIGURE 11 

Effects of SELENBP1 knockdown on LUAD cell functions. (A–C) Transwell assays demonstrate enhanced migration and invasion capabilities in H1299 
and A549 cells following SELENBP1 knockdown. (D, E) Colony formation assays show increased clonogenic potential in H1299 and A549 cells after 
SELENBP1 knockdown. (F–I) Flow cytometry analysis indicates a significant reduction in apoptosis in H1299 and A549 cells following SELENBP1 
knockdown. ***P < 0.001. 
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predicted efficacy in low-EAS patients, thus offering avenues for 
precision therapy development. Experimental validations using qRT-
PCR confirmed the dysregulation of model genes in clinical LUAD 
specimens. Tumor tissues exhibited substantial upregulation of TFF1, 
UBE2C, ITPKA, and IGFBP3, alongside concurrent downregulation 
of SELENBP1 and SLC34A2, relative to matched normal samples. 
Functional characterization experiments further revealed that 
SELENBP1 functions as a tumor suppressor: its expression was 
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consistently diminished in LUAD cell lines and tissues, and its 
knockdown promoted cell proliferation, migration, and resistance 
to apoptosis. Conversely, ectopic overexpression of SELENBP1 
suppressed tumor growth by enhancing apoptosis, reducing 
intracellular ROS accumulation, and impairing in vivo xenograft 
progression. In summary, this study reveals the molecular 
heterogene i ty  of  ep i the l i a l  ce l l s  and  the i r  immune  
microenvironment in LUAD lymph node metastasis, establishes 
FIGURE 12 

Inhibitory effects of SELENBP1 overexpression on LUAD cell migration, growth, and oxidative stress. (A, B) qRT-PCR and (C, D) Western blot confirm 
successful SELENBP1 overexpression. (E) Transwell assays demonstrate significantly reduced migration and invasion capabilities of H1299 and A549 
cells following SELENBP1 overexpression. (F) Colony formation assays show decreased colony numbers in H1299 and A549 cells upon SELENBP1 
overexpression. (G) ROS assays reveal significantly reduced oxidative stress levels in H1299 and A549 cells after SELENBP1 overexpression. (H) Nude 
mouse xenograft models indicate that SELENBP1 overexpression markedly suppresses tumor growth. *P < 0.05, **P < 0.01, ***P < 0.001. 
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SELENBP1 as a potential therapeutic target, and constructs a 
prognostic model—EAS—based on malignant epithelial cells 
associated with LUAD lymph node metastasis, providing a novel 
theoretical foundation and application prospect for the personalized 
treatment of LUAD patients. 

Interestingly, while high tumor mutation burden (TMB) is 
often associated with favorable clinical outcomes due to increased 
immunogenicity and enhanced response to immunotherapy, our 
findings revealed that a high EAS (epithelial aggressiveness score) 
was significantly linked to poor prognosis. This apparent 
contradiction underscores the complex interplay between tumor-

intrinsic and tumor-extrinsic factors in shaping disease progression. 
TMB reflects the mutational landscape and neoantigen load of the 
tumor, indicating potential for immune recognition. In contrast, the 
EAS score captures transcriptomic features of malignant epithelial 
cells, emphasizing intrinsic hallmarks such as proliferative activity, 
plasticity, and immune evasion potential. It is plausible that in 
tumors with high TMB, aggressive epithelial subpopulations with 
high EAS may override the benefits of immunogenicity by adopting 
immune-suppressive or immune-resistant phenotypes. This 
highlights the importance of integrating both genetic and 
transcriptional dimensions when evaluating tumor behavior and 
prognostic potential, especially in the context of immunologically 
active microenvironments. 

Our findings are broadly consistent with previous reports. Prior 
studies have shown that SELENBP1 is downregulated across 
multiple solid tumors and is frequently associated with poor 
prognosis. Functionally, it has been implicated in redox 
homeostasis and metabolic regulation, which aligns with our 
observations that SELENBP1 suppresses ROS accumulation, 
inhibits cell migration, and reduces colony formation. 

In addition to SELENBP1, several other model genes identified 
in our study are supported by existing literature. Co-expression of 
TFF1 and S100P has been linked to airway dissemination in 
NSCLC, indicating their roles in promoting tumor progression 
(39). In LUAD, overexpression of UBE2C enhances ubiquitin­
mediated degradation of p53, thereby attenuating the p53/p21 
pathway and facilitating malignant transformation (40). ITPKA, 
transcriptionally activated by TFAP2A, contributes to LUAD 
progression through interaction with Drebrin 1 and promotion of 
epithelial–mesenchymal transition (EMT) (41). Elevated plasma 
levels of IGFBP3 have been associated with lower clinical stage, 
reduced Ki-67 index, and improved overall survival in lung cancer 
patients (42). Finally, SLC34A2 has been reported to exert a tumor-

suppressive effect in NSCLC by attenuating tumorigenic potential 
and disease progression (43). 

This study introduces several important innovations. It is the 
first to systematically characterize the evolutionary heterogeneity of 
malignant epithelial cells in LUAD lymph node metastases at 
single-cell resolution, enabling the construction of a trajectory-
informed prognostic model. By integrating multiple machine 
learning algorithms, we developed an optimized EAS scoring 
system that balances predictive accuracy and generalizability. 
Moreover, the model incorporates tumor microenvironment 
features, tumor mutational burden (TMB), and immunotherapy 
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response potential into a unified framework for multidimensional 
risk assessment. The tumor-suppressive role of SELENBP1 was also 
experimentally validated, providing mechanistic insights and 
therapeutic implications. 

Despite the comprehensive and systematic approach to data 
integration and mechanistic investigation, several limitations should 
be acknowledged. First, the majority of transcriptomic data were 
sourced from public databases, which may introduce sampling bias 
and platform-related variability. Second, although in vitro and in vivo 
validations were conducted, further confirmation in larger,

multicenter clinical cohorts and prospective studies is necessary to 
fully establish the robustness and translational relevance of the EAS 
model. One limitation of our CNV-based analysis is the absence of an 
explicit doublet exclusion step prior to inference. It is recognized that 
epithelial–stromal or epithelial–immune doublets may introduce 
confounding signals and artificially alter CNV profiles, potentially 
affecting the accurate identification of malignant epithelial cells. To 
mitigate this, we applied stringent quality control filters and leveraged 
the built-in denoising and smoothing features of the inferCNV 
package, which help to attenuate noise derived from heterogeneous 
cell identities. Nevertheless, we acknowledge that the incorporation of 
dedicated doublet detection tools, such as DoubletFinder or Scrublet, 
would enhance the robustness of CNV-based malignant cell 
classification and should be considered in future analyses. 
Additionally, we note that the relatively dispersed pattern of CNV 
signals in the inferCNV heatmap may be partly due to the use of the 
cluster_by_groups = TRUE parameter, which enforces grouping by 
cell type rather than CNV similarity. While this setting improves 
biological interpretability, it may reduce the visual clustering of CNV 
patterns and should be interpreted accordingly. Additionally, 
predictions of immunotherapy response require validation using 
real-world clinical outcomes. Moreover, we observed a certain 
inconsistency between the pseudotime trajectory and survival 
analysis results. Specifically, although Cluster 1 and Cluster 2 were 
significantly associated with poorer prognosis (Figure 2G), the 
pseudotime trajectory inferred by Monocle2 positioned Cluster 2 at 
an early stage, whereas Cluster 0—which was linked to a more 
favorable outcome—appeared at a later stage of the trajectory. This 
discrepancy may be attributed to the limitations of trajectory 
inference algorithms, which typically rely on transcriptomic 
similarity to construct linear or branched trajectories. In highly 
heterogeneous systems like tumors, which often involve multiple 
evolutionary paths, such continuity-based assumptions may not 
accurately reflect the true temporal progression of malignant cells. 
In addition, cells in Cluster 2 may exhibit a “progenitor-like” or 
highly plastic transcriptional program, leading the algorithm to 
classify them as being at an earlier pseudotime point, despite their 
aggressive nature. In contrast, Cluster 0, although located at a later 
stage in the trajectory, may represent a more differentiated and 
transcriptionally stable subpopulation, which does not necessarily 
indicate higher malignancy. These findings highlight the need for 
cautious interpretation of pseudotime results in tumor systems and 
underscore the importance of integrating trajectory inference with 
functional and clinical outcome analyses to better understand tumor 
heterogeneity and progression. 
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Future studies may consider several key directions: (1) 
expanding the sample size and generating multicenter, self-
derived single-cell datasets to enhance the generalizability and 
robustness of the findings, while including a more representative 
and demographically balanced patient population to reduce 
potential  populat ion  bias ;(2)  conducting  mechanist ic  
investigations of the core genes included in the EAS model to 
uncover their regulatory networks and signaling pathways; (3) 
integrating real-world immunotherapy response data to assess the 
clinical utility of the EAS score in guiding treatment selection and 
monitoring efficacy; and (4) exploring the applicability of the EAS 
scoring system across other tumor types to lay the groundwork for a 
pan-cancer prognostic framework. 

To further enhance the biological interpretability of the EAS 
model, we plan to conduct pathway-level integrative analyses of 
SELENBP1 and other key genes included in the model. As shown in 
the variable importance ranking (Figure 4C), other high-weight 
genes—such as IGFBP3, ITPKA, and UBE2C—are involved in 
critical oncogenic pathways, including TGF-b signaling, cell 
migration, and cell cycle regulation, respectively. These 
mechanisms may functionally antagonize or synergize with the 
tumor-suppressive effects represented by SELENBP1, collectively 
contributing to the model’s capacity to capture molecular 
heterogeneity. For example, previous studies have reported that 
IGFBP3 promotes EMT and cell invasion, whereas SELENBP1 may 
counteract these effects by negatively regulating ECM remodeling 
and suppressing TGF-b–mediated EMT processes. 
5 Conclusion 

This study elucidates the functional heterogeneity and dynamic 
progression of epithelial cells during lymph node metastasis in 
LUAD. Furthermore, it introduces a robust prognostic scoring 
system capable of predicting patient survival and responsiveness 
to immunotherapy. These findings provide a solid theoretical 
foundation and hold significant translational potential for risk 
stratification and the development of personalized therapeutic 
strategies in LUAD. 
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SUPPLEMENTARY FIGURE 1 

Quality control of single-cell data. (A, B) Distributions of nFeature_RNA, 
nCount_RNA, percentage of mitochondrial genes, and percentage of 
erythrocyte genes before and after quality control. (C, D) The distribution of 
cells from distal normal lung tissues and lymph node metastatic lesions 
before (C) and after (D) batch effect removal using the Harmony R package. 
(E, F) The distribution of malignant epithelial cell samples before (E) and after 
(F) batch effect removal using the Harmony R package. 

SUPPLEMENTARY FIGURE 2 

Immune microenvironment evaluation. (A) Comparison of immune cell 
composition between high and low EAS groups using seven immune 
Frontiers in Immunology 25 
infiltration inference methods. (B, C) Radar plots illustrating differences in 
immune cell populations and immune-related functions between the high-
and low-risk groups. (D) Correlation analysis between risk score and estimate 
score, immune score, stromal score, and tumor purity. (E) Differences in 
stromal score, immune score, ESTIMATE score, and tumor purity between 
high and low EAS groups. 
SUPPLEMENTARY FIGURE 3 

(A) AUCell-based external validation of the model using the independent 
scRNA-seq dataset GSE149655. The t-SNE visualization shows that epithelial 
cells exhibit significantly higher AUCell scores than other cell types, indicating 
active expression of the model-involved gene set and supporting the cell-
type specificity and external robustness of the model. (B) GSVA-based 
pathway  enrichment  analysis  of  the  four  malignant  epithel ia l  
subpopulations (Cluster 0–3). The clusters showed distinct functional 
features: Cluster 0 was enriched in tissue differentiation and endocrine-
related pathways; Cluster 1 in cell cycle pathways with high proliferative 
activity; Cluster 2 in inflammation, stress response, and metabolic 
reprogramming pathways; and Cluster 3 in developmental and stemness­
related pathways, suggesting epithelial plasticity or a basal-like phenotype. 
(C) Enrichment analysis of key genes along the differentiation trajectory. Cell 
fate 1 was enriched in immune-related pathways such as cytoplasmic 
translation and granulocyte chemotaxis, whereas Cell fate 2 was enriched 
in pathways including positive regulation of cell adhesion, miRNA catabolic 
process, and heterotypic cell-cell adhesion. (D) Comparison of the predictive 
performance between the EAS model and previously published prognostic 
models across five independent cohorts (TCGA, GSE31210, GSE3141, 
GSE50081, and GSE68485). The EAS model demonstrated strong 
generalizability and stable prognostic predictive value across multiple 
independent datasets. 
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