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Neuroblastoma (NB), the most prevalent extracranial solid malignancy in

children, poses significant therapeutic challenges, particularly concerning high-

risk subtypes characterized by an immunologically “cold” phenotype. These

tumors evade immune surveillance through mechanisms such as impaired

antigen presentation and immunosuppressive microenvironment formation.

Despite the incorporation of immunotherapies (e.g., GD2 monoclonal

antibodies) into international clinical guidelines, the 5-year survival rate of

patients with NB persistently remains lower than 50%. Small-molecule targeted

agents, distinguished by their low molecular weight and superior chemical

stability, offer advantages over macromolecular antibody therapies by

effectively penetrating cell membranes to engage intracellular targets.

Epigenetic regulation, a DNA sequence-independent gene expression

modulation system, plays a pivotal role in cell fate determination via dynamic

DNA methylation, histone covalent modifications, chromatin spatial

reorganization, and non-coding RNA-mediated pathways. Emerging evidence

has highlighted a strong correlation between epigenetic dysregulation and NB

progression, establishing a molecular rationale for novel therapeutic strategies.

Current epigenetic research in NB primarily focuses on histone deacetylase

inhibitors and DNA methyltransferase inhibitors. These drugs exhibit unique

translational potential because of their accelerated development timelines and

cost-effective production, significantly enhancing therapeutic accessibility. This

review systematically examines the current landscape of epigenetic modulators

in NB treatment and discusses their transformative potential in improving

outcomes for high-risk patients with NB.
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1 Introduction

Neuroblastoma (NB), the most prevalent extracranial solid

tumor in children, accounts for 8%–10% of pediatric

malignancies, is often termed the “king of childhood cancers”

because of its aggressive behavior and dismal prognosis (1).

Originating from neural crest-derived sympathetic ganglion cells,

NB predominantly arises in the adrenal medulla (55%–60% of

cases) and paravertebral sympathetic chains and less frequently

arises in the mediastinum (20%) and pelvis (15%) (2, 3).

Epidemiological studies reported an annual incidence of 6–8 cases

per million children, highlighting its significant clinical variability

and challenging therapeutic landscape (4).

Contemporary NB management confronts three principal

challenges: diagnostic delays (60% of patients present with distant

metastases to bone marrow, skeletal systems, or liver at diagnosis,

resulting in persistently stagnant 5-year survival rates of 40%–50% in

high-risk cohorts (5)); therapeutic limitations (even with multimodal

intensive regimens combining surgical resection, high-dose

chemotherapy, autologous stem cell transplantation, and radiotherapy,

survival outcomes have not significantly improved (6)); and immune

evasion mechanisms (including tumor microenvironment alterations

such as MHC class I downregulation and PD-L1 overexpression, which

compromise the efficacy of GD2 monoclonal antibody combined with

retinoic acid immunotherapy (7)).

Molecular profiling has identified pivotal oncogenic drivers

such as MYCN amplification (25%–30%) and ALK mutations

(8%–10%) (8, 9). Although these discoveries have refined risk

stratification systems, their translational potential remains

unrealized. Consequently, the development of novel therapies

targeting tumor stem cell eradication and epigenetic regulation

has become an urgent priority in contemporary research.

Epigenetic therapeutics represent a promising intervention

strategy to overcome chemoresistance and relapse in high-risk NB

(HR-NB) (10). This approach focuses on modulating epigenetic

regulators, which are critical functional proteins orchestrating

dynamic chromatin remodeling (11). These regulators mediate

multilayered control through DNA methylation (5mC/5hmC),

histone modification (e.g., H3 lysine 27 methylation [H3K27me3],

H3 lysine 9 acetylation [H3K9ac], and non-coding RNA (ncRNAs)

networks (e.g., lncRNAs, miRNAs), enabling spatiotemporal gene

expression regulation without altering DNA sequences (12). The

inherent reversibility of epigenetic modifications renders them ideal

therapeutic targets, with epigenetic drug targets constituting 18.7% of

all cancer therapeutic targets (12). The key advantages of epigenetic

drugs lie in their multipathway synergy enabling the coordinated

modulation of MYCN signaling and p53 restoration through single-

target interventions, bidirectional transcriptional control that

simultaneously suppresses oncogene hyperactivation (e.g., ALK,

PHOX2B) and reactivates epigenetically silenced tumor suppressors

(e.g., CASZ1, CLU), and heritable chromatin remodeling effects

ensuring sustained therapeutic outcomes through the stable

transmission of modified chromatin states across cell divisions.

Recent genomic analyses have positioned NB as a biologically

distinct solid tumor characterized by a remarkably low somatic
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mutation burden and the absence of dominant driver genes. This

recognition has catalyzed a paradigm shift emphasizing epigenetic

dysregulation as potentially central to NB pathogenesis. Whole-

genome analyses have identified three hallmark epigenetic

aberrations: DNA methylation landscape remodeling featuring

genome-wide hypomethylation coupled with promoter-specific

hypermethylation (e.g., >80% methylation at HOX gene clusters);

histone modification imbalances exemplified by H3K27me3

depletion (observed in 62% of high-risk cases) and abnormal

H3K4me3 accumulation; and chromatin remodeler dysfunction,

including frequent subunit deletions in SWI/SNF complexes (up to

40%). Despite identifying characteristic alterations such as PRC2

overexpression and TET enzyme inactivation, clinically validated

epigenetic biomarkers remain elusive for diagnostic or prognostic

applications (13).

This comprehensive review systematically examines the

molecular foundations of epigenetic dysregulation in NB, the

clinical translation of existing epigenetic therapeutics, and rational

combination therapy strategies.
2 Cellular origins and transformation
mechanisms of NB

As the most prevalent pediatric extracranial solid tumor, NB

arises from malignant transformation during the sympathetic–

adrenal lineage differentiation of neural crest cells (NCCs).

Tumorigenesis is initiated when NCC-derived chromaffin cell

precursors undergo developmental arrest at critical differentiation

checkpoints during the seventh gestational week, coinciding with

their migration to the adrenal primordium. Accumulating evidence

positions adrenergic lineage cells as the principal cellular origin of

NB, with single-cell transcriptomic profiling demonstrating striking

transcriptional congruence between NB tumor cells and fetal

adrenal chromaffin progenitors (Figure 1). This molecular

mimicry, preserved through the malignant reprogramming of

developmental pathways, provides compelling evidence for the

adrenal chromaffin origin hypothesis while revealing critical

vulnerabilities in NB’s epigenomic regulatory architecture.

NB pathogenesis is driven by the multilayered interplay of

genomic and epigenetic aberrations. Genomically, recurrent somatic

alterations includeMYCN amplification (20% of cases, associated with

5-year survival rates of <50%), activating ALK F1174L mutations

(8%), and ATRX deletions (11% in adolescents), with NF1 loss-of-

function mutations synergizing with MYCN to drive tumorigenesis

(14). Emerging evidence has further established clinical correlations of

PHOX2B, TP53, RAS, and BRAF mutations with NB progression

(Figure 1) (15, 16). Chromosomal instability manifests through

pathognomonic chromothripsis events, which are detected in 19%

of MYCN-amplified tumors. Epigenetically, coordinated

dysregulation is typified by DNA methylation paradox (genome-

wide hypomethy l a t i on coex i s t ing w i th CpG i s l and

hypermethylation), EZH2 overexpression-mediated histone

modification imbalance, and ncRNA networks governing

proliferation-apoptosis homeostasis. These multilayered mechanisms
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converge to reshape developmental checkpoints and survival

pathways, establishing NB’s unique oncogenic landscape.
3 The role of epigenetics in NB
therapy

3.1 DNA methylation regulatory networks
and therapeutic targeting

The dynamic equilibrium of DNA methylation is orchestrated by

the antagonistic interplay between DNA methyltransferases (DNMTs)

and ten-eleven translocation (TET) dioxygenases. Emerging pan-

cancer analyses have revealed divergent TET family expression

patterns: TET1 is transcriptionally silenced in 63% of hepatocellular

carcinomas, whereas TET2 is mutated in 17% of gliomas (TCGA data).

NB-specific epigenetic studies (17–19) identified TET3 as a potential

prognostic biomarker, with its expression inversely correlating with the

mitotic–karyorrhexis index. Elevated TET3 expression is correlated

with improved 5-year survival (42%), and the tumor-suppressive role

of TET3 is mechanistically linked to the 5mC hydroxylation-mediated

maintenance of open chromatin states at neurodifferentiation-

associated genes (e.g., PHOX2B). Contrastingly, TET1 drives

oncogenesis through b2-adrenergic receptor pathway activation,

inducing cAMP–PKA signaling that stabilizes MYCN protein (3.2-

fold extended half-life). This isoform additionally partners with the

histone demethylase KDM6B to form a transcriptional activation

complex promoting tumor progression (20). The development of

isoform-selective TET1 inhibitors and TET3 agonists represents a

promising frontier for epigenetic therapy in NB (Figure 2A).

Pioneering work by the Alaminos group (21) first elucidated the

critical association among CpG island hypermethylation, MYCN

amplification, and poor clinical outcomes in NB. Therapeutically,

DNA methyltransferase inhibitors (e.g., decitabine) demonstrate

dual efficacy, exhibiting standalone antiproliferative effects while

synergistically enhancing conventional chemotherapeutics, a

paradigm validated across multiple pediatric NB clinical trials.

Notably, cisplatin-resistant models and high-risk NB subtypes

exhibit marked upregulation of DNMT3A/B isoforms. Selective
Frontiers in Immunology 03
targeting of DNMT3B with nanaomycin A induces tumor-selective

apoptosis through global methylation reduction (22), revealing a

vulnerability in treatment-refractory disease. With the

advancement of genome-wide methylation profiling technologies,
FIGURE 1

NB pathogenesis and key genetic alterations. Adrenergic lineage cells represent the predominant cellular origin of NB. NB pathogenesis is driven by
the multilayered interplay of genomic aberrations. At the genomic level, recurrent somatic alterations include MYCN amplification, activating ALK
mutations, and ATRX deletions.
FIGURE 2

Epigenetic mechanisms and key examples of widely studied
modifications and their modifying enzymes. (A) DNA modifications,
chromatin remodeling, histone modifications, RNA modifications,
and ncRNA-based regulation constitute the core content of
epigenetics, being responsible for passing on heritable variations of
genetic information independently of the DNA sequence. (B)
Mechanistic schematic of epigenetic-targeting small-molecule
inhibitors in NB.
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high-resolution methylation mapping promises to resolve long-

standing debates about the cellular origins of NB while informing

precision epigenetic therapies (23).
3.2 Histone modification circuitry and
therapeutic vulnerabilities in NB

Emerging evidence positions histone deacetylases (HDAC8/

HDAC10) as central regulators of NB proliferation, differentiation,

and chemosensitivity. Preclinical studies demonstrated that pan-

HDAC inhibitors such as vorinostat suppress tumor growth through

dual mechanisms: cell cycle arrest (G1 phase accumulation) and

intrinsic apoptosis activation (caspase-3 cleavage) (24). These agents

synergize with conventional chemotherapy or radiation, achieving

enhanced tumor regression in xenograft models. Second-generation

inhibitors (e.g., panobinostat, romidepsin) further exhibit blood–brain

barrier penetration efficacy and display promise in central nervous

system-metastasized NB subtypes (25), with six active HDAC-targeted

clinical trials currently recruiting pediatric patients with NB.

Paradoxically, although HDAC inhibition broadly suppresses

oncogenic programs, context-dependent activation of differentiation

pathways could underlie its therapeutic duality.

Beyond HDAC targeting, multilayered histone methylation

networks involving WDR5 (H3K79me modulator), EZH2

(H3K27me3 writer), and PRTM5 (H3K4me3 eraser) orchestrate

NB plasticity. WDR5–MYC complexes drive super-enhancer

formation at oncogenic loci, whereas EZH2-mediated PRC2

activation silences tumor suppressors such as CLU and CADM1.

PRMT5-centric arginine methylation sustains spliceosome integrity

in MYCN-amplified cells. Pharmacological disruption of these nodes

(e.g., EZH2 inhibitor tazemetostat, PRMT5 inhibitor GSK3326595)

induces differentiation and reverses chemoresistance in preclinical

models (26). These findings collectively map NB’s epigenetic

vulnerabilities, facilitating the development of novel combinatorial

strategies that simultaneously target histone-modifying enzymes and

lineage-specific oncogenic drivers (Figure 2B).

The precise equilibrium between histone acetylation and

deacetylation serves as a master epigenetic switch governing

transcriptional plasticity, with its dysregulation representing a

hallmark of tumorigenesis. In high-risk NB, HDAC8 and HDAC10

exhibit pathologic overexpression (27, 28), establishing them as

actionable targets. Pharmacologic HDAC inhibition both

suppresses tumor proliferation and chemosensitizes resistant cells

to doxorubicin, potentially overcoming treatment barriers. Preclinical

studies identified valproic acid as a broad-spectrum HDAC inhibitor

capable of inducing a triad of effects: proliferation arrest,

mitochondrial apoptosis, and neural differentiation.

Vorinostat, the first FDA-approved pan-HDAC inhibitor,

demonstrates mechanistically distinct antitumor activity in NB.

This drug triggers G2/M phase blockade through CDK1/cyclin B

dysregulation and activates intrinsic apoptosis via Bim/PUMA

transcriptional induction. Clinical translation has revealed striking

efficacy. Combined with 131I-metaiodobenzylguanidine (MIBG),

vorinostat elevates objective response rates in relapsed/refractory
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NB from 14% to 32% and extends median progression-free survival

by 5.8 months (ASCO 2021 data) (29). Synergistic potential was

further evidenced by its combined use with panobinostat, which

extended survival in TH-MYCN transgenic mice by 62%, and with

GD2-targeted immunotherapy, in which co-treatment enhanced

antibody-dependent cellular cytotoxicity (30). These multimodal

regimens exemplify the evolving paradigm of epigenetic-immune

interplay in NB precision medicine.

Targeting SWI/SNF complex dysregulation represents a

therapeutic mechanism in NB. Approximately 25% of human

cancers harbor mutations in genes encoding mammalian SWI/SNF

(mSWI/SNF) chromatin remodeling complexes (31). Core

components include ATPase subunits (SMARCA4/BRG1 and

SMARCA2/BRM) and structural subunits (e.g., SMARCC1/2,

SMARCD1/2/3) (32). Mechanistically, SMARCB1 mutations induce

the mislocalization of mSWI/SNF complexes at gene promoter

regions accompanied by RNA polymerase II dysfunction and

altered H3K27ac signatures. In NB, mutations in the ARID1A/

ARID1B subunits of the SWI/SNF chromatin remodeling complex

promote tumor progression and correlate with poor prognosis.

Emerging evidence has revealed the histone acetyltransferase

EP300 as an epigenetic linchpin in NB pathogenesis, particularly

through MYCN transcriptional regulation (33). Mechanistically,

EP300 acetylates histones at MYCN super-enhancer regions,

thereby sustaining oncogene addiction in MYCN-amplified tumors.

Pioneering work by Durbin et al. (33) developed JQAD1, a PROTAC-

based EP300 degrader that achieves tumor-selective depletion (90%

reduction at 100 nM) through VHL E3 ligase recruitment. This agent

induces rapid apoptosis (caspase-3 activation within 8 h) in MYCN-

driven models while demonstrating exceptional safety margins

(normal cell viability > 85%), establishing targeted protein

degradation as a breakthrough paradigm.

Paralleling these advances, the histone methyltransferase EZH2

exhibits co-operative oncogenesis in MYCN-amplified NB. MYCN

transcriptionally upregulates EZH2 (34) while physically interacting

with its N-terminal domain to stabilize MYCN protein through

PRC2-catalytic-independent mechanisms (35), creating a feed-

forward malignancy loop. Pharmacologic disruption using catalytic

inhibitors (GSK126, IC50 = 6 nM; JQEZ5, IC50 = 8 nM) induces

tumor regression in orthotopic models (36), with current clinical

efforts exploring combination regimens with BET inhibitors.

Despite these successes, structural biology limitations persist, as the

domain structure has been resolved for fewer than 30% of epigenetic

regulators, hampering the rational design of isoform-selective agents.

Next-generation approaches currently prioritize covalent EZH2

inhibitors (e.g., MS1943) and dual EZH2/HDAC degraders to

overcome compensatory resistance mechanisms, although tumor-

selective delivery remains a critical translational barrier.
3.3 ncRNAs networks and therapeutic
opportunities in NB

ncRNAs have emerged as master epigenetic regulators governing

NB tumorigenesis, with distinct subclasses, namely miRNAs,
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lncRNAs, and circular RNAs (circRNAs), orchestrating malignant

hallmarks through multilayered gene regulatory networks (37–39).

Clinically, circulating miRNAs exhibit diagnostic potential through

their exosome-mediated intercellular communication and stability in

biofluids (40). For instance, miR-124 acts as a tumor suppressor by

reversing therapy resistance in mesenchymal-type NB cells, and its

targeted upregulation using PP121 (a tyrosine/PI3K kinase inhibitor)

synergizes with BDNF-activated bufalin to induce neural

differentiation and apoptosis (41, 42). This exemplifies the

therapeutic potential of miRNA modulation in overcoming

NB chemoresistance.

The lncRNA landscape reveals equally critical oncogenic drivers

(37). DUXAP8, which is overexpressed in > 60% of high-risk NB

tumors, accelerates tumor progression via dual mechanisms:

sequestering miR-29 to derepress NOL4L-mediated cell

cycle activation and enhancing metastatic potential through

TWIST1 stabilization. CRISPR-mediated DUXAP8 silencing

reduces xenograft tumor growth by 72%, validating its

therapeutic candidacy.

The discovery of circRNAs has unveiled a new regulatory layer in

NB pathogenesis, with MYCN amplification profoundly altering

circRNA landscapes (43). Comparative deep sequencing analysis of

five MYCN-amplified NB tumors versus matched normal tissues

revealed 2242 significantly downregulated circRNAs, among which

three tumor-suppressive circRNAs exhibited particularly promising

therapeutic potential. Specifically, circTBC1D4 functions as a

molecular sponge for oncogenic miR-21, thereby de-repressing

PDCD4 expression and restoring apoptosis sensitivity in treatment-

resistant cells. circNAALAD2 directly interacts with the PHLPP2

phosphatase to suppress AKT hyperphosphorylation, effectively

inhibiting PI3K-driven survival pathways. circTGFBR3 structurally

stabilizes the AXIN1–APC destruction complex, leading to b-catenin
degradation and Wnt pathway suppression (44).

The primary mechanisms and functions of these epigenetic drugs

in NB treatment are summarized in Table 1. These agents demonstrate

multitarget regulatory capabilities in NB disease progression by

modulating key nodes including apoptosis, proliferation, and

epigenetic modifications, offering multifaceted mechanisms and

potential therapeutic targets for neuroblastoma therapy. However,

few epigenetic drugs have advanced to clinical trial phases.

Although the number of active clinical trials for epigenetic

modifiers in NB remains limited, a substantial pool of potential

novel epigenetic targets awaits exploration. The epigenetic

regulatory genes with therapeutic potential for NB identified in

current preclinical studies (Table 2) will facilitate the development

of new compounds (epigenetic drugs).
4 Diversified development in NB
targeted therapy

Diversified clinical advances have been achieved in NB targeted

therapy. Antibody-based immunotherapies (e.g., dinutuximab beta,

naxitamab) are established frontline interventions, whereas small-

molecule targeted agents offer advantages such as low molecular
Frontiers in Immunology 05
TABLE 1 Epigenetic drugs in NB.

Drug name Functions in vivo References

m-Carboxycinnamic
acid bishydroxamide

Apoptotic cell death (45, 46)

MS-275
Restores the p53 tumor-

repressor function
(47)

BL1521
Inhibits proliferation and induces

apoptosis; cell cycle arrest
and differentiation

(48, 49)

Trichostatin A
Increases cell viability and

antioxidant capacity
(50)

Romidepsin
Controls growth and
induces apoptosis

(25)

3-Deazaneplanocin A Increases tumor suppressors (51)

GSK126/
GSK343, JQEZ5

Inhibits cell differentiation and
gene expression regulator

(36, 51)

Tazemetostat Combats NB immune evasion (52)

Valemetostat
Reactivates tumor
suppressor genes

(53)

EP300, JQAD1 Induces apoptosis (33)

Valproic acid
Increases proliferation and

induces apoptosis
(54)

Vorinostat Inhibits cellular growth (24, 55)

Decitabine Inhibits cellular growth (56)

Nanaomycin A Induces apoptosis (57)

circRNA-TBC1D4,
circRNA-NAALAD2,
circRNA-TGFBR3

Inhibits miR-21 related pathways
and suppresses proliferation,

migration and invasion
(44)
Text in red color in the table represents Phase I clinical trials.
TABLE 2 Potential epigenetic targets in NB.

Target
gene

Functions in vivo Reference

NSD1
Cell proliferation/inhibition of

cellular growth
(51, 58)

PRMT5 Cell proliferation/survival (59)

KDM1A Cell proliferation/invasion (60, 61)

JMJD1A Migration/invasion (62)

JARID1B Invasion/chemoresistance (63)

HDAC2 Increases proliferation/survival (64)

HDAC5 Blocks differentiation/induces proliferation (65)

HDAC6 Regulates cell survival (66, 67)

HDAC11 Regulates cell survival (68, 69)

SIRT2 Increases proliferation (70)
Light blue shading in the table denotes histone methyl-transferases. Orange shading in the
table denotes histone deacetylases. Dark blue shading in the table denotes
histone demethylases.
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weight, oral bioavailability, and favorable cost-effectiveness.

Eflornithine remains the only approved oral maintenance therapy,

complementing preclinical-stage epigenetic modulators such as

HDAC inhibitors. Mechanistic insights into NB pathogenesis

have propelled the development of novel compounds such as

IBL-302 (BRD4-targeting PROTAC) and APG-115 (MDM2

degrader), which are currently undergoing Phase I/II clinical trials

after producing breakthrough efficacy in MYCN-driven models.

Notably, NB’s pronounced genomic heterogeneity poses significant

therapeutic hurdles, as 40% of relapsed tumors exhibit ALK/RAS

pathway co-activation. Future strategies require integrating

multiomics platforms (single-cell epigenomics, spatial proteomics) to

identify druggable targets, thereby addressing key obstacles in

developing NB-targeted small molecules through precision target

validation and pharmacological exploitation of genomic vulnerabilities.

Advanced ncRNA delivery systems have demonstrated

transformative therapeutic potential. Specifically, nanoparticle

encapsulation significantly enhances ncRNA stability and

bioavailability, whereas naturally derived exosomes, with their

inherent low immunogenicity and blood–brain barrier

penetrance, enable targeted ncRNA delivery to NB cells without

triggering immune responses. The field’s future development will

strategically focus on three key directions: molecular therapeutics

featuring MYCN/ALK inhibitors (lorlatinib), CDK4/6 inhibitors

(ribociclib), and TRK inhibitors (entrectinib/larotrectinib)

currently in clinical trials; advanced delivery platforms utilizing

CRISPR-modified small extracellular vesicles that establish pre-

metastatic niches through precision immune cell priming (71);

and regimen optimization via chronologically coordinated

combination therapies (e.g., 131I-MIBG radiotherapy with GD2-

targeted immunotherapy or CAR-T regimens) to simultaneously

enhance therapeutic efficacy and reduce long-term complications.
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