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Sepsis-associated acute kidney injury is a critical condition driven by immune
dysregulation, particularly involving neutrophils, yet their heterogeneity and
molecular contributions remain underexplored. This study employed a multi-
omics approach, integrating single-cell and bulk RNA sequencing from 21
sepsis samples and Escherichia coli-induced sepsis datasets, alongside
bioinformatics, machine learning, and experimental validation in a rat model
and human peripheral blood. We identified four neutrophil subtypes—pro-
inflammatory, anti-inflammatory, mature, and immature—revealing a
significant increase in pro-inflammatory neutrophils in sepsis (40.53%
versus 4.19% in controls) and a decrease in anti-inflammatory neutrophils
(18.43% versus 27.04%). Four hub genes, peptidyl arginine deiminase 4,
caspase 4, complement receptor 1, and mitogen-activated protein kinase
14, were pinpointed as key drivers, with peptidyl arginine deiminase 4
mediating neutrophil extracellular trap formation and exacerbating renal
damage. In a rat model, peptidyl arginine deiminase 4 knockdown reduced
trap formation and alleviated kidney injury (p-value less than 0.01). Human
samples confirmed elevated gene expression in sepsis (p-value less than
0.05). These findings highlight neutrophil heterogeneity and molecular
mechanisms in sepsis, with potential implications for sepsis-associated
acute kidney injury (SAKI), proposing novel biomarkers and therapeutic
targets for precision medicine.
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1 Introduction

Sepsis, characterized by life-threatening organ dysfunction due
to a dysregulated host response to infection, presents a complex
pathophysiology with heterogeneous onset and prognosis,
prompting extensive research (1). Acute kidney injury is the most
frequent organ damage in sepsis, particularly in intensive care
settings, with an incidence reaching 57.3 (2). In urosepsis, kidney
damage occurs through multiple pathways: bacterial toxins such as
lipopolysaccharides directly impair renal tubular epithelial and
endothelial cells, systemic inflammation disrupts hemodynamic
stability leading to reduced renal perfusion (3), and local bacterial
effects within the urinary tract exacerbate injury (4-6). This
interplay creates a vicious cycle, where urosepsis triggers acute
kidney injury, and worsening kidney function intensifies systemic
inflammation and toxin accumulation (5, 6). Consequently, early
infection control is critical to reduce renal burden, while preserved
kidney function is vital for successful sepsis management (2, 6).
Clinically, timely relief of urinary tract obstruction in urosepsis can
effectively reverse systemic inflammation and kidney damage.

Neutrophils, the most abundant white blood cells, are pivotal in the
early immune response to sepsis, serving as a routine marker for
assessing inflammation severity and prognosis (7). However,
neutrophils are a heterogeneous population, with distinct subtypes
emerging during granulopoiesis and exhibiting diverse roles across
tissues and developmental stages (7). Recent studies have identified
various neutrophil subpopulations, highlighting their divergent
functions in inflammation (8, 9). Despite these advances, the specific
roles of neutrophil heterogeneity in sepsis-associated acute kidney
injury, particularly in urosepsis, remain underexplored. Single-cell
transcriptomics offers a powerful approach to dissect this
heterogeneity, uncover novel biomarkers, and elucidate immune
interactions, yet its application in sepsis-related kidney injury is limited.

Given the lack of systematic studies on neutrophil heterogeneity
and molecular mechanisms in sepsis-associated acute kidney injury,
this study was necessary to address this gap. We aimed to characterize
neutrophil subtypes and identify key molecular drivers in sepsis-
associated kidney injury, focusing on Escherichia coli-induced sepsis.
Notably, while the datasets used in this study represent general sepsis
cohorts without explicit SAKI diagnostic criteria (e.g., KDIGO stages
based on serum creatinine or urine output), our findings on neutrophil
heterogeneity provide insights into sepsis-induced immune
dysregulation that may contribute to SAKI. By integrating single-cell
and bulk RNA sequencing with experimental validation, we sought to
uncover novel biomarkers and therapeutic targets, contributing to
precision medicine strategies for sepsis management and improving
outcomes in patients with sepsis-associated acute kidney injury.

2 Materials and methods
2.1 Single-cell data collection

Two single-cell transcriptome datasets related to sepsis were
obtained from the Gene Expression Omnibus (GEO) database
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(https://www.ncbi.nlm.nih.gov), specifically GSE175453 (which
includes 9 samples) and GSE167363 (which includes 12 samples).
In total, 21 single-cell transcriptomic samples were utilized for
various analyses, including cell annotation, identification of
neutrophils and their subtypes, pseudo-time series analysis, and
the identification of differentially expressed genes in neutrophils
from healthy individuals compared to those from sepsis patients.
These datasets, capturing peripheral blood mononuclear cells
(PBMCs) and leukocytes from sepsis patients, reflect systemic
immune responses potentially relevant to organ dysfunction,
including SAKI, though they lack explicit kidney-specific clinical
annotations based on KDIGO criteria (e.g., serum creatinine or
urine output).

2.2 Data quality control and batch removal

Cell tags, genes, and expression matrices were obtained directly
from the GEO database, and the Seurat v4 package (10) was utilized
to process the data. The filtering criteria applied to the pooled
samples included: 300 < nFeature_ RNA < 2000, nCount_RNA <
40000, percent.mt (ratio of mitochondrial genes) < 30, and
log10GenesPerUMI > 0.85.

2.3 Dimensionality reduction, annotation,
differential expression

The Seurat pipeline was utilized to reduce the dimensionality of
the combined cell data. First, principal component analysis (PCA)
was conducted and visualized, followed by the creation of an elbow
plot to identify the most significant principal components. The
harmony algorithm (11) was then employed to address batch effects
among various samples. After that, Dimensionality reduction was
performed on the selected principal components (PCs) using both
UMAP and t-SNE. Subsequently, cluster plots were generated to
determine the optimal resolution parameter for partitioning cells
into biologically distinct clusters.

The dataset was annotated into different cell types, such as T
lymphocytes, B lymphocytes, neutrophils, and plasma cells, using
the CellMarker2 database. Visualization was enhanced through
bubble plots of marker genes and UMAP annotation plots.

Differential expression analysis was carried out using the
FindAllMarkers function, aiming to identify differentially
expressed genes within the same group across different clusters, as
well as those within the same cluster but across different groups.
Genes were selected as differentially expressed if they met the
criteria of [logFC| > 0.25 and a P-value < 0.05.

2.4 Pseudo-time analysis
Pseudo-time trajectory analysis was conducted using the

Monocle package (12). Highly variable genes were selected based
on an average expression threshold (>0.1) and ranked within the
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top 2000 by coefficient of variation. Dimensionality reduction was
performed using the DDRTree algorithm (13), and cellular
trajectories were visualized through scatter plots generated by the
built-in plot_cell_trajectory function. Genes were partitioned into
two distinct clusters based on their pseudo-temporal expression
patterns. Differential gene expression along the pseudo-time axis
was visualized using the plot_pseudotime_heatmap function. Gene
Ontology (GO) enrichment analysis for temporally dynamic
pathways was subsequently performed with the clusterProfiler
package (14), employing a significance threshold of p < 0.05 and
false discovery rate (FDR) < 0.25.

2.5 Cell-cell communication analysis

Cell-cell communication analysis was performed on annotated
cell subpopulations using the CellChat package (15). Ligand-
receptor interactions were predicted based on a predefined
signaling pathway database. Key communication patterns were
visualized through three types of diagrams: (1) Cell-cell
interaction networks representing connections between cell
clusters; (2) Incoming signaling heatmaps showing receptor
activity in target cell types; (3) Outgoing signaling heatmaps
displaying ligand expression in source cell types. All visualizations
were generated using default settings of the CellChat package.

2.6 Metabolic pathway analysis

Metabolic pathway activities across cell types were analyzed
using the scMetabolism package (16). Heatmaps were generated to
visualize pathway activity differences.

2.7 Bulk RNA-seq data collection

Publicly available datasets were retrieved from the Gene Expression
Omnibus (GEO) database The following datasets were included:

1. Escherichia coli-induced sepsis dataset (GSE237960): Due to
the scarcity of urosepsis-specific datasets in public repositories,
this dataset was selected as a surrogate based on the clinical
relevance of E. coli as the predominant pathogen in urinary
tract infections. The GSE237960 dataset was selected as a
surrogate for urosepsis, given that E. coli is the predominant
pathogen in urosepsis (70-80% of cases) and shares immune
mechanisms such as neutrophil activation, NET formation,
and cytokine responses with general E. coli sepsis (17-19).
Whole blood RNAseq data of 4 patients with Escherichia coli
sepsis (experimental group) and 4 normal people (Control
group) were included; Platform: Affymetrix Human Genome
U133 Plus 2.0 Array; Purpose: Identification of differentially
expressed genes (DEGs) and exploratory data mining.

2. Sepsis training/validation dataset (GSE185263): Platform:
Aftymetrix Human Gene 1.0 ST Array (GPL6244); Purpose:
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Construction of a support vector machine (SVM) model,
immune cell infiltration analysis, and preliminary validation
of candidate genes.

3. External validation dataset (GSE243217): Platform: Affymetrix
Human Gene 1.0 ST Array (GPL6244); Purpose: Independent
validation of diagnostic performance for hub genes.

4. NETF pathway gene set: A curated list of 132 genes
associated with neutrophil extracellular traps (NETSs)
formation, a process where neutrophils release chromatin
fibers to immobilize pathogens during infection or
inflammation. The data source is the KEGG database
(https://www.kegg.jp/, accession: hsa04613).

2.8 Bulk RNA-seq data preprocessing

Raw transcriptomic data were downloaded from the GEO database
using the GEOquery package (20). Platform-specific annotation files
were utilized to map probes to gene symbols. Expression matrices were
normalized via the RMA algorithm (21), including background
correction, quantile normalization, and probe summarization. For
genes with multiple probes, expression values were averaged to
generate gene-level measurements.

2.9 Differential expression analysis

Differentially expressed genes (DEGs) were identified in the E. coli-
induced sepsis dataset using the limma package (21). Linear models
comparing sepsis patients and controls were fitted after variance-
stabilizing normalization. Statistical significance was defined as |
log,FC| > 0.5 and p < 0.05, with FDR correction applied to control
false discoveries (FDR < 0.1).

2.10 Functional enrichment analysis (GO/
KEGQG)

GO and KEGG analyses were performed using the clusterProfiler
package (14, 22) Gene sets included pseudotime-associated DEGs
(Section 2.4) and E. coli-sepsis DEGs (Section 2.8). Significant terms
(FDR < 0.05) were visualized as lollipop charts (top 9 KEGG pathways)
and dot plots (top 3 GO terms per category).

2.11 Venn diagram, machine learning
(SVM), and single-gene ROC analysis

The CNSKnowall Cloud Platform (https://www.cnsknowall.com/
veen) was utilized to generate a Venn diagram illustrating the
overlap between NETF genes, neutrophil differential genes, and
differential genes identified through Bulk-RNAseq. This analysis
enabled the identification of neutrophil-urosepsis differential genes.
A linear SVM model was trained on 70% of GSE185263 and
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validated on 30%, with diagnostic performance assessed by ROC
curves using the pROC package (23). Hub genes with AUC > 0.7
were prioritized.

2.12 Immune infiltration analysis

To characterize the immune microenvironment in urosepsis,
samples from the GSE185263 dataset were stratified into normal and
sepsis groups. Immune cell infiltration profiles were quantified using
the xCell algorithm (24), which estimates the abundance of 64 immune
and stromal cell types based on gene expression signatures. The
proportions of infiltrating immune cells were visualized through
stacked bar plots generated with the ggplot2 package (version 3.4.0).

To identify differential immune infiltration between high-risk and
low-risk subgroups (defined by the hub gene expression signature), the
Wilcoxon rank-sum test was applied with a significance threshold of p
< 0.05. Statistically significant cell types were further visualized using
violin plots to display distribution differences. Associations between
hub genes (PADI4, CR1, MAPK14, CASP4) and immune cell
infiltration were analyzed via Spearman correlation and represented
as lollipop plots, where the dot size and color intensity reflected
correlation coefficients (p) and significance levels, respectively.

Additionally, the interplay between hub genes and immune
checkpoint molecules (e.g., PD-L1, TIM-3, CTLA-4) was explored
through heatmaps, with hierarchical clustering applied to both rows
(genes) and columns (checkpoint genes). Immune cell types showing
significant co-enrichment patterns were highlighted in enrichment
bubble plots, where bubble size indicated the -loglO(p-value) and
color denoted enrichment scores.

2.13 Gene set enrichment analysis of hub
genes

To investigate the biological pathways associated with hub
genes in the disease, Gene Set Enrichment Analysis (GSEA) was
performed using the training dataset from GSE185263. The
“c2.cp.kegg.v7.0.symbols.gmt” gene set from the Molecular
Signatures Database (MSigDB) was used as the reference gene set.
First, Spearman correlation coefficients between each hub gene and
all other genes in the dataset were calculated using the R package
“psych” (version 2.5.3) (25). For each hub gene, a ranked gene list
was generated by sorting all genes in descending order based on
their correlation coefficients. Subsequently, GSEA was conducted
using the R package “clusterProfiler” (version 3.8) to explore the
potential functional roles of the hub genes (14). Analysis parameters
were set at p < 0.05, FDR < 0.25, and |NES| > 1, with hub gene
enrichment results visualized and reported.

2.14 Consensus clustering analysis

In this study, data preprocessing and consensus clustering were
performed to identify the optimal clustering approach. Initially, a
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specific gene set, denoted as gene_Consensus, was selected from the
raw dataset. Each gene (row) was then subjected to median centering
by subtracting its row-specific median. For the consensus clustering
analysis, Pearson correlation was employed as the distance metric, with
partitioning around medoids (PAM) as the clustering algorithm. The
analysis parameters were set as follows: a maximum cluster number of
6, 1000 iterations, a subsampling rate of 80% of the samples, inclusion
of all features, use of complete observations for correlation calculations,
and a fixed random seed of 814 to ensure reproducibility. The optimal
number of clusters (k) was determined by incrementally increasing k
from 2 to 6, with k = 2 identified as the optimal clustering solution
based on clustering stability.

2.15 Subcellular localization analysis

To investigate the subcellular distribution of hub genes, subcellular
localization analysis was performed using the GeneCards database
(https://www.genecards.org/). The localization of these genes to
specific organelles, along with their confidence scores, was
visualized as bar plots using the R package “ggplot2”.

2.16 DGIdb drug interaction analysis

To explore existing drugs associated with the identified hub
genes, drug-gene interaction data were retrieved from the DGIdb
database (https://www.dgidb.org/). The relationships between hub
genes and related drugs, including their interaction scores, were
visualized as bar plots using the R package “ggplot2”.

2.17 Establishment of the sepsis rat's model

The experiment utilized male Wistar rats (8-10 weeks old, 160-200
g SLAC Laboratory Animal Co., Ltd., Shanghai, China), housed at 22 °
C with 50% humidity and a 12:12 h light-dark cycle, with ad libitum
access to standard chow and water. Rats were acclimated to the
environment for at least one week prior to experimentation. All
procedures were approved by the Institutional Animal Care and Use
Committee (IACUC) and complied with national and international
guidelines for animal experimentation. Rats were randomly assigned to
three groups (n=3 per group): Sham group (laparotomy without cecal
ligation or puncture), CLP group (cecal ligation and double puncture
with a 20-gauge needle to induce sepsis), and CLP + sh-PADI4 group
(CLP surgery followed by tail vein injection of 1x10A9 TU PADI4-
targeting ShRNA adenovirus). The CLP model was performed under
aseptic conditions. Rats were anesthetized with 2.5% isoflurane,
underwent midline laparotomy, and the cecum was ligated below the
ileocecal valve and punctured twice with a 20-gauge needle, with a
small amount of fecal matter extruded before abdominal closure. The
Sham group underwent cecal exposure without ligation or puncture.
Adenovirus was administered via slow tail vein injection, with all
interventions conducted under anesthesia. Rats were fasted for 8-12
hours pre-surgery, recovered in a warm environment post-surgery, and
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monitored closely, adhering to predefined humane endpoints to
minimize suffering. At 48 hours post-CLP, rats were euthanized
under deep anesthesia, blood was collected via cardiac puncture, and
serum was stored at -80°C. Both kidneys were harvested—one fixed in
10% neutral-buffered formalin or 4% paraformaldehyde for histological
and immunofluorescence analysis, the other snap-frozen in liquid
nitrogen and stored at -80°C for molecular assays. Aseptic
techniques were maintained throughout, and sepsis-related tissues
were disposed of according to biosafety protocols. The animal study
was approved by the Institutional Animal Care and Use Committee of
The Second Xiangya Hospital, Central South University (Approval
No: 2022711).

2.18 Western blotting analysis

Kidney tissues from the CLP and Sham groups were homogenized
in RIPA buffer containing protease inhibitors and centrifuged at 12,000
x g for 15 min at 4°C to extract proteins. Protein concentrations were
determined using the BCA method. Thirty micrograms of protein were
mixed with loading buffer, heated at 95°C for 5 min, separated by 10%
SDS-PAGE, and transferred to a PVDF membrane. The membrane
was blocked with 5% non-fat milk for 1 h, incubated overnight at 4°C
with primary antibodies against PADI4 (1:1000, Abcam) and B-actin
(1:5000, Sigma-Aldrich), washed with TBST, and incubated with HRP-
conjugated secondary antibodies (anti-rabbit 1:5000, anti-mouse
1:10000) for 1h. After further TBST washes, bands were visualized
using ECL detection. Band intensities were quantified with Image], and
PADI4 expression was normalized to B-actin.

2.19 Immunofluorescence staining

Kidney tissues from experimental groups were fixed in 4%
paraformaldehyde at 4°C for 24-48 h, dehydrated, and embedded in
paraffin. Sections (4-5 pm) were cut, mounted on adhesive slides, and
baked at 60°C for 30 min. After deparaffinization in xylene and
rehydration through a graded ethanol series, antigen retrieval was
performed in citrate buffer (pH 6.0) at 95°C for 15 min. Sections were
cooled, washed with PBS, and blocked with 5% goat serum in PBS for
30 min at room temperature. Sections were then incubated with anti-
citH3 antibody (1:200, Abcam) overnight at 4°C, washed with PBS, and
incubated with Alexa Fluor 488-conjugated anti-rabbit secondary
antibody (1:500, Thermo Fisher Scientific) for 1 h at room
temperature in the dark. Nuclei were counterstained with DAPI for

TABLE 1 Primer sequences for qRT-PCR.

10.3389/fimmu.2025.1637692

5 min, and slides were mounted with anti-fade medium. Images were
captured using a fluorescence microscope and quantified for citH3-
positive cells using Image] software.

2.20 Hematoxylin and eosin staining

Kidney tissues from experimental groups were fixed in 10%
neutral-buffered formalin at room temperature for 24-48 h,
dehydrated through a graded ethanol series, cleared in xylene, and
embedded in paraffin. Sections (4-5 pm) were cut using a microtome,
mounted on adhesive slides, and baked at 60°C for 30 min. Sections
were deparaffinized in xylene, rehydrated through decreasing ethanol
concentrations, and stained with hematoxylin for 5 min. After rinsing
in tap water, sections were differentiated in 1% acid alcohol, blued in
ammonia water, and counterstained with eosin for 1 min. Sections
were dehydrated, cleared in xylene, and mounted with a coverslip using
mounting medium. Images were captured using a bright-field
microscope, and histopathological changes were evaluated.

2.21 Quantitative real-time PCR analysis

Peripheral blood samples were collected from 5 sepsis patients
and 5 healthy controls. And the study of these samples was approved
by the Ethics Committee of Zhuzhou Hospital Affiliated to Xiangya
School of Medicine, Central South University (Approval No:
2020175-01). Total RNA was extracted from whole blood using
TRIzol reagent (Invitrogen, USA) per the manufacturer’s
instructions. cDNA was synthesized from 1 pg total RNA using the
PrimeScript RT reagent kit (Takara, Japan). Quantitative real-time
PCR was performed on a CFX96 system (Bio-Rad, USA) with SYBR
Green premix (Takara, Japan). Expression of PADI4, CASP4, CR1,
and MAPK14 was measured, normalized to B-actin (primer
sequences in Table 1). Relative gene expression was calculated
using the 2A-AACt method.

2.22 Statistical analysis

All analyses were executed utilizing R programming language
(v 4.2.2). The Wilcoxon test was harnessed to contrast differences,
employing a statistical threshold of p < 0.05.

' Material and Methods section can be placed in any of the
following ways.

Gene Forward primer Reverse primer
PADI4 CAGGGGACATTGATCCGTGTG GGGAGGCGTTGATGCTGAA
CASP4 TCTGCGGAACTGTGCATGATG TGTGTGATGAAGATAGAGCCCAT
CRI CACGAAGCCGCCAATTTGTC CCCACTTGATCGTCATTGCTG
MAPK14 TCAGTCCATCATTCATGCGAAA AACGTCCAACAGACCAATCAC
B-actin CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT
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3 Results log10GenesPerUMI > 0.85. This confirmed a high-quality dataset

(Figures 1A-F). Batch effects were corrected using the Harmony
3.1 Data ﬁltering and cell population algorithm, followed by principal component analysis (PCA) to select
identification significant components (Figure 2A). UMAP dimensionality reduction

was applied with an optimal resolution determined by cluster tree

21 single-cell transcriptome samples were retrieved from the GEO  analysis (Figure 2B), clustering cells into 16 groups with distinct marker
database (GSE175453, 9 samples; GSE167363, 12 samples). Quality =~ gene expression profiles (Figure 2D). These were annotated as 9
control was performed using Seurat v4 with the following criteria: 300  distinct cell types, including B cells, T/NK cells, monocytes, and
< nFeature_RNA < 2000, nCount_RNA < 40000, percent.mt < 30,and  neutrophils (Figures 2C, E). In the sepsis group, the proportion of

A
Wl "

RLLLLSLL LIS DTS T AT IS
FIGURE 1

Quiality control of single-cell RNA-seq data. (A) Violin plot showing gene detection per cell. (B) Total RNA counts per cell. (C) Mitochondrial gene
percentage. (D) Gene detection efficiency (logl0GenesPerUMI, 0.90-0.925). (E) Violin plot showing distribution of Hemoglobin Gene expression
Proportion (percent.HB). (F) Density Distribution of gene detection across 21 single-cell RNA sequencing samples.
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FIGURE 2

Single-cell dimensionality reduction and annotation. (A) PCA elbow plot selecting principal components. (B) Clustertree plot determining clustering
resolution. (C) UMAP plot of 16 cell clusters. (D) Bubble plot of marker gene expression by cluster. (E) UMAP with annotated cell types. (F, G) Bubble
plots of marker genes by cell type. (H) Bar plot comparing cell type proportions.

neutrophils was significantly elevated (10.63% vs. 8.94% in the healthy
group), while T/NK cells showed a slight reduction (34% vs. 37%), and
monocytes remained consistent (27%, Figure 2H). Marker gene
analysis validated cell identities, with neutrophils highly expressing
S100A8 and CSF3R, and T/NK cells expressing CD3E and KLRD1
(Figures 2F, G), providing a foundation for subsequent neutrophil-
focused analyses.
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3.2 Neutrophil subtype classification

Neutrophils were subdivided into 8 clusters using UMAP, which
were further categorized into four subtypes based on immune-related
and metabolic gene expression profiles: mature neutrophils, immature
neutrophils, anti-inflammatory neutrophils, and pro-inflammatory
neutrophils (Figures 3A, C). Anti-inflammatory neutrophils, defined
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by elevated MT-ND1, MT-CO1, MALAT1, and CST3, were more
prevalent in the control group (27.04% vs. 18.43% in sepsis, Figure 3D),
while pro-inflammatory neutrophils, distinguished by PF4, CXCR2,
CXCLS8, and CCLS5, exhibited a slight increase in sepsis (6.72% vs.
5.33% in controls, Figure 3D), suggesting an intensified inflammatory
state. Anti-inflammatory neutrophils were identified by high
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expression of MT-ND1, MT-CO1, MALAT]I, and CST3, which are
associated with mitochondrial homeostasis and inflammation
resolution (26-28). Pro-inflammatory neutrophils were characterized
by elevated PF4, CXCR2, CXCL8, and CCL5, promoting chemotaxis
and inflammatory amplification in sepsis (29-33). Minimal cross-
expression of marker genes across subtypes validated the robustness
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of this classification (Figures 3B, E). The substantial increase in
immature neutrophils in the sepsis group (40.53% vs. 4.19% in
controls, Figure 3D) underscored their mobilization during acute
inflammation. The decrease in anti-inflammatory neutrophils
(18.43% wvs. 27.04%) and the slight rise in pro-inflammatory
neutrophils (6.72% vs. 5.33%) further indicated an immune
imbalance, potentially contributing to the exacerbated inflammation
in sepsis.

3.3 Functional and dynamic analysis of
neutrophils

Differential expression analysis (GSE237960, Escherichia coli-
induced sepsis) identified 4646 differentially expressed genes (DEGs),
with 2312 upregulated and 2334 downregulated (Figure 4A). To
narrow down key neutrophil-specific genes, DEGs were intersected
across neutrophil pseudotime, neutrophil extracellular trap formation
(NETF) pathways, and E. coli-induced sepsis, resulting in 15 shared
genes (Figure 4B). These DEGs were enriched in chemokine signaling,
cytokine-cytokine receptor interaction, and Toll-like receptor pathways
(Figures 4C, D), reflecting enhanced immune and inflammatory
responses in sepsis. Cell communication analysis revealed increased
IL-1 signaling (e.g., IL1IA-FPRI, ILIB-FPR1) in the sepsis group,
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suggesting a stronger pro-inflammatory response and potential
therapeutic relevance of IL-1 receptor antagonists (e.g., Anakinra).
Suppression of HLA-DRB1-CD4 signaling (Figures 5A-D) indicated
impaired antigen presentation, which may contribute to adaptive
immune dysregulation. In the control group, metabolic activities
such as glycolysis and fatty acid metabolism were predominant in
mature neutrophils (Figures 6A, B). In the sepsis group, we observed a
significant upregulation of biotin and lipoic acid metabolism in mature
neutrophils (Figure 6B)—a pattern also observed in immature and pro-
inflammatory subtypes—suggesting metabolic reprogramming under
inflammatory conditions. Pseudotime analysis revealed a continuous
trajectory of neutrophil states (Figure 7A), with distinct state
distributions reflecting developmental progression (Figure 7B). A
shift toward an early pro-inflammatory state was observed in sepsis
neutrophils compared to controls (Figure 7C), with immature subtypes
enriched in early stages and mature and anti-inflammatory subtypes in
later stages (Figure 7D). The expression patterns of the 15 shared genes
along the pseudotime axis further highlighted their dynamic regulation,
with genes like PADI4 showing elevated expression in early pro-
inflammatory stages (Figure 7E). Gene clustering revealed two
expression patterns: Cluster 1 (low early, high late) enriched in
immune processes, and Cluster 2 (high early, low late) enriched in
protein synthesis (Figures 8A-C), illustrating dynamic neutrophil
regulation in sepsis.
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Neutrophil cell communication in sepsis. (A) Ligand expression patterns in control vs. sepsis. (B) Receptor expression patterns. (C) Neutrophil ligand

interactions. (D) Neutrophil receptor interactions.

3.4 Hub gene identification

To identify hub genes linked to neutrophil function in sepsis,
differential gene expression data were integrated and validated
externally using a support vector machine (SVM) model. An SVM
model trained on 70% of the GSE185263 dataset identified PADI4,
CASP4, CR1, and MAPK14 as significant feature genes (Figure 9A).
Internal validation yielded an AUC of 0.9372, with only 2 misclassified
samples (Figures 9B, C). External validation using GSE243217
confirmed high AUC values: PADI4 (92.4%), CASP4 (90.6%), CR1
(97.3%), and MAPK14 (93.9%) (Figures 9D, E). The consistent

Frontiers in Immunology

10

differential expression and high AUC values across datasets

underscored their reliability as hub genes in sepsis.

3.5 Functional analysis and therapeutic
potential of hub genes

Gene set enrichment analysis (GSEA) indicated that all four hub
genes were enriched in immune and inflammation-related pathways,
suggesting synergistic roles in sepsis immune regulation. Specifically,
PADI4 was enriched in Pathogenic Escherichia coli Infection (NES =
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1.62, p = 8.56e-07, FDR = 1.22e-05) and Fc Gamma R-Mediated
Phagocytosis (NES = 1.62, p = 9.31e-10, FDR = 1.47¢-07, Figure 10A).
CASP4 showed enrichment in Leishmania Infection (NES = 1.70, p =
1.03e-08, FDR = 2.80e-07), B Cell Receptor Signaling Pathway (NES =
1.69, p = 1.04e-09, FDR = 3.88e-08), and Proteasome (NES = 1.67, p =
1.10e-06, FDR = 1.14e-05, Figure 10B). CRl and MAPKI14 were
enriched in B Cell Receptor Signaling and Renal Cell Carcinoma
pathways (Figures 10C, D). Subcellular localization analysis revealed
PADI4 primarily in the cytosol and nucleus, CASP4 in the
endoplasmic reticulum and cytosol, CR1 in the extracellular space
and plasma membrane, and MAPK14 in the cytosol, extracellular
space, and nucleus (Figures 11A-D), supporting their functional
diversity. Drug-gene interaction analysis suggested potential
therapeutic candidates, including uric acid for PADI4, emricasan for
CASP4, and RO-3201195 for MAPK14 (Figures 12A-D), offering
directions for targeted sepsis therapies. Consistent with this
prediction, preclinical studies demonstrated that febuxostat treatment
lowered tissue urate levels and significantly reduced citH3 expression in
mice (34), indicating suppression of PAD4-dependent NETosis in vivo.

3.6 Immune microenvironment and
clustering analysis

Immune microenvironment analysis revealed significantly

increased neutrophil infiltration (P<0.001) and reduced T cell
infiltration (e.g., CD4+ memory T cells, P<0.001) in the sepsis
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group (Figures 13A, C), with a strong negative correlation between
neutrophils and T cells (P<0.001, Figure 13B). PADI4, CASP4, CR1,
and MAPK14 were positively correlated with neutrophil infiltration
(P<0.001) and negatively correlated with T cell infiltration
(P<0.001, Figure 13D), and positively associated with immune
checkpoint genes (CD24, CD47, P<0.01, Figure 13E), suggesting
immunosuppressive mechanisms. The increased neutrophil
infiltration and decreased T cell presence indicated an imbalance
between innate and adaptive immunity in sepsis, potentially linked
to disease severity. To corroborate these xCell-derived profiles,
CIBERSORT analysis was applied to the same bulk RNA-seq
data, estimating proportions of 22 immune cell types. Consistent
with xCell findings, it confirmed significantly elevated neutrophil
fractions in the sepsis group (P < 0.001; Supplementary Figures 1A,
C) and reduced T cell subtypes, such as CD4 memory activated T
cells . Neutrophils and T cells showed a strong negative correlation
(Supplementary Figure 1B), while the hub genes exhibited positive
correlations with neutrophil infiltration (r = 0.3-0.7, Supplementary
Figure 1C). These genes were also positively associated with
immune checkpoint molecules (Supplementary Figure 1E),
reinforcing the immunosuppressive microenvironment.
Consensus clustering divided patients into two clusters: Cluster A
exhibited lower PADI4 and CASP4 expression and higher CR1 and
MAPKI14 expression (Figures 14A-D), highlighting molecular
heterogeneity. However, survival differences between clusters were
not statistically significant (p=0.7594), possibly due to limited
sample size, necessitating further clinical validation.
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Neutrophil pseudotime analysis in sepsis. (A) Pseudotime trajectory plot. (B) Pseudotime state distribution. (C) Group-specific pseudotime (control
vs. sepsis). (D) Subtype distribution along pseudotime. (E) Expression of 15 hub genes.

3.7 Validation of hub genes in sepsis

To investigate the role of hub genes in sepsis-associated kidney
injury, we employed a cecal ligation and puncture (CLP) model to
induce sepsis in mice, followed by extraction of kidney tissues for in
vitro experimental analyses to assess the expression differences of
PADI4. Western blot (WB) analysis revealed a significant
upregulation of PADI4 expression in the kidney tissues of the CLP
group compared to the sham-operated group, with quantitative
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analysis (normalized to B-actin) confirming a markedly higher
relative expression level (p < 0.001, Figures 15A, B). The full
uncropped Western Blot images are provided in Supplementary
Figure S2. Immunofluorescence (IF) staining further demonstrated a
pronounced increase in the red fluorescence signal of citrullinated
histone H3 (citH3, a marker of neutrophil extracellular trap [NET]
formation) in the kidney tissues of the CLP group, significantly
exceeding that of the sham group (p < 0.001). Notably, knockdown
of PADI4 resulted in reduced citH3 expression, suggesting a critical
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role for PADI4 in sepsis-induced NET formation (p < 0.001 compared
to the CLP group, Figures 15C, D). Hematoxylin and eosin (H&E)
staining revealed significant pathological changes in the kidney tissues
of the CLP group, characterized by tubular dilation, expansion of the
tubulointerstitial area, and inflammatory cell infiltration, consistent
with the features of sepsis-induced acute kidney injury. The injury
score was significantly higher in the CLP group than in the sham
group (p < 0.001). However, PADI4 knockdown markedly attenuated
these pathological changes (p < 0.01 compared to the CLP group,
Figures 15E, F), indicating that PADI4 silencing significantly
ameliorates sepsis-induced renal histopathological damage.
Furthermore, we validated the elevated expression of the hub genes
in the peripheral blood of patients with sepsis, consistent with our
previous findings (compared to the control group, Figures 15G-]).

4 Discussion

In this study, we identified four neutrophil subtypes, with the
delineation of pro-inflammatory and anti-inflammatory subtypes
representing a significant innovation. Pro-inflammatory neutrophils
were characterized by genes such as PF4, CXCR2, CXCL8, and CCLS5,
which play critical roles in amplifying inflammation. These genes
enhance inflammatory responses through chemotaxis, degranulation,
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and reactive oxygen species production (29, 35). For instance, CXCL8
mediates a positive feedback loop via CXCR2, promoting neutrophil
recruitment (32). This self-amplifying signaling pathway is particularly
prominent in chronic lung diseases such as chronic obstructive
pulmonary disease and bronchiectasis (36). As a chemokine, CCL5
effectively attracts neutrophils to sites of infection or injury, thereby
augmenting immune and inflammatory responses (30, 31). During the
acute phase of sepsis, Ccl5-positive macrophages exhibited the
strongest interaction with neutrophils, predominantly through the
CCL signaling pathway, suggesting that Ccl5-positive macrophages
play a key role in neutrophil recruitment via CCL5-CCR1 pairing (33)
&#x3002;In contrast, anti-inflammatory neutrophils were
distinguished by high expression of MT-ND1, MT-CO1, MALAT1,
and CST3, which are associated with mitochondrial function,
inflammation resolution, and tissue protection. MT-NDI1 and MT-
COl, core components of the mitochondrial electron transport chain
(complexes I and IV, respectively), maintain mitochondrial membrane
potential and energy metabolism balance, supporting normal
neutrophil function. Mitochondria contribute to inflammation
resolution by regulating neutrophil apoptosis, exerting an anti-
inflammatory effect (27). Studies have shown that inhibitors of
complexes I and III, such as rotenone and antimycin A, significantly
reduce neutrophil migration (26). The anti-inflammatory effect of
MALAT1 is primarily mediated by its regulation of IL-10 expression.
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In a Leishmania Donovani model, MALAT1 knockout mice exhibited
reduced IL-10 expression in CD4-positive T cells, enhancing
macrophage activation and pathogen clearance (28). CST3 exerts its
effects mainly by inhibiting cysteine proteases, with studies
demonstrating that high cystatin C concentrations significantly
suppress spontaneous, fMLP-, and PMA-induced neutrophil
respiratory bursts (37). In the sepsis group, the proportions of pro-
inflammatory and immature neutrophils were significantly elevated
(40.53% and 6.72% vs. 4.19% and 5.33% in controls), while anti-
inflammatory neutrophils decreased (18.43% vs. 27.04%), consistent
with a shift toward an early pro-inflammatory state in pseudotime
analysis. This suggests that neutrophils in the acute phase of sepsis
predominantly adopt an early pro-inflammatory state, reflecting
immune mobilization against infection. However, this imbalance
may lead to uncontrolled inflammation, exacerbating damage to
renal tubular epithelial and endothelial cells, which aligns with the
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high incidence of sepsis-associated acute kidney injury. These findings
not only elucidate the role of neutrophil heterogeneity in immune
dysregulation during urosepsis but also provide a foundation for
developing strategies to suppress pro-inflammatory subtypes or
enhance the reparative functions of anti-inflammatory subtypes.
Beyond phenotypic heterogeneity, the dynamic regulation of
neutrophil function is increasingly recognized as a critical
determinant of sepsis outcomes. Recent studies have demonstrated
that metabolic reprogramming and inflammatory signaling shape
neutrophil effector functions, such as NET formation and cytokine
release, thereby amplifying tissue injury in sepsis. Although direct
mechanistic evidence in sepsis-associated AKI remains limited, related
bioinformatics and network-based studies from other immune-
inflammatory conditions have highlighted the interplay between
metabolic pathways and immune cell heterogeneity (38-40). While
these studies are not focused on sepsis per se, they provide
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GSEA of hub genes in sepsis. (A—D) GSEA plots for PADI4, CASP4, CR1, MAPK14 (GSE185263).

methodological and contextual insights supporting the concept that
neutrophil subtypes may adopt distinct functional states under
systemic inflammatory stress. Our findings extend this perspective by
integrating multi-omics data with experimental validation, specifically
linking PAD4-driven pro-inflammatory neutrophils to renal injury
in sepsis.

Integrative analysis of single-cell and bulk RNA sequencing
data, combined with machine learning, further identified PADI4,
CASP4, CR1, and MAPKI14 as hub genes in sepsis. These genes
exhibited high expression in neutrophils and positively correlated
with neutrophil infiltration, underscoring their significance in the

inflammatory response during sepsis. Neutrophil extracellular traps
(NETs) have emerged as important players in sepsis. Although
extracellular in nature, their components can directly injure renal
tubular cells (41). Notably, urosepsis may differ immunologically
from other sepsis types, yet NETs remain scarcely studied in this
context. To address this gap, we focused on NETs-related genes and
intersected them with E. coli-induced and neutrophil-associated
gene sets. PADI4 plays a dual role in sepsis by mediating NETosis
(neutrophil extracellular trap formation). On one hand, it
contributes to infection defense by capturing pathogens such as
Escherichia coli through NETS, a process involving the conversion
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Drug-gene interactions for sepsis therapy. (A—D) Bar plots of drug interactions with PADI4, CASP4, CR1, MAPK14.

of arginine residues in histones to citrulline, significantly reducing
histone positive charge (42, 43). This modification weakens the
electrostatic interactions between positively charged histones and
negatively charged DNA, leading to nucleosome destabilization and
chromatin decondensation (44). Studies have shown that in PADI4-
deficient neutrophils, histone H3 citrullination is completely absent,
and NETosis induced by PMA and LPS does not occur (45).
Moreover, PADI4 inhibitors significantly block histone
citrullination and NET release (46, 47). On the other hand,
excessive NET release may exacerbate renal tissue damage. Gene
set enrichment analysis revealed PADI4 enrichment in the
Escherichia coli infection pathway (NES = 1.62, FDR = 1.22¢-05),
supporting its specific role in sepsis. The therapeutic implications of
targeting PADI4 merit further consideration. Preclinical evidence
supports that pharmacological inhibition of PADI4 with small-
molecule inhibitors, such as Cl-amidine (a pan-PAD inhibitor),
significantly reduces renal ischemia/reperfusion-induced acute
kidney injury, attenuates tubular inflammation, and decreases
neutrophil infiltration in murine models (48, 49). Furthermore,
specific PAD4 inhibition using GSK484 has demonstrated renal
protection by reducing remote lung injury, NET formation, and
histone H3 citrullination in acute kidney injury contexts (50).
Although these inhibitors are not yet in clinical use, they provide
a compelling proof-of-concept that PADI4 inhibition holds promise
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as a therapeutic strategy for SAKI. CASP4 directly binds
cytoplasmic lipopolysaccharide, particularly its active component
lipid A, via its CARD domain, forming a multimeric complex that
activates its enzymatic activity and induces pyroptosis (51). This
process also triggers NLRP3 inflammasome assembly, promoting
the release of IL-1B and IL-18, thereby amplifying the immune
response (52), CR1 facilitates the clearance of immune complexes
by binding C3b and C4b (53), preventing their deposition in
vulnerable tissues such as the kidney and lungs (54), thus
exhibiting anti-inflammatory and renoprotective potential. In
systemic lupus erythematosus, studies have reported significantly
reduced CR1 expression on erythrocytes and leukocytes, correlating
with disease severity and renal involvement (55). MAPK14 is
activated in response to various stimuli, including cytokines (e.g.,
TNF-a, IL-1B), oxidative stress, lipopolysaccharide, and viral
infections (56). MAPK14 activates the downstream kinase MK2,
which phosphorylates the RNA-binding protein TTP, preventing
degradation of AU-rich element-containing mRNAs and stabilizing
pro-inflammatory cytokine mRNAs such as TNF-o, IL-1B3, and IL-6
(56, 57). This mechanism is particularly pronounced in
macrophages and dendritic cells, promoting rapid inflammatory
responses. MAPK14 also directly phosphorylates transcription
factors such as NF-xB, ATF2, and MEF2, enhancing the
transcriptional activity of pro-inflammatory genes (57).
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The pseudotime trajectory analysis revealed an early pro-
inflammatory state shift in neutrophils during sepsis,
characterized by increased expression of pro-inflammatory genes
such as PADI4, which aligns with the significant rise in pro-
inflammatory neutrophil proportions (40.53% in sepsis vs. 4.19%
in controls, Figure 3D). This suggests that the early pro-
inflammatory state may drive the expansion of pro-inflammatory
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neutrophils, potentially exacerbating renal damage through
enhanced NETosis and inflammatory cascades. The concomitant
decrease in anti-inflammatory neutrophils (18.43% in sepsis vs.
27.04% in controls) could reflect a shift in neutrophil maturation or
functional reprogramming along the pseudotime axis, as supported
by dynamic gene expression patterns (Figure 7E). Previous studies
have demonstrated that pseudotime analysis can uncover cell state
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hub gene expression.

transitions linked to subtype proportions, and our GSEA results
(Figure 10) further indicate that pathways such as MAPK signaling
(enriched for MAPK14) may underpin this transition.

Analysis of the immune microenvironment revealed
significantly increased neutrophil infiltration and decreased T cell
infiltration in the sepsis group, reflecting an imbalance between
hyperactive innate immunity and suppressed adaptive immunity.
This imbalance may exacerbate renal damage through excessive
activation of pro-inflammatory neutrophils. The positive
correlation between hub genes and immune checkpoint genes
(CD24, CD47, HAVCR2; p = 0.40-0.80, P < 0.01) suggests an
immunosuppressive mechanism. Previous studies have shown that
PD-L1 expression on neutrophils is upregulated during sepsis,
potentially suppressing adaptive immunity via the PD-L1/PD-1
checkpoint (58), a phenomenon also observed in our study. This
T cell suppression, driven by immune checkpoint activation, may
have implications for secondary infections, a common complication
in sepsis linked to immunoparalysis (59). Literature indicates that T
cell dysfunction, particularly through PD-1/PD-L1 signaling (60),
impairs pathogen clearance and increases susceptibility to
opportunistic infections such as Gram-negative bacteria (61). The
observed suppression, potentially influenced by neutrophil-driven
inflammation and hub gene activities (e.g., PADI4, MAPK14),
could contribute to this risk. CD24 interacts with SIGLECI10 to
inhibit macrophage phagocytosis (62). Li et al. suggested that the
CD24-SIGLECI10 signaling pathway is a potential target for cancer
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immunotherapy, as suppressing immune responses may reduce
inflammatory damage (63). CD47, a widely expressed
transmembrane protein, acts as a “don’t eat me” signal by
interacting with SIRPo on macrophages to inhibit phagocytosis.
Casey et al. found that MYC regulates CD47 expression, with its
high expression suppressing anti-tumor immune responses (64).
HAVCR2 (TIM-3), an innate and adaptive immune checkpoint
molecule, is associated with T cell exhaustion when highly
expressed. Pan-cancer analyses have shown that elevated
HAVCR2 expression correlates with immune infiltration and
checkpoint genes, potentially serving as a key factor in
immunosuppression (65). Based on our findings, we propose that
the high expression of these immune checkpoint genes may
suppress immune cell activation, reduce inflammation, maintain
immune balance, and prevent excessive tissue damage. This
mechanism likely contributes to immune homeostasis in the later
stages of sepsis. Cell communication analysis indicated enhanced
IL-1 signaling and suppressed HLA-DRB1-CD4 signaling,
suggesting impaired antigen presentation that may further
weaken T cell function. IL-1 receptor antagonists, such as
anakinra, may mitigate renal inflammation by blocking this
pathway. Metabolic pathway analysis revealed upregulated biotin
and lipoic acid metabolism, indicating metabolic reprogramming
that supports the pro-inflammatory functions of neutrophils,
offering new avenues for metabolic interventions, such as
biotin supplementation.
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The rat cecal ligation and puncture model and human
peripheral blood validation experiments bolstered the reliability of
our bioinformatics findings. The cecal ligation and puncture model
demonstrated that elevated PADI4 expression (P < 0.001) was
associated with enhanced NETosis (increased citH3 signaling),
while PADI4 knockdown significantly alleviated acute kidney
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injury pathology (P < 0.01), supporting PADI4 as a central driver
of renal damage by pro-inflammatory neutrophils (45). In human
peripheral blood, the high expression of PADI4, CASP4, CR1, and
MAPK14 (P < 0.05) was consistent with bulk RNA sequencing
results, with ROC analysis (AUC 0.67-0.97) further validating their
diagnostic potential.
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A notable limitation of this study is the reliance on general
sepsis datasets (GSE175453 and GSE167363), which primarily
capture systemic immune responses rather than kidney-specific
pathology, and the use of the CLP model, which induces systemic
sepsis but is not specific to SAKIL. The absence of SAKI-specific
clinical annotations in the datasets, such as KDIGO-based
diagnostic criteria (e.g., serum creatinine or urine output), and
the lack of quantitative kidney injury biomarkers (e.g., BUN, CR,
NGAL, KIM-1) in the CLP model, limit direct attribution of
neutrophil heterogeneity and hub gene effects to SAKI. Instead,
our findings elucidate sepsis-induced immune dysregulation,
particularly neutrophil-driven mechanisms, that may contribute
to organ dysfunction including SAKI. Future studies utilizing SAKI-
specific cohorts with detailed clinical data or SAKI-specific models
(e.g., urosepsis models) with biomarker quantification could
validate and extend these findings to establish direct links with
kidney injury.

Despite significant progress, this study has limitations. Public
datasets (GSE175453, GSE167363) and the cecal ligation and
puncture model primarily reflect general sepsis mechanisms,
lacking urosepsis-specific data and models, which limits direct
insights into urinary tract infection-induced inflammation. The
small sample size of human peripheral blood (n=5) may affect
statistical robustness. Experimental validation focused on PADI4,
and the roles of other genes, such as CASP4, require
further exploration.
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