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Multi-omics analysis reveals
neutrophil heterogeneity and
key molecular drivers in sepsis-
associated acute kidney injury
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Ze Zhang3 and Wenlin Huang1*

1Department of Urology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South
University, Zhuzhou, Hunan, China, 2Pharmacy Department, Zhuzhou Hospital Affiliated to Xiangya
School of Medicine, Central South University, Zhuzhou, Hunan, China, 3Department of Urology, The
Third People′s Hospital of Datong, Datong, Shanxi, China
Sepsis-associated acute kidney injury is a critical condition driven by immune

dysregulation, particularly involving neutrophils, yet their heterogeneity and

molecular contributions remain underexplored. This study employed a multi-

omics approach, integrating single-cell and bulk RNA sequencing from 21

sepsis samples and Escherichia coli-induced sepsis datasets, alongside

bioinformatics, machine learning, and experimental validation in a rat model

and human peripheral blood. We identified four neutrophil subtypes—pro-

inflammatory, anti-inflammatory, mature, and immature—revealing a

significant increase in pro-inflammatory neutrophils in sepsis (40.53%

versus 4.19% in controls) and a decrease in anti-inflammatory neutrophils

(18.43% versus 27.04%). Four hub genes, peptidyl arginine deiminase 4,

caspase 4, complement receptor 1, and mitogen-activated protein kinase

14, were pinpointed as key drivers, with peptidyl arginine deiminase 4

mediating neutrophil extracellular trap formation and exacerbating renal

damage. In a rat model, peptidyl arginine deiminase 4 knockdown reduced

trap formation and alleviated kidney injury (p-value less than 0.01). Human

samples confirmed elevated gene expression in sepsis (p-value less than

0.05). These findings highlight neutrophil heterogeneity and molecular

mechanisms in sepsis, with potential implications for sepsis-associated

acute kidney injury (SAKI), proposing novel biomarkers and therapeutic

targets for precision medicine.
KEYWORDS

sepsis, acute kidney injury, neutrophil heterogeneity, neutrophil extracellular traps
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1 Introduction

Sepsis, characterized by life-threatening organ dysfunction due

to a dysregulated host response to infection, presents a complex

pathophysiology with heterogeneous onset and prognosis,

prompting extensive research (1). Acute kidney injury is the most

frequent organ damage in sepsis, particularly in intensive care

settings, with an incidence reaching 57.3 (2). In urosepsis, kidney

damage occurs through multiple pathways: bacterial toxins such as

lipopolysaccharides directly impair renal tubular epithelial and

endothelial cells, systemic inflammation disrupts hemodynamic

stability leading to reduced renal perfusion (3), and local bacterial

effects within the urinary tract exacerbate injury (4–6). This

interplay creates a vicious cycle, where urosepsis triggers acute

kidney injury, and worsening kidney function intensifies systemic

inflammation and toxin accumulation (5, 6). Consequently, early

infection control is critical to reduce renal burden, while preserved

kidney function is vital for successful sepsis management (2, 6).

Clinically, timely relief of urinary tract obstruction in urosepsis can

effectively reverse systemic inflammation and kidney damage.

Neutrophils, the most abundant white blood cells, are pivotal in the

early immune response to sepsis, serving as a routine marker for

assessing inflammation severity and prognosis (7). However,

neutrophils are a heterogeneous population, with distinct subtypes

emerging during granulopoiesis and exhibiting diverse roles across

tissues and developmental stages (7). Recent studies have identified

various neutrophil subpopulations, highlighting their divergent

functions in inflammation (8, 9). Despite these advances, the specific

roles of neutrophil heterogeneity in sepsis-associated acute kidney

injury, particularly in urosepsis, remain underexplored. Single-cell

transcriptomics offers a powerful approach to dissect this

heterogeneity, uncover novel biomarkers, and elucidate immune

interactions, yet its application in sepsis-related kidney injury is limited.

Given the lack of systematic studies on neutrophil heterogeneity

and molecular mechanisms in sepsis-associated acute kidney injury,

this study was necessary to address this gap. We aimed to characterize

neutrophil subtypes and identify key molecular drivers in sepsis-

associated kidney injury, focusing on Escherichia coli-induced sepsis.

Notably, while the datasets used in this study represent general sepsis

cohorts without explicit SAKI diagnostic criteria (e.g., KDIGO stages

based on serum creatinine or urine output), our findings on neutrophil

heterogeneity provide insights into sepsis-induced immune

dysregulation that may contribute to SAKI. By integrating single-cell

and bulk RNA sequencing with experimental validation, we sought to

uncover novel biomarkers and therapeutic targets, contributing to

precision medicine strategies for sepsis management and improving

outcomes in patients with sepsis-associated acute kidney injury.
2 Materials and methods

2.1 Single-cell data collection

Two single-cell transcriptome datasets related to sepsis were

obtained from the Gene Expression Omnibus (GEO) database
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(https://www.ncbi.nlm.nih.gov), specifically GSE175453 (which

includes 9 samples) and GSE167363 (which includes 12 samples).

In total, 21 single-cell transcriptomic samples were utilized for

various analyses, including cell annotation, identification of

neutrophils and their subtypes, pseudo-time series analysis, and

the identification of differentially expressed genes in neutrophils

from healthy individuals compared to those from sepsis patients.

These datasets, capturing peripheral blood mononuclear cells

(PBMCs) and leukocytes from sepsis patients, reflect systemic

immune responses potentially relevant to organ dysfunction,

including SAKI, though they lack explicit kidney-specific clinical

annotations based on KDIGO criteria (e.g., serum creatinine or

urine output).
2.2 Data quality control and batch removal

Cell tags, genes, and expression matrices were obtained directly

from the GEO database, and the Seurat v4 package (10) was utilized

to process the data. The filtering criteria applied to the pooled

samples included: 300 < nFeature_RNA < 2000, nCount_RNA <

40000, percent.mt (ratio of mitochondrial genes) < 30, and

log10GenesPerUMI > 0.85.
2.3 Dimensionality reduction, annotation,
differential expression

The Seurat pipeline was utilized to reduce the dimensionality of

the combined cell data. First, principal component analysis (PCA)

was conducted and visualized, followed by the creation of an elbow

plot to identify the most significant principal components. The

harmony algorithm (11) was then employed to address batch effects

among various samples. After that, Dimensionality reduction was

performed on the selected principal components (PCs) using both

UMAP and t-SNE. Subsequently, cluster plots were generated to

determine the optimal resolution parameter for partitioning cells

into biologically distinct clusters.

The dataset was annotated into different cell types, such as T

lymphocytes, B lymphocytes, neutrophils, and plasma cells, using

the CellMarker2 database. Visualization was enhanced through

bubble plots of marker genes and UMAP annotation plots.

Differential expression analysis was carried out using the

FindAllMarkers function, aiming to identify differentially

expressed genes within the same group across different clusters, as

well as those within the same cluster but across different groups.

Genes were selected as differentially expressed if they met the

criteria of |logFC| > 0.25 and a P-value < 0.05.
2.4 Pseudo-time analysis

Pseudo-time trajectory analysis was conducted using the

Monocle package (12). Highly variable genes were selected based

on an average expression threshold (>0.1) and ranked within the
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top 2000 by coefficient of variation. Dimensionality reduction was

performed using the DDRTree algorithm (13), and cellular

trajectories were visualized through scatter plots generated by the

built-in plot_cell_trajectory function. Genes were partitioned into

two distinct clusters based on their pseudo-temporal expression

patterns. Differential gene expression along the pseudo-time axis

was visualized using the plot_pseudotime_heatmap function. Gene

Ontology (GO) enrichment analysis for temporally dynamic

pathways was subsequently performed with the clusterProfiler

package (14), employing a significance threshold of p < 0.05 and

false discovery rate (FDR) < 0.25.
2.5 Cell-cell communication analysis

Cell-cell communication analysis was performed on annotated

cell subpopulations using the CellChat package (15). Ligand-

receptor interactions were predicted based on a predefined

signaling pathway database. Key communication patterns were

visualized through three types of diagrams: (1) Cell-cell

interaction networks representing connections between cell

clusters; (2) Incoming signaling heatmaps showing receptor

activity in target cell types; (3) Outgoing signaling heatmaps

displaying ligand expression in source cell types. All visualizations

were generated using default settings of the CellChat package.
2.6 Metabolic pathway analysis

Metabolic pathway activities across cell types were analyzed

using the scMetabolism package (16). Heatmaps were generated to

visualize pathway activity differences.
2.7 Bulk RNA-seq data collection

Publicly available datasets were retrieved from the Gene Expression

Omnibus (GEO) database The following datasets were included:
Fron
1. Escherichia coli-induced sepsis dataset (GSE237960): Due to

the scarcity of urosepsis-specific datasets in public repositories,

this dataset was selected as a surrogate based on the clinical

relevance of E. coli as the predominant pathogen in urinary

tract infections. The GSE237960 dataset was selected as a

surrogate for urosepsis, given that E. coli is the predominant

pathogen in urosepsis (70-80% of cases) and shares immune

mechanisms such as neutrophil activation, NET formation,

and cytokine responses with general E. coli sepsis (17–19).

Whole blood RNAseq data of 4 patients with Escherichia coli

sepsis (experimental group) and 4 normal people (Control

group) were included; Platform: Affymetrix Human Genome

U133 Plus 2.0 Array; Purpose: Identification of differentially

expressed genes (DEGs) and exploratory data mining.

2. Sepsis training/validation dataset (GSE185263): Platform:

Affymetrix Human Gene 1.0 ST Array (GPL6244); Purpose:
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Construction of a support vector machine (SVM) model,

immune cell infiltration analysis, and preliminary validation

of candidate genes.

3. External validation dataset (GSE243217): Platform: Affymetrix

Human Gene 1.0 ST Array (GPL6244); Purpose: Independent

validation of diagnostic performance for hub genes.

4. NETF pathway gene set: A curated list of 132 genes

associated with neutrophil extracellular traps (NETs)

formation, a process where neutrophils release chromatin

fibers to immobilize pathogens during infection or

inflammation. The data source is the KEGG database

(https://www.kegg.jp/, accession: hsa04613).
2.8 Bulk RNA-seq data preprocessing

Raw transcriptomic data were downloaded from the GEO database

using the GEOquery package (20). Platform-specific annotation files

were utilized to map probes to gene symbols. Expression matrices were

normalized via the RMA algorithm (21), including background

correction, quantile normalization, and probe summarization. For

genes with multiple probes, expression values were averaged to

generate gene-level measurements.
2.9 Differential expression analysis

Differentially expressed genes (DEGs) were identified in the E. coli-

induced sepsis dataset using the limma package (21). Linear models

comparing sepsis patients and controls were fitted after variance-

stabilizing normalization. Statistical significance was defined as |

log2FC| > 0.5 and p < 0.05, with FDR correction applied to control

false discoveries (FDR < 0.1).
2.10 Functional enrichment analysis (GO/
KEGG)

GO and KEGG analyses were performed using the clusterProfiler

package (14, 22) Gene sets included pseudotime-associated DEGs

(Section 2.4) and E. coli-sepsis DEGs (Section 2.8). Significant terms

(FDR < 0.05) were visualized as lollipop charts (top 9 KEGG pathways)

and dot plots (top 3 GO terms per category).
2.11 Venn diagram, machine learning
(SVM), and single-gene ROC analysis

The CNSKnowall Cloud Platform (https://www.cnsknowall.com/

veen) was utilized to generate a Venn diagram illustrating the

overlap between NETF genes, neutrophil differential genes, and

differential genes identified through Bulk-RNAseq. This analysis

enabled the identification of neutrophil-urosepsis differential genes.

A linear SVM model was trained on 70% of GSE185263 and
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validated on 30%, with diagnostic performance assessed by ROC

curves using the pROC package (23). Hub genes with AUC > 0.7

were prioritized.
2.12 Immune infiltration analysis

To characterize the immune microenvironment in urosepsis,

samples from the GSE185263 dataset were stratified into normal and

sepsis groups. Immune cell infiltration profiles were quantified using

the xCell algorithm (24), which estimates the abundance of 64 immune

and stromal cell types based on gene expression signatures. The

proportions of infiltrating immune cells were visualized through

stacked bar plots generated with the ggplot2 package (version 3.4.0).

To identify differential immune infiltration between high-risk and

low-risk subgroups (defined by the hub gene expression signature), the

Wilcoxon rank-sum test was applied with a significance threshold of p

< 0.05. Statistically significant cell types were further visualized using

violin plots to display distribution differences. Associations between

hub genes (PADI4, CR1, MAPK14, CASP4) and immune cell

infiltration were analyzed via Spearman correlation and represented

as lollipop plots, where the dot size and color intensity reflected

correlation coefficients (r) and significance levels, respectively.

Additionally, the interplay between hub genes and immune

checkpoint molecules (e.g., PD-L1, TIM-3, CTLA-4) was explored

through heatmaps, with hierarchical clustering applied to both rows

(genes) and columns (checkpoint genes). Immune cell types showing

significant co-enrichment patterns were highlighted in enrichment

bubble plots, where bubble size indicated the -log10(p-value) and

color denoted enrichment scores.
2.13 Gene set enrichment analysis of hub
genes

To investigate the biological pathways associated with hub

genes in the disease, Gene Set Enrichment Analysis (GSEA) was

performed using the training dataset from GSE185263. The

“c2.cp.kegg.v7.0.symbols.gmt” gene set from the Molecular

Signatures Database (MSigDB) was used as the reference gene set.

First, Spearman correlation coefficients between each hub gene and

all other genes in the dataset were calculated using the R package

“psych” (version 2.5.3) (25). For each hub gene, a ranked gene list

was generated by sorting all genes in descending order based on

their correlation coefficients. Subsequently, GSEA was conducted

using the R package “clusterProfiler” (version 3.8) to explore the

potential functional roles of the hub genes (14). Analysis parameters

were set at p < 0.05, FDR < 0.25, and |NES| > 1, with hub gene

enrichment results visualized and reported.
2.14 Consensus clustering analysis

In this study, data preprocessing and consensus clustering were

performed to identify the optimal clustering approach. Initially, a
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specific gene set, denoted as gene_Consensus, was selected from the

raw dataset. Each gene (row) was then subjected to median centering

by subtracting its row-specific median. For the consensus clustering

analysis, Pearson correlation was employed as the distance metric, with

partitioning around medoids (PAM) as the clustering algorithm. The

analysis parameters were set as follows: a maximum cluster number of

6, 1000 iterations, a subsampling rate of 80% of the samples, inclusion

of all features, use of complete observations for correlation calculations,

and a fixed random seed of 814 to ensure reproducibility. The optimal

number of clusters (k) was determined by incrementally increasing k

from 2 to 6, with k = 2 identified as the optimal clustering solution

based on clustering stability.
2.15 Subcellular localization analysis

To investigate the subcellular distribution of hub genes, subcellular

localization analysis was performed using the GeneCards database

(https://www.genecards.org/). The localization of these genes to

specific organelles, along with their confidence scores, was

visualized as bar plots using the R package “ggplot2”.
2.16 DGIdb drug interaction analysis

To explore existing drugs associated with the identified hub

genes, drug-gene interaction data were retrieved from the DGIdb

database (https://www.dgidb.org/). The relationships between hub

genes and related drugs, including their interaction scores, were

visualized as bar plots using the R package “ggplot2”.
2.17 Establishment of the sepsis rat’s model

The experiment utilizedmaleWistar rats (8–10 weeks old, 160–200

g; SLAC Laboratory Animal Co., Ltd., Shanghai, China), housed at 22 °

C with 50% humidity and a 12:12 h light–dark cycle, with ad libitum

access to standard chow and water. Rats were acclimated to the

environment for at least one week prior to experimentation. All

procedures were approved by the Institutional Animal Care and Use

Committee (IACUC) and complied with national and international

guidelines for animal experimentation. Rats were randomly assigned to

three groups (n=3 per group): Sham group (laparotomy without cecal

ligation or puncture), CLP group (cecal ligation and double puncture

with a 20-gauge needle to induce sepsis), and CLP + sh-PADI4 group

(CLP surgery followed by tail vein injection of 1×10^9 TU PADI4-

targeting shRNA adenovirus). The CLP model was performed under

aseptic conditions. Rats were anesthetized with 2.5% isoflurane,

underwent midline laparotomy, and the cecum was ligated below the

ileocecal valve and punctured twice with a 20-gauge needle, with a

small amount of fecal matter extruded before abdominal closure. The

Sham group underwent cecal exposure without ligation or puncture.

Adenovirus was administered via slow tail vein injection, with all

interventions conducted under anesthesia. Rats were fasted for 8–12

hours pre-surgery, recovered in a warm environment post-surgery, and
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monitored closely, adhering to predefined humane endpoints to

minimize suffering. At 48 hours post-CLP, rats were euthanized

under deep anesthesia, blood was collected via cardiac puncture, and

serum was stored at -80°C. Both kidneys were harvested—one fixed in

10% neutral-buffered formalin or 4% paraformaldehyde for histological

and immunofluorescence analysis, the other snap-frozen in liquid

nitrogen and stored at -80°C for molecular assays. Aseptic

techniques were maintained throughout, and sepsis-related tissues

were disposed of according to biosafety protocols. The animal study

was approved by the Institutional Animal Care and Use Committee of

The Second Xiangya Hospital, Central South University (Approval

No: 2022711).
2.18 Western blotting analysis

Kidney tissues from the CLP and Sham groups were homogenized

in RIPA buffer containing protease inhibitors and centrifuged at 12,000

× g for 15 min at 4°C to extract proteins. Protein concentrations were

determined using the BCAmethod. Thirty micrograms of protein were

mixed with loading buffer, heated at 95°C for 5 min, separated by 10%

SDS-PAGE, and transferred to a PVDF membrane. The membrane

was blocked with 5% non-fat milk for 1 h, incubated overnight at 4°C

with primary antibodies against PADI4 (1:1000, Abcam) and b-actin
(1:5000, Sigma-Aldrich), washed with TBST, and incubated with HRP-

conjugated secondary antibodies (anti-rabbit 1:5000, anti-mouse

1:10000) for 1h. After further TBST washes, bands were visualized

using ECL detection. Band intensities were quantified with ImageJ, and

PADI4 expression was normalized to b-actin.
2.19 Immunofluorescence staining

Kidney tissues from experimental groups were fixed in 4%

paraformaldehyde at 4°C for 24–48 h, dehydrated, and embedded in

paraffin. Sections (4–5 µm) were cut, mounted on adhesive slides, and

baked at 60°C for 30 min. After deparaffinization in xylene and

rehydration through a graded ethanol series, antigen retrieval was

performed in citrate buffer (pH 6.0) at 95°C for 15 min. Sections were

cooled, washed with PBS, and blocked with 5% goat serum in PBS for

30 min at room temperature. Sections were then incubated with anti-

citH3 antibody (1:200, Abcam) overnight at 4°C, washed with PBS, and

incubated with Alexa Fluor 488-conjugated anti-rabbit secondary

antibody (1:500, Thermo Fisher Scientific) for 1 h at room

temperature in the dark. Nuclei were counterstained with DAPI for
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5 min, and slides were mounted with anti-fade medium. Images were

captured using a fluorescence microscope and quantified for citH3-

positive cells using ImageJ software.
2.20 Hematoxylin and eosin staining

Kidney tissues from experimental groups were fixed in 10%

neutral-buffered formalin at room temperature for 24–48 h,

dehydrated through a graded ethanol series, cleared in xylene, and

embedded in paraffin. Sections (4–5 µm) were cut using a microtome,

mounted on adhesive slides, and baked at 60°C for 30 min. Sections

were deparaffinized in xylene, rehydrated through decreasing ethanol

concentrations, and stained with hematoxylin for 5 min. After rinsing

in tap water, sections were differentiated in 1% acid alcohol, blued in

ammonia water, and counterstained with eosin for 1 min. Sections

were dehydrated, cleared in xylene, andmounted with a coverslip using

mounting medium. Images were captured using a bright-field

microscope, and histopathological changes were evaluated.
2.21 Quantitative real-time PCR analysis

Peripheral blood samples were collected from 5 sepsis patients

and 5 healthy controls. And the study of these samples was approved

by the Ethics Committee of Zhuzhou Hospital Affiliated to Xiangya

School of Medicine, Central South University (Approval No:

2020175-01). Total RNA was extracted from whole blood using

TRIzol reagent (Invitrogen, USA) per the manufacturer’s

instructions. cDNA was synthesized from 1 µg total RNA using the

PrimeScript RT reagent kit (Takara, Japan). Quantitative real-time

PCR was performed on a CFX96 system (Bio-Rad, USA) with SYBR

Green premix (Takara, Japan). Expression of PADI4, CASP4, CR1,

and MAPK14 was measured, normalized to b-actin (primer

sequences in Table 1). Relative gene expression was calculated

using the 2^−DDCt method.
2.22 Statistical analysis

All analyses were executed utilizing R programming language

(v 4.2.2). The Wilcoxon test was harnessed to contrast differences,

employing a statistical threshold of p < 0.05.
1 Material and Methods section can be placed in any of the

following ways.
TABLE 1 Primer sequences for qRT-PCR.

Gene Forward primer Reverse primer

PADI4 CAGGGGACATTGATCCGTGTG GGGAGGCGTTGATGCTGAA

CASP4 TCTGCGGAACTGTGCATGATG TGTGTGATGAAGATAGAGCCCAT

CR1 CACGAAGCCGCCAATTTGTC CCCACTTGATCGTCATTGCTG

MAPK14 TCAGTCCATCATTCATGCGAAA AACGTCCAACAGACCAATCAC

b-actin CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT
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3 Results

3.1 Data filtering and cell population
identification

21 single-cell transcriptome samples were retrieved from the GEO

database (GSE175453, 9 samples; GSE167363, 12 samples). Quality

control was performed using Seurat v4 with the following criteria: 300

< nFeature_RNA < 2000, nCount_RNA < 40000, percent.mt < 30, and
Frontiers in Immunology 06
log10GenesPerUMI > 0.85. This confirmed a high-quality dataset

(Figures 1A–F). Batch effects were corrected using the Harmony

algorithm, followed by principal component analysis (PCA) to select

significant components (Figure 2A). UMAP dimensionality reduction

was applied with an optimal resolution determined by cluster tree

analysis (Figure 2B), clustering cells into 16 groups with distinct marker

gene expression profiles (Figure 2D). These were annotated as 9

distinct cell types, including B cells, T/NK cells, monocytes, and

neutrophils (Figures 2C, E). In the sepsis group, the proportion of
FIGURE 1

Quality control of single-cell RNA-seq data. (A) Violin plot showing gene detection per cell. (B) Total RNA counts per cell. (C) Mitochondrial gene
percentage. (D) Gene detection efficiency (log10GenesPerUMI, 0.90-0.925). (E) Violin plot showing distribution of Hemoglobin Gene expression
Proportion (percent.HB). (F) Density Distribution of gene detection across 21 single-cell RNA sequencing samples.
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neutrophils was significantly elevated (10.63% vs. 8.94% in the healthy

group), while T/NK cells showed a slight reduction (34% vs. 37%), and

monocytes remained consistent (27%, Figure 2H). Marker gene

analysis validated cell identities, with neutrophils highly expressing

S100A8 and CSF3R, and T/NK cells expressing CD3E and KLRD1

(Figures 2F, G), providing a foundation for subsequent neutrophil-

focused analyses.
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3.2 Neutrophil subtype classification

Neutrophils were subdivided into 8 clusters using UMAP, which

were further categorized into four subtypes based on immune-related

and metabolic gene expression profiles: mature neutrophils, immature

neutrophils, anti-inflammatory neutrophils, and pro-inflammatory

neutrophils (Figures 3A, C). Anti-inflammatory neutrophils, defined
FIGURE 2

Single-cell dimensionality reduction and annotation. (A) PCA elbow plot selecting principal components. (B) Clustertree plot determining clustering
resolution. (C) UMAP plot of 16 cell clusters. (D) Bubble plot of marker gene expression by cluster. (E) UMAP with annotated cell types. (F, G) Bubble
plots of marker genes by cell type. (H) Bar plot comparing cell type proportions.
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by elevated MT-ND1, MT-CO1, MALAT1, and CST3, were more

prevalent in the control group (27.04% vs. 18.43% in sepsis, Figure 3D),

while pro-inflammatory neutrophils, distinguished by PF4, CXCR2,

CXCL8, and CCL5, exhibited a slight increase in sepsis (6.72% vs.

5.33% in controls, Figure 3D), suggesting an intensified inflammatory

state. Anti-inflammatory neutrophils were identified by high
Frontiers in Immunology 08
expression of MT-ND1, MT-CO1, MALAT1, and CST3, which are

associated with mitochondrial homeostasis and inflammation

resolution (26–28). Pro-inflammatory neutrophils were characterized

by elevated PF4, CXCR2, CXCL8, and CCL5, promoting chemotaxis

and inflammatory amplification in sepsis (29–33). Minimal cross-

expression of marker genes across subtypes validated the robustness
FIGURE 3

Neutrophil subtype classification. (A) UMAP plot of neutrophil clusters. (B) Bubble plot of marker gene expression by subtype. (C) UMAP with
annotated subtypes (mature, immature, pro-inflammatory, anti-inflammatory). (D) Bar plot comparing subtype proportions. (E) Enhanced Marker
Gene Bubble Plot (Cell Types).
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of this classification (Figures 3B, E). The substantial increase in

immature neutrophils in the sepsis group (40.53% vs. 4.19% in

controls, Figure 3D) underscored their mobilization during acute

inflammation. The decrease in anti-inflammatory neutrophils

(18.43% vs. 27.04%) and the slight rise in pro-inflammatory

neutrophils (6.72% vs. 5.33%) further indicated an immune

imbalance, potentially contributing to the exacerbated inflammation

in sepsis.
3.3 Functional and dynamic analysis of
neutrophils

Differential expression analysis (GSE237960, Escherichia coli-

induced sepsis) identified 4646 differentially expressed genes (DEGs),

with 2312 upregulated and 2334 downregulated (Figure 4A). To

narrow down key neutrophil-specific genes, DEGs were intersected

across neutrophil pseudotime, neutrophil extracellular trap formation

(NETF) pathways, and E. coli-induced sepsis, resulting in 15 shared

genes (Figure 4B). These DEGs were enriched in chemokine signaling,

cytokine-cytokine receptor interaction, and Toll-like receptor pathways

(Figures 4C, D), reflecting enhanced immune and inflammatory

responses in sepsis. Cell communication analysis revealed increased

IL-1 signaling (e.g., IL1A-FPR1, IL1B-FPR1) in the sepsis group,
Frontiers in Immunology 09
suggesting a stronger pro-inflammatory response and potential

therapeutic relevance of IL-1 receptor antagonists (e.g., Anakinra).

Suppression of HLA-DRB1-CD4 signaling (Figures 5A–D) indicated

impaired antigen presentation, which may contribute to adaptive

immune dysregulation. In the control group, metabolic activities

such as glycolysis and fatty acid metabolism were predominant in

mature neutrophils (Figures 6A, B). In the sepsis group, we observed a

significant upregulation of biotin and lipoic acid metabolism in mature

neutrophils (Figure 6B)—a pattern also observed in immature and pro-

inflammatory subtypes—suggesting metabolic reprogramming under

inflammatory conditions. Pseudotime analysis revealed a continuous

trajectory of neutrophil states (Figure 7A), with distinct state

distributions reflecting developmental progression (Figure 7B). A

shift toward an early pro-inflammatory state was observed in sepsis

neutrophils compared to controls (Figure 7C), with immature subtypes

enriched in early stages and mature and anti-inflammatory subtypes in

later stages (Figure 7D). The expression patterns of the 15 shared genes

along the pseudotime axis further highlighted their dynamic regulation,

with genes like PADI4 showing elevated expression in early pro-

inflammatory stages (Figure 7E). Gene clustering revealed two

expression patterns: Cluster 1 (low early, high late) enriched in

immune processes, and Cluster 2 (high early, low late) enriched in

protein synthesis (Figures 8A–C), illustrating dynamic neutrophil

regulation in sepsis.
FIGURE 4

Differential gene expression in sepsis neutrophils. (A) Volcano plot of DEGs (GSE237960). (B) Venn diagram showing 15 shared genes among
neutrophil DEGs, NETF, and (E) coli sepsis DEGs. (C) GO lollipop plot of top terms. (D) KEGG lollipop plot of enriched pathways.
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3.4 Hub gene identification

To identify hub genes linked to neutrophil function in sepsis,

differential gene expression data were integrated and validated

externally using a support vector machine (SVM) model. An SVM

model trained on 70% of the GSE185263 dataset identified PADI4,

CASP4, CR1, and MAPK14 as significant feature genes (Figure 9A).

Internal validation yielded an AUC of 0.9372, with only 2 misclassified

samples (Figures 9B, C). External validation using GSE243217

confirmed high AUC values: PADI4 (92.4%), CASP4 (90.6%), CR1

(97.3%), and MAPK14 (93.9%) (Figures 9D, E). The consistent
Frontiers in Immunology 10
differential expression and high AUC values across datasets

underscored their reliability as hub genes in sepsis.
3.5 Functional analysis and therapeutic
potential of hub genes

Gene set enrichment analysis (GSEA) indicated that all four hub

genes were enriched in immune and inflammation-related pathways,

suggesting synergistic roles in sepsis immune regulation. Specifically,

PADI4 was enriched in Pathogenic Escherichia coli Infection (NES =
FIGURE 5

Neutrophil cell communication in sepsis. (A) Ligand expression patterns in control vs. sepsis. (B) Receptor expression patterns. (C) Neutrophil ligand
interactions. (D) Neutrophil receptor interactions.
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1.62, p = 8.56e-07, FDR = 1.22e-05) and Fc Gamma R-Mediated

Phagocytosis (NES = 1.62, p = 9.31e-10, FDR = 1.47e-07, Figure 10A).

CASP4 showed enrichment in Leishmania Infection (NES = 1.70, p =

1.03e-08, FDR = 2.80e-07), B Cell Receptor Signaling Pathway (NES =

1.69, p = 1.04e-09, FDR = 3.88e-08), and Proteasome (NES = 1.67, p =

1.10e-06, FDR = 1.14e-05, Figure 10B). CR1 and MAPK14 were

enriched in B Cell Receptor Signaling and Renal Cell Carcinoma

pathways (Figures 10C, D). Subcellular localization analysis revealed

PADI4 primarily in the cytosol and nucleus, CASP4 in the

endoplasmic reticulum and cytosol, CR1 in the extracellular space

and plasma membrane, and MAPK14 in the cytosol, extracellular

space, and nucleus (Figures 11A–D), supporting their functional

diversity. Drug-gene interaction analysis suggested potential

therapeutic candidates, including uric acid for PADI4, emricasan for

CASP4, and RO-3201195 for MAPK14 (Figures 12A–D), offering

directions for targeted sepsis therapies. Consistent with this

prediction, preclinical studies demonstrated that febuxostat treatment

lowered tissue urate levels and significantly reduced citH3 expression in

mice (34), indicating suppression of PAD4-dependent NETosis in vivo.
3.6 Immune microenvironment and
clustering analysis

Immune microenvironment analysis revealed significantly

increased neutrophil infiltration (P<0.001) and reduced T cell

infiltration (e.g., CD4+ memory T cells, P<0.001) in the sepsis
Frontiers in Immunology 11
group (Figures 13A, C), with a strong negative correlation between

neutrophils and T cells (P<0.001, Figure 13B). PADI4, CASP4, CR1,

and MAPK14 were positively correlated with neutrophil infiltration

(P<0.001) and negatively correlated with T cell infiltration

(P<0.001, Figure 13D), and positively associated with immune

checkpoint genes (CD24, CD47, P<0.01, Figure 13E), suggesting

immunosuppressive mechanisms. The increased neutrophil

infiltration and decreased T cell presence indicated an imbalance

between innate and adaptive immunity in sepsis, potentially linked

to disease severity. To corroborate these xCell-derived profiles,

CIBERSORT analysis was applied to the same bulk RNA-seq

data, estimating proportions of 22 immune cell types. Consistent

with xCell findings, it confirmed significantly elevated neutrophil

fractions in the sepsis group (P < 0.001; Supplementary Figures 1A,

C) and reduced T cell subtypes, such as CD4 memory activated T

cells . Neutrophils and T cells showed a strong negative correlation

(Supplementary Figure 1B), while the hub genes exhibited positive

correlations with neutrophil infiltration (r = 0.3–0.7, Supplementary

Figure 1C). These genes were also positively associated with

immune checkpoint molecules (Supplementary Figure 1E),

reinforcing the immunosuppressive microenvironment.

Consensus clustering divided patients into two clusters: Cluster A

exhibited lower PADI4 and CASP4 expression and higher CR1 and

MAPK14 expression (Figures 14A–D), highlighting molecular

heterogeneity. However, survival differences between clusters were

not statistically significant (p=0.7594), possibly due to limited

sample size, necessitating further clinical validation.
FIGURE 6

Neutrophil metabolic pathways in sepsis. (A) Heatmap of metabolic pathway activity in control group. (B) Heatmap in sepsis group.
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3.7 Validation of hub genes in sepsis

To investigate the role of hub genes in sepsis-associated kidney

injury, we employed a cecal ligation and puncture (CLP) model to

induce sepsis in mice, followed by extraction of kidney tissues for in

vitro experimental analyses to assess the expression differences of

PADI4. Western blot (WB) analysis revealed a significant

upregulation of PADI4 expression in the kidney tissues of the CLP

group compared to the sham-operated group, with quantitative
Frontiers in Immunology 12
analysis (normalized to b-actin) confirming a markedly higher

relative expression level (p < 0.001, Figures 15A, B). The full

uncropped Western Blot images are provided in Supplementary

Figure S2. Immunofluorescence (IF) staining further demonstrated a

pronounced increase in the red fluorescence signal of citrullinated

histone H3 (citH3, a marker of neutrophil extracellular trap [NET]

formation) in the kidney tissues of the CLP group, significantly

exceeding that of the sham group (p < 0.001). Notably, knockdown

of PADI4 resulted in reduced citH3 expression, suggesting a critical
FIGURE 7

Neutrophil pseudotime analysis in sepsis. (A) Pseudotime trajectory plot. (B) Pseudotime state distribution. (C) Group-specific pseudotime (control
vs. sepsis). (D) Subtype distribution along pseudotime. (E) Expression of 15 hub genes.
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role for PADI4 in sepsis-induced NET formation (p < 0.001 compared

to the CLP group, Figures 15C, D). Hematoxylin and eosin (H&E)

staining revealed significant pathological changes in the kidney tissues

of the CLP group, characterized by tubular dilation, expansion of the

tubulointerstitial area, and inflammatory cell infiltration, consistent

with the features of sepsis-induced acute kidney injury. The injury

score was significantly higher in the CLP group than in the sham

group (p < 0.001). However, PADI4 knockdown markedly attenuated

these pathological changes (p < 0.01 compared to the CLP group,

Figures 15E, F), indicating that PADI4 silencing significantly

ameliorates sepsis-induced renal histopathological damage.

Furthermore, we validated the elevated expression of the hub genes

in the peripheral blood of patients with sepsis, consistent with our

previous findings (compared to the control group, Figures 15G–J).
4 Discussion

In this study, we identified four neutrophil subtypes, with the

delineation of pro-inflammatory and anti-inflammatory subtypes

representing a significant innovation. Pro-inflammatory neutrophils

were characterized by genes such as PF4, CXCR2, CXCL8, and CCL5,

which play critical roles in amplifying inflammation. These genes

enhance inflammatory responses through chemotaxis, degranulation,
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and reactive oxygen species production (29, 35). For instance, CXCL8

mediates a positive feedback loop via CXCR2, promoting neutrophil

recruitment (32). This self-amplifying signaling pathway is particularly

prominent in chronic lung diseases such as chronic obstructive

pulmonary disease and bronchiectasis (36). As a chemokine, CCL5

effectively attracts neutrophils to sites of infection or injury, thereby

augmenting immune and inflammatory responses (30, 31). During the

acute phase of sepsis, Ccl5-positive macrophages exhibited the

strongest interaction with neutrophils, predominantly through the

CCL signaling pathway, suggesting that Ccl5-positive macrophages

play a key role in neutrophil recruitment via CCL5-CCR1 pairing (33)

&#x3002;In contrast, anti-inflammatory neutrophils were

distinguished by high expression of MT-ND1, MT-CO1, MALAT1,

and CST3, which are associated with mitochondrial function,

inflammation resolution, and tissue protection. MT-ND1 and MT-

CO1, core components of the mitochondrial electron transport chain

(complexes I and IV, respectively), maintain mitochondrial membrane

potential and energy metabolism balance, supporting normal

neutrophil function. Mitochondria contribute to inflammation

resolution by regulating neutrophil apoptosis, exerting an anti-

inflammatory effect (27). Studies have shown that inhibitors of

complexes I and III, such as rotenone and antimycin A, significantly

reduce neutrophil migration (26). The anti-inflammatory effect of

MALAT1 is primarily mediated by its regulation of IL-10 expression.
FIGURE 8

Gene clustering in neutrophil pseudotime. (A) Heatmap of two gene clusters: Cluster 1 (early low, late high), Cluster 2 (early high, late low). (B) GO
lollipop plot for Cluster 1 (immune processes). (C) GO lollipop plot for Cluster 2 (protein synthesis).
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In a Leishmania Donovani model, MALAT1 knockout mice exhibited

reduced IL-10 expression in CD4-positive T cells, enhancing

macrophage activation and pathogen clearance (28). CST3 exerts its

effects mainly by inhibiting cysteine proteases, with studies

demonstrating that high cystatin C concentrations significantly

suppress spontaneous, fMLP-, and PMA-induced neutrophil

respiratory bursts (37). In the sepsis group, the proportions of pro-

inflammatory and immature neutrophils were significantly elevated

(40.53% and 6.72% vs. 4.19% and 5.33% in controls), while anti-

inflammatory neutrophils decreased (18.43% vs. 27.04%), consistent

with a shift toward an early pro-inflammatory state in pseudotime

analysis. This suggests that neutrophils in the acute phase of sepsis

predominantly adopt an early pro-inflammatory state, reflecting

immune mobilization against infection. However, this imbalance

may lead to uncontrolled inflammation, exacerbating damage to

renal tubular epithelial and endothelial cells, which aligns with the
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high incidence of sepsis-associated acute kidney injury. These findings

not only elucidate the role of neutrophil heterogeneity in immune

dysregulation during urosepsis but also provide a foundation for

developing strategies to suppress pro-inflammatory subtypes or

enhance the reparative functions of anti-inflammatory subtypes.

Beyond phenotypic heterogeneity, the dynamic regulation of

neutrophil function is increasingly recognized as a critical

determinant of sepsis outcomes. Recent studies have demonstrated

that metabolic reprogramming and inflammatory signaling shape

neutrophil effector functions, such as NET formation and cytokine

release, thereby amplifying tissue injury in sepsis. Although direct

mechanistic evidence in sepsis-associated AKI remains limited, related

bioinformatics and network-based studies from other immune-

inflammatory conditions have highlighted the interplay between

metabolic pathways and immune cell heterogeneity (38–40). While

these studies are not focused on sepsis per se, they provide
FIGURE 9

Hub gene validation in sepsis. (A) Feature importance ranking of 15 genes. (B) Internal ROC curve (GSE185263). (C) Confusion matrix (GSE185263).
(D) Single-gene ROC curves (GSE185263). (E) Single-gene ROC curves (GSE243217).
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methodological and contextual insights supporting the concept that

neutrophil subtypes may adopt distinct functional states under

systemic inflammatory stress. Our findings extend this perspective by

integrating multi-omics data with experimental validation, specifically

linking PAD4-driven pro-inflammatory neutrophils to renal injury

in sepsis.

Integrative analysis of single-cell and bulk RNA sequencing

data, combined with machine learning, further identified PADI4,

CASP4, CR1, and MAPK14 as hub genes in sepsis. These genes

exhibited high expression in neutrophils and positively correlated

with neutrophil infiltration, underscoring their significance in the
Frontiers in Immunology 15
inflammatory response during sepsis. Neutrophil extracellular traps

(NETs) have emerged as important players in sepsis. Although

extracellular in nature, their components can directly injure renal

tubular cells (41). Notably, urosepsis may differ immunologically

from other sepsis types, yet NETs remain scarcely studied in this

context. To address this gap, we focused on NETs-related genes and

intersected them with E. coli-induced and neutrophil-associated

gene sets. PADI4 plays a dual role in sepsis by mediating NETosis

(neutrophil extracellular trap formation). On one hand, it

contributes to infection defense by capturing pathogens such as

Escherichia coli through NETs, a process involving the conversion
FIGURE 10

GSEA of hub genes in sepsis. (A–D) GSEA plots for PADI4, CASP4, CR1, MAPK14 (GSE185263).
FIGURE 11

Subcellular localization of hub genes. (A–D) Bar plots of PADI4, CASP4, CR1, MAPK14 localization.
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of arginine residues in histones to citrulline, significantly reducing

histone positive charge (42, 43). This modification weakens the

electrostatic interactions between positively charged histones and

negatively charged DNA, leading to nucleosome destabilization and

chromatin decondensation (44). Studies have shown that in PADI4-

deficient neutrophils, histone H3 citrullination is completely absent,

and NETosis induced by PMA and LPS does not occur (45).

Moreover, PADI4 inhibitors significantly block histone

citrullination and NET release (46, 47). On the other hand,

excessive NET release may exacerbate renal tissue damage. Gene

set enrichment analysis revealed PADI4 enrichment in the

Escherichia coli infection pathway (NES = 1.62, FDR = 1.22e-05),

supporting its specific role in sepsis. The therapeutic implications of

targeting PADI4 merit further consideration. Preclinical evidence

supports that pharmacological inhibition of PADI4 with small-

molecule inhibitors, such as Cl-amidine (a pan-PAD inhibitor),

significantly reduces renal ischemia/reperfusion-induced acute

kidney injury, attenuates tubular inflammation, and decreases

neutrophil infiltration in murine models (48, 49). Furthermore,

specific PAD4 inhibition using GSK484 has demonstrated renal

protection by reducing remote lung injury, NET formation, and

histone H3 citrullination in acute kidney injury contexts (50).

Although these inhibitors are not yet in clinical use, they provide

a compelling proof-of-concept that PADI4 inhibition holds promise
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as a therapeutic strategy for SAKI. CASP4 directly binds

cytoplasmic lipopolysaccharide, particularly its active component

lipid A, via its CARD domain, forming a multimeric complex that

activates its enzymatic activity and induces pyroptosis (51). This

process also triggers NLRP3 inflammasome assembly, promoting

the release of IL-1b and IL-18, thereby amplifying the immune

response (52)。CR1 facilitates the clearance of immune complexes

by binding C3b and C4b (53), preventing their deposition in

vulnerable tissues such as the kidney and lungs (54), thus

exhibiting anti-inflammatory and renoprotective potential. In

systemic lupus erythematosus, studies have reported significantly

reduced CR1 expression on erythrocytes and leukocytes, correlating

with disease severity and renal involvement (55). MAPK14 is

activated in response to various stimuli, including cytokines (e.g.,

TNF-a, IL-1b), oxidative stress, lipopolysaccharide, and viral

infections (56). MAPK14 activates the downstream kinase MK2,

which phosphorylates the RNA-binding protein TTP, preventing

degradation of AU-rich element-containing mRNAs and stabilizing

pro-inflammatory cytokine mRNAs such as TNF-a, IL-1b, and IL-6
(56, 57). This mechanism is particularly pronounced in

macrophages and dendritic cells, promoting rapid inflammatory

responses. MAPK14 also directly phosphorylates transcription

factors such as NF-kB, ATF2, and MEF2, enhancing the

transcriptional activity of pro-inflammatory genes (57).
FIGURE 12

Drug-gene interactions for sepsis therapy. (A–D) Bar plots of drug interactions with PADI4, CASP4, CR1, MAPK14.
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The pseudotime trajectory analysis revealed an early pro-

inflammatory state shift in neutrophils during sepsis,

characterized by increased expression of pro-inflammatory genes

such as PADI4, which aligns with the significant rise in pro-

inflammatory neutrophil proportions (40.53% in sepsis vs. 4.19%

in controls, Figure 3D). This suggests that the early pro-

inflammatory state may drive the expansion of pro-inflammatory
Frontiers in Immunology 17
neutrophils, potentially exacerbating renal damage through

enhanced NETosis and inflammatory cascades. The concomitant

decrease in anti-inflammatory neutrophils (18.43% in sepsis vs.

27.04% in controls) could reflect a shift in neutrophil maturation or

functional reprogramming along the pseudotime axis, as supported

by dynamic gene expression patterns (Figure 7E). Previous studies

have demonstrated that pseudotime analysis can uncover cell state
FIGURE 13

Immune microenvironment in sepsis. (A) Stacked bar plot of 36 immune cell proportions (GSE185263). (B) Correlation heatmap of immune cells.
(C) Violin plot of differentially enriched cells. (D) Lollipop plot of gene-immune cell correlations. (E) Heatmap of immune checkpoint gene correlations.
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transitions linked to subtype proportions, and our GSEA results

(Figure 10) further indicate that pathways such as MAPK signaling

(enriched for MAPK14) may underpin this transition.

Analysis of the immune microenvironment revealed

significantly increased neutrophil infiltration and decreased T cell

infiltration in the sepsis group, reflecting an imbalance between

hyperactive innate immunity and suppressed adaptive immunity.

This imbalance may exacerbate renal damage through excessive

activation of pro-inflammatory neutrophils. The positive

correlation between hub genes and immune checkpoint genes

(CD24, CD47, HAVCR2; r = 0.40-0.80, P < 0.01) suggests an

immunosuppressive mechanism. Previous studies have shown that

PD-L1 expression on neutrophils is upregulated during sepsis,

potentially suppressing adaptive immunity via the PD-L1/PD-1

checkpoint (58), a phenomenon also observed in our study. This

T cell suppression, driven by immune checkpoint activation, may

have implications for secondary infections, a common complication

in sepsis linked to immunoparalysis (59). Literature indicates that T

cell dysfunction, particularly through PD-1/PD-L1 signaling (60),

impairs pathogen clearance and increases susceptibility to

opportunistic infections such as Gram-negative bacteria (61). The

observed suppression, potentially influenced by neutrophil-driven

inflammation and hub gene activities (e.g., PADI4, MAPK14),

could contribute to this risk. CD24 interacts with SIGLEC10 to

inhibit macrophage phagocytosis (62). Li et al. suggested that the

CD24-SIGLEC10 signaling pathway is a potential target for cancer
Frontiers in Immunology 18
immunotherapy, as suppressing immune responses may reduce

inflammatory damage (63). CD47, a widely expressed

transmembrane protein, acts as a “don’t eat me” signal by

interacting with SIRPa on macrophages to inhibit phagocytosis.

Casey et al. found that MYC regulates CD47 expression, with its

high expression suppressing anti-tumor immune responses (64).

HAVCR2 (TIM-3), an innate and adaptive immune checkpoint

molecule, is associated with T cell exhaustion when highly

expressed. Pan-cancer analyses have shown that elevated

HAVCR2 expression correlates with immune infiltration and

checkpoint genes, potentially serving as a key factor in

immunosuppression (65). Based on our findings, we propose that

the high expression of these immune checkpoint genes may

suppress immune cell activation, reduce inflammation, maintain

immune balance, and prevent excessive tissue damage. This

mechanism likely contributes to immune homeostasis in the later

stages of sepsis. Cell communication analysis indicated enhanced

IL-1 signaling and suppressed HLA-DRB1-CD4 signaling,

suggesting impaired antigen presentation that may further

weaken T cell function. IL-1 receptor antagonists, such as

anakinra, may mitigate renal inflammation by blocking this

pathway. Metabolic pathway analysis revealed upregulated biotin

and lipoic acid metabolism, indicating metabolic reprogramming

that supports the pro-inflammatory functions of neutrophils,

offering new avenues for metabolic interventions, such as

biotin supplementation.
FIGURE 14

Patient clustering in sepsis. (A) Consensus matrix (k=2). (B) CDF plot for cluster numbers. (C) Survival bar plot of Clusters A and B. (D) Violin plots of
hub gene expression.
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The rat cecal ligation and puncture model and human

peripheral blood validation experiments bolstered the reliability of

our bioinformatics findings. The cecal ligation and puncture model

demonstrated that elevated PADI4 expression (P < 0.001) was

associated with enhanced NETosis (increased citH3 signaling),

while PADI4 knockdown significantly alleviated acute kidney
Frontiers in Immunology 19
injury pathology (P < 0.01), supporting PADI4 as a central driver

of renal damage by pro-inflammatory neutrophils (45). In human

peripheral blood, the high expression of PADI4, CASP4, CR1, and

MAPK14 (P < 0.05) was consistent with bulk RNA sequencing

results, with ROC analysis (AUC 0.67-0.97) further validating their

diagnostic potential.
FIGURE 15

Experimental validation of hub genes in sepsis. (A, B) Western blot showing PADI4 upregulation in CLP model kidney tissues (P<0.001). (C, D)
Immunofluorescence of citH3, reduced by PADI4 knockdown (P<0.001). (E, F) H&E staining showing attenuated AKI pathology post-PADI4
knockdown (P<0.001). (G-J) qRT-PCR confirming elevated PADI4, CASP4, CR1, MAPK14 in sepsis patient blood (P<0.05).
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A notable limitation of this study is the reliance on general

sepsis datasets (GSE175453 and GSE167363), which primarily

capture systemic immune responses rather than kidney-specific

pathology, and the use of the CLP model, which induces systemic

sepsis but is not specific to SAKI. The absence of SAKI-specific

clinical annotations in the datasets, such as KDIGO-based

diagnostic criteria (e.g., serum creatinine or urine output), and

the lack of quantitative kidney injury biomarkers (e.g., BUN, CR,

NGAL, KIM-1) in the CLP model, limit direct attribution of

neutrophil heterogeneity and hub gene effects to SAKI. Instead,

our findings elucidate sepsis-induced immune dysregulation,

particularly neutrophil-driven mechanisms, that may contribute

to organ dysfunction including SAKI. Future studies utilizing SAKI-

specific cohorts with detailed clinical data or SAKI-specific models

(e.g., urosepsis models) with biomarker quantification could

validate and extend these findings to establish direct links with

kidney injury.

Despite significant progress, this study has limitations. Public

datasets (GSE175453, GSE167363) and the cecal ligation and

puncture model primarily reflect general sepsis mechanisms,

lacking urosepsis-specific data and models, which limits direct

insights into urinary tract infection-induced inflammation. The

small sample size of human peripheral blood (n=5) may affect

statistical robustness. Experimental validation focused on PADI4,

and the roles of other genes, such as CASP4, require

further exploration.
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