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Rheumatoid arthritis (RA), a chronic autoimmune disorder marked by systemic
inflammation and joint destruction, remains challenging to treat due to the
limitations of conventional therapies, including side effects and diminishing
efficacy. Emerging research underscores the gut-immune axis—a dynamic
interplay between gut microbiota, immune responses, and inflammation—as a
pivotal contributor to RA pathogenesis. Traditional Chinese Medicine (TCM),
recognized for its established safety and accessibility, has been shown to
synergistically alleviate symptoms of RA when used alongside conventional
treatments, while significantly reducing drug-related toxicity. Pre-clinical models
and clinical trials have demonstrated that TCM formulations, bioactive
phytochemicals, and their metabolites can modulate the gut-immune axis by
restoring gut microbiota balance and regulating immune-inflammatory pathways.
This review summarizes the multi-target effects of TCM, including microbiota
modulation and immune system regulation, and proposes a microbiota-centered
therapeutic strategy for RA. Although the role of Traditional Chinese Medicine in
regulating gut microbiota and immune modulation supports its clinical
translatability, rigorous mechanistic studies remain essential to facilitate its
integration into mainstream rheumatology treatment strategies. This involves
research on its pharmacokinetic-pharmacodynamic characteristics, validation of
microbiome-dependent mechanisms, and investigation into mechanisms involving
microbial metabolites. By integrating millennia of empirical knowledge with
cutting-edge systems biology, TCM presents a microbiota-centered holistic
strategy for RA management.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune
disease characterized by synovial inflammation and hyperplasia,
leading to cartilage and bone destruction, as well as systemic
manifestations such as pulmonary, cardiovascular, skin,
psychological, and skeletal disorders. RA arises from disrupted
immune tolerance and sustained immune activation, driving
inflammation and tissue remodeling (1). It affects approximately
0.46% of the global population, with a higher prevalence in
industrialized countries (2). RA develops as a result of both
genetic predispositions and environmental factors, such as specific
gene variants like human leukocyte antigen-DR beta chain 1 (HLA-
DRBI1) and lifestyle triggers including smoking, pollutant exposure,
and viral infections. Risk factors modulate gene expression via
epigenetic mechanisms, contributing to disease onset and
progression. These factors can influence post-transcriptional
modifications (PTMs) of specific genes or affect susceptibility
genes via epigenetic mechanisms. The burden of RA is substantial
due to its recurrent nature and high disability rate (1, 3).

The human gut microbiota (GM) represents a complex and
dynamic ecosystem of microorganisms residing within the
gastrointestinal tract (4). This microbial community includes diverse
subgroups of bacteria, viruses, fungi, and archaea, all coexisting within
the gastrointestinal environment. The gastrointestinal tract hosts a
substantial proportion of the body’s immune cells and continuously
interacts with the GM, thereby shaping their functions and properties
(5). The gut microbiome, which includes microbiota, microbial
structural components such as nucleic acids, metabolites, and
environmental factors, plays a fundamental role in the priming and
development of the immune system (6). The GM serves as an innate
immune modulator, drug and diet metabolizer, and producer of
biologically active metabolites. It is vital for modulating immune cell
activities and inflammatory cytokines, thus helping to maintain
balanced immune responses (5).

Increasing evidence and reports have demonstrated that there is an
intricate and dynamic interaction between the GM and the immune
system, forming what is known as the gut-immune axis (7-9).
Numerous studies highlighted a critical role of the gut-immune axis
in the pathogenesis of RA (5, 10-12). Dysbiosis of specific bacterial
lineages and metabolic alterations in gut microbiota resulted in
modifications to the host immune profile, which contribute to the
development of RA (13). Extensive investigations have demonstrated
that GM composition on fecal samples differs between RA patients and
healthy controls (HCs), implying gut dysbiosis may contribute to RA
pathogenesis (14-17). Recent research highlights that dysbiosis and
compositional variations of GM in RA patients are key factors
contributing to abnormal systemic immunity (18-20). It has been
suggested that the mechanism through which gut dysbiosis leads to RA
might be associated with the regulation of immune function by
metabolites generated by GM (21-24). Intestinal barrier dysfunction
precedes RA, which further supports the “gut-immune axis” in RA
pathogenesis (25-27).

Despite efforts to develop anti-RA drugs, there is no safer and
more sustainable therapeutic agent for RA in humans. Conventional
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treatments for RA include glucocorticoids (GCs), non-steroidal anti-
inflammatory drugs (NSAIDs), and disease-modifying anti-rheumatic
drugs (DMARD:). etc. NSAIDs, DMARDs and GCs could effectively
relieve the pain of RA patients and inhibit the inflammatory reaction
in vivo, but they fail to restore the native function of joints. Moreover,
current therapeutic options are limited by deleterious side effects, high
costs, inadequate control of disease progression in many patients, and
diminishing therapeutic efficacy over time.

Traditional Chinese medicines (TCMs) have been used to treat
various diseases since ancient times and shown to be safe and
accessible to the general population in treating RA (28-30).
Accumulating evidence have revealed that TCMs, their extracts,
and bioactive compounds have anti-inflammatory, cartilage-
protective, and immunoregulation properties and exhibit
promising anti-RA activities (31-33). Clinical studies show TCMs
are more effective with fewer side effects compared to conventional
treatments. Combining TCM with synthetic DMARDs can reduce
adverse effects of conventional therapies (34-39). TCMs offer
advantages in modulating the gut-immune axis through multi-
target regulation and lower toxicity (39-44). Notably, DMARDs
such as methotrexate and leflunomide often cause gastrointestinal
toxicity, whereas TCM can mitigate toxicity (45, 46).

However, due to their complex compositions and multiple targets,
TCMs necessitate further investigation to elucidate the active
ingredients and mechanisms of action in treating RA. Natural
products derived from TCMs, characterized by their remarkable
chemical diversity and bioactivity, hold significant potential as a
foundation for developing novel pharmacological agents for RA
treatment (47). Therefore, upon validation of their pharmacological
potential, these TCM-derived natural products may provide promising
leads for the development of modern anti-RA drugs.

Investigating the mechanisms by which TCMs regulate the
gut-immune axis in RA treatment holds significant importance, as
this identifies potential target for developing RA therapeutics.
Consequently, this paper provides a comprehensive review of TCMs
with anti-RA activities that specifically target the gut-immune axis,
thereby paving the way for future research and development endeavors.

2 Overview of immune response in RA

RA pathogenesis is initiated by PTMs, such as citrullination,
carbamylation, and glycosylation, which generate neoepitopes
recognized as autoantigens. Citrullination, mediated by peptidyl
arginine deiminases (PADs), converts arginine to citrulline,
triggering anti-citrullinated protein antibody (ACPA) production.
Genetic susceptibility enables T-cell recognition of modified
peptides and disrupts T-cell signaling, promoting autoimmunity (1).

Antigen-presenting cells (APCs) present these autoantigens to
autoreactive T cells. Metabolic reprogramming and DNA repair
defects drive abnormal T-cell differentiation into short-lived
effector T cells (SLECs), contributing to premature senescence
and skewed differentiation into proinflammatory subsets at the
expense of regulatory T (Treg) cells and T helper-2 (Th2) cells.
Senescent T cells acquire cytotoxic/NK-like properties, resisting
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apoptosis and sustaining inflammation (1, 48, 49) (Figure 1).
Proinflammatory subsets include Thl, Th17, follicular helper T
cells (Tfh) and peripheral helper T cells (Tph). Thl cells produce
interferon (IFN)-y, tumor necrosis factor (TNF)-o, and interleukin
(IL)-2, and amplify macrophage activation (50), whereas Th2 cells
generally secrete L-4, IL-10, and IL-13, cytokines, and reduce
macrophage activation (51). Thl7 cells release proinflammatory
cytokines such as IL-17, IL-21, and TNF-o, which affect
chondrocytes, fibroblasts, osteoclasts, and neutrophils (52).
Chondrocytes undergo apoptosis and pyroptosis and can be
induced to release pro-inflammatory proteins, such as TNF-o, IL-
6, collagenolytic enzymes, and matrix metalloproteinases (MMPs)
(53). Treg cells, which secrete anti-inflammatory cytokines such as
IL-10 and transforming growth factor- (TGE-) B1, are essential in
controlling RA (54). Abnormal Th1/Th2 and Th17/Treg ratio have
been detected in RA patients (55, 56) (Figure 2). Tth and Tph cells
expand in synovium, supporting B-cell maturation and
autoantibody diversification (e.g., IgG ACPA) (1, 57, 58) (Figure 1).

10.3389/fimmu.2025.1637942

Autoreactive B cells, stimulated by Tph/Tth-derived chemokine
(C-X-C) motif ligand 13 (CXCL13) and IL-21, differentiate into
plasma cells secreting ACPA, rheumatoid factor (RF), and anti-
PAD4 antibodies. B cells also secrete proinflammatory cytokines
(IL-6, TNF-a1), sustaining synovitis and ectopic lymphoid structures
formation in joints (49, 57).

Macrophages, synoviocytes and neutrophils play important
roles in RA innate immune activation and joint destruction. M1-
polarized macrophages dominate RA synovium, releasing TNF-q,
IL-1B, and MMPs that drive cartilage degradation. M2
macrophages, which secrete anti-inflammatory cytokines such as
IL-4, IL-10, and TGF-B, are critical for tissue repair, become
depleted, thereby impairing the resolution of inflammation (1,
59). Macrophage-like synoviocytes (MLSs) produce such
cytokines as IL-1f, IL-6, and TNF-o. to stimulate Fibroblast-like
synoviocytes (FLSs) to secrete MMPs and receptor activator of
nuclear factor kB ligand (RANKL) (60, 61). FLSs acquire an
invasive phenotype, secret cytokines (e.g., IL-6, IL-17, and IL-33)
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The crosstalk between T cells, neutrophils, and macrophages creates a vicious cycle in RA. SLECs, short-lived effector T cells; PTM, posttranslational
modification; TCR, T cell receptor; MHC, major histocompatibility complex; RF, rneumatoid factor; ACPA, anti-citrullinated protein antibody; TLR,
Toll-like receptor; FcyR, Fc gamma receptor. Red arrows indicate activation, facilitation or stimulation, whereas blue arrows represent the secretion

of cytokines or release of autoantigens/autoantibodies.
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and chemokines (e.g., C-C motif ligand 2/CCL2), and recruit
immune cells such as monocytes/macrophages, neutrophils, and
T cells. Moreover, these cells release growth factors and pro-
angiogenic factors, such as vascular endothelial growth factor
(VEGF) and heparin-binding epidermal growth factor-like growth
factor (HB-EGF), thereby promoting FLS invasiveness, macrophage
activation, angiogenesis, and sustaining synovial hyperplasia (61).
Neutrophils produce pro-inflammatory proteins and neutrophil
extracellular traps (NETs), which release citrullinated antigens
and induce CDI14+ monocytes to differentiate into osteoclasts
through a RANKL-independent pathway (Figure 1). ACPAs
further directly activate neutrophils and induce NETosis (NETs)
(62, 63). Citrullinated fibrinogen-ACPA complexes in the RA
synovium synergistically activate macrophages through dual
engagement of Toll-like receptor 4 (TLR-4) and Fc gamma
receptors (FcyR). This co-stimulation triggers robust TNF-o
production (64, 65) (Figures 1, 3).

In summary, a self-reinforcing cycle of innate-adaptive crosstalk,
cytokine storms, and tissue destruction underpins RA progression.

3 The gut-immune axis in RA

The gut-immune axis represents a burgeoning concept that
elucidates the bidirectional interactions between the gut microbiome
and the immune system. Accumulating evidence highlights the critical
role of the gut-immune axis in the pathogenesis of RA (10, 39, 48, 66).
This axis operates through four primary mechanisms: (1) gut dysbiosis-
driven immune dysregulation, (2) microbial metabolite-mediated
immunomodulation, (3) intestinal barrier dysfunction, and (4)
molecular mimicry of autoantigens. Below, we summarize current
evidence linking these mechanisms to RA progression (Figure 2).

GM and their metabolites contribute to RA development
through immunomodulatory effects. Gut dysbiosis, characterized
by alterations in microbial diversity and abundance, is linked to RA
pathogenesis in both patients and animal models (22, 67-71). The
GM generates a variety of metabolites, including trimethylamine N-
oxide, tryptophan derivatives, short-chain fatty acids (SCFAs),
indole-3-acetate, bile acids, peptidoglycan, amines, polyamines,
vitamins, and other small molecules (72). A growing body of
evidence indicates that these microbial metabolites possess
immunomodulatory properties and affect the development of RA
(14, 73-75).

3.1 Gut dysbiosis in RA: microbial shifts and
pathogenic drivers

Gut dysbiosis contributes to the occurrence of RA in both
patients and animal models, with increased prevalence of Prevotella
spp. in pre-clinical and diagnosed RA cases. While multiple
Prevotella species other than P. copri are associated with RA
etiology, P. copri itself is most abundant in new-onset RA and
correlates with reduced Bacteroides fragilis levels (14, 71).
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Animal models do not fully replicate human RA, but they
provide valuable mechanistic insights despite differences in GM (12,
76). SKG mice develop arthritis when colonized with Prevotella,
while germ-free or antibiotic-treated mice remain disease-free.
Collagen-induced arthritis (CIA) mice show altered GM
composition with reduced Bacteroidetes and increased Firmicutes
and Proteobacteria during early arthritis onset (77). Germ-free (GF)
L-1 receptor antagonist (IL-1Ra) knockout mice do not develop
arthritis unless colonized with Lactobacillus bifidus, which induces
rapid disease onset similar to conventional mice (78).

Additionally, GM affects the development of RA. Early RA
patients show higher levels of Lactobacillus and Blautia gnavus,
while Acetanaerobacterium elongatum, Cristiansella massiliensis,
and Gracilibacter thermotolerans were significantly enriched in
the control group (79, 80). TNF transgenic (TNF-Tg) mice
overexpress human TNF-o, leading to spontaneous arthritis
similar to human RA. Key mechanisms include TNF-o.-driven
inflammation via the Nuclear Factor kappa B (NF-xB) and
Mitogen-activated protein kinase (MAPK) pathways, synovial
hyperplasia, and bone erosion. These mice show increased
Prevotella, Aerococcus, and Staphylococcus but reduced
Parasutterella and Clostridium_XIVa. Dysbiosis promotes
systemic inflammation via altered metabolites and increased gut
permeability (81).

During the active phase of RA patients, Haemophilus and
Bacteroides were reduced, while Lactobacillus salivarius,
Streptococcus, Akkermansia, Klebsiella, and Escherichia coli were
increased (21, 82, 83). Probiotic genera such as Faecalibacterium are
decreased, while pathogenic bacteria including Porphyromonas
gingivalis, Collinsella, and Aggregatibacter actinomycetemcomitans
are more abundant in RA (83-85).

Taken together, these microbial shifts disrupt immune and
metabolic homeostasis, contributing to the onset and exacerbation
of autoimmunity. The findings highlight GM as a critical
therapeutic target, emphasizing the need to restore microbial
balance to attenuate RA progression.

3.2 Interactions between the GM and the
immune system in RA

Substantial evidence indicates that gut dysbiosis in RA is a key
factor contributing to systemic immune dysregulation. It is
plausible that local tissue stress induces PTMs of peptides, which
subsequently trigger antibody formation, serving as a common
mechanism in RA (86). Certain GM such as Collinsella and
Porphyromonas gingivalis encode functional microbial PADs
which can leak into the human intestinal epithelium under
conditions of increased intestinal permeability, leading to
citrullination of peptides within the human gut. Citrullinated
peptides from both human and bacterial proteins trigger loss of
immune tolerance, especially in genetically predisposed individuals
(85). For example, Aggregatibacter actinomycetemcomitans activates
citrullinating enzymes in neutrophils, promoting autoantigen
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citrullination in RA joints. Specific citrullinated antigens such as
vimentin, fibrinogen-alpha, and actin are targeted by ACPAs,
suggesting the colon mucosa as a potential site for autoimmunity
initiation (87). The Pc-p27 protein, a citrullinated peptide from
Prevotella copri, induces Thl immune responses in RA patients via
binding to human leukocyte antigen (HLA)-DR (25). This
association is further supported by the presence of IgA antibodies
against Pc-p27 in both acute and chronic RA patients, which are
linked to the production of Th17 cytokines and ACPA.
Autoantigens can be presented to CD4+ T cells by dendritic
cells (DCs) and macrophages, driving inflammatory T cell
differentiation and disrupting the Th17/Treg balance. Th17 cells
promote B cell activation and antibody production, while Treg cells
maintain immune tolerance and homeostasis by suppressing
aberrant immune responses. Lactobacillus and Bifidobacterium
infantis exert anti-inflammatory effects by inducing the expansion
of Treg cells (88). The Th17/Treg ratio is significantly increased in
advanced RA patients, highlighting the role of GM and metabolites
in modulating this imbalance (10, 89) (Figure 2). Lactobacillus
bifidum exacerbated arthritis by promoting Th17 and Thl
responses via TLR2/TLR4 signaling (78). Lactobacillus plantarum
strain TIFN10I enhances intestinal mucosal immunity by
increasing IL-17-producing memory Th cells and upregulating
major histocompatibility complex (MHC)-IIa expression (90).
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Moreover, Lactobacillus helveticus SBT2171 suppresses T/B cell
proliferation and lymphoma cell cycle progression through JNK
pathway inhibition in vitro (91). The phylum Firmicutes was
negatively correlated with Th17 cell counts, while
Verrucomicrobiota (e.g., Akkermansia muciniphila) were
positively correlated with Treg numbers (13). Additionally, the
accumulation of Treg cells in the colonic lamina propria can also
be induced by Clostridia (92).

In contrast, the colonization of Bacteroides fragilis is associated
with increased activity of regulatory T (Tregs), potentially
mitigating the severity of autoimmune diseases (93, 94). The
reduction in Bacteroidetes in CIA mice is thought to impair the
differentiation of CD4+ T cells into Tregs, thereby contributing to
an overall pro-inflammatory environment (95).

GF mice serve as a powerful and widely utilized model for
investigating the impact of the microbiome on the immune system.
Segmented Filamentous Bacteria (SFB) monocolonization in GF K/
BxN mice induces autoantibody production, pathogenic Th17 cells,
and arthritis (96). Additionally, SFB promotes Th17 cell
accumulation in the gut via DC-presented antigens and IL-1f
secretion induced by reactive oxygen species (ROS) (97, 98). SFB
can induce autoimmune arthritis by promoting the differentiation
and migration of gut Tth to systemic lymphoid tissues, increasing
autoantibody production (99). In contrast, depletion reduces Tth
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A summary of different cell types and their functions in RA. ICs, immune cells; RANKL, receptor activator of nuclear factor kB ligand. Red arrows
indicate stimulation or activation. Blue arrows represent the secretion of pro-inflammatory proteins.

cells and antibody levels, indicating that microbiota regulate
arthritis via Tth cells independently of Th17 cells (100).

Other studies employed the K/BxN model, in which mice co-
expressed the T-cell receptor (TCR) transgene KRN and MHC class
II molecule A (g7), leading to the development of autoantibodies
against glucose-6-phosphate and subsequent severe inflammatory
arthritis. GF conditions markedly reduce arthritis severity due to
lower autoantibody levels and fewer Th17 cells (101). Prevotella and
Monoglobus abundance correlates positively with Th1/Th2 cell
counts and cytokine levels including IL-4, IL-2, IL-10, TNF-a,
and IFN-y (13).

Disrupted GM can also interact with other kinds of immune
cells and their cytokines to modulate immune responses and
inflammatory reactions, contributing to RA. Injection of colonic
E. coli or Enterococcus into autoimmune-prone Dark Agouti rats
caused a reduction in macrophages, an increase in activated

Frontiers in Immunology

neutrophils, and inflammatory polarization of peritoneal cells
(102). Tanoue et al. found 11 bacterial strains, including
Bacteroides clarus 82C1, Bacteroides uniformis st. mat-281 81A2,
Anaerostipes caccae 81B4, Bacteroides eggerthii 82B11, Bacteroides
fragilis 82A12, Bacteroides cellulosilyticus 82B7, Bacteroides
salyersiae 82A3, Clostridium sp. AUH-JLC39 82D29, Hungatella
hathewayi 81G1, Clostridium sp. AT5 83F2, and Clostridium
innocuum 81A1, from healthy human donor faces that could
induce IFN-y-producing CD8+ T cells without intestinal
inflammation (103).

A novel intestinal immune regulatory pathway involves
macrophage sensing of microbes via myeloid differentiation
primary response 88 (MyD88) and Nucleotide-binding
oligomerization domain 2 (Nod2), leading to IL-1B production
and innate lymphoid cells (ILC) 3-derived IL-2, essential for
intestinal Treg induction (104). Clinically, the abundance of P.
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goldsteinii correlates negatively with NETs indices and RA disease
activity (105). CD8+ T cells displayed notable alterations in RA
patients characterized by dysregulation of both Prevotella and
Bacteroides microbiota (106) (Figure 4).

The overactivation of Thl cells and Th17 cells, induced by a
disrupted GM, results in the excessive production of pro-
inflammatory cytokines such as TNF, IL-6, and IL-17. This
triggers systemic inflammation and immune dysregulation,
playing a critical role in autoimmune diseases like RA.
Specifically, the disruption of GM within the Enterobacteriaceae
family activates the NF-xB signaling pathway, promoting the
release of pro-inflammatory cytokines and thereby contributing to
inflammation (107).

In contrast, some strains, such as Lactobacillus casei and
Lactobacillus acidophilus exhibit significant anti-inflammatory
and antioxidant effects, protecting against CIA (108).
Faecalibacterium prausnitzii induces the secretion of IL-10 by
CD4+ T cells and exhibits substantial anti-inflammatory eftects
(109). A previous study indicated that L. helveticus SBT2171 could
up-regulate the expression of A20, a negative regulator of NF-xB/
MAPK signaling, via TLR2 signaling, thereby suppressing IL-6 and
IL-1P production by APCs (110).

Collectively, the interplay between gut dysbiosis and RA
pathogenesis is underscored by mechanisms linking microbial
activity to systemic immune dysregulation. These findings
highlight the therapeutic potential of targeting GM through

10.3389/fimmu.2025.1637942

probiotics, dietary interventions, or microbial transplants to
restore immune balance. However, the complexity of microbial-
immune interactions necessitates further research to delineate
strain-specific effects and optimize translational strategies for
RA management.

3.3 Interactions between the gut microbial
metabolite and the immune system in RA

Dysfunctional GM can lead to alterations in fecal metabolites
and compromise gut barrier integrity, permitting metabolites to
enter the circulatory system, thereby inducing inflammatory
processes and immune responses (23, 24). The primary SCFAs
produced by GM in the human gut are acetate, propionate, and
butyrate. Other SCFAs include pentanoate, hexanoate, and
heptanoate (111). The concentrations of acetate, propionate,
butyrate, and valerate were found to be reduced in RA patients
(22, 80, 112). These SCFAs correlate positively with B cell frequency
and can inhibit B cell differentiation and autoantibody production
(113). Some immunomodulatory properties of SCFAs are attributed
to their influence on both innate and adaptive immune system cells
through the inhibition of histone deacetylases (HDACs) (114).
Specifically, SCFAs enhance IL-10 production in T-helper 1 cells
via the G protein-coupled receptor 43 (GPR43) pathway and inhibit
HDAC activity during T helper 1 and Th17 differentiation (115).
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They also stimulate IL-22 production in CD4+ T cells through a
GPR41-dependent pathway and reduce HDAC activity (115).
SCFAs play crucial roles in regulating the balance between anti-
inflammatory Tregs and pro-inflammatory Th17 cells by targeting
key transcription factors. They promote Treg differentiation
through multiple mechanisms. Butyrate inhibit HDACs,
increasing histone acetylation at the Forkhead box P3(Foxp3)
promoter. This enhances the transcription of Foxp3 which is the
master transcription factor for Tregs (72). Additionally, SCFAs bind
to GPR43 and GPR109A, inhibit HDAC, activate signal transducer
and activator of transcription 3 (STAT3) signaling pathways, and
boost Foxp3 expression (72, 116, 117). Moreover, SCFAs induce
retinal dehydrogenase, facilitating the conversion of vitamin A into
retinoic acid, which promotes Treg differentiation (72). In contrast,
SCFAs suppress Th17 cell activity. For instance, butyrate inhibits
retinoic acid-related orphan receptor gamma t (RORyt) via HDAC
inhibition and IL-6/STAT3 blockade, reducing Th17 gene
expression (117).

Butyrate-treated DCs enhance Treg differentiation and suppress
Thl cell differentiation by upregulating the expression of
immunosuppressive enzymes, including indoleamine 2,3-
dioxygenase 1 and aldehyde dehydrogenase 1 family member A2
via an SLC5A8-dependent mechanism. SCFAs have been shown to
regulate neutrophils and macrophages, thereby modulating the
intensity of inflammatory responses (118-120). Specifically,
acetate and propionate activate the cell surface receptor GPR43,
promoting neutrophil chemotaxis (121). SCFAs promote M2
macrophage polarization and reduce pro-inflammatory cytokine
expression (122). They also maintain colonic Treg homeostasis,
reduce B cell IgG, IgA, and IgE secretion, and suppress plasma cell
differentiation (72). SCFAs correlate with increased Tregs and
decreased IL-17A, IL-6, and TNF-o in CIA rats, and their
administration alleviates arthritis severity by expanding Foxp3+
IL-10+ Tregs (123, 124). Furthermore, the production of SCFAs is
proposed as one of the mechanisms through which GM influences
Treg cell differentiation (125).

SCFAs block NF-kB via HDAC inhibition or peroxisome
proliferator-activated receptor gamma (PPARYy) activation and
exert anti-inflammatory effects. This leads to reduced expression
of inflammatory mediators such as cytokines, chemokines,
inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-
2), and adhesion molecules (126, 127). Butyrate specifically
decreases LPS-induced proinflammatory mediators like nitric
oxide (NO), IL-6, and IL-12 in macrophages (128). These
cytokines enter circulation and affect the joints.

Microbial tryptophan metabolites, such as indoles and their
derivatives, engage with aryl hydrocarbon receptors (AhRs) to
influence B cell development, differentiation, cytokine production,
and regulation via AhR signaling pathways. Furthermore, bile acids
and their metabolites modulate immune responses by regulating
signaling pathways and maintaining the balance between Th17 and
Treg cells (11). The bile acids derived from live P. distasonis (LPD),
including lithocholic acid (LCA), deoxycholic acid (DCA),
isolithocholic acid (isoLCA), and 3-oxolithocholic acid (3-
oxoLCA), exhibited both similar and synergistic effects in
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mitigating RA. Notably, 3-oxoLCA and isoLCA not only directly
inhibited the differentiation of Th17 cells but were also identified as
TGRS agonists that promoted the M2 polarization of macrophages.
Furthermore, a specific synthetic inhibitor of bile salt hydrolase
diminished the antiarthritic effects of LPD by reducing the
production of these four bile acids (129).

LPS activates TLR4 and the NF-«B pathway, triggering
inflammation and activating the complement alternative pathway,
which contributes to arthritis (129, 130). Bacteroides fragilis secretes
polysaccharide A (PSA), which stimulates Thl responses, affects
epithelial IL-17A production (15), corrects systemic T cell deficiencies,
restores Th1/Th2 balance, and promotes lymphoid organogenesis (131).
Colonization with Bacteroides in GF mice increases the population of
Tregs via CD4+ T cell stimulation by PSA (93, 132).

In conclusion, GM metabolites (SCFAs, BAs, tryptophan
derivatives) are critical regulators of immune cells, especially T
cell subsets. Their dysregulation in RA disrupts the Th17/Treg
equilibrium, driving inflammation and joint damage. Targeting
these metabolites offers promising strategies to restore immune
balance and mitigate RA progression.

3.4 Intestinal barrier dysfunction

The gut mucosal barrier, comprised of a monolayer of intestinal
epithelial cells interconnected by tight junctions (T]), separates the
host from dietary and microbial antigens. Zonulin regulates TJ
function by altering the expression of proteins like Zonula
Occludens-1, occludin, claudin-1, claudin-2, and claudin-15,
increasing intestinal permeability (20). In murine models,
elevated zonulin levels lead to TJ disruption, promoting T-cell-
mediated inflammation and migration of autoreactive Th1/Th17
cells from the gut to joints, contributing to RA development (133).
Zonulin antagonists such as larazotide acetate reduce arthritis onset
in mice (26). Flak et al. found increased gut permeability due to
reduced numbers of T] compared to HCs (27).

The gut integrity is compromised in RA patients, resulting in
translocation of microbiota or their metabolites across the gut
barrier into the lamina propria. The interaction between TLRs
and pathogen-associated molecular patterns on these microbes can
potentially activate the immune system, inducing pro-inflammatory
cytokines like IL-6, TNF-0,, or IL-1f (134, 135).

Furthermore, dysbiosis of the GM also instigate the migration
of autoreactive cells to the joints, leading to local inflammation and
damage (136). Collinsella aerofaciens increases intestinal
permeability and worsens arthritis by reducing TJ protein
expression (15). In contrast, Faecalibacterium prausnitzii
preserves intestinal barrier integrity, maintain the balance
between Th17 and Treg cells, and exhibit substantial anti-
inflammatory effects (137). Loss of beneficial bacteria like
Akkermansia muciniphila also impairs epithelial barrier function;
its protein Amuc_1000 enhances Claudin-3 and Occludin via TLR2
signaling (138). It is worth noting that A. muciniphila is classified as
a mucin-degrading bacterium, which can influence the integrity of
the mucin barrier (139, 140). These findings suggest that alterations
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in gut microbiota diversity may impair intestinal mucosal
permeability, thereby facilitating the onset of RA (26, 141).

Microbial metabolites function as exogenous regulators of the
TJ barrier. For example, butyrate enhances the expression of Cldnl
(encoding Claudin-1) and Ocln (encoding occludin) via hypoxia-
inducible factor 1 (HIF-1), conferring resistance to barrier
disruption and bacterial translocation following Clostridium
difficile infection (142). In intestinal epithelial cells, indole-3-
propionic acid down-regulates TNF-o and up-regulates TJ-related
proteins through pregnane X receptor (PXR) signaling (143).
Urolithin A, derived from polyphenols, modulates TJs through
AhR signaling (144). Lactobacillus species generate hydroxy fatty
acids like 10-hydroxy-cis-12-octadecenoic acid (HYA), which
activates MAPK/extracellular signal-regulated kinase (ERK)
signaling and upregulates TJ-related proteins (145, 146).

Collectively, these findings suggest that specific symbionts
influence epithelial barrier function through the provision of
beneficial metabolites and proteins.

3.5 The GM derived molecular mimicry of
autoantigens

Molecular mimicry is a mechanism implicated in the pathogenesis
of RA, characterized by the structural similarities between bacterial
peptides and host antigens or receptors, leading to immune cross-
reactivity and autoimmunity. GM produces metabolites resembling
host molecules, and peptides from species like Firmicutes and
Proteobacteria show homology with human proteins such as N-
Acetyl-glucosamine-6-sulfatase (GNS) and filamin A (FLNA), which
are targeted in RA (147, 148). HLA-DR-presented GNS and FLNA
peptides also exhibit sequence homology with bacterial epitopes from
Prevotella sp., Parabacteroides sp., and Butyricimonas sp. (148).
Additionally, shared sequences between Collinsella and DRB1*0401
suggest that Collinsella may induce RA through molecular mimicry
(15). These findings provide evidence for molecular mimicry as a
potential mechanism linking disrupted mucosal immune tolerance and
systemic immunity in RA patients.

In summary, the gut-immune axis in RA underscores the
interplay between dysbiosis, metabolite dysregulation, barrier
defects, and autoantigen mimicry. Future therapies aimed at
modulating GM or their metabolites hold promise for restoring
immune equilibrium and halting RA progression.

4 TCM therapy via modulating the
gut-immune axis

TCM therapy targets the gut-immune axis for RA through
multiple mechanisms, including modulating microbial
composition, regulating GM-derived metabolites, and enhancing
intestinal barrier function
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4.1 TCM formulas

Table 1 summarizes TCM formulas that demonstrate anti-RA
activities through modulation of gut-immune axis.

4.1.1 Wu-tou decoction

WTD, a classical TCM formula, was originally recorded in the
“Jin Kui Yao Lue” by the renowned Chinese medical sage Zhang
Zhongjing. This decoction is composed of five primary herbs:
Aconitum carmichaelii Debeaux, Ephedra sinica Stapf, Astragalus
membranaceus (Fisch.) Bunge, Paeonia lactiflora Pall., and Radix
Glycyrrhizae Preparata. It is widely manufactured in China
following the quality control standards set by the Chinese
Pharmacopoeia. Clinically, WTD has been extensively applied for
treating conditions such as RA, constitutional hypotension, and
hemicrania (149, 150). Compared with the MTX, WTD
significantly decreased the 28-joint disease activity score (DAS28)
and the levels of TNF-o and IL-6 in RA patients with cold-damp
syndrome, furthermore, it can improve clinical symptoms and
significantly reduce the serum levels of pro-inflammatory
cytokines in RA patients (34).

WTD effectively alleviates arthritis in adjuvant-induced arthritis
(AIA) rats by modulating GM composition. Specifically, WTD
significantly reduces the abundance of Akkermansia, Prevotella,
Bacteroides, Enterococcus, Dorea, and Jeotgalicoccus, while
increasing Oscillospira and Lactobacillus populations. Correlation
analysis further reveals that WTD’s therapeutic effects are partially
mediated by up-regulating microbial metabolites, including SCFAs,
lactate, and tryptophan derivatives (indole-3-acetic acid/TIAA,
indole-3-propionic acid/IPA, and indole-3-aldehyde/IAld), which
collectively regulate inflammatory responses and enhance intestinal
barrier function, furthermore, IAA, IPA, and IAld possess anti-
inflammatory properties and can serve as ligands for the AhR. The
activation of AhR can modulate innate and adaptive immune
responses in a ligand-specific manner (151).

WTD significantly decreased the expression of TNF-c, IL-1f,
monocyte chemoattractant protein-1 (MCP-1), and MMP-3 in the
synovium, mitigating arthritis. WTD suppressed MI1-type
macrophage polarization while promoting M2-type polarization
both in vitro and in vivo. Additionally, WTD inhibited NF-xB and
p38 phosphorylation in CIA rats and LPS-induced RAW264.7
macrophages, enhanced PPARY nuclear translocation, and
consequently alleviated synovial inflammation (152). It regulates
immune responses by altering CD4+/CD8+ ratios in the AIA rats
(153). The five constituent herbs in WTD have synergistic anti-
arthritic effects on RA. Radix Aconite is the main anti-inflammatory
component. Herba Ephedrae inhibits NF-kB mediated
inflammation. Radix Astragali enhances the NF-E2-related factor
2 (Nrf2) expression. Collectively, WTD inhibits NF-xB
phosphorylation and increases Nrf2 expression (154). These
findings suggest WTD as a promising microbiota-targeted
therapy for RA.
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TABLE 1 The effects and mechanisms of anti-RA TCM formulas on the gut—immune axis.

TCM formulas

Wu-tou decoction

Qing-re-huo-xue decoction

Dang-gui-nian-
tong Decoction

Jin-wu-jian-gu
Capsules

Li-jie Capsule

New-bi-tong-ling

Zhu-bi decoction

Aconitum carmichaelii Debeaux, Ephedra

(Fisch.) Bunge, Paeonia lactiflora Pall., and

Thunb., Atractylodes lancea (Thunb.) DC.,

Main Ingredients

sinica Stapf, Astragalus membranaceus

Radix Glycyrrhizae Preparata

Smilax glabra Roxb., Lonicera japonica

stir-fried, Phyllodendron chinense
C.K.Schneid., Paeonia veitchii Lynch,
Medicago sativa L., Salvia miltiorrhiza
Bunge, Curcuma phaeocaulis Valeton,
Sinomenii Caulis, Scolopendra subspinipes
mutilans, Nidus Vespae

Notopterygium incisum K.C. Ting ex H.T.
Chang, Atractylodes macrocephala Koidz.,
Artemisia capillaris Thunb., Panax ginseng
C. A. Mey., Radix Glycyrrhizae Preparata,
Sophora flavescens Aiton, Angelica sinensis
(Oliv.) Diels, Actaea cimicifuga L., Polyporus
umbellatus (Pers.) Fries, Puerariae Lobatae
Radix, Scutellaria baicalensis Georgi,
Atractylodes lancea (Thunb.) DC., Alisma
plantago-aquatica L., Anemarrhena
asphodeloides Bunge, Saposhnikovia
divaricata (Turcz.) Schischk.

Cibotium barometz (Linn.) J. Sm., Periploca

forrestii Schltr., Sabia parviflora Wall. ex

Roxb., Homalomena occulta (Lour.) Schott,

Curcuma longa L., Zaocys dhumnade, Panax

notoginseng (Burkill) F. H. Chen ex C. Y.

Wu & K. M. Feng, Radix Paeoniae Alba,
and Glycyrrhiza uralensis Fisch.

Astragalus membranaceus (Fisch.) Bunge,
Atractylodes lancea (Thunb.) DC., Arisaema
cum Bile, Coix lacryma-jobi L., Angelicae
pubescentis radix, Paeonia veitchii Lynch,
Ligusticum chuanxiong Hort, Atractylodes
macrocephala Koidz., Pericarpium Citri
Reticulatae, Gentiana macrophylla Pall.,
Lonicerae Japonicae Caulis, Rehmannia
glutinosa Libosch, Anemarrhena
asphodeloides Bunge, Angelica dahurica
(Fisch. ex Hoffm.) Benth. & Hook. f. ex
Franch. & Sav., Saposhnikovia divaricata
(Turcz.) Schischk., Glycyrrhiza
uralensis Fisch.

Cinnamomi Ramulus, Sinomenii Caulis,

Saposhnikovia divaricata (Turcz.) Schischk.,

Aconiti radix, Ephedrae herba, and
Nidus Vespae

Curculigo orchioides Gaertn., Epimedium
brevicornu Maxim., Morinda officinalis
How, Angelica sinensis (Oliv.) Diels,
Anemarrhena asphodeloides Bunge, Cortex
Phellodendri Chinensis, Buthus martensii

GM Modulation (|1)

| Akkermansia, Prevotella,
Bacteroides
1 Oscillospira, Lactobacillus

1 Increased the abundance
and species evenness of GM

TLactobacillus, Prevotella,
and Alloprevotella
| Bacteroides

1 Lachnospira Bryantii,
Small_NK4A136_group;
| Prevotella Shan &
Collins, Helicobacter

1 Barnesiella,
Bifidobacterium,
Allobaculum, and
Erysipelotrichace

| Desulfovibrio,
Streptococcus, and
Clostridium XIVa

tMycoplasma
taceae,

| Prevotellaceae
_Ga6AI_group

tFirmicutes, Clostridia,
Bacilli.
| Prevotella_9,
Ligilactobacillus,

Metamycoplasma_sualvi.

10.3389/fimmu.2025.1637942

Effects and
mechanisms

JInflammation, TNF-o, IL-

18, MCP-1, MMP-3, NF-

KB/p38; 1 PPARY;

| CD4"/CD8" T cell ratio,

1 M2 macrophage
polarization,

1 SCFAs, lactate, IAA, TPA,

TAld, activate AhR, 1

gut barrier

1Treg cells, | Th17 cells,
rebalances the Th17/Treg
axis, anti-inflammatory
immune regulation

| The hyperplasia and

inflammation of synovial
tissue;

|the arthritis index(AI)

|Immune response,
inflammation, |
pro-inflammatory
cytokines, IL-1P & IL-18,
NLRP3/Caspase-1, IL-33/
ST2 binding;
| Pyroptosis

1CD3+, CD8+ cell counts ;
Jthe CD4+/CD8+ ratio

|Inflammatory Cytokines
(TNEF- o,
IL-17, IL-6);
| VEGF, VEGFRI,
VEGFR2, HIF-10;
TmiR-20a-5p, miR-223-3p

Restore GM diversity,

balance metabolic and

immune pathways
(PI3K/AKT)

References

(34, 149-152; (153, 154)

(29, 44, 155)

(156-160)

(14, 161, 162; (74, 163, 164)

(165, 166)

(68, 167, 168)

(169-171)
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TABLE 1 Continued

TCM formulas Main Ingredients

Karsch, and Scolopendra
subspinipes mutilans

GM Modulation (| 1)

10.3389/fimmu.2025.1637942

Effects and

) Referen
mechanisms SICIENCES

Prevotellaceae
and Tuzzerella

Schizonepeta tenuifolia (Benth.) Briq.,
Notopterygium incisum K.C. Ting ex H.T.
Chang, Saposhnikovia divaricata (Turcz.)
Schischk., Heracleum hemsleyanum Diels,
Jing-fang Granule I?upleurum cht:nense DC,, .Ligusticum'

striatum DC., Citrus aurantium L., Poria
cocos (Schw.) Wolf., Peucedanum
praeruptorum Dunn, Platycodon
grandiflorus (Jacq.) A.DC,, and Glycyrrhiza
uralensis Fisch.

t=Increase/Promote/Upregulate, |=Decrease/Inhibit/downregulate.

4.1.2 Qing-re-huo-xue decoction

QRHXD is made up of eleven TCMs: Smilax glabra Roxb.,
Lonicera japonica Thunb., Atractylodes lancea (Thunb.) DC., stir-
fried, Phyllodendron chinense C.K.Schneid., Paeonia veitchii Lynch,
Medicago sativa L., Salvia miltiorrhiza Bunge, Curcuma phaeocaulis
Valeton, Sinomenii Caulis, Scolopendra subspinipes mutilans Nidus
Vespae. A five-year radiological study demonstrated that QRHXD
exhibits a significant therapeutic effect on RA patients, primarily by
slowing the long-term progression of bone destruction (29). A
multicenter, double-blind, randomized controlled trial (RCT)
demonstrated that QRHXD was effective in alleviating symptoms
of active RA, although its efficacy was slightly lower compared to
c¢sDMARDs. Notably, QRHXD has fewer side effects (44). In a rat
CIA model, QRHXD significantly alleviated pathological lesions in
synovium and cartilage, increased the abundance and species
evenness of GM, elevated Treg levels, and concurrently reduced
Th17 levels. These findings suggest that QRHXD may alleviate RA
symptoms by improving intestinal microecological imbalance and
modulating the immune dysregulation of the Th17/Treg axis (155).

4.1.3 Dang-gui-nian-tong decoction

DGNTD, a well-established TCM formula, is widely acknowledged
for its efficacy in alleviating dampness and treating RA. Originating
from the Qing Dynasty, DGNTD is currently listed in the National
Health Insurance Directory of China (174). This decoction comprises
fifteen distinct TCMs, including Notopterygium incisum K.C. Ting ex
H.T. Chang, Atractylodes macrocephala Koidz., Artemisia capillaris
Thunb., Panax ginseng C. A. Mey., Radix Glycyrrhizae Preparata,
Sophora flavescens Aiton, Angelica sinensis (Oliv.) Diels, Actaea
cimicifuga L., Polyporus umbellatus (Pers.) Fries, Puerariae Lobatae
Radix, Scutellaria baicalensis Georgi, Atractylodes lancea (Thunb.)
DC,, Alisma plantago-aquatica L., Anemarrhena asphodeloides Bunge,
Saposhnikovia divaricata (Turcz.) Schischk. Previous clinical study
indicated DGNTD has good therapeutic effects on early RA patients
with damp-heat obstruction syndrome (156, 157). DGNTD effectively
mitigates the hyperplasia and inflammation of synovial tissue in ATA
model rats, thereby inhibiting pannus formation. DGNTD increased the
abundance of Lactobacillus, Prevotella 9, and Alloprevotella, while
reducing the abundance of Bacteroides. Bacteroides and Helicobacter
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Norank_f_Muribaculaceae,
Butyricicoccus, Adlercreutzia
and Enterorhabdus;

and Lactobacillus

| TNF-0, IL-1p, IL-6,
NLRP3, TLR4/NF-kB
pathways, lipid oxidative

1 Bacteroidota,

stress-induced
ferroptosis,t AMPK
signaling,
Claudin 5 and ZO-1

(42, 172, 173)

|Firmicutes

positively correlated with the arthritis index (AI), while Prevotella 9 and
Candidatus Saccharimonas negatively correlated with Al Prevotella 9
abundance showed significant negative correlations with paw volume
and spleen index (158), whereas Ruminococcaceae_ NK4A214_group,
Christensenellaceae_R-7_group, and Bacteroides were positively
associated with spleen index. Ruminococcaceae exhibits pro-
inflammatory effects by activating immune cells and stimulating pro-
inflammatory cytokine secretion (159), while Christensenellaceae_R-
7_group modulates lipid metabolism and SCFA levels, both of which
are closely linked to immune regulation (160). The results suggest that
these microbial changes may be linked to immune
response modulation.

4.1.4 Jin-wu-jian-gu (JWJG)Capsules

JWJG Capsules, a renowned Chinese Miao medicinal formula,
is widely recognized for its efficacy in promoting bone repair and
treating RA. JWJG Capsule in combination with leflunomide can
effectively alleviate joint and systemic symptoms in RA patients
with cold-dampness obstruction syndrome, reduce inflammatory
markers, demonstrate superior efficacy compared to leflunomide
monotherapy, and maintain good safety (161). The formula
comprises nine traditional herbs: Cibotium barometz (Linn.) J.
Sm., Periploca forrestii Schltr., Sabia parviflora Wall. ex Roxb.,
Homalomena occulta (Lour.) Schott, Curcuma longa L., Zaocys
dhumnade, Panax notoginseng (Burkill) F. H. Chen ex C. Y. Wu
& K. M. Feng, Radix Paeoniae Alba, and Glycyrrhiza uralensis Fisch.
JWJG-medicated serum significantly suppresses the expression of
Nod-like receptor pyrin domain-containing 3(NLRP3) and caspase
in RA synovial fibroblasts (SF), inhibiting the maturation of IL-13
and IL-18, mitigating pyroptosis (162). JWJG also modulates
immune-inflammatory responses by down-regulating pro-
inflammatory cytokines, including TNF-o., IL-6, IL-13, IL-17, and
IL-1B, as well as by inhibiting inflammatory cell infiltration.
Liquiritigenin, identified as the key component through network
pharmacology, inhibits the IL-33/Suppression of Tumorigenicity 2
(ST2) receptor complex, reducing inflammation (163). JWJG
capsules significantly altered the GM composition in CIA model
rats, specifically up-regulating Lachnospira Bryant &
Small_NK4A136_group while down-regulating the relative
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abundances of Prevotella Shan & Collins and Helicobacter Gest &
Favinger (93, 175). Clinical studies show higher Prevotella levels in
untreated RA patients, suggesting its role in disease development
(14), while Lachnospira may be beneficial. Notably, JWJG capsules
reduced Prevotella abundance in CIA rats, further supporting its
therapeutic effect through microbiota regulation. Collectively, these
combined actions on molecular inflammatory mechanisms and gut
dysbiosis underpins JWJG’s effectiveness in alleviating RA
symptoms and pathology.

4.15 Li-jie Capsule

Li-jie Capsule has been used in the treatment of RA for many years
because of its better therapeutic effects and lower incidence of side
effects (96). The main ingredients of Li-jie Capsule are Astragalus
membranaceus (Fisch.) Bunge, Atractylodes lancea (Thunb.) DC,,
Arisaema cum Bile, Coix lacryma-jobi L., Angelica sinensis (Oliv.)
Diels, Paeonia veitchii Lynch (Chi Shao), Ligusticum chuanxiong Hort,
Atractylodes macrocephala Koidz. (Bai Zhu), Pericarpium Citri
Reticulatae, Gentiana macrophylla Pall., Lonicerae Japonicae Caulis,
Rehmannia glutinosa Libosch, Anemarrhena asphodeloides Bunge,
Angelica dahurica (Fisch. ex Hoffm.) Benth. & Hook. f. ex Franch.
& Sav., Saposhnikovia divaricata (Turcz.) Schischk., Glycyrrhiza
uralensis Fisch. The Li-jie Capsule alleviates joint symptoms,
improves joint function, and modulates immunity in RA patients by
increasing CD3+ and CD8+ cells, lowering the CD4+/CD8+ ratio, and
reducing erythrocyte sedimentation rate (ESR) and RF levels. This
indicates a reduction in humoral immune response and an
enhancement of cellular immune response, thereby exerting
immunomodulatory effects. It shows better systemic symptom
improvement and cellular immune regulation than Tripterygium
glycosides Tablets. The comprehensive therapeutic effect of the Li-jie
Capsule on RA may be attributed to its modulation of T cell immune
function (165). Li-jie Capsule significantly reduces paw swelling and
Al values in CIA mice. Additionally, Li-jie Capsule markedly
decreased the levels of Desulfovibrio, Streptococcus, and Clostridium
XIVa, while increasing the levels of Barnesiella, Bifidobacterium,
Allobaculum, and Erysipelotrichace. These findings suggest the Li-jie
Capsule exerts therapeutic effects on RA through immune modulation
and GM regulation (166).

4.1.6 New-bi-tong-ling

NBTL, a well-established TCM formula, is widely
acknowledged for its efficacy in treating RA (176). It is composed
of six herbs, including Cinnamomi Ramulus, Sinomenii Caulis,
Saposhnikovia divaricata (Turcz.) Schischk., Aconiti radix,
Ephedrae herba, and Nidus Vespae. NBTL reduces joint swelling,
bone destruction, and pro-inflammatory cytokines (IL-1B, IL-6) in
CIA rats, while increasing body weight and anti-inflammatory
cytokines (IL-10, IL-4). It also inhibits FLS inflammation, induces
apoptosis, and hinders proliferation, which was reversed by JAK2/
STATS3 activation (167). Another study confirms NBTL alleviates
RA by reducing the expression levels of TNF-o,, IL-17, IL-6, and
apoptosis-associated speck-like protein containing a CARD in
synovial tissues. It modulates GM linked to the VEGF pathway,
up-regulating f Mycoplasmataceae and s_Metamycoplasma_sualvi,
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while down-regulating g Prevotellaceae_Ga6A1_group. NBTL
suppresses the VEGF signaling pathway and angiogenesis by
inhibiting VEGF, its receptors, and HIF-1o. It also up-regulates
microRNA-20-5p (miR-20a-5p) and miR-223-3p, reducing
angiogenesis, and lowers the CD4+/CD8+ ratio along with IL-2
and IL-2R levels (168, 177). Morphological observation showed
inhibitory effects on synovial cell proliferation (68). These findings
suggest NBTL has therapeutic potential in RA by regulating
microbiota and the VEGF pathway, supporting its promise as a
treatment option requiring further study.

4.1.7 Zhu-bi decoction

ZBD has been utilized for many years in RA treatment.
Originating from the classical TCM prescription “Erxian
decoction” which is recorded in “the Clinical Manual of Chinese
Medical Prescriptions”, it has been demonstrated to be effective in
treating RA, with minimal side effects (169, 170). This prescription
has since been modified to meet modern clinical needs while
preserving its therapeutic efficacy. ZBD consists of eight distinct
herbs, specifically Curculigo orchioides Gaertn., Epimedium
brevicornu Maxim., Morinda officinalis How, Angelica sinensis
(Oliv.) Diels, Anemarrhena asphodeloides Bunge, Phellodendron
Chinense C.K.schneid., Buthus martensii Karsch, and Scolopendra
subspinipes mutilans. ZBD effectively alleviates RA symptoms in
CIA rats without significant side effects, showing efficacy
comparable to that of MTX. It mitigates inflammation and joint
damage by modulating the phosphatidylinositol 3-kinase (PI3K)/
protein kinase B (PKB/AKT) (PI3K/AKT) signaling pathway and
reducing serum concentrations of cytokines, including TNF-c, IL-
1B, and IL-6. ZBD modulates 170 differential metabolites and
partially restores disrupted metabolic profiles. It also mitigates gut
dysbiosis and identifies key bacterial genera associated with the
treatment effects. Specifically, it increases Firmicutes, Clostridia,
and Bacilli abundance while reducing Prevotella_9, Ligilactobacillus,
Prevotellaceae, and Tuzzerella. In conclusion, ZBD alleviated RA by
restoring GM diversity and balancing metabolic and immune
pathways, and was a safe and efficacious TCM formula for
treating RA (171).

4.1.8 Jing-fang Granule

JEG is a modern formula derived from Jing-fang-Bai-du
Powder, a traditional prescription originating from the Ming
Dynasty. It retains the same herbal composition and dosage as its
predecessor. JFG comprises 11 herbal medicines: Schizonepeta
tenuifolia (Benth.) Briq., Notopterygium incisum K.C. Ting ex
H.T. Chang, Saposhnikovia divaricata (Turcz.) Schischk.,
Heracleum hemsleyanum Diels, Bupleurum chinense DC.,
Ligusticum striatum DC., Citrus aurantium L., Poria cocos
(Schw.) Wolf., Peucedanum praeruptorum Dunn, Platycodon
grandiflorus (Jacq.) A.DC., and Glycyrrhiza uralensis Fisch. Over
an extended period, JFG has been widely applied in the treatment of
inflammatory diseases, including RA (42, 172). JEG protects rats
from RA by reducing foot swelling, improving synovial pathology,
and lowering TNF-q,, IL-13, and IL-6 levels via NLRP3 and TLR4/
NF-xB inhibition. It reshapes GM by enhancing Bacteroidota,
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Butyricicoccus, Adlercreutzia and Enterorhabdus while decreasing
Firmicutes and Lactobacillus. This leads to higher levels of acetic,
propionic, and butyric acids in the gut and serum. These changes
activate AMPK signaling, which regulates fatty acid metabolism and
biosynthesis, thereby inhibiting lipid oxidative stress-induced
ferroptosis and alleviating tissue damage associated with RA. JFG
also strengthens the intestinal barrier by upregulating Claudin 5 and
ZO-1 (173). This research provides a new mechanism for JFG’s
effect on RA through the “Gut-joint” axis.

4.2 Single TCM and its components

4.2.1 Tripterygium wilfordii Hook F

TwHEF is a traditional medicinal Chinese herb which has been
extensively utilized for a long period in the treatment of various
autoimmune disorders and inflammatory diseases, including RA
(178, 179). Increasing studies have indicated that TwHF might
represent a rich source that possesses multiple pharmacological
activities, particularly anti-inflammatory, anticancer, antiviral, and
antioxidative activities (180). The efficacy and safety of TWHF have
been substantiated through multiple multi-center RCTs. A multi-
center, open-label RCT demonstrated that TWHF monotherapy was
non-inferior to MTX monotherapy, while the combination of MTX
and TwHF was superior in controlling disease activity in RA
patients (180). A systematic review of data up to 2016 further
revealed that TwHF was more effective in improving the American
College of Rheumatology (ACR)20 and ACR50 response rates
compared to DMARDs. However, TWHF has been associated
with adverse menstrual effects (37).

Tripterygium glycosides (TG) are the active components
derived from Celastraceae Tripterygium wilfordii Hook. F.
(TwHF), which encompass a variety of diterpenoids, alkaloids,
triterpenoids, and glycosides (181). TG regulates multiple
signaling pathways and inflammatory factors in RA patients,
including upregulating alpha7 nicotinic acetylcholine receptor
(a7nAChR) expression, inhibiting NF-kB and STAT3 activation,
and reducing IL-17 and high mobility group box protein 1
(HMGBI) levels (182).TG tablets (TGTs) combined with MTX
significantly improve RA symptoms and immune function by
increasing CD3+ and CD4+/CD8+ T lymphocyte levels in RA
patients (41, 178, 183). TGTs reduced joint swelling and lowered
IL-6 and TNF-o in CIA rats. TGTs significantly down-regulated the
abundances of Akkermansia, Prevotellaceae_NK3B31_group, and
notably, Prevotella, which is closely associated with RA in CIA rats.
Conversely, TGTs significantly increased the abundances of
Ureibacillus, Lactobacillus, Butyricicoccus, and
Ruminococcus_UCG-014. Additionally, after TGTs treatment, the
levels of Blautia, which is related to inflammation, as well as
Escherichia-Shigella and Lachnoclostridium, returned to levels
comparable to those observed in normal rats (184). These
mechanisms suggest that TG may alleviate RA by enriching
butyrate-producing microbiota, reducing Prevotella, and
suppressing inflammatory pathways (NF-xB/STAT3) and
cytokines (IL-6, TNF-a,, IL-17).
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4.2.2 Radix Paeoniae Alba

Radix Paeoniae Alba is a constituent of JWJG Capsules. Total
glucosides of paeony (TGP), an extract from the dried root of Radix
Paeoniae Alba, contain bioactive compounds such as paeoniflorin,
hydroxypaeoniflorin, and paeonin. These compounds exhibit anti-
inflammatory, immunomodulatory, antithrombotic, and
hepatoprotective properties. TGP can inhibit autoimmune reactions
and maintain immune tolerance in the body through multiple
pathways. As an adjuvant therapy, TGP has demonstrated efficacy
in managing autoimmune diseases, including systemic lupus
erythematosus, Sjogren’s syndrome, RA, ankylosing spondylitis, and
immune-related recurrent abortions. Furthermore, TGP treatment
can reduce adverse drug reactions, lower recurrence rates, and
enhance patient compliance (185). The results of a systematic
review of 1,209 patients with active RA showed that, compared to
no additional treatment, the addition of TGP to traditional DMARD
(s) may significantly improve ACR 20, ACR 50, and ACR 70 response
rates, as well as reduce adverse effects (46). Therefore, TGP could serve
as a promising adjuvant therapy for RA.

TGP administration for 12 weeks corrected 78% of taxonomic
differences and significantly increased the abundance of beneficial
symbiotic bacteria Ruminococcaceae_UCG-014, Oscillibacter, and
Parabacteroides. Additionally, it reduced body weight, thymus
index, and inflammatory cell infiltration in the ankle joints of
CIA rats. TGP down-regulated VEGF, Thl, and Th17 cells while
up-regulating Th2 and Treg cells in CIA rats. Furthermore, TGP
administration inhibited the levels of intestinal cytokines, secretory
immunoglobulin A (SIgA), and IFN-Y. These findings suggest that
the therapeutic effects of TGP may be mediated through gut
microbiome regulation and modulation of the intestinal mucosal
immune response (186).

4.2.3 Caulis Sinomenii

Caulis Sinomenii, a pivotal herb in TCM, is a core component of
formulas such as QRHXD, JWJG Capsules, and the patented drug
Zheng-qing-feng-tong-ning (ZQFTN). Approved by the China
Food and Drug Administration two decades ago for RA, ZQFTN
was recently added to China’s National Health Insurance Directory,
reflecting its high clinical efficacy and favorable safety profile in RA
management (187). Central to its therapeutic action is sinomenine
(SIN), a bioactive alkaloid from Caulis Sinomenii and an officially
recognized RA treatment.

SIN reduces RA disease activity and DAS28 scores by
suppressing pro-inflammatory cytokines (e.g., IL-6, TNF-o, IL-
1B) and modulates immune cells, including synovial macrophages
(CD11b+F4/80+CD64+) and splenic/draining lymph node
macrophages (CD11b+Ly6C+CD43+), while lowering CD14
+CD16+ monocytes in RA patients. These dual mechanisms—
cytokine regulation and immune cell subset modulation—position
SIN as a cost-effective alternative or adjunct to methotrexate (MTX)
(188). It selectively inhibits microsomal prostaglandin E synthase-1
(mPGES-1), reducing prostaglandin E2 (PGE2) without disrupting
prostacyclin (PGI2) or thromboxane A2 (TXA2), potentially
minimizing cardiovascular risks compared to NSAIDs. This
inhibition is mediated by suppressing NF-xB DNA binding
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activity (189). Furthermore, SIN mimics MTX by restoring the
balance between MMP and tissue inhibitors of matrix
metalloproteinase (TIMP), protecting bone integrity and acting as
a natural DMARDs to slow RA (190). SIN enriches anti-CIA
Lactobacillus species (L. paracasei and L. casei) and boosts
microbial tryptophan metabolites (indole-3-acrylic acid, indole-3-
propionic acid, and indole-3-acetic acid), which activate the AhR.
AhR activation rebalances Th17/Treg cells, alleviating arthritis
severity in preclinical models. Mono-colonization studies confirm
that these Lactobacillus strains contribute directly to SIN’s efficacy,
underscoring a “microbiota-metabolite-immunity” axis as a core
mechanism (191).

As a multifaceted agent, SIN combines immunosuppressive,
anti-inflammatory, and microbiota-modulating properties, offering
a holistic approach to RA treatment. Its ability to target both
inflammatory pathways and gut dysbiosis highlights its potential
as a novel therapeutic strategy.

4.2.4 Phyllodendron chinense C.K.Schneid

The utilization of Phyllodendron chinense C.K.Schneid. in the
aforementioned TCM formula for treating RA has been
documented (29). Berberine (BBR), an isoquinoline alkaloid
derivative, is one of the primary active components of
Phyllodendron chinense C.K.Schneid. (192). Research has
demonstrated that Berberine exerted an anti-arthritis effect by
modulating the GM in CIA rats. Berberine intervention
specifically up-regulated butyrate-producing genera positively
correlated with anti-inflammatory effects, including Blautia,
Butyricicoccus, and Parabacteroides, while down-regulating
butyrate-suppressing genera linked to pro-inflammatory
responses such as Prevotella, Paraprevotella, and Coprococcus.
Mechanistically, berberine reduced splenic levels of pro-
inflammatory cytokines, particularly Th17-associated IL-17A, IL-
17F, IL-21, and IL-22, through suppression of RORYt expression
and STAT3 phosphorylation. Crucially, antibiotic treatment
abolished these immunomodulatory effects, collectively
demonstrating berberine’s microbiota-dependent therapeutic
potential in RA (70).

4.2.5 Daphne giraldii Nitsche

The root bark and stem bark of Daphne giraldii Nitsche, a plant
of the genus Daphne in the Thymelaeaceae family, are known as
Zushima. The main active components are daphnetin and zushima
saponin (193). The Zushima tablet (ZT) has a wide therapeutic basis
in Chinese folk medicine and is often used to treat conditions such
as pain, injuries from falls, and RA. Clinical observations have
shown that the curative effect of ZT in the treatment of RA is better
than that of ZQFTN Tablets (194, 195). The study demonstrated
that ZT effectively ameliorated CIA. 16S rRNA analysis revealed
Firmicutes and Bacteroidetes as the dominant bacterial phyla in the
GM of CIA rats. At the family level, 19 bacterial taxa were
significantly altered in RA-model rats. Fecal metabolomics further
indicated that ZT up-regulated propionate, butyrate, and valerate
levels in CIA rats, with the therapeutic mechanism potentially
linked to SCFAs enhancing disease mitigation through increased
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Treg populations (196). Therefore, the therapeutic mechanism of
ZT involves the gut microbiome-driven immunomodulation and
solidifies its role as a potent RA treatment.

4.2.6 Panax ginseng C. A. Mey. (P. ginseng)

P. ginseng first documented in the “Shen Nong Materia
Medica”, is one of the principal components in DGNTD (174). P.
ginseng contains a variety of bioactive compounds, including
ginsenosides, polysaccharides, amino acids, and others, with
ginsenosides being the primary active constituents (197).
Research has demonstrated that ginsenoside Rg2, a triol-type
saponin, enhances intestinal colonization of Parabacteroides
distasonis, which directly suppresses Th17 cell differentiation
through the production of bioactive metabolites-LCA, DCA,
isoLCA, and 3-oxoLCA. Specifically, 3-oxoLCA and isoLCA not
only directly suppressed the differentiation of Th17 cells but were
also recognized as TGR5 agonists, enhancing the M2 polarization of
macrophages. These dual mechanisms-microbiota-dependent
immunomodulation and macrophage reprogramming-were
validated in both CIA mice and TNF-Tg murine models (129).
Therefore, as a prebiotic agent, Rg2 exerts therapeutic effects on
arthritic mice by promoting the proliferation of P. distasonis.

4.2.7 Clematis chinensis Osbeck

Clematis chinensis Osbeck is a key component of Wang-Bi
Tablet (WB), which has been patented in China and widely used for
the treatment of RA due to its excellent therapeutic efficacy and
minimal side effects (43). A study showed that both crude extracts
and wine-processed Clematis chinensis Osbeck increase Firmicutes
and decrease Bacteroidetes, while reducing Prevotella, Bacteroides,
and Blautia and increasing Paraprevotella in the model group (198).
In addition, the extract of C. chinensis can inhibit NO produced by
peritoneal macrophages, which indicated that C. chinensis
methanol extract had an obvious immunosuppressive effect (199).
This combination of GM restoration and immunomodulation
underpins its therapeutic value in RA treatment and supports its
use in WB.

4.2.8 Toddalia asiatica (L.) Lam.

Toddalia asiatica (L) Lam. is contained in Ba-wei-long-zuan
granule (BLG), a traditional Chinese Zhuang medicine used for
treating RA (43). A recent study has indicated that the extract of
Toddalia asiatica (L.) Lam. (TAE) alleviates joint symptoms in rats
with RA by restoring the balance of Th17/Treg cells in the colon and
rectifying gut dysbiosis. TAE downregulated the expression levels of
IL-17A, IL-1B, and IL-6 in the colon while up-regulating FOXP3 and
IL-10, indicating its regulatory role in the intestinal Th17/Treg
balance. Furthermore, TAE improved GM diversity in AIA rats,
reducing the abundance of Ligilactobacillus, which was elevated in
the model group, and increasing the relative abundance of
Muribaculum, Subdoligranulum, Lachnospira, and Marvinbryantia
(200). These findings provide evidence that the efficacy of Toddalia
asiatica (L.) Lam. and its inclusion in BLG for RA involves a dual
mechanism targeting the gut-joint axis: immunomodulation and
GM restoration.
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4.2.9 Glycyrrhiza uralensis Fisch. (G. uralensis)

G. uralensis is one component of JWJG Capsules, used for treating
RA and showing potent anti-inflammatory activity (43). G. uralensis
treatment significantly improves joint inflammation, pathological
lesions, and inflammation markers in CIA rats. It reverses abnormal
GM composition by increasing Eubacterium, Roseburia, Desulfovibrio,
Bacteroides, Ruminococcaceae_Clostridium, and
Peptostreptococcaceae_Clostridium, while reducing Helicobacter,
Prevotella, Lachnospiraceae_Clostridium, and Barnesiella. Meanwhile,
G. uralensis alleviates intestinal damage, enhances intestinal barrier
integrity by upregulating TJ proteins (ZO-1, occludin, and claudin-1). It
also lowers Th17/Treg cell ratios in blood, colon, and joint fluid. These
effects suggest that G. uralensis alleviates RA symptoms by modulating

GM and immunity (201).

4.2.10 Notopterygium incisum K.C. Ting ex H.T.
Chang (N. incisum)

N. incisum is a key component of DGNTD and JEG (174).
Polysaccharides derived from N. incisum may represent one of its
primary active constituents. A novel polysaccharide, named NIP, was
isolated from N. incisum with a molecular weight of 2.34x10 ¢ Da. NIP
consists of arabinose, galactose, glucose, and galacturonic acid, linked by
methyl esterified 1,4-linked o-galacturonic acid, 1,6-linked [3-galactose,
1,5-linked ct-arabinose, and 1,4,6-linked B-glucose. NIP suppresses NO
production in LPS-stimulated RAW264.7 macrophages. NIP reduces
toe inflammation in AIA rats, suppresses inflammatory cytokine release,
and inhibits NF-kB and JAK/STAT3 pathway activation. Furthermore,
NIP mitigated oxidative stress by decreasing malondialdehyde (MDA)
levels and enhancing superoxide dismutase (SOD) activity in a dose-
dependent manner. Additionally, NIP significantly decreases thymus
and spleen indices, indicating immunosuppressive effects. NIP also
markedly increases GM diversity, restores the Bacteroidetes-to-
Firmicutes ratio, a critical index associated with disease susceptibility.
Moreover, NIP enhances the abundance of Eisenbergiella, a genus
known for producing butyrate, an anti-inflammatory metabolite (202,
203). These findings suggest NIP exerts anti-RA effects through anti-
inflammatory, antioxidant, and GM-modulating mechanisms (204).

4.3 Herb couple

Angelica sinensis (Oliv.) Diels and N. incisum are two main
constituents of DGNTD (157). The optimal ratio of AN7:3 herb
couple was identified, with the active ingredients combination
(AIC) screened as key components. AIC showed similar
therapeutic effects as AN7:3 in CIA rats and may alleviate RA by
regulating the MAPK signaling pathway, metabolic disorders, and
gut microbiome-related autoimmunity. This study provides
scientific evidence for using AIC as a prebiotic agent for RA and
offers a systematic strategy to optimize medicinal material
proportions and screen active ingredients in traditional Chinese
herb couples (205).
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The in vivo and in vitro effects of single TCM and its active
compounds on the gut-immune axis in RA are summarized
in Table 2.

5 Conclusions and future prospective

RA, a chronic autoimmune disorder, is intricately linked to
dysregulation of the gut-immune axis, where gut dysbiosis,
intestinal barrier dysfunction, and immune hyperactivation
converge to drive systemic inflammation and joint destruction.
Understanding the interactions between GM and the immune
system may provide critical insights for developing novel
biomarkers and treatment strategies, as well as for elucidating the
pathophysiology of RA (Figures 1, 2).

TCM offers a promising therapeutic strategy by targeting this axis
through multi-component, multi-pathway mechanisms. TCM can treat
RA by improving GM structure, modulating intestinal T lymphocytes,
regulating microbiota-derived metabolites, enhancing intestinal barrier
function and immunity, and alleviating intestinal dysfunction. TCM not
only augments the therapeutic efficacy of conventional RA treatments
but also mitigates their side effects. Regulating the gut-immune axis
with TCM may become a safer and more effective new method for the
treatment of RA, with broad application prospects.

However, there are some current research limitations and model
challenges. Interactions between multiple TCM components and the
GM are poorly understood. TCM used clinically requires more
extensive RCTs to rigorously evaluate efficacy and risks. Due to
inherent inconsistencies in TCM formulations, multi-herbal formulas
also need greater standardization. This includes addressing variability in
plant compounds, batch-to-batch quality, and potential herb-herb
interactions, necessitating robust quality control (e.g., HPLC
fingerprinting). Widely used AIA/CIA murine models rely on
artificial induction, exhibit acute self-limiting inflammation, unlike
chronic human RA, and poorly replicate human genetic-
environmental interactions (76). Species differences further limit
translational relevance.

To overcome these challenges and unlock TCM’s potential, future
research should focus on the following aspects: advance disease models.
Specifically, prioritize TNF-Tg mice due to their human-like
autoimmune and metabolic characteristics, such as chronicity and the
gut-joint axis (81). Utilize spontaneous or collagen-induced Nonhuman
Primate (NHP) models (e.g., macaques) for high-fidelity TCM trials on
pharmacokinetics, toxicity, and microbiota interactions, leveraging their
closer immune, metabolic, and genetic resemblance to humans (12).
Develop quality controls for TCM compounds to ensure consistency
and standardize TCM formulations.

As for deciphering mechanisms, establish the causal role of specific
bacterial strains (e.g., Lactobacillus casei, Prevotella copri) and
metabolites (e.g, SCFAs, bile acids) using gnotobiotic models and
fecal microbiota transplantation (FMT). Combine metagenomics,
metabolomics, and proteomics to map TCM-induced microbial shifts
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TABLE 2 The effects and mechanisms of single TCM and its active compounds on the gut—immune axis in RA.

Compound'’s
P References

Active . .
GM Modulation (| 1) Effects and mechanisms
compounds structure
| Akkermansia,
i i Prevotellaceae_NK3B31_group, | Joint swelling, IL-6, TNF-o, IL-17,
Tripterygium . .
wilfordii Hook Tripterygium Prevotella. HMGB-1; (37, 178-182,
F (TwHF) glycosides 1 Ureibacillus, 1 07nAChR expression; | NF-xB and p- 184, 206)
Lactobacillus, Butyricicoccus, STATS3 signaling
Ruminococcus_UCG-014
Infl tory infiltration, bod ight,
X Total glucosides 1 Oscillibacter, {n amrr.la ory intittration, body weig
Radix X thymus index;| VEGF, I FN-y, SIgA; 1
. of paeony Ruminococcaceae_ UCG-014, (46, 185, 186)
Paeoniae Alba i Th2, Treg, | Thl, Th17;
(TGP) Parabacteroides . . . .
Modulate intestinal mucosal immunity
| IL-6, IL-1B, TNF-0,, and other
1Lacticaseibacillus paracasei cytokines;
. . . . o P . | mPGES-1 and PGE,;
Caulis Sinomenine Lacticaseibacillus casei N N N .
Sinomenii (SIN) 1 microbial tryptophan metabolites | CD1IbTF4/807CD64 synovial (187-191);
TYPop macrophages, CD11b"Ly6C*CD43"
(IA, IPA, TAA)
macrophages (spleen, lymph nodes),
CD14"CD16" monocytes
X | Prevotella, Paraprevotella and | IL-17A, IL-17F, IL-21, IL-22, RORyt
Phellodendri . . .
Chinensis Berberine Coprococcus expression, STAT3 phosphorylation; (70, 207)
inensi 5
(BBR) 1Blautia, Microbiota-
Cortex . . . .
Butyricicoccus, Parabacteroides dependent immunomodulation
Alters 1 he family level;
Daphne Daphnetin, ters 9.gut taxa at ¢ ? a.ml Y eve | inflammation, 1Treg cells;
iraldii Nitsche = Zushima saponin dominant phyla: Firmicutes 1 SCFAs (propionate, butyrate, valerate) (193-196)
g P and Bacteroidetes prop ’ ’
1 Th17 cell differentiation;
Panax ginseng . . . . . 1 M2 macrophage polarization via TGR5
Rg2 P 1 129, 197
C. A Mey. Ginsenoside Rg 1 Parabacteroides distasonis activation; 1Bile acid metabolites (LCA, (129, 197)
DCA, isoLCA, 3-oxoLCA) o
Ho o9
CHs
HO OH
Crude extract; .
Clematis ‘ru ¢ extrac | Bacteroidetes, Prevotella, L
. . Wine-processed . . 1 NO production in
chinensis extract: Bacteroides, Blautia. macrophages: Immunosubpression (198, 199)
Osbeck ? 1 Firmicutes, Paraprevotella. phages; PP
Methanol extract
| Ligilactobacillus.
Toddalia L tMuribaculum, |Levels of IL-17A, IL-1B, and IL-6 in the
o Toddalia asiatica i
asiatica Subdoligranulum, colon, TFOXP3 and IL-10; restore Th17/ (200)
(L.) Lam. (TAE) R
(L) Lam. Lachnospira, Treg balance
Marvinbryantia.
| Helicobacter, Prevotella,
Lachnospiraceae_
Glyeyrrhiza G Clostridium, Barnesiella. | Th17/Treg ratio in blood, colon, joint
4 y, i o 1 Eubacterium, Roseburia, fluid; 1 TJ (ZO-1, occludin, claudin-1), (43, 201)
uralensis Fisch. uralensis extract . K K
Desulfovibrio, Bacteroides, gut barrier
Ruminococcaceae_Clostridium,
Peptostreptococcaceae_Clostridium.
Notopti i Notopt i
i:;’f Z}'I‘i’ ’g” ¢ Z’C ‘Z’;’i’ u 1 Eisenbergiella. INF-kB and JAK/STAT3 pathways, NO
T‘” s ol ' i Restore and cytokines (TNF-at, IL-6). (202-204)
ing ex ri
5 ¢ olysaccharide Bacteroidetes/Firmicutes ratio JMDA,1SOD
H.T. Chang (NIP)

T=Increase/Promote/Upregulate, |=Decrease/Inhibit/downregulate.
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and host pathways, identifying novel biomarkers for personalized
therapy. Investigate cross-reactivity between microbial antigens (e.g.,
Prevotella-derived peptides) and host proteins to unravel RA’s
autoimmune origins and design targeted interventions. Develop
TCM-derived prebiotics and probiotics to reinforce intestinal barrier
function and prevent microbial translocation to mitigate RA.
Implement stringent quality controls and standardize
TCM formulations.

In conclusion, TCM’s ability to harmonize the gut-immune axis
offers a transformative, holistic approach to RA treatment. Realizing
TCM’s full potential requires resolving mechanistic complexities,
advancing clinical validation through rigorous RCTs, and ensuring
standardization. Prioritized interdisciplinary collaboration is
essential to advance this microbiota-centric approach and
improve global RA outcomes.
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3-0x0LCA 3-oxolithocholic acid MMP Matrix metalloproteinase

ACPAs anti-citrullinated protein antibodies mPGES-1 microsomal prostaglandin E synthase 1
ACR American College of Rheumatology MTX Methotrexate

AhR aryl hydrocarbon receptor NETs neutrophil extracellular traps

Al the arthritis index NF-xB Nuclear factor-kappaB

APCs antigen-presenting cells NO nitric oxide

CIA collagen-induced arthritis Nrf2 the NF-E2-related factor 2

DAS joint disease activity score NSAID Non-steroidal anti-inflammatory drug
DAS28 28-joint disease activity score Ocln encoding occludin

DCA deoxycholic acid PADs peptidyl arginine deiminases

DCs dendritic cells PGE2 Prostaglandin E2

DMARDs disease-modifying anti-rheumatic drugs PI3K/AKT phosphatidylinositol 3-kinase (PI3K)/protein kinase B
ESR erythrocyte sedimentation rate (PKB/AKT)

FDA Food and Drug Administration PPARY peroxisome proliferator-activated receptor gamma
FLNA flamin A PSA polysaccharide A

FLS fibroblast-like synoviocytes PTMs Post-translational modifications

FMT Fecal microbiota transplantation Ra Rheumatoid arthritis

Foxp3 Forkhead box P3 RCT Randomized controlled trial

GCs glucocorticoids RF rheumatoid factor

GF germ-free ROS reactive oxygen species

aM gut microbiota SCFAs short-chain fatty acids

GNS N-Acetyl-glucosamine-6-sulfatase SFB Segmented filamentous bacteria

HCs healthy controls SIgA secretory immunoglobulin A

HDACs histone deacetylases SLECs short-lived effector T cells

HLA human leukocyte antigen SOb superoxide dismutase

HLA-DRB1 human leukocyte antigen-DR beta chain 1 STAT3 signal transducer and activator of transcription 3
LAA indole-3-acetic acid TCM Traditional Chinese Medicine

TAld indole-3-aldehyde TCR T-cell receptor

IEN interferon Tth follicular helper T cells

IL Interleukin TGF-B Transforming growth factor f3

IPA indole-3-propionic acid TGP Total glucosides of paeony

isoLCA ssolithocholic acid TGTs Tripterygium glycosides tablets

JAK Janus kinase Th1 T helper-1 cells

JNK C-Jun N-terminal kinase R Tight junction

LCA lithocholic acid TLR Toll-like receptor

LPD live P. distasonis TNF Tumor necrosis factor

MAPK Mitogen-activated protein kinase Tph peripheral helper T cells

MCP-1 monocyte chemoattractant protein-1 Tregs regulatory T cells

MDA malondialdehyde TwHF Tripterygium wilfordii Hook F

MHC major histocompatibility complex XAz thromboxane A2

miR-20a-5p microRNA-20-5p 70 Zonula Occludens

MLSs macrophage-like synoviocytes o7nAChR alpha7 nicotinic acetylcholine receptor
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