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Rheumatoid arthritis (RA), a chronic autoimmune disorder marked by systemic

inflammation and joint destruction, remains challenging to treat due to the

limitations of conventional therapies, including side effects and diminishing

efficacy. Emerging research underscores the gut-immune axis—a dynamic

interplay between gut microbiota, immune responses, and inflammation—as a

pivotal contributor to RA pathogenesis. Traditional Chinese Medicine (TCM),

recognized for its established safety and accessibility, has been shown to

synergistically alleviate symptoms of RA when used alongside conventional

treatments, while significantly reducing drug-related toxicity. Pre-clinical models

and clinical trials have demonstrated that TCM formulations, bioactive

phytochemicals, and their metabolites can modulate the gut-immune axis by

restoring gut microbiota balance and regulating immune-inflammatory pathways.

This review summarizes the multi-target effects of TCM, including microbiota

modulation and immune system regulation, and proposes a microbiota-centered

therapeutic strategy for RA. Although the role of Traditional Chinese Medicine in

regulating gut microbiota and immune modulation supports its clinical

translatability, rigorous mechanistic studies remain essential to facilitate its

integration into mainstream rheumatology treatment strategies. This involves

research on its pharmacokinetic-pharmacodynamic characteristics, validation of

microbiome-dependent mechanisms, and investigation into mechanisms involving

microbial metabolites. By integrating millennia of empirical knowledge with

cutting-edge systems biology, TCM presents a microbiota-centered holistic

strategy for RA management.
KEYWORDS

rheumatoid arthritis (RA), traditional Chinese medicine (TCM), gut microbiota,
immunomodulation, gut-immune axis
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1 Introduction

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune

disease characterized by synovial inflammation and hyperplasia,

leading to cartilage and bone destruction, as well as systemic

manifestations such as pulmonary, cardiovascular, skin,

psychological, and skeletal disorders. RA arises from disrupted

immune tolerance and sustained immune activation, driving

inflammation and tissue remodeling (1). It affects approximately

0.46% of the global population, with a higher prevalence in

industrialized countries (2). RA develops as a result of both

genetic predispositions and environmental factors, such as specific

gene variants like human leukocyte antigen-DR beta chain 1 (HLA-

DRB1) and lifestyle triggers including smoking, pollutant exposure,

and viral infections. Risk factors modulate gene expression via

epigenetic mechanisms, contributing to disease onset and

progression. These factors can influence post-transcriptional

modifications (PTMs) of specific genes or affect susceptibility

genes via epigenetic mechanisms. The burden of RA is substantial

due to its recurrent nature and high disability rate (1, 3).

The human gut microbiota (GM) represents a complex and

dynamic ecosystem of microorganisms residing within the

gastrointestinal tract (4). This microbial community includes diverse

subgroups of bacteria, viruses, fungi, and archaea, all coexisting within

the gastrointestinal environment. The gastrointestinal tract hosts a

substantial proportion of the body’s immune cells and continuously

interacts with the GM, thereby shaping their functions and properties

(5). The gut microbiome, which includes microbiota, microbial

structural components such as nucleic acids, metabolites, and

environmental factors, plays a fundamental role in the priming and

development of the immune system (6). The GM serves as an innate

immune modulator, drug and diet metabolizer, and producer of

biologically active metabolites. It is vital for modulating immune cell

activities and inflammatory cytokines, thus helping to maintain

balanced immune responses (5).

Increasing evidence and reports have demonstrated that there is an

intricate and dynamic interaction between the GM and the immune

system, forming what is known as the gut-immune axis (7–9).

Numerous studies highlighted a critical role of the gut-immune axis

in the pathogenesis of RA (5, 10–12). Dysbiosis of specific bacterial

lineages and metabolic alterations in gut microbiota resulted in

modifications to the host immune profile, which contribute to the

development of RA (13). Extensive investigations have demonstrated

that GM composition on fecal samples differs between RA patients and

healthy controls (HCs), implying gut dysbiosis may contribute to RA

pathogenesis (14–17). Recent research highlights that dysbiosis and

compositional variations of GM in RA patients are key factors

contributing to abnormal systemic immunity (18–20). It has been

suggested that the mechanism through which gut dysbiosis leads to RA

might be associated with the regulation of immune function by

metabolites generated by GM (21–24). Intestinal barrier dysfunction

precedes RA, which further supports the “gut-immune axis” in RA

pathogenesis (25–27).

Despite efforts to develop anti-RA drugs, there is no safer and

more sustainable therapeutic agent for RA in humans. Conventional
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treatments for RA include glucocorticoids (GCs), non-steroidal anti-

inflammatory drugs (NSAIDs), and disease-modifying anti-rheumatic

drugs (DMARDs). etc. NSAIDs, DMARDs and GCs could effectively

relieve the pain of RA patients and inhibit the inflammatory reaction

in vivo, but they fail to restore the native function of joints. Moreover,

current therapeutic options are limited by deleterious side effects, high

costs, inadequate control of disease progression in many patients, and

diminishing therapeutic efficacy over time.

Traditional Chinese medicines (TCMs) have been used to treat

various diseases since ancient times and shown to be safe and

accessible to the general population in treating RA (28–30).

Accumulating evidence have revealed that TCMs, their extracts,

and bioactive compounds have anti-inflammatory, cartilage-

protective, and immunoregulation properties and exhibit

promising anti-RA activities (31–33). Clinical studies show TCMs

are more effective with fewer side effects compared to conventional

treatments. Combining TCM with synthetic DMARDs can reduce

adverse effects of conventional therapies (34–39). TCMs offer

advantages in modulating the gut-immune axis through multi-

target regulation and lower toxicity (39–44). Notably, DMARDs

such as methotrexate and leflunomide often cause gastrointestinal

toxicity, whereas TCM can mitigate toxicity (45, 46).

However, due to their complex compositions and multiple targets,

TCMs necessitate further investigation to elucidate the active

ingredients and mechanisms of action in treating RA. Natural

products derived from TCMs, characterized by their remarkable

chemical diversity and bioactivity, hold significant potential as a

foundation for developing novel pharmacological agents for RA

treatment (47). Therefore, upon validation of their pharmacological

potential, these TCM-derived natural products may provide promising

leads for the development of modern anti-RA drugs.

Investigating the mechanisms by which TCMs regulate the

gut-immune axis in RA treatment holds significant importance, as

this identifies potential target for developing RA therapeutics.

Consequently, this paper provides a comprehensive review of TCMs

with anti-RA activities that specifically target the gut-immune axis,

thereby paving the way for future research and development endeavors.
2 Overview of immune response in RA

RA pathogenesis is initiated by PTMs, such as citrullination,

carbamylation, and glycosylation, which generate neoepitopes

recognized as autoantigens. Citrullination, mediated by peptidyl

arginine deiminases (PADs), converts arginine to citrulline,

triggering anti-citrullinated protein antibody (ACPA) production.

Genetic susceptibility enables T-cell recognition of modified

peptides and disrupts T-cell signaling, promoting autoimmunity (1).

Antigen-presenting cells (APCs) present these autoantigens to

autoreactive T cells. Metabolic reprogramming and DNA repair

defects drive abnormal T-cell differentiation into short-lived

effector T cells (SLECs), contributing to premature senescence

and skewed differentiation into proinflammatory subsets at the

expense of regulatory T (Treg) cells and T helper-2 (Th2) cells.

Senescent T cells acquire cytotoxic/NK-like properties, resisting
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apoptosis and sustaining inflammation (1, 48, 49) (Figure 1).

Proinflammatory subsets include Th1, Th17, follicular helper T

cells (Tfh) and peripheral helper T cells (Tph). Th1 cells produce

interferon (IFN)-g, tumor necrosis factor (TNF)-a, and interleukin

(IL)-2, and amplify macrophage activation (50), whereas Th2 cells

generally secrete L-4, IL-10, and IL-13, cytokines, and reduce

macrophage activation (51). Th17 cells release proinflammatory

cytokines such as IL-17, IL-21, and TNF-a, which affect

chondrocytes, fibroblasts, osteoclasts, and neutrophils (52).

Chondrocytes undergo apoptosis and pyroptosis and can be

induced to release pro-inflammatory proteins, such as TNF-a, IL-
6, collagenolytic enzymes, and matrix metalloproteinases (MMPs)

(53). Treg cells, which secrete anti-inflammatory cytokines such as

IL-10 and transforming growth factor- (TGF-) b1, are essential in
controlling RA (54). Abnormal Th1/Th2 and Th17/Treg ratio have

been detected in RA patients (55, 56) (Figure 2). Tfh and Tph cells

expand in synovium, supporting B-cell maturation and

autoantibody diversification (e.g., IgG ACPA) (1, 57, 58) (Figure 1).
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Autoreactive B cells, stimulated by Tph/Tfh-derived chemokine

(C-X-C) motif ligand 13 (CXCL13) and IL-21, differentiate into

plasma cells secreting ACPA, rheumatoid factor (RF), and anti-

PAD4 antibodies. B cells also secrete proinflammatory cytokines

(IL-6, TNF-a), sustaining synovitis and ectopic lymphoid structures

formation in joints (49, 57).

Macrophages, synoviocytes and neutrophils play important

roles in RA innate immune activation and joint destruction. M1-

polarized macrophages dominate RA synovium, releasing TNF-a,
IL-1b, and MMPs that drive cartilage degradation. M2

macrophages, which secrete anti-inflammatory cytokines such as

IL-4, IL-10, and TGF-b, are critical for tissue repair, become

depleted, thereby impairing the resolution of inflammation (1,

59). Macrophage-like synoviocytes (MLSs) produce such

cytokines as IL-1b, IL-6, and TNF-a to stimulate Fibroblast-like

synoviocytes (FLSs) to secrete MMPs and receptor activator of

nuclear factor kB ligand (RANKL) (60, 61). FLSs acquire an

invasive phenotype, secret cytokines (e.g., IL-6, IL-17, and IL-33)
FIGURE 1

The crosstalk between T cells, neutrophils, and macrophages creates a vicious cycle in RA. SLECs, short-lived effector T cells; PTM, posttranslational
modification; TCR, T cell receptor; MHC, major histocompatibility complex; RF, rheumatoid factor; ACPA, anti-citrullinated protein antibody; TLR,
Toll-like receptor; FcgR, Fc gamma receptor. Red arrows indicate activation, facilitation or stimulation, whereas blue arrows represent the secretion
of cytokines or release of autoantigens/autoantibodies.
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and chemokines (e.g., C-C motif ligand 2/CCL2), and recruit

immune cells such as monocytes/macrophages, neutrophils, and

T cells. Moreover, these cells release growth factors and pro-

angiogenic factors, such as vascular endothelial growth factor

(VEGF) and heparin-binding epidermal growth factor-like growth

factor (HB-EGF), thereby promoting FLS invasiveness, macrophage

activation, angiogenesis, and sustaining synovial hyperplasia (61).

Neutrophils produce pro-inflammatory proteins and neutrophil

extracellular traps (NETs), which release citrullinated antigens

and induce CD14+ monocytes to differentiate into osteoclasts

through a RANKL-independent pathway (Figure 1). ACPAs

further directly activate neutrophils and induce NETosis (NETs)

(62, 63). Citrullinated fibrinogen-ACPA complexes in the RA

synovium synergistically activate macrophages through dual

engagement of Toll-like receptor 4 (TLR-4) and Fc gamma

receptors (FcgR). This co-stimulation triggers robust TNF-a
production (64, 65) (Figures 1, 3).

In summary, a self-reinforcing cycle of innate-adaptive crosstalk,

cytokine storms, and tissue destruction underpins RA progression.
3 The gut-immune axis in RA

The gut-immune axis represents a burgeoning concept that

elucidates the bidirectional interactions between the gut microbiome

and the immune system. Accumulating evidence highlights the critical

role of the gut-immune axis in the pathogenesis of RA (10, 39, 48, 66).

This axis operates through four primary mechanisms: (1) gut dysbiosis-

driven immune dysregulation, (2) microbial metabolite-mediated

immunomodulation, (3) intestinal barrier dysfunction, and (4)

molecular mimicry of autoantigens. Below, we summarize current

evidence linking these mechanisms to RA progression (Figure 2).

GM and their metabolites contribute to RA development

through immunomodulatory effects. Gut dysbiosis, characterized

by alterations in microbial diversity and abundance, is linked to RA

pathogenesis in both patients and animal models (22, 67–71). The

GM generates a variety of metabolites, including trimethylamine N-

oxide, tryptophan derivatives, short-chain fatty acids (SCFAs),

indole-3-acetate, bile acids, peptidoglycan, amines, polyamines,

vitamins, and other small molecules (72). A growing body of

evidence indicates that these microbial metabolites possess

immunomodulatory properties and affect the development of RA

(14, 73–75).
3.1 Gut dysbiosis in RA: microbial shifts and
pathogenic drivers

Gut dysbiosis contributes to the occurrence of RA in both

patients and animal models, with increased prevalence of Prevotella

spp. in pre-clinical and diagnosed RA cases. While multiple

Prevotella species other than P. copri are associated with RA

etiology, P. copri itself is most abundant in new-onset RA and

correlates with reduced Bacteroides fragilis levels (14, 71).
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Animal models do not fully replicate human RA, but they

provide valuable mechanistic insights despite differences in GM (12,

76). SKG mice develop arthritis when colonized with Prevotella,

while germ-free or antibiotic-treated mice remain disease-free.

Collagen-induced arthritis (CIA) mice show altered GM

composition with reduced Bacteroidetes and increased Firmicutes

and Proteobacteria during early arthritis onset (77). Germ-free (GF)

L-1 receptor antagonist (IL-1Ra) knockout mice do not develop

arthritis unless colonized with Lactobacillus bifidus, which induces

rapid disease onset similar to conventional mice (78).

Additionally, GM affects the development of RA. Early RA

patients show higher levels of Lactobacillus and Blautia gnavus,

while Acetanaerobacterium elongatum, Cristiansella massiliensis,

and Gracilibacter thermotolerans were significantly enriched in

the control group (79, 80). TNF transgenic (TNF-Tg) mice

overexpress human TNF-a, leading to spontaneous arthritis

similar to human RA. Key mechanisms include TNF-a-driven
inflammation via the Nuclear Factor kappa B (NF-kB) and

Mitogen-activated protein kinase (MAPK) pathways, synovial

hyperplasia, and bone erosion. These mice show increased

Prevotella , Aerococcus , and Staphylococcus but reduced

Parasutterella and Clostridium_XIVa. Dysbiosis promotes

systemic inflammation via altered metabolites and increased gut

permeability (81).

During the active phase of RA patients, Haemophilus and

Bacteroides were reduced, while Lactobacillus salivarius,

Streptococcus, Akkermansia, Klebsiella, and Escherichia coli were

increased (21, 82, 83). Probiotic genera such as Faecalibacterium are

decreased, while pathogenic bacteria including Porphyromonas

gingivalis, Collinsella, and Aggregatibacter actinomycetemcomitans

are more abundant in RA (83–85).

Taken together, these microbial shifts disrupt immune and

metabolic homeostasis, contributing to the onset and exacerbation

of autoimmunity. The findings highlight GM as a critical

therapeutic target, emphasizing the need to restore microbial

balance to attenuate RA progression.
3.2 Interactions between the GM and the
immune system in RA

Substantial evidence indicates that gut dysbiosis in RA is a key

factor contributing to systemic immune dysregulation. It is

plausible that local tissue stress induces PTMs of peptides, which

subsequently trigger antibody formation, serving as a common

mechanism in RA (86). Certain GM such as Collinsella and

Porphyromonas gingivalis encode functional microbial PADs

which can leak into the human intestinal epithelium under

conditions of increased intestinal permeability, leading to

citrullination of peptides within the human gut. Citrullinated

peptides from both human and bacterial proteins trigger loss of

immune tolerance, especially in genetically predisposed individuals

(85). For example, Aggregatibacter actinomycetemcomitans activates

citrullinating enzymes in neutrophils, promoting autoantigen
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citrullination in RA joints. Specific citrullinated antigens such as

vimentin, fibrinogen-alpha, and actin are targeted by ACPAs,

suggesting the colon mucosa as a potential site for autoimmunity

initiation (87). The Pc-p27 protein, a citrullinated peptide from

Prevotella copri, induces Th1 immune responses in RA patients via

binding to human leukocyte antigen (HLA)-DR (25). This

association is further supported by the presence of IgA antibodies

against Pc-p27 in both acute and chronic RA patients, which are

linked to the production of Th17 cytokines and ACPA.

Autoantigens can be presented to CD4+ T cells by dendritic

cells (DCs) and macrophages, driving inflammatory T cell

differentiation and disrupting the Th17/Treg balance. Th17 cells

promote B cell activation and antibody production, while Treg cells

maintain immune tolerance and homeostasis by suppressing

aberrant immune responses. Lactobacillus and Bifidobacterium

infantis exert anti-inflammatory effects by inducing the expansion

of Treg cells (88). The Th17/Treg ratio is significantly increased in

advanced RA patients, highlighting the role of GM and metabolites

in modulating this imbalance (10, 89) (Figure 2). Lactobacillus

bifidum exacerbated arthritis by promoting Th17 and Th1

responses via TLR2/TLR4 signaling (78). Lactobacillus plantarum

strain TIFN101 enhances intestinal mucosal immunity by

increasing IL-17-producing memory Th cells and upregulating

major histocompatibility complex (MHC)-IIa expression (90).
Frontiers in Immunology 05
Moreover, Lactobacillus helveticus SBT2171 suppresses T/B cell

proliferation and lymphoma cell cycle progression through JNK

pathway inhibition in vitro (91). The phylum Firmicutes was

nega t ive ly corre la t ed wi th Th17 ce l l counts , whi l e

Verrucomicrobiota (e.g., Akkermansia muciniphila) were

positively correlated with Treg numbers (13). Additionally, the

accumulation of Treg cells in the colonic lamina propria can also

be induced by Clostridia (92).

In contrast, the colonization of Bacteroides fragilis is associated

with increased activity of regulatory T (Tregs), potentially

mitigating the severity of autoimmune diseases (93, 94). The

reduction in Bacteroidetes in CIA mice is thought to impair the

differentiation of CD4+ T cells into Tregs, thereby contributing to

an overall pro-inflammatory environment (95).

GF mice serve as a powerful and widely utilized model for

investigating the impact of the microbiome on the immune system.

Segmented Filamentous Bacteria (SFB) monocolonization in GF K/

BxN mice induces autoantibody production, pathogenic Th17 cells,

and arthritis (96). Additionally, SFB promotes Th17 cell

accumulation in the gut via DC-presented antigens and IL-1b
secretion induced by reactive oxygen species (ROS) (97, 98). SFB

can induce autoimmune arthritis by promoting the differentiation

and migration of gut Tfh to systemic lymphoid tissues, increasing

autoantibody production (99). In contrast, depletion reduces Tfh
FIGURE 2

Simplified scheme of the gut-immune axis in the pathogenesis of RA and its TCM modulation. (A) The normal gut microbiota and their metabolites
maintain the integrity of the intestinal epithelial cell layer and the homeostasis of gut immunity. (B) Impact of gut dysbiosis on gut barrier integrity
and immune responses in RA and TCM interventions. Elevated Zonulin secretion leads to impaired gut barrier integrity. APCs recognize autoantigens
and present them to T and B lymphocytes within lymphoid tissues, triggering an autoimmune response, ultimately leading to RA. DC=dendritic cell,
BCR, B-cell receptor; DI, DNA instability; MR, Metabolic reprogramming. Red arrows indicate activation or facilitation, whereas red blocked lines
indicate inhibition. Blue arrows represent the secretion of cytokines/autoantibodies.
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cells and antibody levels, indicating that microbiota regulate

arthritis via Tfh cells independently of Th17 cells (100).

Other studies employed the K/BxN model, in which mice co-

expressed the T-cell receptor (TCR) transgene KRN and MHC class

II molecule A (g7), leading to the development of autoantibodies

against glucose-6-phosphate and subsequent severe inflammatory

arthritis. GF conditions markedly reduce arthritis severity due to

lower autoantibody levels and fewer Th17 cells (101). Prevotella and

Monoglobus abundance correlates positively with Th1/Th2 cell

counts and cytokine levels including IL-4, IL-2, IL-10, TNF-a,
and IFN-g (13).

Disrupted GM can also interact with other kinds of immune

cells and their cytokines to modulate immune responses and

inflammatory reactions, contributing to RA. Injection of colonic

E. coli or Enterococcus into autoimmune-prone Dark Agouti rats

caused a reduction in macrophages, an increase in activated
Frontiers in Immunology 06
neutrophils, and inflammatory polarization of peritoneal cells

(102). Tanoue et al. found 11 bacterial strains, including

Bacteroides clarus 82C1, Bacteroides uniformis st. mat-281 81A2,

Anaerostipes caccae 81B4, Bacteroides eggerthii 82B11, Bacteroides

fragilis 82A12, Bacteroides cellulosilyticus 82B7, Bacteroides

salyersiae 82A3, Clostridium sp. AUH-JLC39 82D29, Hungatella

hathewayi 81G1, Clostridium sp. AT5 83F2, and Clostridium

innocuum 81A1, from healthy human donor faces that could

induce IFN-g-producing CD8+ T cells without intestinal

inflammation (103).

A novel intestinal immune regulatory pathway involves

macrophage sensing of microbes via myeloid differentiation

primary response 88 (MyD88) and Nucleotide-binding

oligomerization domain 2 (Nod2), leading to IL-1b production

and innate lymphoid cells (ILC) 3-derived IL-2, essential for

intestinal Treg induction (104). Clinically, the abundance of P.
FIGURE 3

A summary of different cell types and their functions in RA. ICs, immune cells; RANKL, receptor activator of nuclear factor kB ligand. Red arrows
indicate stimulation or activation. Blue arrows represent the secretion of pro-inflammatory proteins.
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goldsteinii correlates negatively with NETs indices and RA disease

activity (105). CD8+ T cells displayed notable alterations in RA

patients characterized by dysregulation of both Prevotella and

Bacteroides microbiota (106) (Figure 4).

The overactivation of Th1 cells and Th17 cells, induced by a

disrupted GM, results in the excessive production of pro-

inflammatory cytokines such as TNF, IL-6, and IL-17. This

triggers systemic inflammation and immune dysregulation,

playing a critical role in autoimmune diseases like RA.

Specifically, the disruption of GM within the Enterobacteriaceae

family activates the NF-kB signaling pathway, promoting the

release of pro-inflammatory cytokines and thereby contributing to

inflammation (107).

In contrast, some strains, such as Lactobacillus casei and

Lactobacillus acidophilus exhibit significant anti-inflammatory

and antioxidant effects, protecting against CIA (108).

Faecalibacterium prausnitzii induces the secretion of IL-10 by

CD4+ T cells and exhibits substantial anti-inflammatory effects

(109). A previous study indicated that L. helveticus SBT2171 could

up-regulate the expression of A20, a negative regulator of NF-kB/
MAPK signaling, via TLR2 signaling, thereby suppressing IL-6 and

IL-1b production by APCs (110).

Collectively, the interplay between gut dysbiosis and RA

pathogenesis is underscored by mechanisms linking microbial

activity to systemic immune dysregulation. These findings

highlight the therapeutic potential of targeting GM through
Frontiers in Immunology 07
probiotics, dietary interventions, or microbial transplants to

restore immune balance. However, the complexity of microbial-

immune interactions necessitates further research to delineate

strain-specific effects and optimize translational strategies for

RA management.
3.3 Interactions between the gut microbial
metabolite and the immune system in RA

Dysfunctional GM can lead to alterations in fecal metabolites

and compromise gut barrier integrity, permitting metabolites to

enter the circulatory system, thereby inducing inflammatory

processes and immune responses (23, 24). The primary SCFAs

produced by GM in the human gut are acetate, propionate, and

butyrate. Other SCFAs include pentanoate, hexanoate, and

heptanoate (111). The concentrations of acetate, propionate,

butyrate, and valerate were found to be reduced in RA patients

(22, 80, 112). These SCFAs correlate positively with B cell frequency

and can inhibit B cell differentiation and autoantibody production

(113). Some immunomodulatory properties of SCFAs are attributed

to their influence on both innate and adaptive immune system cells

through the inhibition of histone deacetylases (HDACs) (114).

Specifically, SCFAs enhance IL-10 production in T-helper 1 cells

via the G protein-coupled receptor 43 (GPR43) pathway and inhibit

HDAC activity during T helper 1 and Th17 differentiation (115).
FIGURE 4

TCM’s Modulation of Disrupted Gut Microbiota and Immune Cell Crosstalk. (A) TCM’s Modulation of Gut Microbiota and T Cell Crosstalk. (B) TCM’s
Modulation of Gut Microbiota and other immune Cell Crosstalk. Blue indicators represent the actions of gut microbiota on immune cells, while red
indicators represent the effects of TCM on immune cells or gut microbiota. Arrows indicate activation or facilitation, whereas blocked lines indicate
inhibition. NETs=neutrophil extracellular traps.
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They also stimulate IL-22 production in CD4+ T cells through a

GPR41-dependent pathway and reduce HDAC activity (115).

SCFAs play crucial roles in regulating the balance between anti-

inflammatory Tregs and pro-inflammatory Th17 cells by targeting

key transcription factors. They promote Treg differentiation

through multiple mechanisms. Butyrate inhibit HDACs,

increasing histone acetylation at the Forkhead box P3(Foxp3)

promoter. This enhances the transcription of Foxp3 which is the

master transcription factor for Tregs (72). Additionally, SCFAs bind

to GPR43 and GPR109A, inhibit HDAC, activate signal transducer

and activator of transcription 3 (STAT3) signaling pathways, and

boost Foxp3 expression (72, 116, 117). Moreover, SCFAs induce

retinal dehydrogenase, facilitating the conversion of vitamin A into

retinoic acid, which promotes Treg differentiation (72). In contrast,

SCFAs suppress Th17 cell activity. For instance, butyrate inhibits

retinoic acid-related orphan receptor gamma t (RORgt) via HDAC

inhibition and IL-6/STAT3 blockade, reducing Th17 gene

expression (117).

Butyrate-treated DCs enhance Treg differentiation and suppress

Th1 cell differentiation by upregulating the expression of

immunosuppressive enzymes, including indoleamine 2,3-

dioxygenase 1 and aldehyde dehydrogenase 1 family member A2

via an SLC5A8-dependent mechanism. SCFAs have been shown to

regulate neutrophils and macrophages, thereby modulating the

intensity of inflammatory responses (118–120). Specifically,

acetate and propionate activate the cell surface receptor GPR43,

promoting neutrophil chemotaxis (121). SCFAs promote M2

macrophage polarization and reduce pro-inflammatory cytokine

expression (122). They also maintain colonic Treg homeostasis,

reduce B cell IgG, IgA, and IgE secretion, and suppress plasma cell

differentiation (72). SCFAs correlate with increased Tregs and

decreased IL-17A, IL-6, and TNF-a in CIA rats, and their

administration alleviates arthritis severity by expanding Foxp3+

IL-10+ Tregs (123, 124). Furthermore, the production of SCFAs is

proposed as one of the mechanisms through which GM influences

Treg cell differentiation (125).

SCFAs block NF-kB via HDAC inhibition or peroxisome

proliferator-activated receptor gamma (PPARg) activation and

exert anti-inflammatory effects. This leads to reduced expression

of inflammatory mediators such as cytokines, chemokines,

inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-

2), and adhesion molecules (126, 127). Butyrate specifically

decreases LPS-induced proinflammatory mediators like nitric

oxide (NO), IL-6, and IL-12 in macrophages (128). These

cytokines enter circulation and affect the joints.

Microbial tryptophan metabolites, such as indoles and their

derivatives, engage with aryl hydrocarbon receptors (AhRs) to

influence B cell development, differentiation, cytokine production,

and regulation via AhR signaling pathways. Furthermore, bile acids

and their metabolites modulate immune responses by regulating

signaling pathways and maintaining the balance between Th17 and

Treg cells (11). The bile acids derived from live P. distasonis (LPD),

including lithocholic acid (LCA), deoxycholic acid (DCA),

isolithocholic acid (isoLCA), and 3-oxolithocholic acid (3-

oxoLCA), exhibited both similar and synergistic effects in
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mitigating RA. Notably, 3-oxoLCA and isoLCA not only directly

inhibited the differentiation of Th17 cells but were also identified as

TGR5 agonists that promoted the M2 polarization of macrophages.

Furthermore, a specific synthetic inhibitor of bile salt hydrolase

diminished the antiarthritic effects of LPD by reducing the

production of these four bile acids (129).

LPS activates TLR4 and the NF-kB pathway, triggering

inflammation and activating the complement alternative pathway,

which contributes to arthritis (129, 130). Bacteroides fragilis secretes

polysaccharide A (PSA), which stimulates Th1 responses, affects

epithelial IL-17A production (15), corrects systemic T cell deficiencies,

restores Th1/Th2 balance, and promotes lymphoid organogenesis (131).

Colonization with Bacteroides in GF mice increases the population of

Tregs via CD4+ T cell stimulation by PSA (93, 132).

In conclusion, GM metabolites (SCFAs, BAs, tryptophan

derivatives) are critical regulators of immune cells, especially T

cell subsets. Their dysregulation in RA disrupts the Th17/Treg

equilibrium, driving inflammation and joint damage. Targeting

these metabolites offers promising strategies to restore immune

balance and mitigate RA progression.
3.4 Intestinal barrier dysfunction

The gut mucosal barrier, comprised of a monolayer of intestinal

epithelial cells interconnected by tight junctions (TJ), separates the

host from dietary and microbial antigens. Zonulin regulates TJ

function by altering the expression of proteins like Zonula

Occludens-1, occludin, claudin-1, claudin-2, and claudin-15,

increasing intestinal permeability (20). In murine models,

elevated zonulin levels lead to TJ disruption, promoting T-cell-

mediated inflammation and migration of autoreactive Th1/Th17

cells from the gut to joints, contributing to RA development (133).

Zonulin antagonists such as larazotide acetate reduce arthritis onset

in mice (26). Flak et al. found increased gut permeability due to

reduced numbers of TJ compared to HCs (27).

The gut integrity is compromised in RA patients, resulting in

translocation of microbiota or their metabolites across the gut

barrier into the lamina propria. The interaction between TLRs

and pathogen-associated molecular patterns on these microbes can

potentially activate the immune system, inducing pro-inflammatory

cytokines like IL-6, TNF-a, or IL-1b (134, 135).

Furthermore, dysbiosis of the GM also instigate the migration

of autoreactive cells to the joints, leading to local inflammation and

damage (136). Collinsella aerofaciens increases intestinal

permeability and worsens arthritis by reducing TJ protein

expression (15). In contrast, Faecalibacterium prausnitzii

preserves intestinal barrier integrity, maintain the balance

between Th17 and Treg cells, and exhibit substantial anti-

inflammatory effects (137). Loss of beneficial bacteria like

Akkermansia muciniphila also impairs epithelial barrier function;

its protein Amuc_1000 enhances Claudin-3 and Occludin via TLR2

signaling (138). It is worth noting that A. muciniphila is classified as

a mucin-degrading bacterium, which can influence the integrity of

the mucin barrier (139, 140). These findings suggest that alterations
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in gut microbiota diversity may impair intestinal mucosal

permeability, thereby facilitating the onset of RA (26, 141).

Microbial metabolites function as exogenous regulators of the

TJ barrier. For example, butyrate enhances the expression of Cldn1

(encoding Claudin-1) and Ocln (encoding occludin) via hypoxia-

inducible factor 1 (HIF-1), conferring resistance to barrier

disruption and bacterial translocation following Clostridium

difficile infection (142). In intestinal epithelial cells, indole-3-

propionic acid down-regulates TNF-a and up-regulates TJ-related

proteins through pregnane X receptor (PXR) signaling (143).

Urolithin A, derived from polyphenols, modulates TJs through

AhR signaling (144). Lactobacillus species generate hydroxy fatty

acids like 10-hydroxy-cis-12-octadecenoic acid (HYA), which

activates MAPK/extracellular signal-regulated kinase (ERK)

signaling and upregulates TJ-related proteins (145, 146).

Collectively, these findings suggest that specific symbionts

influence epithelial barrier function through the provision of

beneficial metabolites and proteins.
3.5 The GM derived molecular mimicry of
autoantigens

Molecular mimicry is a mechanism implicated in the pathogenesis

of RA, characterized by the structural similarities between bacterial

peptides and host antigens or receptors, leading to immune cross-

reactivity and autoimmunity. GM produces metabolites resembling

host molecules, and peptides from species like Firmicutes and

Proteobacteria show homology with human proteins such as N-

Acetyl-glucosamine-6-sulfatase (GNS) and filamin A (FLNA), which

are targeted in RA (147, 148). HLA-DR-presented GNS and FLNA

peptides also exhibit sequence homology with bacterial epitopes from

Prevotella sp., Parabacteroides sp., and Butyricimonas sp. (148).

Additionally, shared sequences between Collinsella and DRB1*0401

suggest that Collinsella may induce RA through molecular mimicry

(15). These findings provide evidence for molecular mimicry as a

potential mechanism linking disrupted mucosal immune tolerance and

systemic immunity in RA patients.

In summary, the gut-immune axis in RA underscores the

interplay between dysbiosis, metabolite dysregulation, barrier

defects, and autoantigen mimicry. Future therapies aimed at

modulating GM or their metabolites hold promise for restoring

immune equilibrium and halting RA progression.
4 TCM therapy via modulating the
gut-immune axis

TCM therapy targets the gut-immune axis for RA through

multiple mechanisms, including modulating microbial

composition, regulating GM-derived metabolites, and enhancing

intestinal barrier function
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4.1 TCM formulas

Table 1 summarizes TCM formulas that demonstrate anti-RA

activities through modulation of gut–immune axis.

4.1.1 Wu-tou decoction
WTD, a classical TCM formula, was originally recorded in the

“Jin Kui Yao Lue” by the renowned Chinese medical sage Zhang

Zhongjing. This decoction is composed of five primary herbs:

Aconitum carmichaelii Debeaux, Ephedra sinica Stapf, Astragalus

membranaceus (Fisch.) Bunge, Paeonia lactiflora Pall., and Radix

Glycyrrhizae Preparata. It is widely manufactured in China

following the quality control standards set by the Chinese

Pharmacopoeia. Clinically, WTD has been extensively applied for

treating conditions such as RA, constitutional hypotension, and

hemicrania (149, 150). Compared with the MTX, WTD

significantly decreased the 28-joint disease activity score (DAS28)

and the levels of TNF-a and IL-6 in RA patients with cold-damp

syndrome, furthermore, it can improve clinical symptoms and

significantly reduce the serum levels of pro-inflammatory

cytokines in RA patients (34).

WTD effectively alleviates arthritis in adjuvant-induced arthritis

(AIA) rats by modulating GM composition. Specifically, WTD

significantly reduces the abundance of Akkermansia, Prevotella,

Bacteroides, Enterococcus, Dorea, and Jeotgalicoccus, while

increasing Oscillospira and Lactobacillus populations. Correlation

analysis further reveals that WTD’s therapeutic effects are partially

mediated by up-regulating microbial metabolites, including SCFAs,

lactate, and tryptophan derivatives (indole-3-acetic acid/IAA,

indole-3-propionic acid/IPA, and indole-3-aldehyde/IAld), which

collectively regulate inflammatory responses and enhance intestinal

barrier function, furthermore, IAA, IPA, and IAld possess anti-

inflammatory properties and can serve as ligands for the AhR. The

activation of AhR can modulate innate and adaptive immune

responses in a ligand-specific manner (151).

WTD significantly decreased the expression of TNF-a, IL-1b,
monocyte chemoattractant protein-1 (MCP-1), and MMP-3 in the

synovium, mitigating arthritis. WTD suppressed M1-type

macrophage polarization while promoting M2-type polarization

both in vitro and in vivo. Additionally, WTD inhibited NF-kB and

p38 phosphorylation in CIA rats and LPS-induced RAW264.7

macrophages, enhanced PPARg nuclear translocation, and

consequently alleviated synovial inflammation (152). It regulates

immune responses by altering CD4+/CD8+ ratios in the AIA rats

(153). The five constituent herbs in WTD have synergistic anti-

arthritic effects on RA. Radix Aconite is the main anti-inflammatory

component. Herba Ephedrae inhibits NF-kB mediated

inflammation. Radix Astragali enhances the NF-E2-related factor

2 (Nrf2) expression. Collectively, WTD inhibits NF-kB
phosphorylation and increases Nrf2 expression (154). These

findings suggest WTD as a promising microbiota-targeted

therapy for RA.
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TABLE 1 The effects and mechanisms of anti-RA TCM formulas on the gut–immune axis.

TCM formulas Main Ingredients GMModulation (↓↑) Effects and
mechanisms

References

Wu-tou decoction

Aconitum carmichaelii Debeaux, Ephedra
sinica Stapf, Astragalus membranaceus

(Fisch.) Bunge, Paeonia lactiflora Pall., and
Radix Glycyrrhizae Preparata

↓ Akkermansia, Prevotella,
Bacteroides

↑ Oscillospira, Lactobacillus

↓Inflammation, TNF-a, IL-
1b, MCP-1, MMP-3, NF-

kB/p38; ↑ PPARg;
↓ CD4+/CD8+ T cell ratio,

↑ M2 macrophage
polarization,

↑ SCFAs, lactate, IAA, IPA,
IAld, activate AhR, ↑

gut barrier

(34, 149–152; (153, 154)

Qing-re-huo-xue decoction

Smilax glabra Roxb., Lonicera japonica
Thunb., Atractylodes lancea (Thunb.) DC.,

stir-fried, Phyllodendron chinense
C.K.Schneid., Paeonia veitchii Lynch,
Medicago sativa L., Salvia miltiorrhiza
Bunge, Curcuma phaeocaulis Valeton,

Sinomenii Caulis, Scolopendra subspinipes
mutilans, Nidus Vespae

↑ Increased the abundance
and species evenness of GM

↑Treg cells, ↓Th17 cells,
rebalances the Th17/Treg
axis, anti-inflammatory
immune regulation

(29, 44, 155)

Dang-gui-nian-
tong Decoction

Notopterygium incisum K.C. Ting ex H.T.
Chang, Atractylodes macrocephala Koidz.,
Artemisia capillaris Thunb., Panax ginseng
C. A. Mey., Radix Glycyrrhizae Preparata,
Sophora flavescens Aiton, Angelica sinensis
(Oliv.) Diels, Actaea cimicifuga L., Polyporus
umbellatus (Pers.) Fries, Puerariae Lobatae

Radix, Scutellaria baicalensis Georgi,
Atractylodes lancea (Thunb.) DC., Alisma

plantago-aquatica L., Anemarrhena
asphodeloides Bunge, Saposhnikovia

divaricata (Turcz.) Schischk.

↑Lactobacillus, Prevotella,
and Alloprevotella

↓Bacteroides

↓ The hyperplasia and
inflammation of synovial

tissue;
↓the arthritis index(AI)

(156–160)

Jin-wu-jian-gu
Capsules

Cibotium barometz (Linn.) J. Sm., Periploca
forrestii Schltr., Sabia parviflora Wall. ex

Roxb., Homalomena occulta (Lour.) Schott,
Curcuma longa L., Zaocys dhumnade, Panax
notoginseng (Burkill) F. H. Chen ex C. Y.
Wu & K. M. Feng, Radix Paeoniae Alba,

and Glycyrrhiza uralensis Fisch.

↑ Lachnospira Bryantii,
Small_NK4A136_group;
↓ Prevotella Shan &
Collins, Helicobacter

↓Immune response,
inflammation, ↓
pro-inflammatory

cytokines, IL-1b & IL-18,
NLRP3/Caspase-1, IL-33/

ST2 binding;
↓ Pyroptosis

(14, 161, 162; (74, 163, 164)

Li-jie Capsule

Astragalus membranaceus (Fisch.) Bunge,
Atractylodes lancea (Thunb.) DC., Arisaema
cum Bile, Coix lacryma-jobi L., Angelicae
pubescentis radix, Paeonia veitchii Lynch,
Ligusticum chuanxiong Hort, Atractylodes
macrocephala Koidz., Pericarpium Citri
Reticulatae, Gentiana macrophylla Pall.,
Lonicerae Japonicae Caulis, Rehmannia

glutinosa Libosch, Anemarrhena
asphodeloides Bunge, Angelica dahurica
(Fisch. ex Hoffm.) Benth. & Hook. f. ex
Franch. & Sav., Saposhnikovia divaricata

(Turcz.) Schischk., Glycyrrhiza
uralensis Fisch.

↑Barnesiella,
Bifidobacterium,
Allobaculum, and
Erysipelotrichace
↓Desulfovibrio,

Streptococcus, and
Clostridium XlVa

↑CD3+, CD8+ cell counts ;
↓the CD4+/CD8+ ratio

(165, 166)

New-bi-tong-ling

Cinnamomi Ramulus, Sinomenii Caulis,
Saposhnikovia divaricata (Turcz.) Schischk.,

Aconiti radix, Ephedrae herba, and
Nidus Vespae

↑Mycoplasma
taceae,

Metamycoplasma_sualvi.
↓Prevotellaceae
_Ga6A1_group

↓Inflammatory Cytokines
(TNF- a,

IL-17, IL-6);
↓VEGF, VEGFR1,
VEGFR2, HIF-1a;

↑miR-20a-5p, miR-223-3p

(68, 167, 168)

Zhu-bi decoction

Curculigo orchioides Gaertn., Epimedium
brevicornu Maxim., Morinda officinalis
How, Angelica sinensis (Oliv.) Diels,

Anemarrhena asphodeloides Bunge, Cortex
Phellodendri Chinensis, Buthus martensii

↑Firmicutes, Clostridia,
Bacilli.

↓Prevotella_9,
Ligilactobacillus,

Restore GM diversity,
balance metabolic and
immune pathways

(PI3K/AKT)

(169–171)

(Continued)
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4.1.2 Qing-re-huo-xue decoction
QRHXD is made up of eleven TCMs: Smilax glabra Roxb.,

Lonicera japonica Thunb., Atractylodes lancea (Thunb.) DC., stir-

fried, Phyllodendron chinense C.K.Schneid., Paeonia veitchii Lynch,

Medicago sativa L., Salvia miltiorrhiza Bunge, Curcuma phaeocaulis

Valeton, Sinomenii Caulis, Scolopendra subspinipes mutilans Nidus

Vespae. A five-year radiological study demonstrated that QRHXD

exhibits a significant therapeutic effect on RA patients, primarily by

slowing the long-term progression of bone destruction (29). A

multicenter, double-blind, randomized controlled trial (RCT)

demonstrated that QRHXD was effective in alleviating symptoms

of active RA, although its efficacy was slightly lower compared to

csDMARDs. Notably, QRHXD has fewer side effects (44). In a rat

CIA model, QRHXD significantly alleviated pathological lesions in

synovium and cartilage, increased the abundance and species

evenness of GM, elevated Treg levels, and concurrently reduced

Th17 levels. These findings suggest that QRHXD may alleviate RA

symptoms by improving intestinal microecological imbalance and

modulating the immune dysregulation of the Th17/Treg axis (155).

4.1.3 Dang-gui-nian-tong decoction
DGNTD, a well-established TCM formula, is widely acknowledged

for its efficacy in alleviating dampness and treating RA. Originating

from the Qing Dynasty, DGNTD is currently listed in the National

Health Insurance Directory of China (174). This decoction comprises

fifteen distinct TCMs, including Notopterygium incisum K.C. Ting ex

H.T. Chang, Atractylodes macrocephala Koidz., Artemisia capillaris

Thunb., Panax ginseng C. A. Mey., Radix Glycyrrhizae Preparata,

Sophora flavescens Aiton, Angelica sinensis (Oliv.) Diels, Actaea

cimicifuga L., Polyporus umbellatus (Pers.) Fries, Puerariae Lobatae

Radix, Scutellaria baicalensis Georgi, Atractylodes lancea (Thunb.)

DC., Alisma plantago-aquatica L., Anemarrhena asphodeloides Bunge,

Saposhnikovia divaricata (Turcz.) Schischk. Previous clinical study

indicated DGNTD has good therapeutic effects on early RA patients

with damp-heat obstruction syndrome (156, 157). DGNTD effectively

mitigates the hyperplasia and inflammation of synovial tissue in AIA

model rats, thereby inhibiting pannus formation. DGNTD increased the

abundance of Lactobacillus, Prevotella 9, and Alloprevotella, while

reducing the abundance of Bacteroides. Bacteroides and Helicobacter
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positively correlated with the arthritis index (AI), while Prevotella 9 and

Candidatus Saccharimonas negatively correlated with AI. Prevotella 9

abundance showed significant negative correlations with paw volume

and spleen index (158), whereas Ruminococcaceae_NK4A214_group,

Christensenellaceae_R-7_group, and Bacteroides were positively

associated with spleen index. Ruminococcaceae exhibits pro-

inflammatory effects by activating immune cells and stimulating pro-

inflammatory cytokine secretion (159), while Christensenellaceae_R-

7_group modulates lipid metabolism and SCFA levels, both of which

are closely linked to immune regulation (160). The results suggest that

these microbia l changes may be l inked to immune

response modulation.

4.1.4 Jin-wu-jian-gu (JWJG)Capsules
JWJG Capsules, a renowned Chinese Miao medicinal formula,

is widely recognized for its efficacy in promoting bone repair and

treating RA. JWJG Capsule in combination with leflunomide can

effectively alleviate joint and systemic symptoms in RA patients

with cold-dampness obstruction syndrome, reduce inflammatory

markers, demonstrate superior efficacy compared to leflunomide

monotherapy, and maintain good safety (161). The formula

comprises nine traditional herbs: Cibotium barometz (Linn.) J.

Sm., Periploca forrestii Schltr., Sabia parviflora Wall. ex Roxb.,

Homalomena occulta (Lour.) Schott, Curcuma longa L., Zaocys

dhumnade, Panax notoginseng (Burkill) F. H. Chen ex C. Y. Wu

& K. M. Feng, Radix Paeoniae Alba, andGlycyrrhiza uralensis Fisch.

JWJG-medicated serum significantly suppresses the expression of

Nod-like receptor pyrin domain-containing 3(NLRP3) and caspase

in RA synovial fibroblasts (SF), inhibiting the maturation of IL-1b
and IL-18, mitigating pyroptosis (162). JWJG also modulates

immune-inflammatory responses by down-regulating pro-

inflammatory cytokines, including TNF-a, IL-6, IL-13, IL-17, and
IL-1b, as well as by inhibiting inflammatory cell infiltration.

Liquiritigenin, identified as the key component through network

pharmacology, inhibits the IL-33/Suppression of Tumorigenicity 2

(ST2) receptor complex, reducing inflammation (163). JWJG

capsules significantly altered the GM composition in CIA model

rats , specifical ly up-regulating Lachnospira Bryant &

Small_NK4A136_group while down-regulating the relative
TABLE 1 Continued

TCM formulas Main Ingredients GMModulation (↓↑) Effects and
mechanisms

References

Karsch, and Scolopendra
subspinipes mutilans

Prevotellaceae
and Tuzzerella

Jing-fang Granule

Schizonepeta tenuifolia (Benth.) Briq.,
Notopterygium incisum K.C. Ting ex H.T.
Chang, Saposhnikovia divaricata (Turcz.)
Schischk., Heracleum hemsleyanum Diels,
Bupleurum chinense DC., Ligusticum

striatum DC., Citrus aurantium L., Poria
cocos (Schw.) Wolf., Peucedanum
praeruptorum Dunn, Platycodon

grandiflorus (Jacq.) A.DC., and Glycyrrhiza
uralensis Fisch.

↑Bacteroidota,
Norank_f_Muribaculaceae,
Butyricicoccus, Adlercreutzia

and Enterorhabdus;
↓Firmicutes

and Lactobacillus

↓ TNF-a, IL-1b, IL-6,
NLRP3, TLR4/NF-kB

pathways, lipid oxidative
stress-induced

ferroptosis,↑AMPK
signaling,

Claudin 5 and ZO-1

(42, 172, 173)
↑=Increase/Promote/Upregulate, ↓=Decrease/Inhibit/downregulate.
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abundances of Prevotella Shan & Collins and Helicobacter Gest &

Favinger (93, 175). Clinical studies show higher Prevotella levels in

untreated RA patients, suggesting its role in disease development

(14), while Lachnospira may be beneficial. Notably, JWJG capsules

reduced Prevotella abundance in CIA rats, further supporting its

therapeutic effect through microbiota regulation. Collectively, these

combined actions on molecular inflammatory mechanisms and gut

dysbiosis underpins JWJG’s effectiveness in alleviating RA

symptoms and pathology.

4.1.5 Li-jie Capsule
Li-jie Capsule has been used in the treatment of RA formany years

because of its better therapeutic effects and lower incidence of side

effects (96). The main ingredients of Li-jie Capsule are Astragalus

membranaceus (Fisch.) Bunge, Atractylodes lancea (Thunb.) DC.,

Arisaema cum Bile, Coix lacryma-jobi L., Angelica sinensis (Oliv.)

Diels, Paeonia veitchii Lynch (Chi Shao), Ligusticum chuanxiongHort,

Atractylodes macrocephala Koidz. (Bai Zhu), Pericarpium Citri

Reticulatae, Gentiana macrophylla Pall., Lonicerae Japonicae Caulis,

Rehmannia glutinosa Libosch, Anemarrhena asphodeloides Bunge,

Angelica dahurica (Fisch. ex Hoffm.) Benth. & Hook. f. ex Franch.

& Sav., Saposhnikovia divaricata (Turcz.) Schischk., Glycyrrhiza

uralensis Fisch. The Li-jie Capsule alleviates joint symptoms,

improves joint function, and modulates immunity in RA patients by

increasing CD3+ and CD8+ cells, lowering the CD4+/CD8+ ratio, and

reducing erythrocyte sedimentation rate (ESR) and RF levels. This

indicates a reduction in humoral immune response and an

enhancement of cellular immune response, thereby exerting

immunomodulatory effects. It shows better systemic symptom

improvement and cellular immune regulation than Tripterygium

glycosides Tablets. The comprehensive therapeutic effect of the Li-jie

Capsule on RA may be attributed to its modulation of T cell immune

function (165). Li-jie Capsule significantly reduces paw swelling and

AI values in CIA mice. Additionally, Li-jie Capsule markedly

decreased the levels of Desulfovibrio, Streptococcus, and Clostridium

XlVa, while increasing the levels of Barnesiella, Bifidobacterium,

Allobaculum, and Erysipelotrichace. These findings suggest the Li-jie

Capsule exerts therapeutic effects on RA through immunemodulation

and GM regulation (166).

4.1.6 New-bi-tong-ling
NBTL, a well-established TCM formula, is widely

acknowledged for its efficacy in treating RA (176). It is composed

of six herbs, including Cinnamomi Ramulus, Sinomenii Caulis,

Saposhnikovia divaricata (Turcz.) Schischk., Aconiti radix,

Ephedrae herba, and Nidus Vespae. NBTL reduces joint swelling,

bone destruction, and pro-inflammatory cytokines (IL-1b, IL-6) in
CIA rats, while increasing body weight and anti-inflammatory

cytokines (IL-10, IL-4). It also inhibits FLS inflammation, induces

apoptosis, and hinders proliferation, which was reversed by JAK2/

STAT3 activation (167). Another study confirms NBTL alleviates

RA by reducing the expression levels of TNF-a, IL-17, IL-6, and
apoptosis-associated speck-like protein containing a CARD in

synovial tissues. It modulates GM linked to the VEGF pathway,

up-regulating f_Mycoplasmataceae and s_Metamycoplasma_sualvi,
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while down-regulating g_Prevotellaceae_Ga6A1_group. NBTL

suppresses the VEGF signaling pathway and angiogenesis by

inhibiting VEGF, its receptors, and HIF-1a. It also up-regulates

microRNA-20-5p (miR-20a-5p) and miR-223-3p, reducing

angiogenesis, and lowers the CD4+/CD8+ ratio along with IL-2

and IL-2R levels (168, 177). Morphological observation showed

inhibitory effects on synovial cell proliferation (68). These findings

suggest NBTL has therapeutic potential in RA by regulating

microbiota and the VEGF pathway, supporting its promise as a

treatment option requiring further study.

4.1.7 Zhu-bi decoction
ZBD has been utilized for many years in RA treatment.

Originating from the classical TCM prescription “Erxian

decoction” which is recorded in “the Clinical Manual of Chinese

Medical Prescriptions”, it has been demonstrated to be effective in

treating RA, with minimal side effects (169, 170). This prescription

has since been modified to meet modern clinical needs while

preserving its therapeutic efficacy. ZBD consists of eight distinct

herbs, specifically Curculigo orchioides Gaertn., Epimedium

brevicornu Maxim., Morinda officinalis How, Angelica sinensis

(Oliv.) Diels, Anemarrhena asphodeloides Bunge, Phellodendron

Chinense C.K.schneid., Buthus martensii Karsch, and Scolopendra

subspinipes mutilans. ZBD effectively alleviates RA symptoms in

CIA rats without significant side effects, showing efficacy

comparable to that of MTX. It mitigates inflammation and joint

damage by modulating the phosphatidylinositol 3-kinase (PI3K)/

protein kinase B (PKB/AKT) (PI3K/AKT) signaling pathway and

reducing serum concentrations of cytokines, including TNF-a, IL-
1b, and IL-6. ZBD modulates 170 differential metabolites and

partially restores disrupted metabolic profiles. It also mitigates gut

dysbiosis and identifies key bacterial genera associated with the

treatment effects. Specifically, it increases Firmicutes, Clostridia,

and Bacilli abundance while reducing Prevotella_9, Ligilactobacillus,

Prevotellaceae, and Tuzzerella. In conclusion, ZBD alleviated RA by

restoring GM diversity and balancing metabolic and immune

pathways, and was a safe and efficacious TCM formula for

treating RA (171).

4.1.8 Jing-fang Granule
JFG is a modern formula derived from Jing-fang-Bai-du

Powder, a traditional prescription originating from the Ming

Dynasty. It retains the same herbal composition and dosage as its

predecessor. JFG comprises 11 herbal medicines: Schizonepeta

tenuifolia (Benth.) Briq., Notopterygium incisum K.C. Ting ex

H.T. Chang, Saposhnikovia divaricata (Turcz.) Schischk.,

Heracleum hemsleyanum Diels, Bupleurum chinense DC.,

Ligusticum striatum DC., Citrus aurantium L., Poria cocos

(Schw.) Wolf., Peucedanum praeruptorum Dunn, Platycodon

grandiflorus (Jacq.) A.DC., and Glycyrrhiza uralensis Fisch. Over

an extended period, JFG has been widely applied in the treatment of

inflammatory diseases, including RA (42, 172). JFG protects rats

from RA by reducing foot swelling, improving synovial pathology,

and lowering TNF-a, IL-1b, and IL-6 levels via NLRP3 and TLR4/

NF-kB inhibition. It reshapes GM by enhancing Bacteroidota,
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Butyricicoccus, Adlercreutzia and Enterorhabdus while decreasing

Firmicutes and Lactobacillus. This leads to higher levels of acetic,

propionic, and butyric acids in the gut and serum. These changes

activate AMPK signaling, which regulates fatty acid metabolism and

biosynthesis, thereby inhibiting lipid oxidative stress-induced

ferroptosis and alleviating tissue damage associated with RA. JFG

also strengthens the intestinal barrier by upregulating Claudin 5 and

ZO-1 (173). This research provides a new mechanism for JFG’s

effect on RA through the “Gut-joint” axis.
4.2 Single TCM and its components

4.2.1 Tripterygium wilfordii Hook F
TwHF is a traditional medicinal Chinese herb which has been

extensively utilized for a long period in the treatment of various

autoimmune disorders and inflammatory diseases, including RA

(178, 179). Increasing studies have indicated that TwHF might

represent a rich source that possesses multiple pharmacological

activities, particularly anti‐inflammatory, anticancer, antiviral, and

antioxidative activities (180). The efficacy and safety of TwHF have

been substantiated through multiple multi-center RCTs. A multi-

center, open-label RCT demonstrated that TwHF monotherapy was

non-inferior to MTX monotherapy, while the combination of MTX

and TwHF was superior in controlling disease activity in RA

patients (180). A systematic review of data up to 2016 further

revealed that TwHF was more effective in improving the American

College of Rheumatology (ACR)20 and ACR50 response rates

compared to DMARDs. However, TwHF has been associated

with adverse menstrual effects (37).

Tripterygium glycosides (TG) are the active components

derived from Celastraceae Tripterygium wilfordii Hook. F.

(TwHF), which encompass a variety of diterpenoids, alkaloids,

triterpenoids, and glycosides (181). TG regulates multiple

signaling pathways and inflammatory factors in RA patients,

including upregulating alpha7 nicotinic acetylcholine receptor

(a7nAChR) expression, inhibiting NF-kB and STAT3 activation,

and reducing IL-17 and high mobility group box protein 1

(HMGB1) levels (182).TG tablets (TGTs) combined with MTX

significantly improve RA symptoms and immune function by

increasing CD3+ and CD4+/CD8+ T lymphocyte levels in RA

patients (41, 178, 183). TGTs reduced joint swelling and lowered

IL-6 and TNF-a in CIA rats. TGTs significantly down-regulated the

abundances of Akkermansia, Prevotellaceae_NK3B31_group, and

notably, Prevotella, which is closely associated with RA in CIA rats.

Conversely, TGTs significantly increased the abundances of

U r e i b a c i l l u s , L a c t o b a c i l l u s , B u t y r i c i c o c c u s , a n d

Ruminococcus_UCG-014. Additionally, after TGTs treatment, the

levels of Blautia, which is related to inflammation, as well as

Escherichia-Shigella and Lachnoclostridium, returned to levels

comparable to those observed in normal rats (184). These

mechanisms suggest that TG may alleviate RA by enriching

butyrate-producing microbiota, reducing Prevotella , and

suppressing inflammatory pathways (NF-kB/STAT3) and

cytokines (IL-6, TNF-a, IL-17).
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4.2.2 Radix Paeoniae Alba
Radix Paeoniae Alba is a constituent of JWJG Capsules. Total

glucosides of paeony (TGP), an extract from the dried root of Radix

Paeoniae Alba, contain bioactive compounds such as paeoniflorin,

hydroxypaeoniflorin, and paeonin. These compounds exhibit anti-

inflammatory, immunomodulatory, antithrombotic, and

hepatoprotective properties. TGP can inhibit autoimmune reactions

and maintain immune tolerance in the body through multiple

pathways. As an adjuvant therapy, TGP has demonstrated efficacy

in managing autoimmune diseases, including systemic lupus

erythematosus, Sjogren’s syndrome, RA, ankylosing spondylitis, and

immune-related recurrent abortions. Furthermore, TGP treatment

can reduce adverse drug reactions, lower recurrence rates, and

enhance patient compliance (185). The results of a systematic

review of 1,209 patients with active RA showed that, compared to

no additional treatment, the addition of TGP to traditional DMARD

(s) may significantly improve ACR 20, ACR 50, and ACR 70 response

rates, as well as reduce adverse effects (46). Therefore, TGP could serve

as a promising adjuvant therapy for RA.

TGP administration for 12 weeks corrected 78% of taxonomic

differences and significantly increased the abundance of beneficial

symbiotic bacteria Ruminococcaceae_UCG-014, Oscillibacter, and

Parabacteroides. Additionally, it reduced body weight, thymus

index, and inflammatory cell infiltration in the ankle joints of

CIA rats. TGP down-regulated VEGF, Th1, and Th17 cells while

up-regulating Th2 and Treg cells in CIA rats. Furthermore, TGP

administration inhibited the levels of intestinal cytokines, secretory

immunoglobulin A (SIgA), and IFN-g. These findings suggest that
the therapeutic effects of TGP may be mediated through gut

microbiome regulation and modulation of the intestinal mucosal

immune response (186).

4.2.3 Caulis Sinomenii
Caulis Sinomenii, a pivotal herb in TCM, is a core component of

formulas such as QRHXD, JWJG Capsules, and the patented drug

Zheng-qing-feng-tong-ning (ZQFTN). Approved by the China

Food and Drug Administration two decades ago for RA, ZQFTN

was recently added to China’s National Health Insurance Directory,

reflecting its high clinical efficacy and favorable safety profile in RA

management (187). Central to its therapeutic action is sinomenine

(SIN), a bioactive alkaloid from Caulis Sinomenii and an officially

recognized RA treatment.

SIN reduces RA disease activity and DAS28 scores by

suppressing pro-inflammatory cytokines (e.g., IL-6, TNF-a, IL-
1b) and modulates immune cells, including synovial macrophages

(CD11b+F4/80+CD64+) and splenic/draining lymph node

macrophages (CD11b+Ly6C+CD43+), while lowering CD14

+CD16+ monocytes in RA patients. These dual mechanisms—

cytokine regulation and immune cell subset modulation—position

SIN as a cost-effective alternative or adjunct to methotrexate (MTX)

(188). It selectively inhibits microsomal prostaglandin E synthase-1

(mPGES-1), reducing prostaglandin E2 (PGE2) without disrupting

prostacyclin (PGI2) or thromboxane A2 (TXA2), potentially

minimizing cardiovascular risks compared to NSAIDs. This

inhibition is mediated by suppressing NF-kB DNA binding
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activity (189). Furthermore, SIN mimics MTX by restoring the

balance between MMP and tissue inhibitors of matrix

metalloproteinase (TIMP), protecting bone integrity and acting as

a natural DMARDs to slow RA (190). SIN enriches anti-CIA

Lactobacillus species (L. paracasei and L. casei) and boosts

microbial tryptophan metabolites (indole-3-acrylic acid, indole-3-

propionic acid, and indole-3-acetic acid), which activate the AhR.

AhR activation rebalances Th17/Treg cells, alleviating arthritis

severity in preclinical models. Mono-colonization studies confirm

that these Lactobacillus strains contribute directly to SIN’s efficacy,

underscoring a “microbiota-metabolite-immunity” axis as a core

mechanism (191).

As a multifaceted agent, SIN combines immunosuppressive,

anti-inflammatory, and microbiota-modulating properties, offering

a holistic approach to RA treatment. Its ability to target both

inflammatory pathways and gut dysbiosis highlights its potential

as a novel therapeutic strategy.
4.2.4 Phyllodendron chinense C.K.Schneid
The utilization of Phyllodendron chinense C.K.Schneid. in the

aforementioned TCM formula for treating RA has been

documented (29). Berberine (BBR), an isoquinoline alkaloid

derivative, is one of the primary active components of

Phyllodendron chinense C.K.Schneid. (192). Research has

demonstrated that Berberine exerted an anti-arthritis effect by

modulating the GM in CIA rats. Berberine intervention

specifically up-regulated butyrate-producing genera positively

correlated with anti-inflammatory effects, including Blautia,

Butyricicoccus, and Parabacteroides, while down-regulating

butyrate-suppressing genera linked to pro-inflammatory

responses such as Prevotella, Paraprevotella, and Coprococcus.

Mechanistically, berberine reduced splenic levels of pro-

inflammatory cytokines, particularly Th17-associated IL-17A, IL-

17F, IL-21, and IL-22, through suppression of RORgt expression
and STAT3 phosphorylation. Crucially, antibiotic treatment

abolished these immunomodulatory effects, collectively

demonstrating berberine’s microbiota-dependent therapeutic

potential in RA (70).
4.2.5 Daphne giraldii Nitsche
The root bark and stem bark of Daphne giraldii Nitsche, a plant

of the genus Daphne in the Thymelaeaceae family, are known as

Zushima. The main active components are daphnetin and zushima

saponin (193). The Zushima tablet (ZT) has a wide therapeutic basis

in Chinese folk medicine and is often used to treat conditions such

as pain, injuries from falls, and RA. Clinical observations have

shown that the curative effect of ZT in the treatment of RA is better

than that of ZQFTN Tablets (194, 195). The study demonstrated

that ZT effectively ameliorated CIA. 16S rRNA analysis revealed

Firmicutes and Bacteroidetes as the dominant bacterial phyla in the

GM of CIA rats. At the family level, 19 bacterial taxa were

significantly altered in RA-model rats. Fecal metabolomics further

indicated that ZT up-regulated propionate, butyrate, and valerate

levels in CIA rats, with the therapeutic mechanism potentially

linked to SCFAs enhancing disease mitigation through increased
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Treg populations (196). Therefore, the therapeutic mechanism of

ZT involves the gut microbiome-driven immunomodulation and

solidifies its role as a potent RA treatment.

4.2.6 Panax ginseng C. A. Mey. (P. ginseng)
P. ginseng first documented in the “Shen Nong Materia

Medica”, is one of the principal components in DGNTD (174). P.

ginseng contains a variety of bioactive compounds, including

ginsenosides, polysaccharides, amino acids, and others, with

ginsenosides being the primary active constituents (197).

Research has demonstrated that ginsenoside Rg2, a triol-type

saponin, enhances intestinal colonization of Parabacteroides

distasonis, which directly suppresses Th17 cell differentiation

through the production of bioactive metabolites-LCA, DCA,

isoLCA, and 3-oxoLCA. Specifically, 3-oxoLCA and isoLCA not

only directly suppressed the differentiation of Th17 cells but were

also recognized as TGR5 agonists, enhancing the M2 polarization of

macrophages. These dual mechanisms-microbiota-dependent

immunomodulation and macrophage reprogramming-were

validated in both CIA mice and TNF-Tg murine models (129).

Therefore, as a prebiotic agent, Rg2 exerts therapeutic effects on

arthritic mice by promoting the proliferation of P. distasonis.

4.2.7 Clematis chinensis Osbeck
Clematis chinensis Osbeck is a key component of Wang-Bi

Tablet (WB), which has been patented in China and widely used for

the treatment of RA due to its excellent therapeutic efficacy and

minimal side effects (43). A study showed that both crude extracts

and wine-processed Clematis chinensis Osbeck increase Firmicutes

and decrease Bacteroidetes, while reducing Prevotella, Bacteroides,

and Blautia and increasing Paraprevotella in the model group (198).

In addition, the extract of C. chinensis can inhibit NO produced by

peritoneal macrophages, which indicated that C. chinensis

methanol extract had an obvious immunosuppressive effect (199).

This combination of GM restoration and immunomodulation

underpins its therapeutic value in RA treatment and supports its

use in WB.

4.2.8 Toddalia asiatica (L.) Lam.
Toddalia asiatica (L.) Lam. is contained in Ba-wei-long-zuan

granule (BLG), a traditional Chinese Zhuang medicine used for

treating RA (43). A recent study has indicated that the extract of

Toddalia asiatica (L.) Lam. (TAE) alleviates joint symptoms in rats

with RA by restoring the balance of Th17/Treg cells in the colon and

rectifying gut dysbiosis. TAE downregulated the expression levels of

IL-17A, IL-1b, and IL-6 in the colon while up-regulating FOXP3 and

IL-10, indicating its regulatory role in the intestinal Th17/Treg

balance. Furthermore, TAE improved GM diversity in AIA rats,

reducing the abundance of Ligilactobacillus, which was elevated in

the model group, and increasing the relative abundance of

Muribaculum, Subdoligranulum, Lachnospira, and Marvinbryantia

(200). These findings provide evidence that the efficacy of Toddalia

asiatica (L.) Lam. and its inclusion in BLG for RA involves a dual

mechanism targeting the gut-joint axis: immunomodulation and

GM restoration.
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4.2.9 Glycyrrhiza uralensis Fisch. (G. uralensis)
G. uralensis is one component of JWJG Capsules, used for treating

RA and showing potent anti-inflammatory activity (43). G. uralensis

treatment significantly improves joint inflammation, pathological

lesions, and inflammation markers in CIA rats. It reverses abnormal

GM composition by increasing Eubacterium, Roseburia, Desulfovibrio,

B a c t e r o i d e s , Rum i n o c o c c a c e a e _ C l o s t r i d i um , a n d

Peptostreptococcaceae_Clostridium, while reducing Helicobacter,

Prevotella, Lachnospiraceae_Clostridium, and Barnesiella. Meanwhile,

G. uralensis alleviates intestinal damage, enhances intestinal barrier

integrity by upregulating TJ proteins (ZO-1, occludin, and claudin-1). It

also lowers Th17/Treg cell ratios in blood, colon, and joint fluid. These

effects suggest that G. uralensis alleviates RA symptoms by modulating

GM and immunity (201).

4.2.10 Notopterygium incisum K.C. Ting ex H.T.
Chang (N. incisum)

N. incisum is a key component of DGNTD and JFG (174).

Polysaccharides derived from N. incisum may represent one of its

primary active constituents. A novel polysaccharide, named NIP, was

isolated from N. incisum with a molecular weight of 2.34×10 6 Da. NIP

consists of arabinose, galactose, glucose, and galacturonic acid, linked by

methyl esterified 1,4-linked a-galacturonic acid, 1,6-linked b-galactose,
1,5-linked a-arabinose, and 1,4,6-linked b-glucose. NIP suppresses NO

production in LPS-stimulated RAW264.7 macrophages. NIP reduces

toe inflammation in AIA rats, suppresses inflammatory cytokine release,

and inhibits NF-kB and JAK/STAT3 pathway activation. Furthermore,

NIP mitigated oxidative stress by decreasing malondialdehyde (MDA)

levels and enhancing superoxide dismutase (SOD) activity in a dose-

dependent manner. Additionally, NIP significantly decreases thymus

and spleen indices, indicating immunosuppressive effects. NIP also

markedly increases GM diversity, restores the Bacteroidetes-to-

Firmicutes ratio, a critical index associated with disease susceptibility.

Moreover, NIP enhances the abundance of Eisenbergiella, a genus

known for producing butyrate, an anti-inflammatory metabolite (202,

203). These findings suggest NIP exerts anti-RA effects through anti-

inflammatory, antioxidant, and GM-modulating mechanisms (204).
4.3 Herb couple

Angelica sinensis (Oliv.) Diels and N. incisum are two main

constituents of DGNTD (157). The optimal ratio of AN7:3 herb

couple was identified, with the active ingredients combination

(AIC) screened as key components. AIC showed similar

therapeutic effects as AN7:3 in CIA rats and may alleviate RA by

regulating the MAPK signaling pathway, metabolic disorders, and

gut microbiome-related autoimmunity. This study provides

scientific evidence for using AIC as a prebiotic agent for RA and

offers a systematic strategy to optimize medicinal material

proportions and screen active ingredients in traditional Chinese

herb couples (205).
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The in vivo and in vitro effects of single TCM and its active

compounds on the gut–immune axis in RA are summarized

in Table 2.
5 Conclusions and future prospective

RA, a chronic autoimmune disorder, is intricately linked to

dysregulation of the gut-immune axis, where gut dysbiosis,

intestinal barrier dysfunction, and immune hyperactivation

converge to drive systemic inflammation and joint destruction.

Understanding the interactions between GM and the immune

system may provide critical insights for developing novel

biomarkers and treatment strategies, as well as for elucidating the

pathophysiology of RA (Figures 1, 2).

TCM offers a promising therapeutic strategy by targeting this axis

through multi-component, multi-pathway mechanisms. TCM can treat

RA by improving GM structure, modulating intestinal T lymphocytes,

regulating microbiota-derived metabolites, enhancing intestinal barrier

function and immunity, and alleviating intestinal dysfunction. TCM not

only augments the therapeutic efficacy of conventional RA treatments

but also mitigates their side effects. Regulating the gut–immune axis

with TCM may become a safer and more effective new method for the

treatment of RA, with broad application prospects.

However, there are some current research limitations and model

challenges. Interactions between multiple TCM components and the

GM are poorly understood. TCM used clinically requires more

extensive RCTs to rigorously evaluate efficacy and risks. Due to

inherent inconsistencies in TCM formulations, multi-herbal formulas

also need greater standardization. This includes addressing variability in

plant compounds, batch-to-batch quality, and potential herb-herb

interactions, necessitating robust quality control (e.g., HPLC

fingerprinting). Widely used AIA/CIA murine models rely on

artificial induction, exhibit acute self-limiting inflammation, unlike

chronic human RA, and poorly replicate human genetic-

environmental interactions (76). Species differences further limit

translational relevance.

To overcome these challenges and unlock TCM’s potential, future

research should focus on the following aspects: advance disease models.

Specifically, prioritize TNF-Tg mice due to their human-like

autoimmune and metabolic characteristics, such as chronicity and the

gut-joint axis (81). Utilize spontaneous or collagen-induced Nonhuman

Primate (NHP) models (e.g., macaques) for high-fidelity TCM trials on

pharmacokinetics, toxicity, and microbiota interactions, leveraging their

closer immune, metabolic, and genetic resemblance to humans (12).

Develop quality controls for TCM compounds to ensure consistency

and standardize TCM formulations.

As for deciphering mechanisms, establish the causal role of specific

bacterial strains (e.g., Lactobacillus casei, Prevotella copri) and

metabolites (e.g., SCFAs, bile acids) using gnotobiotic models and

fecal microbiota transplantation (FMT). Combine metagenomics,

metabolomics, and proteomics to map TCM-induced microbial shifts
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TABLE 2 The effects and mechanisms of single TCM and its active compounds on the gut–immune axis in RA.

Single
TCM

Active
compounds

GM Modulation (↓↑) Effects and mechanisms
Compound’s
structure

References

Tripterygium
wilfordii Hook
F (TwHF)

Tripterygium
glycosides

↓Akkermansia,
Prevotellaceae_NK3B31_group,

Prevotella.
↑Ureibacillus,

Lactobacillus, Butyricicoccus,
Ruminococcus_UCG-014

↓ Joint swelling, IL-6, TNF-a, IL-17,
HMGB-1;

↑ a7nAChR expression; ↓ NF-kB and p-
STAT3 signaling

(37, 178–182,
184, 206)

Radix
Paeoniae Alba

Total glucosides
of paeony
(TGP)

↑Oscillibacter,
Ruminococcaceae_UCG-014,

Parabacteroides

↓Inflammatory infiltration, body weight,
thymus index;↓ VEGF, I FN-g, SIgA; ↑

Th2, Treg, ↓Th1, Th17;
Modulate intestinal mucosal immunity

(46, 185, 186)

Caulis
Sinomenii

Sinomenine
(SIN)

↑Lacticaseibacillus paracasei
Lacticaseibacillus casei

↑ microbial tryptophan metabolites
(IA, IPA, IAA)

↓ IL-6, IL-1b, TNF-a, and other
cytokines;

↓ mPGES-1 and PGE2;
↓ CD11b+F4/80+CD64+ synovial

macrophages, CD11b+Ly6C+CD43+

macrophages (spleen, lymph nodes),
CD14+CD16+ monocytes

(187–191);

Phellodendri
Chinensis
Cortex

Berberine
(BBR)

↓Prevotella, Paraprevotella and
Coprococcus
↑Blautia,

Butyricicoccus, Parabacteroides

↓ IL-17A, IL-17F, IL-21, IL-22, RORgt
expression, STAT3 phosphorylation;

Microbiota-
dependent immunomodulation

(70, 207)

Daphne
giraldii Nitsche

Daphnetin,
Zushima saponin

Alters 19 gut taxa at the family level;
dominant phyla: Firmicutes

and Bacteroidetes

↓ inflammation, ↑Treg cells;
↑ SCFAs (propionate, butyrate, valerate)

(193–196)

Panax ginseng
C. A. Mey.

Ginsenoside Rg2 ↑Parabacteroides distasonis

↓ Th17 cell differentiation;
↑ M2 macrophage polarization via TGR5
activation; ↑Bile acid metabolites (LCA,

DCA, isoLCA, 3-oxoLCA)

(129, 197)

Clematis
chinensis
Osbeck

Crude extract;
Wine-processed

extract;
Methanol extract

↓ Bacteroidetes, Prevotella,
Bacteroides, Blautia.

↑ Firmicutes, Paraprevotella.

↓ NO production in
macrophages; Immunosuppression

(198, 199)

Toddalia
asiatica
(L.) Lam.

Toddalia asiatica
(L.) Lam. (TAE)

↓Ligilactobacillus.
↑Muribaculum,
Subdoligranulum,
Lachnospira,

Marvinbryantia.

↓Levels of IL-17A, IL-1b, and IL-6 in the
colon, ↑FOXP3 and IL-10; restore Th17/

Treg balance
(200)

Glycyrrhiza
uralensis Fisch.

G.
uralensis extract

↓ Helicobacter, Prevotella,
Lachnospiraceae_

Clostridium, Barnesiella.
↑ Eubacterium, Roseburia,
Desulfovibrio, Bacteroides,

Ruminococcaceae_Clostridium,
Peptostreptococcaceae_Clostridium.

↓ Th17/Treg ratio in blood, colon, joint
fluid; ↑ TJ (ZO-1, occludin, claudin-1),

gut barrier
(43, 201)

Notopterygium
incisum K.C.

Ting ex
H.T. Chang

Notopterygium
incisum

Polysaccharide
(NIP)

↑ Eisenbergiella.
Restore

Bacteroidetes/Firmicutes ratio

↓NF-kB and JAK/STAT3 pathways, NO
and cytokines (TNF-a, IL-6).

↓MDA,↑SOD
(202–204)
F
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↑=Increase/Promote/Upregulate, ↓=Decrease/Inhibit/downregulate.
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and host pathways, identifying novel biomarkers for personalized

therapy. Investigate cross-reactivity between microbial antigens (e.g.,

Prevotella-derived peptides) and host proteins to unravel RA’s

autoimmune origins and design targeted interventions. Develop

TCM-derived prebiotics and probiotics to reinforce intestinal barrier

function and prevent microbial translocation to mitigate RA.

Implement stringent quality controls and standardize

TCM formulations.

In conclusion, TCM’s ability to harmonize the gut-immune axis

offers a transformative, holistic approach to RA treatment. Realizing

TCM’s full potential requires resolving mechanistic complexities,

advancing clinical validation through rigorous RCTs, and ensuring

standardization. Prioritized interdisciplinary collaboration is

essential to advance this microbiota-centric approach and

improve global RA outcomes.
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3-oxoLCA 3-oxolithocholic acid
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ACPAs anti-citrullinated protein antibodies
ACR American College of Rheumatology
AhR aryl hydrocarbon receptor
AI the arthritis index
APCs antigen-presenting cells
CIA collagen-induced arthritis
DAS joint disease activity score
DAS28 28-joint disease activity score
DCA deoxycholic acid
DCs dendritic cells
DMARDs disease-modifying anti-rheumatic drugs
ESR erythrocyte sedimentation rate
FDA Food and Drug Administration
FLNA filamin A
FLS fibroblast-like synoviocytes
FMT Fecal microbiota transplantation
Foxp3 Forkhead box P3
GCs glucocorticoids
GF germ-free
GM gut microbiota
GNS N-Acetyl-glucosamine-6-sulfatase
HCs healthy controls
HDACs histone deacetylases
HLA human leukocyte antigen
HLA-DRB1 human leukocyte antigen-DR beta chain 1
IAA indole-3-acetic acid
IAld indole-3-aldehyde
IFN interferon
IL Interleukin
IPA indole-3-propionic acid
isoLCA isolithocholic acid
JAK Janus kinase
JNK C-Jun N-terminal kinase
LCA lithocholic acid
LPD live P. distasonis
MAPK Mitogen-activated protein kinase
MCP-1 monocyte chemoattractant protein-1
MDA malondialdehyde
MHC major histocompatibility complex
miR-20a-5p microRNA-20-5p
MLSs macrophage-like synoviocytes
ogy 23
MMP Matrix metalloproteinase
mPGES-1 microsomal prostaglandin E synthase 1
MTX Methotrexate
NETs neutrophil extracellular traps
NF-kB Nuclear factor-kappaB
NO nitric oxide
Nrf2 the NF-E2-related factor 2
NSAID Non-steroidal anti-inflammatory drug
Ocln encoding occludin
PADs peptidyl arginine deiminases
PGE2 Prostaglandin E2
PI3K/AKT phosphatidylinositol 3-kinase (PI3K)/protein kinase B

(PKB/AKT)
PPARg peroxisome proliferator-activated receptor gamma
PSA polysaccharide A
PTMs Post-translational modifications
RA Rheumatoid arthritis
RCT Randomized controlled trial
RF rheumatoid factor
ROS reactive oxygen species
SCFAs short-chain fatty acids
SFB Segmented filamentous bacteria
SIgA secretory immunoglobulin A
SLECs short-lived effector T cells
SOD superoxide dismutase
STAT3 signal transducer and activator of transcription 3
TCM Traditional Chinese Medicine
TCR T-cell receptor
Tfh follicular helper T cells
TGF-b Transforming growth factor b
TGP Total glucosides of paeony
TGTs Tripterygium glycosides tablets
Th1 T helper-1 cells
TJ Tight junction
TLR Toll-like receptor
TNF Tumor necrosis factor
Tph peripheral helper T cells
Tregs regulatory T cells
TwHF Tripterygium wilfordii Hook F
TXA2 thromboxane A2
ZO Zonula Occludens
a7nAChR alpha7 nicotinic acetylcholine receptor
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