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Introduction: The rapid evolution of SARS-CoV-2 Omicron variants highlights

the urgent need for therapeutic strategies that can target viral evolution and

leverage host immune recognition mechanisms. This study uses molecular

dynamics (MD) simulations to analyze the immune evasion mechanisms of

class 1 nanobodies against emerging SARS-CoV-2 variants, and to develop an

efficient in silico pipeline for rapid affinity optimization.

Methods: We employed MD simulations and binding free energy calculations to

investigate the immune evasion mechanisms of four class 1 nanobodies (R14,

DL4, VH ab6, and Nanosota9) against wild-type (WT) and Omicron variants,

including BA.2, JN.1, and KP.3/XEC. Building on these findings, we established a

streamlined nanobody optimization pipeline integrating high-throughput

mutagenesis of complementarity-determining regions (CDRs) and hotspot

residues, protein-protein docking, and MD simulations.

Results:MD analysis confirmed that the immune evasion mechanism of KP.3/XEC

is significantly associated with the Q493E mutation, which weakens electrostatic

interactions between the nanobodies and the receptor binding domain (RBD).

Through our pipeline, we identified high-affinity mutants including 3 for R14, 3 for

DL4, 11 for VH ab6, and 9 for Nanosota9. The optimized R14 variant L29W/S52C/

A101V demonstrated exceptional performance, achieving a 62.6% binding energy

improvement against JN.1 (-76.88 kcal/mol compared to -47.3 kcal/mol for

original R14 nanobody) while maintaining < 15% affinity variation across variants

(compared to > 40% for original R14 nanobody).

Discussion: This study demonstrates that in silico affinity enhancement is a rapid

and resource-efficient approach to repurpose nanobodies against SARS-CoV-2

variants, significantly accelerating affinity optimization while reducing

experimental demands. This computational approach expedites the

optimization of nanobody binding affinities while minimizing experimental

resource requirements. By enhancing nanobody efficacy, our method provides

a viable framework for developing targeted countermeasures against evolving

SARS-CoV-2 variants and other pathogens.
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GRAPHICAL ABSTRACT
1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

continues to evolve with sustained global transmission, posing

significant challenges to public health (1, 2). The virus relies on its

spike glycoprotein (S protein) to bind with the angiotensin-

converting enzyme 2 (ACE2) receptor on host cells, a critical step

in viral entry (2–5). This interaction represents a critical target for

therapeutic interventions, including monoclonal antibodies and

antiviral drugs (6, 7). However, the rapid emergence of new

variants carrying mutations in the receptor binding domain (RBD)

of the S protein has raised concerns about the effectiveness of existing

treatments and vaccines (1, 8, 9).

Notably, recent Omicron subvariants, including JN.1, KP.3, and

XEC, exhibit enhanced transmissibility and immune evasion

capabilities. The JN.1 variant, which first appeared in early 2024,

has spread rapidly around the world, showcasing mutations that

enhance its transmissibility. Specifically, JN.1 carries critical RBD

mutations (R346T and F456L) that strengthen ACE2 receptor

binding affinity and promote immune escape (1, 10, 11).

Similarly, the KP.3 variant, a sublineage of JN.1, presents

additional alterations in its RBD, particularly Q493E, which may

further enhance its ability to evade neutralizing antibodies (1, 11).

Meanwhile, the XEC variant, a recombinant of JN.1 subvariants
Frontiers in Immunology 02
KS.1 and KP.3.3, demonstrates a growth advantage in the

population, suggesting enhanced virulence, greater immune

evasion and caused breakthrough infectivity (12, 13). The World

Health Organization (WHO) has classified JN.1 as a Variant of

Interest (VOI) and KP.3 and XEC as Variants Under Monitoring

(VUM), highlighting their potential global impact (14).

Nanobodies (Nbs), small single-domain antibodies derived from

camelids, represent a promising therapeutic approach against SARS-

CoV-2 (15). Structurally, nanobodies are composed of four highly

conserved framework regions (FRs) interspersed with three

hypervariable regions known as complementarity-determining

regions (CDRs). These CDRs are responsible for antigen recognition

and binding specificity (16, 17), making them critical for targeting viral

epitopes. Compared to conventional monoclonal antibodies,

nanobodies exhibited superior stability, simpler production processes,

and enhanced capacity to recognize conformational epitopes properties

(17) that make them particularly suitable for targeting the RBD of the S

protein. Additionally, studies have shown that aerosol delivery achieves

over 80% pulmonary deposition efficiency of nanobodies in murine

models, ensuring localized antiviral activity at efficacious doses without

systemic toxicity (18, 19). This delivery method enables direct lung

targeting, maximizing local drug concentrations while minimizing

systemic exposure. However, a critical limitation persists: most

existing therapeutic antibodies, including nanobodies, were developed
frontiersin.org
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against early SARS-CoV-2 variants. The continuous accumulation of

RBD mutations (17, 20) poses substantial challenges for both current

treatment efficacy and future therapeutic development.

Conventional nanobody discovery methods, such as phage

display and immunization of camelids, present significant

limitations in terms of time investment and scalability (21). These

techniques typically require months to years of experimental

screening and optimization, compounded by challenges in

reproducibility and large-scale production (21–23). The 12-month

half-life of SARS-CoV-2 antibody efficacy reported in 2024

virological surveys underscores the imperative to shorten

discovery timelines (24). In contrast, computational design and

optimization strategies offer a cost-effective and rapid alternative.

By leveraging methods such as ab initio modeling, in silico

mutagenesis, and machine learning, researchers can rapidly

generate high-affinity binders with improved stability and

solubility (25–28). This approach not only accelerates the

discovery of novel nanobodies but also enables the repurposing of

existing ones to target emerging variants.

This study evaluates four class 1 (29) nanobodies [R14 (30),

DL4 (31), VH ab6 (32), and Nanosota9 (33)], which were

sequentially recognized as therapeutic candidates against evolving

SARS-CoV-2 variants. Among them, VH ab6 and Nanosota9 have

been recognized as broad-spectrum nanobodies because they

demonstrated cross-variant neutralization activity. We

systematically investigate their binding mechanisms across SARS-

CoV-2 wild-type (WT) and variants, including BA.2, JN.1, and

KP.3/XEC. Through detailed energetic and conformational analyses

to elucidate the impact of viral mutations on binding affinity.

Furthermore, the development of nanobodies typically requires

experimental screening of large antibody libraries, which is not only

costly and time-consuming but also faces challenges such as low

expression, poor solubility, and multispecificity (21–23). These

persistent limitations underscore the critical need for both

innovative development approaches and efficient repurposing

strategies for existing nanobodies (34, 35). To address these

challenges, we present a streamlined computational pipeline

(Figure 1) that generates a library of high-affinity and stable

mutants by targeting substitutions in the CDRs and hotspot

residues. The crystal structure of the nanobody in complex with

the SARS-CoV-2 RBD served as template for high-throughput

computational mutagenesis. High-affinity mutants were selected

through protein-protein docking and molecular dynamics (MD)

simulations, enabling the identification of favorable mutations with

enhanced binding properties. This approach provides a robust

framework for the development of effective therapeutic agents

against SARS-CoV-2 and its evolving variants.
2 Methods

2.1 System preparation

The crystal structures of four SARS-CoV-2 RBD targeting

nanobodies (30–33) R14 (PDB ID: 7WD1) (30), DL4 (PDB ID:
Frontiers in Immunology 03
7F5G) (31), VH ab6 (PDB ID: 8DLX) (32), and Nanosota9 (PDB

ID:9CO9) (33) and SARS-CoV-2 WT (PDB ID: 7WD1) (30), BA.2

(PDB ID: 7ZF8) (36), JN.1 (PDB ID: 8Y5J) (37) RBDs were obtained

from the RCSB Protein Data Bank (38). The KP.3/XEC RBD

structure was generated by computational mutagenesis using

RosettaDesign (39) with JN.1 RBD as template. These nanobodies

were subsequently docked with the RBDs using the HDOCK server

(40), and favorable binding conformations were selected based on

docking score and confidence score (>0.99).
2.2 Molecular dynamics simulation

MD simulation was conducted using GROMACS 2022.5 with

the CHARMM36 force field (41). The complex solvated in a cubic

box using the TIP3P water model, and counter ions were added to

neutralize the protein in the aqueous system. Energy minimization

was executed through the steepest descent algorithm over 50,000

iterations to alleviate any high-energy contacts. Then, a two-step

equilibration process was performed for 100 ps. First, canonical

ensemble (NVT, constant number of particles, volume, and

temperature) equilibration was conducted, maintaining the

temperature at 310.15 K using the v-rescale thermostat, followed

by isothermal-isobaric ensemble (NPT, constant number of

particles, pressure, and temperature) equilibration with the c-

rescale method for isobaric coupling at a reference pressure of 1.0

bar. Throughout the simulation, periodic boundary conditions

(PBC) were applied, and long-range electrostatic interactions were

calculated using the Particle Mesh Ewald (PME) method with a

cutoff radius of 12 Å. Finally, a 200 ns production MD run was

performed on the optimized system, with a time step of 2 fs,

recording energy and log data every 1000 steps. The MD

trajectory was analyzed to calculate the root mean square

deviation (RMSD) and the number of hydrogen bonds, providing

insights into the stability and interactions of the complexes.
2.3 Binding free energy calculations

Binding free energy calculations were performed using the

Molecular Mechanics/Poisson-Boltzmann (Generalized Born)

Surface Area (MM/PB(GB)SA) method. To ensure robust

sampling, equilibrium trajectory data were extracted from the

production phase of the MD simulations. Specifically, for each

system, the last 50 ns of equilibrium trajectory data were used, with

snapshots collected at 50 ps intervals. This methodology provided a

total of 1,000 frames for binding free energy calculations.

The binding free energy (DGbind) of the Nb-RBD complex can

be regarded as the sum of enthalpy term (DH) and entropy term

(-TDS):

DGbind = DH − TDS  

In this context, the enthalpy change is composed of ensemble

average interaction energy (E) and solvation energy (DGsol), in

which (E) can be separated into the electrostatic interaction energy
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FIGURE 1

In Silico Affinity Maturation Pipeline for Optimizing Nanobody Binding to Omicron RBD. The process begins with preliminary analysis of the
nanobody-RBD affinity through MD simulations, focusing on the selection of hotspot residues (A). Next, DDMut-PPI is utilized to generate a virtual
library by applying single mutation in hotspot residues and CDRs, as well as multiple mutations to identify beneficial mutation combinations (B).
Structure preparation of the mutants is performed using Rosetta Design (C). Following this, protein-protein docking is conducted using HDOCK,
where binding score is employed to select suitable mutants. Finally, MD simulations are used to select high-affinity and stable mutants, to validate
the previous steps (D).
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(DEele) and van der Waals interaction energy (DEvdW).

DH = Eh i + DGsol = DEele + DEvdW + DGsol

The solvation energy (DGsol) is further divided into polar

solvation energy (DGpb) and nonpolar solvation energy (DGSA):

DGsol = DGpb=gb − DGSA  

In this study, a single trajectory approach was adopted due to its

lower noise level and its suitability for systems with minimal

structural rearrangement during binding. The entropy

contribution was generally excluded from the calculations (42), as

entropy differences associated with relative binding affinities were

expected to be small, with only minor variations arising from

mutations. MM/PB(GB)SA calculations were performed using

gmx_MMPBSA version 1.6.3 (43), a novel tool developed for

endpoint free energy calculations from MD trajectories.

To further elucidate the binding interactions, an energy

decomposition analysis was conducted to assess the contribution

of each residue to the binding free energy. This analysis highlights

key residues that stabilize or destabilize the Nb-RBD complex,

identifying potential targets for therapeutic intervention.
2.4 Generation of mutant library

The HDOCK generated Nb-RBD complexes were subjected to

single-point mutations using DDMut-PPI (44). Single-point

mutations were introduced at CDRs and hotspot residues,

substituting each residue with the 19 alternative amino acids,

excluding itself. The resulting changes in binding affinities were

calculated as DDG (DDG=DGWT-DGmutant, kcal/mol), with DDG > 0

indicating increased affinity and DDG < 0 indicating decreased

affinity compared to the wild type.

Empirical evidence and previous studies indicate that

combinations of individually beneficial mutations are more likely

to result in additive or synergistic improvements in binding affinity

(45, 46). Therefore, we prioritized the combination of single-point

mutations with DDG > 0 for subsequent analysis. Stabilizing

mutations (DDG > 0) identified across variant complexes were

subsequently combined for multiple mutations analysis using

DDMut-PPI’s combinatorial module. Utilizing this approach, an

in silico library comprising high-binding and stable single-point and

multiple-points mutations in the nanobodies R14, DL4, VH ab6,

and Nanosota9 were generated.
2.5 Interaction assessment and selection of
best mutants

To validate our streamlined computational pipeline, mutations

identified through computational affinity maturation were

introduced into R14. The resulting mutant structures were

docked with the RBD of the KP.3/XEC variant using HDOCK,

employing its scoring function to filter for the best-performing
Frontiers in Immunology 05
mutants. The evaluation focused on predicted binding affinities and

structural compatibility with the RBD.

Subsequently, the optimized combinations for R14 were

subjected to a 200 ns production MD simulation with WT and

three variants (BA.2, JN.1, and KP.3/XEC) complexes. The dynamic

stability and interaction profiles of the mutants were analyzed using

RMSD and MM/PB(GB)SA method. RMSD was utilized to assess

conformational changes in the protein backbone, while MM/PB

(GB)SA was employed to calculate binding free energies. These

analyses enabled the identification of high-affinity and stable

mutants, further refining the selection based on dynamic stability

and interaction profiles. This approach ensured a robust assessment

of the best-performing mutants.
3 Results

3.1 Anti-SARS-CoV-2 Omicron variants
spectrum of nanobodies

In this study, we evaluated the antiviral spectrum of four RBD-

targeting nanobodies (R14, DL4, VH ab6, and Nanosota9) against

SARS-CoV-2 Omicron variants. Despite the RBD accumulating

mutations at 3–5 times the rate of other spike protein domains (47),

RBD-targeting antibodies remain clinically dominant due to their

direct disruption of ACE2 binding (48). To elucidate their binding

characteristics, we conducted a sequence alignment of RBDs from

BA.2, JN.1, and KP.3/XEC. The analysis identified three critical

mutations (L455S, F456L, and Q493E) within the RBD regions that

directly interact with the nanobodies. Epitope mapping (Figure 2A)

revealed that VH ab6 and Nanosota9 target relatively conserved

epitopes on the Omicron RBD, whereas R14 and DL4 bind to more

variable regions. These findings indicate that the binding affinities

of VH ab6 and Nanosota9 exhibit minimal variability across

different Omicron subvariants, enabling effective neutralization of

the most predominant variants (Figures 2F-I).

Furthermore, structural analysis revealed that R14 primarily

interacts with KP.3/XEC through main-chain functional groups,

suggesting that side-chain variations exert minimal influence on

binding (Figure 2B). This finding accounts for the partial

neutralization efficacy of R14 against KP.3/XEC. In contrast, VH

ab6 and Nanosota9 involve changes in both main-chain and side-

chain interactions, leading to a more pronounced influence of side-

chain groups on overall antibody affinity (Figures 2D, E). These

structural insights align with biochemical and virological findings

regarding the antiviral efficacy of each nanobody against earlier and

recent Omicron subvariants.
3.2 Immune escape mechanisms of SARS-
CoV-2 Omicron variants against
nanobodies

To further investigate the interactions between nanobodies and

SARS-CoV-2 Omicron variants, we performed MD simulations on
frontiersin.org
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sixteen systems, including four nanobodies (R14, DL4, VH ab6, and

Nanosota9) and four RBDs (WT, BA.2, JN.1, and KP.3/XEC). We

assigned the complexes formed by R14 with these RBDs as R14-

RBD systems (R14-WT, R14-BA.2, R14-JN.1 and R14-KP.3/XEC).

The naming convention for the complexes formed by the other

nanobodies followed the same pattern. Throughout the simulations,

all systems maintained stable binding states, with RMSD

fluctuations consistently below 6 Å (Supplementary Figures S1A-

D). Based on the equilibrium portion of the MD trajectory (150–200

ns), the free energy landscape (FEL) analysis (Supplementary Figure

S2) was performed to explore the distribution of conformations and

stability of Nb-RBD systems. In general, lower energy states indicate

the corresponding conformations possess greater stability. Notably,
Frontiers in Immunology 06
the complexes formed between JN.1 and KP.3/XEC RBDs and the

nanobodies exhibited increased flexibility at the binding interface

compared to the complexes formed between the WT and BA.2

RBDs and the nanobodies. This enhanced flexibility suggests more

dynamic interactions, potentially affecting binding characteristics

and antibody efficacy.

To assess the effect of mutations on binding modes and energy

changes, we calculated the binding free energies using the MM/

PBSA method. The binding affinities of R14 and DL4 were

significantly reduced, with the R14-KP.3/XEC having a binding

affinity of -45.41 kcal/mol, representing increases of 36.94 kcal/mol

and 39.85 kcal/mol, respectively, compared to their WT systems

(Figures 3B, C). In contrast, the reduction in binding affinity for VH
FIGURE 2

Evolution of Nb binding epitopes within the Omicron RBD. (A) Sequence alignment and binding epitopes of Nb-RBD residues among three Omicron
subvariants: BA.2, JN.1, and KP.3/XEC. RBD residues in direct contact with R14, DL4, VH ab6, and Nanosota9 are colored purple, green, pink, and
yellow, respectively. RBD residues that underwent mutations in the JN.1 and KP.3/XEC subvariants are highlighted in bold blue and bold red, and
they are boxed for emphasis. Asterisk indicated positions with a single, fully conserved residue. (B-E) Structural details of Nb-RBD complex that
underwent mutations between the Omicron subvariants JN.1 and KP.3/XEC. (F-I) Mapping of RBD residues that underwent mutations in the
Omicron subvariant KP.3/XEC. RBD surface in direct contact with R14, DL4, VH ab6, and Nanosota9 are colored purple, green, pink, and yellow,
respectively.
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ab6 and Nanosota9 was more gradual, with increases of 13.96 kcal/

mol and 3.99 kcal/mol, respectively, compared to their WT

complexes, consistent with the analysis in section 3.1 regarding

the antiviral spectrum of nanobodies (Figures 3D, E). These

findings were further validated through MM/GBSA cross-

verification (Supplementary Table S1), confirming the robustness

of our predictions. Although the absolute binding energies varied

between methods due to differences in the solvation model, both

approaches showed consistent trends in changes to binding affinity

across variants.

Overall, the binding affinities of JN.1 and KP.3/XEC variants to

nanobodies were markedly lower than those of WT and BA.2

variants. This discrepancy primarily arises from a significant

reduction in electrostatic and van der Waals (vdW) energies

(Figure 3A). The former is attributed to the introduction of
Frontiers in Immunology 07
positively charged residues by mutations, while the latter results

from unstable binding modes between the mutated RBD and

nanobodies, leading to fewer atomic contacts. In addition,

hydrogen bond network analysis (Supplementary Figure S3)

revealed that the JN.1 and KP.3/XEC variants had more low-

occupancy hydrogen bonds (occupancy < 70%) and fewer high-

occupancy hydrogen bonds (occupancy ≥ 70%), which further

impacted the stability of the complex.

Subsequently, we calculated the binding free energy

contributions of residues near the binding interface using residue

decomposition methods. Residues with an absolute binding free

energy difference ≥ 1 kcal/mol compared to the WT system were

defined as hotspot residues. In the R14-KP.3/XEC complex, a

greater number of hotspot residues were identified than in the

R14-JN.1 complex (Figure 4A, Supplementary Figures S4A, B),
FIGURE 3

Evaluation of the binding affinity of the Nb-RBD complexes by MM/PBSA. (A) Shows the contributions to the binding free energy, including van der
Waals interactions (DEvdw), electrostatic interactions (DEele), and polar solvation free energy (DGpb), for R14, DL4, VH ab6, and Nanosota9 with four
different RBDs (WT, BA.2, JN.1, and KP.3/XEC). (B-E) The total binding free energy (DGbind) for the corresponding complexes.
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likely due to the unique F456L and Q493E mutations in KP.3/XEC.

Notably, the Q493E mutation in the R14-KP.3/XEC complex

exhibited a substantial energy change, attributed to the

transformation from neutral glutamine to negatively charged

glutamate at physiological pH, enhancing electrostatic repulsion

between nanobody and RBD. This mutation also disrupted existing

hydrogen bonds, further destabilizing the complex (Supplementary

Figure S4). Similarly, the charged mutation at residue 493

significantly decreased electrostatic interactions in the DL4, VH

ab6, and Nanosota9 systems (Figure 3A). In the DL4-KP.3/XEC

complex, residues F489, G495, and R497 exhibited notable energy

reductions, clustering in a similar region, suggesting substantial

conformational changes. The VH ab6 and Nanosota9 complexes

displayed comparable binding modes, primarily influenced by the

Q493E mutation in KP.3/XEC (Figures 4C, D, Supplementary

Figures S4E-H). However, the charged residues introduced by the
Frontiers in Immunology 08
mutations did not approach the binding interface closely enough to

significantly impact binding affinity compared to R14 and DL4.
3.3 Generation of mutant library and
assessment of binding affinity

The sixteen nanobody-RBD systems were analyzed using DDMut-

PPI to predict high-affinity single-point mutations targeting CDRs and

hotspot residues (Supplementary Tables S2-3). This computational

affinity maturation approach generated a virtual library containing

2,508mutations for R14, 1,824 for DL4, 2,432 for VH ab6, and 2,508 for

Nanosota9. Screening for mutations with predicted DDG > 0

(indicating enhanced affinity and stability, Supplementary Figure S6)

identified 4 beneficial mutations for R14, 5 for DL4, 15 for VH ab6, and

9 for Nanosota9 (Figure 5, Supplementary Table S4).
FIGURE 4

Binding free energy contributions of key residues in RBD. (A) R14, (B) DL4, (C) VH ab6, and (D) Nanosota9 interacting with RBD (WT, BA.2, JN.1, and
KP.3/XEC). Residues with energy differences (|DDGVar–WT| ≥ 1 kcal/mol) between mutant and WT systems are highlighted in bold purple, green, pink,
and yellow, respectively.
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Moreover, mutations within specific CDRs and hotspot residues

not only alter the binding characteristics at the mutation sites but

also affect the binding modes of other CDRs and framework

regions. Analysis of combinatorial mutations revealed substantial

variations in binding energy, with the multi-points mutant library

containing 28 high-affinity variants for R14, 40 for DL4, 13,748 for

VH ab6, and 176 for Nanosota9. Notably, VH ab6 displayed

markedly greater mutational plasticity, accommodating

significantly more viable multi-points mutation than other

nanobodies while maintaining stable binding conformations.
3.4 Selection of high-affinity mutants using
docking and MD simulation

High-affinity substitution mutations identified through

preliminary screening using DDMut-PPI, including both single

and multiple mutations, were introduced into the nanobodies

(Supplementary Table S5). For R14 variants, docking against four
Frontiers in Immunology 09
SARS-CoV-2 variant RBDs using HDOCK identified three

top-ranking mutation combinations exhibiting enhanced

interaction (Supplementary Table S6).

To validate the feasibility of this nanobody repurposing

pipeline, we conducted molecular dynamics simulations on the

complexes of three optimized variants of R14 with four different

SARS-CoV-2 variants to assess structural stability and energy

changes following mutation. The RMSD was utilized to determine

the conformational changes occurring in the protein backbone

throughout the simulation, indicating the dynamic stability of the

complex. Although the RMSD of the optimized structure was

higher than that of the initial structure, reflecting internal

structural changes that occurred during the optimization, it

remained stable throughout the simulation. The RMSD

fluctuations of RBD and R14 mutated nanobody complex

remained consistently below 6 Å (Supplementary Figure S6),

induced by minimal fluctuations and suggesting stable binding.

The increased RMSD post-optimization, while stable, indicates a

reorganization of the protein structure that may enhance the
FIGURE 5

Detailed structural analysis of Nb-RBD complex and selection of residues for the in silico mutagenesis. (A-D) Cartoon representations of the
nanobodies R14 (purple), DL4 (green), VH ab6 (pink), and Nanosota9 (yellow) in complex with RBD (red), illustrating the positions of CDR1 (gray),
CDR2 (blue), and CDR3 (orange). Arrows indicate the mutations selected in circles within specific CDRs or hotspot residues, identified through
DDMut-PPI single mutations.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1637955
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2025.1637955
interaction with the target, thus aligning with the improved binding

energy observed in the analysis.

Binding affinity serves as a key metric for evaluating the strength

and specificity of nanobody-antigen interactions. We designate the

complexes formed by the original R14 nanobody and its three

optimized R14 as R14-ORI, R14-OPT1 (L29W/S52C/A101V), R14-

OPT2 (L29W/A101V), and R14-OPT3 (L29W/S52C/A101L),

respectively. Comprehensive binding free energy analysis (Figure 6)

revealed substantial improvements in binding affinity against all

SARS-CoV-2 variants mentioned above in this study, following

nanobody optimization. The R14-ORI exhibited progressively

weaker binding from WT (-82.35 kcal/mol) to KP.3/XEC (-45.41

kcal/mol), consistent with evolving immune evasion. Optimized Nb-

RBD complexes demonstrated markedly enhanced and more

uniform affinities. R14-OPT1 showed particularly strong JN.1

binding affinity, with a free energy of -76.88 kcal/mol compared to

-47.3 kcal/mol for R14-ORI, while maintaining stable WT

interactions at -67.04 kcal/mol. R14-OPT2 achieved exceptional

KP.3/XEC binding affinity at -78.09 kcal/mol with consistent

performance across variants. R14-OPT3 displayed optimal BA.2

affinity at -79.47 kcal/mol despite a moderate reduction for JN.1 to

-55.69 kcal/mol. Notably, the binding free energy for the R14-OPT2-

KP.3/XEC system exhibited slight discrepancies compared to the

DDMut-PPI and HDOCK predictions, which can be attributed to the

stronger stability of this system, resulting in lower overall

perturbations in its structure compared to other similar systems.

Furthermore, R14-OPT1 exhibited the most balanced binding

characteristics, with affinities ranging from -64.49 kcal/mol (KP.3/

XEC) to -76.88 kcal/mol (JN.1), a variation of 16.1% compared to
Frontiers in Immunology 10
the 44.9% variation observed for R14-ORI (-45.41 to -82.35 kcal/

mol). These energy landscapes suggest R14-OPT1 represent the

optimal compromise between variant coverage and binding

potency, particularly given its superior JN.1 recognition (-76.88

kcal/mol versus -47.3 kcal/mol for R14-ORI). Overall, the binding

affinities of the optimized R14 nanobody with these four variants

were comparatively favorable. These findings highlight the potential

of integrating computational methods for affinity maturation in the

development of effective therapeutics against SARS-CoV-2.
4 Discussion

When facing Omicron variants, countermeasures, such as vaccines

and therapeutic drugs, display weaker or even lost effectiveness (1, 8, 9).

Our integrated computational analyses reveal that the Q493E mutation

in emerging SARS-CoV-2 variant KP.3/XEC drives immune evasion

through electrostatic disruption at nanobody-RBD interfaces. This

immune evasion effect is particularly pronounced for nanobodies like

R14 and DL4, which engage variable epitopes, whereas VH ab6 and

Nanosota9 maintain broader efficacy by targeting evolutionarily

constrained regions. Critically, the structural and computational

research of this part is consistent with the existing experimental

studies (30–33), which also confirms the feasibility of our next

workflow. Building on these mechanistic insights, we developed an

efficient computational pipeline that synergistically combines integrates

high-throughput mutagenesis, protein-protein docking, and MD

simulations to engineer optimized nanobody variants. Unlike

conventional strategies focusing exclusively on single-point mutations
FIGURE 6

Evaluation of the binding affinity of original and optimized R14- RBD complexes by MM-PBSA. (A) Total binding free energy (DGbind) for WT, BA.2,
JN.1, and KP.3/XEC variants with original (ORI) and optimized (OPT1, OPT2, OPT3) nanobodies. (B) van der Waals interaction energies (DEvdW) for the
complexes. (C) Electrostatic interaction energies (DEele) for the complexes.
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in either CDRs or hotspot residues, our approach comprehensively

targets both regions while incorporating structural dynamics from

molecular simulations (7, 28, 49, 50). This pipeline specifically targets

substitutions in the CDRs and hotspot residues, generating a mutant

library of high-affinity and stable mutants. This integrated methodology

generates mutant libraries enriched for high-affinity, stable nanobodies,

ultimately providing atomistic insights to accelerate structure-guided

nanobody design and therapeutic development.

Notably, R14 emerged as the primary candidate for optimization

due to its unique therapeutic and structural properties. Aerosolized R14

maintained neutralizing activity and prevented infection (30), and it

exhibited exceptional conformational stability across variants (RMSD

<6 Å). This resilience stems from its predominant reliance on main-

chain interactions with RBD, minimizing vulnerability to side-chain

mutations. Residue decomp energetics revealed that Q493E-induced

repulsion is a quantifiable liability (DDG = +8 kcal/mol), offering a clear

strategy for compensatory engineering through mutations.

The substantial binding affinity improvements achieved through

computational maturation (e.g., R14-OPT1’s 62.6% DDG enhancement

against JN.1) hold significant implications for neutralization potency.

Empirical calibrations indicate that, under typical Cheng–Prusoff

conditions, every ~1.4 kcal/mol reduction in DGbind corresponds to

an order-of-magnitude drop in half maximal inhibitory concentration

(IC50) (51, 52). Extrapolating this relationship, the >15 kcal/mol DDG
enhancement observed for our top variants against KP.3/XEC points to

multi-log neutralization gains, although the exact IC50 shift must

ultimately be confirmed in functional assays. When benchmarked

against literature-reported broad-spectrum nanobodies VH ab6 (32)

and Nanosota9 (33), R14-OPT1 achieved higher binding affinity

despite targeting a more plastic epitope. This demonstrates that

computational repurposing can confer breadth even on epitopes

traditionally considered mutationally vulnerable.

Despite providing comprehensive analysis, this study has

several limitations that need to be considered. While our pipeline

predicted high-affinity nanobodies, direct comparison to clinical-

stage anti-coronavirus nanobodies was constrained by their absence

in late development pipelines (33). Furthermore, experimental

validation of the identified mutations and the exploration of

additional mutation combinations remains essential. And our

strategy holds promises for extension beyond SARS-CoV-2.

Residues that are critical for the development of broad-spectrum

nanobodies are conserved across betacoronaviruses, such as SARS-

CoV and MERS-CoV. Future work should leverage our pipeline to

engineer pan-sarbecovirus therapeutics, potentially integrated with

machine learning approaches to identify key residues and optimize

nanobody interactions against a broader range of viral variants.
5 Conclusion

This study confirmed that the Q493E mutation is a key driver of

immune evasion in KP.3/XEC through disruption of electrostatic

nanobody-RBD interactions. To overcome this challenge, we

developed a streamlined computational pipeline integrating high-
Frontiers in Immunology 11
throughput mutagenesis of CDRs and hotspot residues, protein-

protein docking, and MD simulations. Using this approach, we

repurposed four nanobodies (R14, DL4, VH ab6, and Nanosota9) to

target the Omicron RBD. Notably, MD simulations validated the best-

performing R14 optimized combination, R14-OPT1 systems showed a

62.6% binding energy improvement against JN.1, with a consistent

binding across variants (<15% affinity variation). These results

collectively demonstrate our pipeline’s capacity to significantly

improve nanobody binding affinity (achieving >60% enhancement

for key variants) while maintaining broad neutralization capacity.

Our pipeline provides critical insights into the interactions between

nanobodies and evolving viral variants, supporting the potential use of

existing nanobodies as therapeutic agents.
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