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Introduction

Macrophages constitute a heterogenous population of innate immunity cells that

exhibit dynamic plasticity and maintain tissue homeostasis. A dichotomous classification

of macrophages exists, i.e., the classically activated proinflammatory M1 subtype and

alternatively activated reparative M2 cells that are modulated by the tissue

microenvironment, however, it is being realised that a continuum of phenotypes exists

based on different stimulation factors, receptor profile and cytokine expression and a

certain subtype dominates at a certain stage in the disease process based on signal from the

surrounding tissue (1, 2). These phenotypes play an important role in pathogenesis of

autoimmune diseases that are characterised by dysregulated innate immunity, activation of

T-lymphocytes, autoantibody formation and development of interstitial lung disease due to

ongoing abnormal inflammation as well as uncontrolled stimulation of fibrotic pathways.

Targeted therapy directed at these pathways can be a supplicating strategy to avoid and

limit pulmonary fibrosis in autoimmune disorders (3, 4).
Macrophage origin, function and homeostasis

Macrophages are either yolk sac/fetal liver in origin or derived from bone marrow

monocyte lineage (4). Most tissue-resident are embryonic in origin while brain microglia,

dermal, intestinal macrophages and those recruited in inflammation arise from blood

monocytes. Pulmonary alveolar and interstitial macrophages originate from yolk sac,

though the latter can also be recruited (5–12).

Human alveolar macrophages are identified by the presence of sialoadhesin CD169,

scavenger MARCO and interstitial macrophages by CD36, CX3CR1; both share the

antigens HLA-DR, CD11b, CD11c, CD 14low, CD16+ and mannose receptor CD206. In

resting conditions, the renewal of cells is dependent on CSFR-1, MCSF and IL-34 (13).
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Macrophages exhibit TLRs, C-type lectin, dectin and NOD-like

receptors on their surface (14). Alveolar macrophages are chiefly

concerned with phagocytosis while interstitial macrophages are

primarily involved in tissue homeostasis and immune regulation.

Endogenous or exogenous signals such as apoptotic cells or

microorganisms/irritants lead to recruitment of bone marrow

derived monocytes to the lungs (13). Upon recognition of such

triggers by surface receptors, macrophages engulf the particles

incorporating it into phagolysome under influence of PI3K/Akt

and mTOR pathways respectively, leading to its digestion (15).

Similarly, the dysfunctional cytoplasmic organelles are cleared

through autophagy. Efferocytosis is accomplished through

scavenger receptors and MERTK (13–16). This effective clearance

of damaged and apoptotic cells is necessary to avoid exposure of

autoantigens and thus development of autoimmunity. Concurrently

there is release inflammatory cytokines (TNF-a, IL-1b, -6, -12, -18,
-23) and chemokines (CXCL-1, CXCL-2) that recruit inflammatory

cells and upregulate MHC-I expression on surrounding tissue cells

thereby promoting autoantigens presentation to T-cells. They also

exhibit CD86 and MHC II molecules to present antigens to T-

lymphocytes thereby linking innate and acquired immunity. The

macrophage produced degrade extracellular matrix releasing

sequestered vascular endothelial growth factor promoting

angiogenesis further amplifying inflammation (17, 18) (Figure 1).

With ongoing inflammation, there is activation of the

profibrotic M2 phenotype to accomplish tissue healing and

restore homeostasis (1, 2, 19). These cells produce anti-

inflammatory cytokines such as IL-10 and TGF-b. The

inflammatory cytokines IL-6 and IL-23 along with TGF-b
promote TH17 differentiation of T-cells that play a crucial role in

the pathogenesis autoimmune inflammation (20–22). Production of

TGF-b is associated with increased fibroblast differentiation and
Abbreviations: CD, Cluster of Differentiation; CSF, Colony Stimulating Factor;

DAMP, Damage Associated Molecular Patterns; DM, Dermatomyositis; EC,

Extra Cellular; FIZZ, Found in Inflammatory Zone; HIF, Hypoxia Inducible

Factor; HLA, Human Leukocyte Antigen; ILs, Interleukins; iNOS, inducible

Nitric Oxide Synthase; IRFs, Interferon Regulatory Factors; JAK/STAT, Janus

Kinase-Signal Transducer and Activator of Transcription; MCSF, Macrophage

Colony Stimulating Factor; MCTD, Mixed Connective Tissue Disease; MARCO,

Macrophage Receptor with Collagenous structure; MERTK, MER proto-

oncogene tyrosine kinase; MHC, Major Histocompatibitlity Complex; MMPs,

Matrix Metalloproteinases; mTOR, Mechanistic Target of Rapamycin; MyD88,

Myeloid Differentiation response 88; NOD, Nucleotide-binding and

Oligomerization Domain; PAMP, Pathogen Associated Molecular Patterns;

PDL, Programmed Death Ligand; PI3K/Akt, Phosphoinositide 3-kinase/protein

kinase B; PIAS, Protein inhibtors of activated STATS; PM, Polymyositis; PPAR,

Peroxisome Proliferator-Activated Receptor; PTPs, Protein tyrosine

phosphatases; RA-ILD, Rheumatoid Arthritis Interstitial Lung Disease; Sart-1,

splicoeosome associated factor-1; SOD, Superoxide Dismutase; SLE, Systemic

Lupus Erythematosis; SSc, Systemic Sclerosis; TGF, Transforming Growth Factor;

TLRs, Toll like receptors; TNF, Tumor Necrosis Factor; TRAM, Tissue Resident

Alveolar Macrophages; TRIF, TIR-domain-containing adapter-inducing

interferon-b; TREG, T-regulatory cell; VEGF, Vascular Endothelial Growth Factor.
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fibrosis that plays an important role in development of ILD

(23) (Figure 1).

Macrophages also carry out key metabolic roles. M1

macrophages convert arginine to nitric oxide via iNOS,

promoting inflammation, while M2 macrophages turn arginine

into proline and polyamines, aiding tissue repair (24). They also

respond differently to hypoxia: M1 cells favor glycolysis, causing

succinate accumulation, fatty acid synthesis, and inflammation

through HIF-1a/IL-1b activation; M2 cells rely on oxidative

phosphorylation, enhancing PDL-1 expression and TREG

differentiation while reducing IL-1b (24, 25). M2 macrophages

also perform fatty acid oxidation, relevant in lipid-driven diseases

like lupus, rheumatoid arthritis, and psoriasis.

Additionally, macrophages regulate iron metabolism by

phagocytosing senescent RBCs. M1 cells retain iron promoting

bacteriostasis, whereas M2 cells release it to support proliferation

and matrix remodeling. High glutathione promotes M2

polarization, while low glutathione favors M1 activation for

parasite defense (26–28).
Pathways in macrophage activation
and polarisation

Macrophage phenotypes have different gene expression,

receptor and chemokine profile serving as markers for early

identification. The M1 macrophages are activated by GM-CSF,

Th-1 cytokines such as TNF-a , IFN-g , IL-1, bacterial

lipopolysaccharide, PAMPs and DAMPS. This triggers JAK/

STAT1, nuclear factor kappa-b and IRF pathways resulting in

expression of iNOS, MHC-II and SOCs-1 and proinflammatory

cytokines such as IL-1,6,12, TNF-a and chemokines (3, 13, 18,

29) (Figure 1).

The anti-inflammatory M2 phenotype can be studied in four

subgroups (2a, 2b, 2c, 2d) as studied in vitro. M2a cells play an

important role in lung fibrosis. Triggered by Th2 cytokines (IL-4,

IL-13) and M-CSF, they express innate scavenger receptor CD206,

CD163, proteins like TGF-b, FIZZ1, arginase1 and chitinase-3

promoting fibroblast activation and CCL18 promoting collagen

deposition. Insulin like growth factor-1 is also released that

prevents myofibroblast apoptosis. M2b, stimulated by TLR and

IL1R ligands, performs immunoregulatory function by producing

high level of anti-inflammatory cytokine IL-10; along with

proinflammatory cytokines such as IL-1b, IL-6, TNF-a, and low

IL-12—making it the only M2 subtype to produce both anti- and

pro-inflammatory cytokines. M2c, induced by TGF-b, IL-10 and

glucocorticoids, is responsible for efferocytosis. M2d subtype is

triggered by TLR, adenosine A2AR ligands and IL-6 and induces

angiogenesis by promoting VEGF production (18, 30).

The M2 subtypes gene expression is controlled by the JAK1/

JAK3 signalling pathways via STAT-3 activation which induces

expression of anti-inflammatory genes. The STAT-3 pathway also

cross talks with other key pathways including NF-kB, PI3K/Akt,

Notch, Hedgehog, Wnt signalling and MAPK pathway. This

pathway has negative regulators such as SOCs, PIAS and PTPs
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1638345
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tyagi and Kant 10.3389/fimmu.2025.1638345
that are being explored for therapeutic use (30–32). Additionally,

hydrogen peroxide generation by Cu/Zn superoxide dismutase

leads to STAT-6 activation that triggers PPAR g and d
transcription that promote fatty acid oxidation, mitochondrial

biosynthesis and arginase-1 transcription respectively, hence,

sustaining M2 phenotype (33, 34). PI3K/Akt, specific subtypes of

interferon regulatory factors (IRFs) also modulate polarisation (35–

37). Additionally, under hypoxia, HIF-1a promotes the production

of profibrotic factors by upregulation of adenosine A2B receptor on

M2 macrophages (3, 38).

Epigenetic regulation of polarisation also occurs as histone

acetylation and methylation promote expression of fibrotic genes

like IL1RA, MMP9, SPP1, CHI3L1, MARCK5 and PLA2G7

(39, 40).

There is increased recognition that a clear M1 and M2

differentiation does not exist in vivo rather there is a continuum

of phenotypes. Single cell RNA sequence study of the healthy and

fibrotic lung revealed several stages including monocytes (CD14

+CD206neg/loCD68neg/lo), intermittent transitional macrophages

(CD14+ CD206neg/loCD68mid/hi) and alveolar macrophages

(CD14neg/lo CD206mid/hiCD68mid/hi). PDGF-AA+ transitional and

SPPhi monocyte derived macrophages have been identified in

fibrotic lungs. PDGF-AA promotes fibroblast proliferation and

migration while osteopontin (SPP) promotes ECM deposition

(41–43).
Macrophages in autoimmune ILDs

Autoimmune disorders are characterized by formation of

antibodies against self-antigens and dysregulated innate immunity.

Although the exact mechanisms have not been elucidated in

pathogenesis of autoimmune ILDs, macrophages being the chief cells

of innate immunity, are involved in exaggerated inflammatory

response, defective efferocytosis, presenting self antigens, and

releasing profibrotic cytokines and chemokines.

Blood transcriptomic studies of fibrotic ILD patients have

revealed overexpression of CD14+ monocytes that predict disease

severity as well as mortality. The lineage of alveolar macrophages

(MoAMs) is crucial as evidence shows their deletion markedly

reduces the severity of bleomycin induced lung fibrosis in mice

models while deletion of tissue resident macrophage has no such

impact (44, 45).

General pathogenesis of autoimmune disorders is depicted in

Figure 2. Key pathways of CTDs with high ILD prevalence are

specified here.

The prevalence of ILD in rheumatoid arthritis patients is about

11% (46). In patients with RA-ILD, high peripheral monocyte count

is associated with increased mortality (47, 48). The gene expression

of these cells shows increased M1 polarisation in transcriptomics

studies. There is upregulation of Dectin-1, IL-27, SOCs, IRF7 and

JAK/STAT pathways. Epigenetically, glycotransferase guanylate

binding protein 5 is overexpressed that promotes IFN-g induced

M1 typing (49–58). The enzyme peptidylarginine deiminases which

mediates citrullination is regulated by PI3K/Akt signalling.
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Interestingly, this pathway is inhibited by syndecan-2 (SDC-2) an

M2-associated CD148 ligand with antifibrotic effect. Also, in

alveolar epithelium SDC-2 promotes caveolin mediated TGF-b
receptor 1 degradation thereby preventing TGF-b mediated

apoptosis (59–61).

ILD can be seen in roughly half the patients with systemic

sclerosis (46). RNA sequencing in lung fibrosis mice models have

demonstrated markedly increased M2 population (62). IL-4,13 and

10 promote M2 polarisation via STAT3 pathway activation.

Additionally, CpG-binding domain 2 and MMP28 are

significantly upregulated in SSc that promote PI3K/Akt signalling

for M2 differentiation. Redox enzymes such as Sart-1 and Cu/Zn-

SOD promote M2 phenotype by enhancing STAT-6 signalling

(63–67).

Inflammatory myopathies have a high prevalence of ILDs

ranging between 50% to 90% (68). This group is notorious for

rapidly progressive ILDs and thus require urgent measures to

combat inflammation and fibrosis (46, 69). Soluble CD206, a

marker for M2 macrophages is highly elevated in patients of

dermatomyositis ILD (69). Additionally, there is increased

expression of IFN-g and TNF- a suggestive of increased M1

polarisation early on in the disease (70–72). Ergo, there is

possible involvement of different subtypes at different stages of

the disease.
Potential targets

The following aspects of macrophage physiology may be

targeted to prevent pulmonary fibrosis in autoimmune disorders.
i. Inflammatory cytokines: Methyl palmitate is a promising

drug that inhibits macrophage activation, reduces TNF-a
level and reduces fibrosis (73, 74). Anti-IL-6 Tocilizumab

has been demonstrated to preserve lung function in

patients with systemic sclerosis (75). IL-27 inhibitors are

currently are undergoing trial for cancer immunotherapy

and may be utilised for ILD (50).

ii. Recruitment: Nintedanib is an existing triple kinase

inhibitor that has inhibitory action on CSF-1R as well

and blocks M2 polarisation (76).

iii. Signalling pathways: Tacrolimus, Ruxolitinib inhibit the

JAK/STAT pathways supressing the profibrotic M2

pathway (63, 65, 75). JAK inhibitor Tofacitinib has

demonstrated positive results in IIM-ILD (77). Akt-1

pathway promotes ROS and TGF-b. Its deletion is

associated with apoptosis of alveolar macrophages and

prevention of lung fibrosis. Clevudine is a purine analog

that can block Akt signalling (78). Syndecan is another

potential agent inhibiting Akt pathway with demonstrated

antifibrotic effect in human lung homogenates (59, 60).

iv. Fibroblast activation: Traditional Chinese medicine like

Schisandra chinensis and Resveratrol have anti-TGF-b
activity and hold excellent potential (79, 80). Pirfenidone

has anti-TGF-b1 action and prevents M2 polarisation
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Fron
(81). PRI-724 reduces TGF-b gene expression by

inhibiting B catenin signalling thus inhibition collagen

deposition (82). Niclosamide, an antiparasitic drug shows

promise in inhibiting Wnt/b catenin and TGF-b pathways

(83). Another potential target for inhibition is S100A4, a

M2 macrophage produced calcium binding protein

involved in fibroblast proliferation (84). Fresolimumab,

anti-TGF antibody has been beneficial in SSc (85).

Microcystin-leucine arginine is another agent that

prevents epithelial to mesenchymal transition (86).

Imatinib loaded gold particles have been shown to

inhibit macrophage and fibroblast activation (87).
tiers in Immunology 04
v. Macrophage apoptosis: BCL-2 inhibitors promote

apoptosis and have demonstrated resolution of fibrosis

in mice (88).
Discussion

The first step in the development of lung fibrosis in most

autoimmune diseases is damage of alveolar epithelium and

inflammation followed by continuous TGF-b signalling resulting in

epithelial to mesenchymal transformation (87). Macrophages are
FIGURE 1

Schematic diagram showing macrophage origin, differentiation, key surface markers, signalling pathways, products released and respective functions
of M1 and M2 macrophages.
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involved in pathogenesis right from excessive monocyte recruitment,

MHC-I upregulation, T-lymphocytes activation, TH17 differentiation,

impaired autophagy and apoptosis to activation of profibrotic

pathways. These are highly plastic cells with potential to switch from

one phenotype to another at different developmental stage of the

disease process depending on the stimulus. Exaggerated response at

any stage can contribute to chronic disease. The bivalent macrophage

classification does not justify their heterogenous genetic and functional

spectrum. With advent of scRNA sequencing transcriptomics,

macrophages have been genetically characterised in fibrotic ILDs,

their lineage traced to blood monocytes and prognostic markers

identified. More importantly, the high risk genes have been identified

from peripheral blood monocytes also. Similarly, genetic studies in

autoimmune diseases can help identify the high risk biomarkers and

better understanding of pathogenesis.

Several immunomodulatory and antifibrotic drugs are under

study. Rather than upstream targeting like CSFR-1 that poses risks

of widespread immune dysregulation, specific signalling pathways

may be halted. The signalling pathways have complex interactions

and different isoforms of molecules perform different actions thus
Frontiers in Immunology 05
inhibition of complimenting pathways simultaneously may yield

better results in terms of fibrosis containment (63, 65, 75, 76). JAK/

STAT kinase inhibitors not only prevent pulmonary fibrosis but

also fibrosis in other organs expanding benefits (83). Anti-TGF-b
agents as well as negative regulators of profibrogenic pathways are

already under study (79–83). Targeting autophagy is a promising

area for drug development to regulate the tissue microenvironment

(89). Concomitant impact of metabolic and oxidative state needs to

be studied in further detail to develop therapy directed at lipid

mediators such as prostaglandins (24–28, 38).

Our knowledge has only recently grown in understanding the

diverse landscape of macrophages. As MoAMs are the culprit cells

responsible for promoting lung fibrosis, genetic/epigenetic

modulation holds promise for precise targeting while sparing the

homeostatic function of the resident macrophages. Novel agents

targeting profibrotic macrophage are still in experimental stage.

Application of scRNA sequencing to lung lavage/tissue/blood

samples of different autoimmune disorders holds great promise

for improving the understanding, prevention and better

management of lung fibrosis.
FIGURE 2

Role of macrophages in pathogenesis of autoimmune interstitial lung diseases. TRAMs play a limited role in initial inflammation and are mostly
overtaken by MoAMs that convert into profibrotic macrophages. Failed efferocytosis leads to development of autoantibodies against intranuclear and
antra cytoplasmic antigens that further perpetuates inflammation and dysregulated fibrosis.
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