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Introduction

Macrophages constitute a heterogenous population of innate immunity cells that
exhibit dynamic plasticity and maintain tissue homeostasis. A dichotomous classification
of macrophages exists, i.e., the classically activated proinflammatory M1 subtype and
alternatively activated reparative M2 cells that are modulated by the tissue
microenvironment, however, it is being realised that a continuum of phenotypes exists
based on different stimulation factors, receptor profile and cytokine expression and a
certain subtype dominates at a certain stage in the disease process based on signal from the
surrounding tissue (1, 2). These phenotypes play an important role in pathogenesis of
autoimmune diseases that are characterised by dysregulated innate immunity, activation of
T-lymphocytes, autoantibody formation and development of interstitial lung disease due to
ongoing abnormal inflammation as well as uncontrolled stimulation of fibrotic pathways.
Targeted therapy directed at these pathways can be a supplicating strategy to avoid and
limit pulmonary fibrosis in autoimmune disorders (3, 4).

Macrophage origin, function and homeostasis

Macrophages are either yolk sac/fetal liver in origin or derived from bone marrow
monocyte lineage (4). Most tissue-resident are embryonic in origin while brain microglia,
dermal, intestinal macrophages and those recruited in inflammation arise from blood
monocytes. Pulmonary alveolar and interstitial macrophages originate from yolk sac,
though the latter can also be recruited (5-12).

Human alveolar macrophages are identified by the presence of sialoadhesin CD169,
scavenger MARCO and interstitial macrophages by CD36, CX3CR1; both share the
antigens HLA-DR, CD11b, CDl1l¢, CD 14°¥, CD16" and mannose receptor CD206. In
resting conditions, the renewal of cells is dependent on CSFR-1, MCSF and IL-34 (13).
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Macrophages exhibit TLRs, C-type lectin, dectin and NOD-like
receptors on their surface (14). Alveolar macrophages are chiefly
concerned with phagocytosis while interstitial macrophages are
primarily involved in tissue homeostasis and immune regulation.
Endogenous or exogenous signals such as apoptotic cells or
microorganisms/irritants lead to recruitment of bone marrow
derived monocytes to the lungs (13). Upon recognition of such
triggers by surface receptors, macrophages engulf the particles
incorporating it into phagolysome under influence of PI3K/Akt
and mTOR pathways respectively, leading to its digestion (15).

Similarly, the dysfunctional cytoplasmic organelles are cleared
through autophagy. Efferocytosis is accomplished through
scavenger receptors and MERTK (13-16). This effective clearance
of damaged and apoptotic cells is necessary to avoid exposure of
autoantigens and thus development of autoimmunity. Concurrently
there is release inflammatory cytokines (TNF-a, IL-1, -6, -12, -18,
-23) and chemokines (CXCL-1, CXCL-2) that recruit inflammatory
cells and upregulate MHC-I expression on surrounding tissue cells
thereby promoting autoantigens presentation to T-cells. They also
exhibit CD86 and MHC II molecules to present antigens to T-
lymphocytes thereby linking innate and acquired immunity. The
macrophage produced degrade extracellular matrix releasing
sequestered vascular endothelial growth factor promoting
angiogenesis further amplifying inflammation (17, 18) (Figure 1).

With ongoing inflammation, there is activation of the
profibrotic M2 phenotype to accomplish tissue healing and
restore homeostasis (1, 2, 19). These cells produce anti-
inflammatory cytokines such as IL-10 and TGF-B. The
inflammatory cytokines IL-6 and IL-23 along with TGEF-
promote Ty, differentiation of T-cells that play a crucial role in
the pathogenesis autoimmune inflammation (20-22). Production of
TGF-P is associated with increased fibroblast differentiation and

Abbreviations: CD, Cluster of Differentiation; CSF, Colony Stimulating Factor;
DAMP, Damage Associated Molecular Patterns; DM, Dermatomyositis; EC,
Extra Cellular; FIZZ, Found in Inflammatory Zone; HIF, Hypoxia Inducible
Factor; HLA, Human Leukocyte Antigen; ILs, Interleukins; iNOS, inducible
Nitric Oxide Synthase; IRFs, Interferon Regulatory Factors; JAK/STAT, Janus
Kinase-Signal Transducer and Activator of Transcription; MCSF, Macrophage
Colony Stimulating Factor; MCTD, Mixed Connective Tissue Disease; MARCO,
Macrophage Receptor with Collagenous structure; MERTK, MER proto-
oncogene tyrosine kinase; MHC, Major Histocompatibitlity Complex; MMPs,
Matrix Metalloproteinases; mTOR, Mechanistic Target of Rapamycin; MyD88,
Myeloid Differentiation response 88; NOD, Nucleotide-binding and
Oligomerization Domain; PAMP, Pathogen Associated Molecular Patterns;
PDL, Programmed Death Ligand; PI3K/Akt, Phosphoinositide 3-kinase/protein
kinase B; PIAS, Protein inhibtors of activated STATS; PM, Polymyositis; PPAR,
Peroxisome Proliferator-Activated Receptor; PTPs, Protein tyrosine
phosphatases; RA-ILD, Rheumatoid Arthritis Interstitial Lung Disease; Sart-1,
splicoeosome associated factor-1; SOD, Superoxide Dismutase; SLE, Systemic
Lupus Erythematosis; SSc, Systemic Sclerosis; TGF, Transforming Growth Factor;
TLRs, Toll like receptors; TNF, Tumor Necrosis Factor; TRAM, Tissue Resident
Alveolar Macrophages; TRIF, TIR-domain-containing adapter-inducing
interferon-f; Trgg, T-regulatory cell; VEGF, Vascular Endothelial Growth Factor.
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fibrosis that plays an important role in development of ILD
(23) (Figure 1).

Macrophages also carry out key metabolic roles. Ml
macrophages convert arginine to nitric oxide via iNOS,
promoting inflammation, while M2 macrophages turn arginine
into proline and polyamines, aiding tissue repair (24). They also
respond differently to hypoxia: M1 cells favor glycolysis, causing
succinate accumulation, fatty acid synthesis, and inflammation
through HIF-1a/IL-1B activation; M2 cells rely on oxidative
phosphorylation, enhancing PDL-1 expression and Tgrgg
differentiation while reducing IL-1f (24, 25). M2 macrophages
also perform fatty acid oxidation, relevant in lipid-driven diseases
like lupus, rheumatoid arthritis, and psoriasis.

Additionally, macrophages regulate iron metabolism by
phagocytosing senescent RBCs. M1 cells retain iron promoting
bacteriostasis, whereas M2 cells release it to support proliferation
and matrix remodeling. High glutathione promotes M2
polarization, while low glutathione favors M1 activation for
parasite defense (26-28).

Pathways in macrophage activation
and polarisation

Macrophage phenotypes have different gene expression,
receptor and chemokine profile serving as markers for early
identification. The M1 macrophages are activated by GM-CSF,
Th-1 cytokines such as TNF-o, IFN-vy, IL-1, bacterial
lipopolysaccharide, PAMPs and DAMPS. This triggers JAK/
STAT1, nuclear factor kappa-f and IRF pathways resulting in
expression of iNOS, MHC-II and SOCs-1 and proinflammatory
cytokines such as IL-1,6,12, TNF-o and chemokines (3, 13, 18,
29) (Figure 1).

The anti-inflammatory M2 phenotype can be studied in four
subgroups (2a, 2b, 2¢, 2d) as studied in vitro. M2a cells play an
important role in lung fibrosis. Triggered by Th2 cytokines (IL-4,
IL-13) and M-CSF, they express innate scavenger receptor CD206,
CD163, proteins like TGF-B, FIZZ1, arginasel and chitinase-3
promoting fibroblast activation and CCL18 promoting collagen
deposition. Insulin like growth factor-1 is also released that
prevents myofibroblast apoptosis. M2b, stimulated by TLR and
ILIR ligands, performs immunoregulatory function by producing
high level of anti-inflammatory cytokine IL-10; along with
proinflammatory cytokines such as IL-1fB, IL-6, TNF-0, and low
IL-12—making it the only M2 subtype to produce both anti- and
pro-inflammatory cytokines. M2c, induced by TGF-f, IL-10 and
glucocorticoids, is responsible for efferocytosis. M2d subtype is
triggered by TLR, adenosine A2AR ligands and IL-6 and induces
angiogenesis by promoting VEGF production (18, 30).

The M2 subtypes gene expression is controlled by the JAK1/
JAK3 signalling pathways via STAT-3 activation which induces
expression of anti-inflammatory genes. The STAT-3 pathway also
cross talks with other key pathways including NF-kB, PI3K/AKkt,
Notch, Hedgehog, Wnt signalling and MAPK pathway. This
pathway has negative regulators such as SOCs, PIAS and PTPs
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that are being explored for therapeutic use (30-32). Additionally,
hydrogen peroxide generation by Cu/Zn superoxide dismutase
leads to STAT-6 activation that triggers PPAR v and &
transcription that promote fatty acid oxidation, mitochondrial
biosynthesis and arginase-1 transcription respectively, hence,
sustaining M2 phenotype (33, 34). PI3K/Akt, specific subtypes of
interferon regulatory factors (IRFs) also modulate polarisation (35-
37). Additionally, under hypoxia, HIF-10 promotes the production
of profibrotic factors by upregulation of adenosine A2B receptor on
M2 macrophages (3, 38).

Epigenetic regulation of polarisation also occurs as histone
acetylation and methylation promote expression of fibrotic genes
like IL1IRA, MMP9, SPP1, CHI3L1, MARCK5 and PLA2G7
(39, 40).

There is increased recognition that a clear M1 and M2
differentiation does not exist in vivo rather there is a continuum
of phenotypes. Single cell RNA sequence study of the healthy and
fibrotic lung revealed several stages including monocytes (CD14
+CD206™¢°CD68™#"°), intermittent transitional macrophages
(CD14+ CD206™#'°CD68™ 4Py and alveolar macrophages
(CD14™#"° CD206™MCDEg™M M) PDGE-AA+ transitional and
SPP™ monocyte derived macrophages have been identified in
fibrotic lungs. PDGF-AA promotes fibroblast proliferation and
migration while osteopontin (SPP) promotes ECM deposition
(41-43).

Macrophages in autoimmune ILDs

Autoimmune disorders are characterized by formation of
antibodies against self-antigens and dysregulated innate immunity.
Although the exact mechanisms have not been elucidated in
pathogenesis of autoimmune ILDs, macrophages being the chief cells
of innate immunity, are involved in exaggerated inflammatory
response, defective efferocytosis, presenting self antigens, and
releasing profibrotic cytokines and chemokines.

Blood transcriptomic studies of fibrotic ILD patients have
revealed overexpression of CD14" monocytes that predict disease
severity as well as mortality. The lineage of alveolar macrophages
(MoAMs) is crucial as evidence shows their deletion markedly
reduces the severity of bleomycin induced lung fibrosis in mice
models while deletion of tissue resident macrophage has no such
impact (44, 45).

General pathogenesis of autoimmune disorders is depicted in
Figure 2. Key pathways of CTDs with high ILD prevalence are
specified here.

The prevalence of ILD in rheumatoid arthritis patients is about
11% (46). In patients with RA-ILD, high peripheral monocyte count
is associated with increased mortality (47, 48). The gene expression
of these cells shows increased M1 polarisation in transcriptomics
studies. There is upregulation of Dectin-1, IL-27, SOCs, IRF7 and
JAK/STAT pathways. Epigenetically, glycotransferase guanylate
binding protein 5 is overexpressed that promotes IFN-y induced
M1 typing (49-58). The enzyme peptidylarginine deiminases which
mediates citrullination is regulated by PI3K/Akt signalling.
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Interestingly, this pathway is inhibited by syndecan-2 (SDC-2) an
M2-associated CD148 ligand with antifibrotic effect. Also, in
alveolar epithelium SDC-2 promotes caveolin mediated TGF-3
receptor 1 degradation thereby preventing TGF-B mediated
apoptosis (59-61).

ILD can be seen in roughly half the patients with systemic
sclerosis (46). RNA sequencing in lung fibrosis mice models have
demonstrated markedly increased M2 population (62). IL-4,13 and
10 promote M2 polarisation via STAT3 pathway activation.
Additionally, CpG-binding domain 2 and MMP28 are
significantly upregulated in SSc that promote PI3K/Akt signalling
for M2 differentiation. Redox enzymes such as Sart-1 and Cu/Zn-
SOD promote M2 phenotype by enhancing STAT-6 signalling
(63-67).

Inflammatory myopathies have a high prevalence of ILDs
ranging between 50% to 90% (68). This group is notorious for
rapidly progressive ILDs and thus require urgent measures to
combat inflammation and fibrosis (46, 69). Soluble CD206, a
marker for M2 macrophages is highly elevated in patients of
dermatomyositis ILD (69). Additionally, there is increased
expression of IFN-y and TNF- o suggestive of increased Ml
polarisation early on in the disease (70-72). Ergo, there is
possible involvement of different subtypes at different stages of
the disease.

Potential targets

The following aspects of macrophage physiology may be
targeted to prevent pulmonary fibrosis in autoimmune disorders.

i. Inflammatory cytokines: Methyl palmitate is a promising
drug that inhibits macrophage activation, reduces TNF-o.
level and reduces fibrosis (73, 74). Anti-IL-6 Tocilizumab
has been demonstrated to preserve lung function in
patients with systemic sclerosis (75). IL-27 inhibitors are
currently are undergoing trial for cancer immunotherapy
and may be utilised for ILD (50).

ii. Recruitment: Nintedanib is an existing triple kinase
inhibitor that has inhibitory action on CSF-1R as well
and blocks M2 polarisation (76).

iii. Signalling pathways: Tacrolimus, Ruxolitinib inhibit the
JAK/STAT pathways supressing the profibrotic M2
pathway (63, 65, 75). JAK inhibitor Tofacitinib has
demonstrated positive results in IIM-ILD (77). Akt-1
pathway promotes ROS and TGF-fB. Its deletion is
associated with apoptosis of alveolar macrophages and
prevention of lung fibrosis. Clevudine is a purine analog
that can block Akt signalling (78). Syndecan is another
potential agent inhibiting Akt pathway with demonstrated
antifibrotic effect in human lung homogenates (59, 60).

iv. Fibroblast activation: Traditional Chinese medicine like
Schisandra chinensis and Resveratrol have anti-TGF-3
activity and hold excellent potential (79, 80). Pirfenidone
has anti-TGF-B1 action and prevents M2 polarisation
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Schematic diagram showing macrophage origin, differentiation, key surface markers, signalling pathways, products released and respective functions

of M1 and M2 macrophages.

(81). PRI-724 reduces TGF-B gene expression by v. Macrophage apoptosis: BCL-2 inhibitors promote
inhibiting B catenin signalling thus inhibition collagen apoptosis and have demonstrated resolution of fibrosis
deposition (82). Niclosamide, an antiparasitic drug shows in mice (88).

promise in inhibiting Wnt/p catenin and TGF-f pathways

(83). Another potential target for inhibition is S100A4, a

M2 macrophage produced calcium binding protein

involved in fibroblast proliferation (84). Fresolimumab, Discussion

anti-TGF antibody has been beneficial in SSc (85).

Microcystin-leucine arginine is another agent that The first step in the development of lung fibrosis in most
prevents epithelial to mesenchymal transition (86). autoimmune diseases is damage of alveolar epithelium and
Imatinib loaded gold particles have been shown to  inflammation followed by continuous TGF-f signalling resulting in
inhibit macrophage and fibroblast activation (87). epithelial to mesenchymal transformation (87). Macrophages are
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Role of macrophages in pathogenesis of autoimmune interstitial lung diseases. TRAMs play a limited role in initial inflammation and are mostly
overtaken by MoAMs that convert into profibrotic macrophages. Failed efferocytosis leads to development of autoantibodies against intranuclear and
antra cytoplasmic antigens that further perpetuates inflammation and dysregulated fibrosis.

involved in pathogenesis right from excessive monocyte recruitment,
MHC-T upregulation, T-lymphocytes activation, Ty, differentiation,
impaired autophagy and apoptosis to activation of profibrotic
pathways. These are highly plastic cells with potential to switch from
one phenotype to another at different developmental stage of the
disease process depending on the stimulus. Exaggerated response at
any stage can contribute to chronic disease. The bivalent macrophage
classification does not justify their heterogenous genetic and functional
spectrum. With advent of scRNA sequencing transcriptomics,
macrophages have been genetically characterised in fibrotic ILDs,
their lineage traced to blood monocytes and prognostic markers
identified. More importantly, the high risk genes have been identified
from peripheral blood monocytes also. Similarly, genetic studies in
autoimmune diseases can help identify the high risk biomarkers and
better understanding of pathogenesis.

Several immunomodulatory and antifibrotic drugs are under
study. Rather than upstream targeting like CSFR-1 that poses risks
of widespread immune dysregulation, specific signalling pathways
may be halted. The signalling pathways have complex interactions
and different isoforms of molecules perform different actions thus

Frontiers in Immunology

inhibition of complimenting pathways simultaneously may yield
better results in terms of fibrosis containment (63, 65, 75, 76). JAK/
STAT kinase inhibitors not only prevent pulmonary fibrosis but
also fibrosis in other organs expanding benefits (83). Anti-TGF-f3
agents as well as negative regulators of profibrogenic pathways are
already under study (79-83). Targeting autophagy is a promising
area for drug development to regulate the tissue microenvironment
(89). Concomitant impact of metabolic and oxidative state needs to
be studied in further detail to develop therapy directed at lipid
mediators such as prostaglandins (24-28, 38).

Our knowledge has only recently grown in understanding the
diverse landscape of macrophages. As MoAMs are the culprit cells
responsible for promoting lung fibrosis, genetic/epigenetic
modulation holds promise for precise targeting while sparing the
homeostatic function of the resident macrophages. Novel agents
targeting profibrotic macrophage are still in experimental stage.
Application of scRNA sequencing to lung lavage/tissue/blood
samples of different autoimmune disorders holds great promise
for improving the understanding, prevention and better
management of lung fibrosis.
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