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Objective: Statins are commonly used for cardiovascular diseases and recent

studies have supported their anti-cancer role in numerous human malignancies.

This study aims to investigate their prognostic impact in lung cancer patients

receiving immune checkpoint inhibitors (ICIs).

Methods: A retrospective analysis was performed based on the clinical data from

235 lung cancer patients who received ICI therapy between 2019 and 2024 in

three hospitals. The correlation of statin use with overall survival (OS) or

progression-free survival (PFS) was analyzed. Then, a comprehensive

bioinformatics analysis was used to identify prognostic target genes of statins

and investigate their correlation with immune infiltration, followed by validation

in an independent cohort and cellular experiments.

Results: In the whole cohort, 80 patients (34.0%) received statins. The statin users

had a significantly better OS and PFS than the non-statin users. Statin use was an

independent favorable prognostic factor for ICI-treated lung cancer patients.

Transcription factor RAR-related orphan receptor alpha (RORA) was identified as

a favorable prognostic target gene of statins. RORA was found to be

downregulated in lung cancer tissues and correlated with infiltration of some

immune cells. In the validation cohort, RORA expression was positively

correlated with CD8+ T cell infiltration in lung cancer tissues, and improved

prognosis in lung cancer patients receiving ICIs. Atorvastatin treatment increased

RORA expression and RORA knockdown partly antagonized the inhibitory role of

Atorvastatin on the malignant characteristics of lung cancer cells in vitro.
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Conclusion: Statin use was significantly correlated with improved prognosis in

lung cancer patients receiving ICIs. Statins may enhance ICI efficacy partly

through RORA. Due to study limitations, the actual role of statins and their

target genes in anti-cancer immunity needs further investigations.
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1 Introduction

Lung cancer ranks the first in the incidence and mortality

among all the human malignancies worldwide (1). Despite great

advances in screening and targeted therapy, the overall five-year

survival rate of lung cancer is low, ranging from 19.7% to 32.9% (2).

The introduction of immunotherapy has dramatically extended the

overall survival (OS) of patients with unresectable or metastatic

disease, with its representative drug known as immune checkpoint

inhibitors (ICIs) (3). The pharmacological mechanism of ICIs is

inhibition of Cytotoxic T-lymphocyte-associated protein 4 (CTLA-

4) or Programmed cell death protein 1 (PD-1) or its ligand (PD-L1)

to enhance the anti-cancer function of T cells. The actual efficacy of

ICIs is affected by various inherent factors such as microsatellite

instability status, PD-L1 expression, tumor mutational burden and

host microbiome (4–6). Previously, our team has found some

concomitant medications are able to enhance or diminish ICI

efficacy such as antibiotics, proton pump inhibitors and opioids

(7–9). Since these medications are inevitably used in most cancer

patients, a further understanding about their specific roles in cancer

immunotherapy is crucial for developing individualized anti-

cancer strategies.

Statins, as 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-

Co-A) reductase inhibitors, are commonly used drugs for

cardiovascular diseases through reducing cholesterol (10).

Emerging studies have suggested administration of statins may

also act as an effective adjuvant anticancer therapy. For instance,

ovarian cancer patients who received niraparib (a Poly (ADP-

ribose) polymerase inhibitor) and statins had an improved

progression free survival (PFS) as compared with those who only

used niraparib (11). Statin use is also correlated with improved

outcome in patients with esophageal squamous cell carcinoma who

received concurrent chemoradiotherapy (12). Recent mechanism

investigations have revealed statin can inhibit the PD-L1 expression

in cancer cells, implying its potential in activating anti-cancer

immunity (13, 14). In a retrospective work based on SEER-

Medicare database, statin use was associated with reduced cancer-

specific mortality in non-small cell lung cancer (NSCLC) patients

who received ICI therapy (15). In patients with advanced NSCLC

who received PD-1 inhibitors, statin use was associated with

improved objective response rate (ORR) and PFS instead of OS

(16). In contrast, another study demonstrated statin use was
02
associated with prolonged OS instead of PFS in NSCLC patients

receiving anti-PD-1 monotherapy (17). In addition, there are

several studies reporting negative results (18, 19). Therefore, the

prognostic impact of statin use in ICI-treated patients with

lung cancer remains controversial, suggesting the necessity of

further investigations.

In this study, a multicenter retrospective cohort enrolling 235

patients was utilized to clarify the prognostic impact of statin use.

Then, a bioinformatics method was used to identify statin target

genes (STGs) that were potentially correlated with clinical outcome

and immune infiltration, followed by clinical and cellular

validations. This study provides novel insights into the role of

statins in cancer immunotherapy, contributing to more precise

management of concomitant medications in clinical practice.
2 Materials and methods

2.1 Patient information

The flow chart of patient recruitment was shown in Figure 1.

Between January 2019 and November 2024, 306 patients who

received anti-therapies at Department of Oncology, the Affiliated

Hospital of Yangzhou University (n=206), Nothern Jiangsu People’s

Hospital Affiliated Yangzhou University (n=58) and Baoying

Traditional Chinese Medicine Hospital (n=42) were initially

included. The inclusion criteria were as follows: 1) patients aged

over 18; 2) pathologically diagnosed as lung cancer; 3) patients

receiving ICIs or combined with other anti-cancer therapies

including chemotherapy, radiotherapy, and targeted therapy. The

exclusion criteria were as follows: 1) multiple existing primary

tumors; 2) incomplete medical records; 3) data missing in the

follow-up; 4) insufficient ICI therapy (less than two cycles); 5)

hyperprogression. Hyperprogression was defined as Evaluation

Criteria in Solid Tumors (RECIST) version 1.1 progressive disease

at the first computed tomography (CT) scan during ICI therapy and

an absolute increase in the tumor growth rate exceeding 50% per

month (20). As a result, a total of 235 patients were finally included.

This study was approved by the local ethics committee (No. 2022-

YKL11-class 05). The informed consents were acquired from

patients for using their tissue samples and medical information in

scientific researches.
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2.2 Therapeutic regimens and oncology
evaluation

For ICI therapy, the following drugs were used: sintilimab (n=84),

tirelizumab (n=60), camrelizumab (n=29), pembrolizumab (n=13),

durvalumab (n=12), serplulimab (n=11), toripalimab (n=11),

atezolizumab (n=8), nivolumab (n=4), adebrelimab (n=2) and

envafolimab (n=1). The management of drug toxicities was carried

out according to National Comprehensive Cancer Network (NCCN)

guidelines (21). Corticosteroids could be used for treating most high-

grade toxicities and permanent discontinuation of ICI drugs was

suggested in case of severe toxicities. For monitoring drug toxicities,

patients received physical examination and laboratory detection every
Frontiers in Immunology 03
two or three weeks. In case of pulmonary or cardiovascular toxicity,

CT or ultrasound examination are recommended. For chemotherapy,

the following drugs were used: platinum (n=175), etoposide (n=55),

paclitaxel (n=48), pemetrexed (n=46), nab-paclitaxel (n=37),

docetaxel (n=7) and gemcitabine (n=5). In case that severe

toxicities were observed, the drug dose were reduced by 25-50% or

another regimen was recommended. For targeted therapy, the

following drugs were used: bevacizumab (n=14), anlotinib (n=11)

and apatinib (n=2). A total of 22 patients received radiotherapy.

Chemotherapy combined with immunotherapy was the most

commonly used, the representative chemotherapeutic agents were

pemetrexed (500 mg/m2) plus cisplatin (75 mg/m2) or carboplatin

(area under the curve=5 mg/mL/min) once every 3 weeks.
FIGURE 1

Flowchart of patient recruitment in the retrospective study.
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The therapy response was evaluated every two or three cycles,

based on serum tumor biomarkers and radiological examination. The

RECIST version 1.1 was used to determine Complete Response (CR),

Partial Response (PR), Progressive Disease (PD) and Stable Disease

(SD). The clinical outcome was determined using OS and PFS. The

OS was defined as the period from ICI initiation to death from any

cause, while PFS was defined as the period from ICI initiation to PD.
2.3 Identification of statin target genes in
online databases

The STGs were obtained from the DrugBank (https://

go.drugbank.com) (22), Comparative Toxicogenomics Database

(https://ctdbase.org/) (23), Swiss Target Prediction (http://

www.swisstargetprediction.ch/) (24) and TargetNet (http://

targetnet.scbdd.com/calcnet/index/) (25) databases.
2.4 Prognostic analysis of statin target
genes in online databases

The transcriptome data of Lung Adenocarcinoma (LUAD) and

Lung Squamous Cell Carcinoma (LUSC) from The Cancer Genome

Atlas (TCGA, https://portal.gdc.cancer.gov/v1/) database were

downloaded. The favorable prognostic genes were identified using

the univariate cox regression method with the following inclusion

criteria: HR<1 and p<0.05. Then, the shared genes between the

favorable prognostic genes and STGs were identified and their

prognostic significance was validated using the Kaplan-Meier

survival model (p<0.01). The associations between the identified

genes and clinical features were determined using UALCAN

database (https://ualcan.path.uab.edu/index.html) (26).
2.5 Immune infiltration analysis

For quantifying immune cell infiltration, the following

algorithms were used: EPIC, MCP-COUNTER, TIMER, XCELL,

QUANTISEQ, CIBERSORT and CIBERSORT-ABS. The immune

subtypes were classified as follows: C1 (Wound healing), C2 (IFN-

gamma dominant), C3 (Inflammation), C4 (lymphocyte depletion),

C5 (Immunologically Quiet), and C6 (TGF-beta dominant). The

tumor immune micro-environment cell composition database

(TIMEDB) was used to investigate the correlation of STGs with

immune cells (https://timedb.deepomics.org/) and the details were

provided in Supplementary Table S1 (27). For further confirming

the correlation, the cellular distribution of STGs were analyzed

using single-cell sequencing data from TISCH database (http://

tisch.comp-genomics.org/home/).
2.6 Immunohistochemical staining

The tumor and adjacent normal tissues were collected from 42

NSCLC patients who received ICI-based therapy at Department of
Frontiers in Immunology 04
Oncology, the Affiliated Hospital of Yangzhou University. The

paraffin embedded tissue samples were cut into 4mm-thick

sections, then dewaxed using xylene and rehydrated using

gradient alcohol. After antigen retrieval and blocking endogenous

peroxidase activity, the sections were incubated with the primary

antibody against RAR-related orphan receptor alpha (RORA)

(Proteintech, USA, 1:200) or CD8 (Cell Signaling Technology,

USA, 1:1000) overnight. The sections were then incubated with

the secondary antibody (Cell Signaling Technology, 1:1000) for 30

min and staining was visualized using Diaminobenzidine Kit

(Thermo Fisher Scientific, USA). For staining assessment for

RORA expression, the scoring system was calculated based on

staining Intensity (SI) and Percentage of Positive stained cells

(PP). SI was classified as follows: negative (score 0), weak

(score 1), moderate (score 2) and strong (score 3). PP was

classified as follows: ≤5% (score 0), 6-25% (score 1), 26-50%

(score 2), 51-75% (score 3) and ≥76% (score 4). A final score was

calculated by multiplying the scores of SI and PP. High RORA

expression was defined as a final score more than 6. For staining

assessment for CD8 expression, more than 30 positively stained

cells per field (×400) in the tumor stroma was defined as CD8+

T cell rich tumor tissues, while the opposite case was defined as

CD8+ T cell deficient tumor tissues.
2.7 Cell culture, plasmid construction and
lentiviral packaging

A549 cells were obtained from the Type Culture Collection of the

Chinese Academy of Sciences (Shanghai, China) and were cultured in

complete F-12K medium (Procell, USA) supplemented with 10%

fetal bovine serum (FBS) (Thermo Fisher Scientific), 1% L-alanyl-L-

glutamine and 1% penicillin/streptomycin. The cells were maintained

at 37°C in a humidified incubator with 5% CO2.
2.8 RNA interference and plasmid
construction

The sequences for RORA knockdown (KD) and negative

control (NC) were as follows: KD: (Forward: 5’-GCUUCUA

CCUGGACAUACA-3’, Reverse: 5’-UGUAUGUCCAGGUA

GAAGC-3’); NC: (Forward: 5’-UUCUCCGAACGU GUCACGU-

3’, Reverse: 5’-ACGUGACACGUUCGGAGAA-3’). The plasmid

construction, lentiviral packaging and transfection was performed

according to our previous study (28).
2.9 Western blot analysis

Total protein from A549 cells was extracted using cell lysis

buffer (Servicebio, China). Equal amounts of protein were

separated by 10% SDS–polyacrylamide gel electrophoresis and

transferred onto a nitrocellulose membrane. The membrane was

blocked at room temperature for 30 min, followed by
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incubation with a primary antibody against RORA (Proteintech,

1:1000) at 4°C overnight. Then, the membrane was incubated with

horseradish peroxidase-conjugated goat anti-rabbit IgG secondary

antibody (Beyotime, China, 1:1000) at room temperature for 1h.

Finally, the membrane was visualized using an enhanced

chemiluminescence detection kit (Beyotime).
2.10 Cell counting kit-8 assay

A549 cells were seeded in a 96-well plate and incubated for 24

hours. The cells were then treated with different concentrations of

Atorvastatin (MedChemExpress, USA) and incubated for 24, 48, 72,

or 96 hours. After washing with PBS, 10 µL of CCK-8 solution

(Beyotime) was added. After 1h incubation, absorbance at 450 nm

was measured using a microplate reader.
2.11 Colony formation assay

A549 cells were plated into six-well culture dishes and

maintained under humidified conditions at 37°C with 5% CO2 for

two weeks. After incubation, the colonies were fixed in 4%

paraformaldehyde for 20 minutes, followed by staining with

crystal violet solution (Beyotime) for 20 minutes and counted.
2.12 Invasion and migration assay

The invasive and migratory capabilities of A549 cells were

evaluated using a transwell chamber assay. Briefly, A549 cells

were seeded into the upper chamber with serum-free medium,

with the lower chamber filled with complete medium. After 24h

incubation, the cells were fixed with paraformaldehyde (Beyotime),

stained with crystal violet and counted under a microscope. For the

invasion assay, a matrix gel was added to the upper chamber before

the experiment.
2.13 Statistical analysis

The statistical analysis was performed using SPSS software

(version 25.0), GraphPad prism (version 8.0) and R project

(version 4.3.0). The clinical correlation analysis was performed

using the chi-square test. The survival curves were plotted using

the Kaplan-Meier model and the survival difference was

compared using the log-rank test. The factors affecting OS or PFS

were identified using the univariate and multivariate analysis

based on cox proportional hazards regression model. Comparisons

between two groups were evaluated using t-test, while differences

among more than two groups were assessed by one-way analysis

of variance (ANOVA). Statistical significance was defined as a

p-value < 0.05.
Frontiers in Immunology 05
3 Results

3.1 General description of patient
characteristics

The baseline clinical characteristics of included patients were

shown in Table 1. 202 patients (86.0%) were males. The median age

at initial diagnose was 69 years, ranging from 48 to 88 years. 199

patients (84.7%) were pathologically diagnosed as NSCLC, while the

rest (15.3%) were diagnosed as small cell lung cancer (SCLC). 36

patients (15.3%) have previously received surgical treatment. 123

patients (52.3%) had a history of smoking. 216 patients (91.9%)

received ICI drugs combined other anti-therapies, while the rest

(8.1%) received ICI monotherapy. There were 13 patients (5.5%)

with EGFR mutation site, 40 patients (17.0%) with other mutation

sites, and 182 patients (77.4%) without sequencing information. There

were 64 patients (27.2%) with negative PD-L1 expression, 94 patients

(40.0%) with positive PD-L1 expression, and 77 cases (32.8%) without

information about PD-L1 expression. 80 patients (34.0%) received

statins, and the most commonly used drug type was Rosuvastatin

(n=58), followed by Atorvastatin (n=12) and Simvastatin (n=10). The

correlation analysis demonstrated that statin use was significantly

correlated with coronary artery disease(p<0.001), while no significant

difference was observed in the result clinical features between the statin

users and non-statin users (all p>0.05).
3.2 Prognostic impact of statin use in lung
cancer patients receiving ICIs

In the entire cohort, the statin users had a significantly better OS

(p=0.001, Figure 2A) and PFS (p<0.001, Figure 2B) than the non-

statin users. The univariate analysis revealed smoking history,

ECOG, tumor stage and statin use were significantly correlated

with both OS and PFS (all p<0.05, Figures 2C, D). The multivariate

analysis confirmed statin use together with smoking history, ECOG

and tumor stage were independent factors affecting OS and PFS (all

p<0.05, Figures 2E, F). In terms of treatment response

(Supplementary Figure S1). After the first evaluation, the statin

users had significantly higher objective response rate (ORR) and

disease control rate (DCR) than the non-statin users.

In the subgroup analysis, the statin use was associated with

improved OS and PFS in patients aged below 70 years

(Supplementary Figures S2A, B). In contrast, among patients aged

70 years or older, the statin use was associated with improved PFS,

whereas no statistically significant difference was observed in OS

(Supplementary Figures S2C, D). Regarding smoking status, statin

use was linked to improved OS and PFS in smokers (Supplementary

Figures S3A, B). In the non-smokers, statin use was significantly

associated with improved PFS instead of OS (Supplementary

Figures S3C, D). In patients with NSCLC, the statin use was

associated with improved OS and PFS (Supplementary Figures

S4A, B), and similar results were observed in patients with SCLC
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(Supplementary Figures S4C, D). In patients with stage III, no

significant differences in outcome were observed between the statin

and non-statin group (Supplementary Figures S5A, B). In patients

with IV stage, the statin group had significantly better prognosis

than the non-statin group (Supplementary Figures S5C, D). Finally,

the use of rosuvastatin was found to associate with improved OS

and PFS (Supplementary Figures S6A, B).
3.3 Prognostic significance of selected
statin target genes in patients with lung
cancer

For clarifying the mechanisms underlying the impact of statins on

ICI drugs, we focused on STGs. As shown in Supplementary Figure

S7A, target genes of three representative statin drugs (Atorvastatin,

n=718; Rosuvastatin, n=550; Simvastatin, n=1058) were initially

obtained from four online drug databases. Then, a total of 504

shared target genes were identified (Supplementary Figure S7B) and

the details were provided in Supplementary Table S2. Meanwhile, a

total of 457 favorable prognostic genes were identified through the

univariate cox regression using the TCGA database and the details were

provided in Supplementary Table S3. As shown in Supplementary

Figure S7C, a total of 11 overlap genes were finally determined between

504 STGs and 457 favorable prognostic genes. For further confirming

the prognostic significance of these 11 genes, the Kaplan-Meier survival

model was utilized. As a result, high expression of transcription factor

RORA was found to significantly associate with better survival of

patients with lung cancer (p=0.003, Figure 3A and Supplementary

Figure S8). The expression of RORA was also found to be significantly

reduced in tumor tissues as compared with normal lung tissues from

patients with lung cancer (Figure 3B). The receiver operator

characteristic (ROC) curve analysis revealed the diagnostic area

under the curve (AUC) for distinguish tumors from normal tissues

is 0.809 (Figure 3C). In addition, the analysis based on the UALCAN

database confirmed that RORA expression was significantly reduced in

tumor tissues from lung cancer patients within TNM stage I-IV as

compared with that in normal lung tissues (Figure 3D). The cellular

assay demonstrated RORA overexpression (Supplementary Figure

S9A) significantly inhibited the proliferation (Supplementary Figure

S9B), colony formation (Supplementary Figure S9C), invasion

(Supplementary Figure S9D), and migration (Supplementary Figure

S9E) of lung cancer cells.
TABLE 1 Baseline characteristics of the entire cohort.

Clinical
features

Non-statin
(n=155)

Statin
(n=80)

P-value

Age 0.253

<70 years old 75(48.4) 45(56.3)

≥70 years old 80(51.6) 35(43.8)

Gender 0.200

Female 25(16.1) 8(10.0)

Male 130(83.9) 72(90.0)

Smoking 0.810

Never 73(47.1) 39(48.8)

Current/former 82(52.9) 41(51.3)

Pathological type 0.384

NSCLC 129(83.2) 70(87.5)

SCLC 26(16.8) 10(12.5)

Stage 0.336

III 46(29.7) 19(23.8)

IV 109(70.3) 61(76.3)

ECOG 0.051

0-1 82(52.9) 53(66.3)

≥2 73(47.1) 27(33.8)

Treatment 0.788

Monotherapy 12(7.7) 7(8.8)

Combination 143(92.3) 73(91.3)

Surgery History 0.922

No 131(84.5) 68(85.0)

Yes 24(15.5) 12(15.0)

Therapy Lines 0.500

1–2 lines 137(88.4) 73(91.3)

3th line or more 18(11.6) 7(8.8)

PD-L1 expression 0.157

Negative 48(31.0) 16(20.0)

Positive 61(39.4) 33(41.3)

NA 46(29.7) 31(38.8)

Hypertension 0.085

No 112(72.3) 49(61.3)

Yes 43(27.7) 31(38.8)

Coronary artery
disease

<0.001

No 128(82.6) 31(38.8)

Yes 27(17.4) 49(61.3)

(Continued)
TABLE 1 Continued

Clinical
features

Non-statin
(n=155)

Statin
(n=80)

P-value

Gene mutation 0.519

EGFR mutation 8(5.2) 5(6.3)

Other mutation 25(16.1) 15(18.8)

NA 122(78.7) 60(75.0)
fro
SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer; ECOG, Eastern Cooperative
Oncology Group; NA, not available.
ntiersin.org

https://doi.org/10.3389/fimmu.2025.1638677
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2025.1638677
3.4 Correlation of RORA with immune cell
infiltration

As shown in Supplementary Figure S10A, the RORA expression

was positively correlated with infiltration of numerous immune

cells such as B cells, CD4+ and CD8+ T cells. Using the TCGA
Frontiers in Immunology 07
cohort including 867 lung cancer patients, high RORA expression

was predominantly correlated with immune C1 type (Wound

Healing), followed by immune C2 type (IFN-gamma Dominant)

and immune C3 type (Inflammatory) (Supplementary Figure

S10B). For further confirming the correlation between RORA and

immune cells, two NSCLC single-cell datasets were utilized. As
FIGURE 2

Prognostic impact of statin use in lung cancer patients receiving immune checkpoint inhibitor therapy. (A, B) Kaplan-Meier curves for the correlation
of statin use with overall survival (OS) (A) and progression-free survival (PFS) (B). (C, D) Univariate analysis for OS (C) and PFS (D). (E, F) Multivariate
analysis for OS (E) and PFS (F).
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shown in Figure 4A, RORA expression was positively correlated

with NK cells in NSCLC_GSE127465 dataset and CD8+ T cells in

NSCLC_GSE131907 dataset. This result was also confirmed by gene

localization analysis in Figure 4B.
3.5 Validation of the correlation between
RORA and CD8+ T cells

Since the bioinformatics analysis has closely linked RORA

expression with CD8+ T cells, we next validated this correlation

in tissue samples from a cohort including 42 ICI-treated patients

with lung cancer and patient information was provided in

Supplementary Table S4. The expression of RORA and CD8 in

normal and tumor tissues were detected using IHC and

representative staining images were shown Figure 5A. The

positive expression of RORA were mainly detected in the cell

nucleus while that of CD8 were mainly found in the tumor

stroma. According to the evaluation criterion, 16 and 26 cases

were defined as high and low RORA expression respectively, while

13 and 29 cases defined as CD8+ T cell richness and deficiency. The

correlation analysis demonstrated that RORA expression was

positively correlated with CD8+ T cell abundance (r=0.884,

p<0.001, Figure 5B). In addition, a significant positive correlation

was also observed between statin use and CD8+T cells richness

(p=0.032). Finally, high RORA expression in tumor tissues was

found to associate with better OS (Figure 5C) and PFS (Figure 5D)

in lung cancer patients receiving ICI based therapy.
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3.6 RORA knockdown partly rescued the
inhibitory role of Atorvastatin in the
malignant characteristics of lung cancer
cells

For further confirming the correlation between statins and RORA,

we selected Atorvastatin for cellular assays. The CCK-8 assay

determined that the optimum inhibitory concentration of

Atorvastatin was 40 mM (Figure 6A). Using this concentration,

Atorvastatin treatment effectively impaired the viability of lung

cancer cells within 96h (Figure 6B). The western blot demonstrated

that Atorvastatin treatment significantly increased the protein

expression of RORA (Figure 6C). The function assays demonstrated

Atorvastatin treatment effectively inhibited the colony formation

(Figure 6D), invasion (Figure 6E), and migration (Figure 6F) of lung

cancer cells, while RORA knockdown could partly rescue this

inhibitory impact.
4 Discussion

With the rapid development of cardio-oncology, several

cardiovascular drugs such as b-blockers and statins have gained

increasing attention in cancer prevention and treatment (29). For

instance, statin use was found to effectively prevent lung cancer

developing from idiopathic pulmonary fibrosis (30). A SEER

database analysis demonstrated statin use after cancer diagnosis

was correlated with reduced cancer-specific mortality of patients
FIGURE 3

Clinical significance of RORA in NSCLC patients from online databases. (A) Kaplan-Meier curves for the correlation of RORA expression with overall
survival. (B) RORA expression in the tumor and normal lung tissues of NSCLC patients. (C) Receiver operator characteristic curve for the diagnostic
performance of RORA in distinguishing lung cancer tissues from normal tissues. (D) RORA expression in normal lung tissues and tumor tissues from
lung cancer patients within different TNM stages. *p<0.05, **p<0.01, ***p<0.001.
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with lung cancer or pancreatic cancer (31). Concurrent

chemoradiotherapy combined with statin use has been proved to

improve OS and cancer-specific survival of patients with

unresectable stage III lung squamous cell carcinoma (32). A

recent meta-analysis has suggested concomitant statin use was

associated with improved OS and PFS of cancer patients receiving

ICIs, implying its potential to enhance ICI efficacy (33). However,

in the subgroup analysis of this meta-analysis, the association was

only statistically significant in patients with renal cell carcinoma

instead of those with NSCLC or melanoma, adding complexity into

the prognostic impact of statin use. In this study, using a

multicenter retrospective cohort enrolling 235 patients with lung

cancer, we aimed to clarify the impact of statins on ICI efficacy,

which may benefit the precise management of concomitant

medications in anti-cancer immunotherapy.

In the survival analysis, the statin users were found to have a

significantly better OS and PFS than the non-statin users. In

addition, statin use was identified as an independent favorable

prognostic factor. The subgroup analysis further confirmed its

beneficial impact in patients with different clinical features. These

findings collectively suggest statin use may enhance the efficacy of

ICI therapy, which is accordance with some previous studies (13,

16, 34). In other cancers, similar results are observed. For instance,
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statin use was significantly correlated with prolonged OS and PFS in

patients with metastatic renal cell carcinoma who received

nivolumab (35). Statin use was identified as an independent

favorable predictor for objective response to ICI therapy in

patients with recurrent or metastatic head and neck cancer (36).

However, there also several studies reporting negative results (18,

19, 37). In the retrospective work, various intrinsic factors such as

patient selection, therapy strategy and other concomitant drugs

may collectively result in inconsistent findings, suggesting the

necessity of well-designed clinical trials to further validate the

actual role of statins in immunotherapy. Previous studies have

demonstrated statin users were found to have a higher risk of

immune-related adverse events (irAEs) such as anemia, arthralgia,

colitis and gastrointestinal toxicity than non-statin users (38, 39).

One putative explanation is that statins may activate cytotoxic

CD8+ T cells to directly damage healthy tissues or activate CD4+

T cells mediated pro-inflammatory signaling pathways (40). It is

reasonable that additional monitoring should be made on statin

users during ICI therapy, which may benefit the early diagnosis and

prevention of irAEs.

There are some mechanism investigations to support the role of

statins in enhancing ICI therapy. Firstly, increased cholesterol not

only directly supports tumor cell metabolism, but also impairs tumor
FIGURE 4

Correlations of RORA with immune infiltration in NSCLC patients. (A) Correlation of RORA with different immune cells at the single-cell level in the
GSE127465 and GSE131907 NSCLC cohorts. (B) Localization of RORA in different immune cells in the GSE127465 and GSE131907 NSCLC cohorts.
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antigen presentation as well as T cell proliferation and activation (41).

Statins as inhibitors of cholesterol synthesis have been proved to

shape the immune tumor microenvironment. For instance,

Simvastatin inhibits lncRNA SNHG29 level in tumors and then

inactivates YAP, resulting in decreased PD-L1 expression and

enhanced cytotoxic T lymphocyte infiltration (42). Lovastatin

represses PD-L1 expression through inactivating its transcription

factor such as NF-kB, STAT1 and STAT3, increases CD4+ and CD8+

T cells in the tumors from the mice receiving anti-PD-1 therapy (13).

Both Simvastatin and Lovastatin contributed to T cell-induced killing

of tumor cells in vitro, and enhanced response to anti-PD-1 therapy

in mice bearing mouse oral cancer cells through activating T cells

(43). However, this study also found both the drugs were able to

inhibit T cell proliferation at a high dose, implying importance of

determining their optimal doses in combination with ICIs.

Secondly, ICI drugs was commonly used in combination with

chemotherapeutic drugs, which not only directly kills tumor cells

but may also exerts a detrimental impact on immune cells and

therefore weakens the anti-cancer immune response (44). Recent

studies have found statins could improve the immune suppressive

microenvironment induced by chemotherapeutic drugs. For instance,

Lovastatin inhibited the PD-L1 expression induced by paclitaxel, and

enhance anti-cancer efficacy of chemoimmunotherapy through

promoting infiltration of CD8+ T cells (45). Simvastatin combined

with cisplatin increased the proportion of CD86+ maturated

dendritic cells and CD8+ T cells, creating a favorable immune
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microenvironment for ICI therapy (46). Finally, statin use

prevented cardiovascular irAEs through immune modulation and

endothelial protection, which benefits the overall prognosis of

patients receiving ICI therapy (47).

For further clarifying the mechanisms underlying clinical

findings, the network pharmacological method was utilized. As a

result, numerous molecular targets of statin drugs were identified

and we focused on RORA due to its downregulation in lung cancer

tissues and significant prognostic impact on patients with lung

cancer. RORA, known as a circadian clock molecule, has been

proved as a tumor suppressor in various cancers such as esophageal,

prostate and gastric cancer (48–50). In lung cancer, RORA was

downregulated in the tumor tissues from patients within early-stage

and proved to inhibit the proliferation and migration of cancer cells

(51). A mechanism investigation revealed RORA repressed

hypoxia-inducible factor 1-alpha and its downstream genes to

inhibit the malignant phenotype of lung adenocarcinoma cells

(52). In accordance with these studies, our cellular assays

demonstrated RORA overexpression dramatically inhibited the

malignant characteristics of lung cancer cells. Moreover, RORA

knockdown was found to partly antagonize the anti-cancer role of

atorvastatin in vitro. These findings strongly suggest RORA may be

a crucial target gene for statin-mediated anti-cancer effects. Our

further analysis revealed RORA expression was correlated with

infiltration of some immune cells such as B cells, CD4+ and CD8+ T

cells, implying its potential impact on anti-cancer immunity. A
FIGURE 5

Expression of RORA and its correlation with CD8+ T cells in a validation cohort. (A) Representative staining images for RORA expression and CD8+ T
cells in the tumor tissues from patients with lung cancer. (B) Correlation of RORA expression with proportion of CD8+ T cells in tumor tissues.
(C, D) Kaplan-Meier curves for the correlation of RORA expression with overall survival (C) and progression-free survival (D) of lung cancer patients
receiving immune checkpoint inhibitors.
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recent bioinformatics analysis revealed RORA expression was

correlated with infiltration of CD8+ T cells in patients with diffuse

large B cell lymphoma (53). The melanoma patients with high

RORA expression were found to have an improved prognosis after

immunotherapy, and a RORA agonist combined anti-CTLA4

therapy enhanced T-cell-mediated anti-cancer immune response

in animal experiments (54). Therefore, we speculate RORA may

enhance ICI therapy partly through promoting infiltration of CD8+

T cells. For validating the speculation, the RORA expression and

CD8+ T cell proportion were detected in the tumor tissues from

patients with lung cancer who received ICI-based therapy. As a

result, high RORA expression was significantly correlated with

better OS and PFS in ICI-treated patients. More importantly,

RORA expression and CD8+ T cell proportion were positively

correlated in tumor tissues. These findings collectively suggest

that statins enhance ICI therapy partly through their target genes,

which may contribute to infiltration of immune cells.

Despite our novel findings, there are several limitations in our

study. Firstly, the sample size of the retrospective cohort is limited.

Secondly, the types of ICI drugs vary dramatically among patients.

Thirdly, information of some crucial predictive biomarkers such

as PD-L1, TMB and gene mutation is missing in some cases.

Fourthly, statins are known to reduce blood lipid levels and
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prevent cardiovascular diseases. Actually, patients with serious

coronary artery disease or hypertension who did not use statins

may more likely to undergo non-cancerous deaths during anti-

cancer therapy, which needs to be further investigated. Finally,

despite the cellular validations, the impact of statin or RORA on

immune cells remains poorly investigated, which is hoped to

clarified based on well-designed animal experiments and single-

cell sequencing data.

In conclusion, we found that statin use was significantly

correlated with better prognosis in patients with lung cancer who

received ICI therapy. RORA as a target gene of statins was

correlated with infiltration of CD8+ T cells, and patients with

high RORA expression had a better prognosis than those with

low RORA expression after ICI therapy. These findings collectively

support the beneficial role of statins in combination with ICI drugs

in treating lung cancer.
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FIGURE 6

RORA knockdown partly rescues the inhibitory impact of Atorvastatin on the malignant characteristics of lung cancer cells. (A) Impact of gradient
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detecting the invasion (E) and migration (F) of Atorvastatin-treated lung cancer cells with or without RORA knockdown. ***p < 0.001. ns, not significant.
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SUPPLEMENTARY FIGURE 1

Comparison of therapy response between statin users and non-statin users in
the first evaluation.

SUPPLEMENTARY FIGURE 2

Prognostic impact of statin use in the subgroups stratified by age<70 years (A, B)
and age ≥70 years (C, D).

SUPPLEMENTARY FIGURE 3

Prognostic impact of statin use in the subgroups stratified by smokers (A, B)
and non-smokers (C, D).

SUPPLEMENTARY FIGURE 4

Prognostic impact of statin use in the subgroups stratified by non-small cell

lung cancer (A, B) and small cell lung cancer (C, D).

SUPPLEMENTARY FIGURE 5

Prognostic impact of statin use in the subgroups stratified by stage III (A, B)
and stage IV (C, D).

SUPPLEMENTARY FIGURE 6

Impact of statin use on the overall survival (A) and progression-free survival

(B) in the subgroups stratified by Rosuvastatin.

SUPPLEMENTARY FIGURE 7

Identification of prognostic statin target genes (STGs) in non-small cell lung

cancer (NSCLC) patients. (A) Venn plot for the numbers of target genes of
Atorvastatin, Rosuvastatin and Simvastatin in the online databases. (B) Venn
plot of shared target genes of Atorvastatin, Rosuvastatin and Simvastatin. (C)
Venn plot for identifying prognostic STGs for NSCLC using univariate cox
analysis (HR<1 and p<0.05).

SUPPLEMENTARY FIGURE 8

Kaplan-Meier curves for the correlation of other statin target genes with
overall survival in patients with lung cancer.

SUPPLEMENTARY FIGURE 9

RORA overexpression inhibits the malignant characteristics of lung cancer

cells. (A)Western blot confirming the efficacy of RORA overexpression in lung
cancer cells. (B) CCK-8 assay detecting the proliferation of lung cancer cells

with RORA overexpression. (C) Colony formation assay detecting the formed
clones of lung cancer cells with RORA overexpression. (D, E) Transwell assay

detecting the invasion (D) and migration (E) of lung cancer cells with RORA

overexpression. **p < 0.01, ***p < 0.001.

SUPPLEMENTARY FIGURE 10

Correlations of RORA with immune infiltration in non-small cell lung cancer

patients. (A) Correlations between RORA expression and tumor-infiltrating
immune cells. (B) Differences of immune subtypes between patients with

high and low RORA expression.
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