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Scalp seborrheic dermatitis
demonstrates a skewing of
Th1 activation: a proteomic
study in lesional skin
Ningning Shen, Wei Chen, Lihua Hu, Jia Huang
and Qiang Dong*

Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, Zhejiang, China
Introduction: Scalp seborrheic dermatitis (SSD) is a common, chronic inflammatory

skin disease. Its pathogenesis and immunological features have been poorly studied.

Objective: To elucidate the molecular profile of adult patients with SSD in

lesional scalps.

Methods: Using punch biopsies, we assessed 92 inflammatory biomarkers in the

lesional scalps of SSD patients (n=16) and demographically matched healthy

controls (HCs; n=12) via Olink high-throughput proteomics.

Results: We identified 16 differentially expressed proteins (DEPs) between lesional

scalps of patients with SSD and those of HCs. SSD lesional scalps demonstrated

significantly greater expressions of proteins related to T-cell/lymphocyte activation,

the cytokine storm signaling pathway and the CGAS-STING signaling pathway.

Ingenuity pathway analysis (IPA) highlighted Th1 skewing. These data suggest that

SSD is associated with Th1 skewing and the dysregulation of lipid metabolism.

Conclusion: These analyses provide a rationale for novel treatment approaches

for SSD patients, mainly those targeting Th1 pathways.
KEYWORDS
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1 Introduction

Seborrheic dermatitis (SD) is a common, chronic, and inflammatory skin disease

characterized by erythematous and scaly plaques. It typically affects skin with abundant

sebaceous glands, such as the scalp (1). The overall prevalence of scalp seborrheic dermatitis

(SSD) is 3.3%. SSD is more likely to affect young and middle-aged individuals and can

negatively influence patient quality of life; it has been demonstrated that there is a higher

impact on QoL in males than in females (2, 3). Although a variety of topical or new oral drugs

are used, treatment may be limited by efficacy and side effects. In addition, SSD is sometimes

difficult to distinguish from scalp psoriasis (SP). These clinical factors suggest that further

exploration of the molecular immunological characteristics of this disease is needed.

The pathogenesis of SSD is not entirely clear. Research has shown that SSD involves

interactions among skin flora, particularly Malassezia spp., skin surface lipids and personal
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susceptibility (3, 4). Studies in human skin/scalp biopsies with limited

assessments of biomarkers have shown abnormal expression of several

innate, T-helper (Th)1, and Th2 molecules, such as tumor necrosis

factor-a (TNF-a), interleukin (IL)-1a/IL-1b, IL-4, IL-10, and IL-12 (5, 6).

Several transcriptional analyses revealed significant upregulation of

expression of IL-23/Th17 and Th22, with some demonstrating Th1

skewing (7), and increased protein expression in the stratum corneum

(e.g., of IL-1RA, S100s, and IL-8) (8). Recently, the newOlink proteomic

platform has been used to investigate the immunological characteristics

of skin diseases. It requires only 10 µg of tissue per sample and can be

easily obtained with a 1 mm trephine with minimal trauma. Current

studies focus mainly on atopic dermatitis (AD) (9–11), alopecia areata

(12), psoriasis and hidradenitis suppurative (HS) (13–15). Most of these

studies use blood samples instead of skin samples. Olink platforms used

in skin biopsies of SSD have been poorly studied.

Therefore, we aimed to characterize SSD proteomics using the

Olink platform in lesional scalps of patients with SSD in

comparison to scalps of HCs. Our data provide a rationale for

novel treatment approaches for SSD patients.
2 Materials and methods

2.1 Patient enrollment

This study was approved by the Institutional Review Board of

the Dermatology Hospital of Zhejiang Province (Approval NO:

Dermatology Hospital of Zhejiang Province-2025 ethical review NO

02K), and written informed consent was obtained. Untreated

patients with SSD who were 18 years of age or older (n=16) and

demographically matched HCs (n=12) were enrolled in the study.

Patients were included if they had not used systemic

immunosuppressants, biological agents or phototherapy within

three months or local therapeutic drugs within one month. We

excluded patients with other inflammatory skin diseases, such as

psoriasis and eczema.
2.2 Skin sample collection

Participants were assessed and sampled at baseline. SSD lesional

punch biopsies (3 mm) were obtained from an active inflammatory

lesion. Skin tissues were placed in 5-mL Eppendorf tubes, frozen in

liquid nitrogen for 5–10 min, and stored at -80°C.
2.3 Skin protein extraction and
quantification

2.3.1 Sample lysis and protein extraction
The skin samples were processed by adding an appropriate volume

of complete weak RIPA lysis buffer (containing 50 mmol/L Tris-HCl
Abbreviations: IL, interleukin; HC, healthy control; FCH, fold change; Th, T-

helper; LS, lesional; FXR, farnesoid X receptor; IFNs, interferons; SD,

seborrheic dermatitis.
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(pH 7.4), 150 mmol/L NaCl, 1% NP-40, 0.25% sodium deoxycholate,

sodium orthovanadate, sodium fluoride, EDTA, and leupeptin) to each

sample, after which protease inhibitors were added at a 1:1000 volume

ratio to prevent degradation. One scoop (0.21 g) of stainless-steel beads

was added to each tube, and the tubes were placed in a tissue grinder.

The samples were ground at 2°C, and 60 Hz (10 s per cycle, 10 s

interval, for a total of 60 cycles) until homogenized. The homogenate

was transferred to a noncontact ultrasonic cell disruptor for treatment.

Samples were then put in a centrifuge at 12,000–15,000 × g for 15–20

min at 4°C, after which the supernatant was collected (crude skin

protein extract).

2.3.2 Determination of protein concentration
The BCA method: Standards and working detection solution

were prepared per the instructions of the BCA kit (P0012, Beyotime;

Shanghai, China). Standards and diluted crude extract were added

to a 96-well plate. The samples were incubated at 37°C for 30 min,

after which the absorbance was measured at 562 nm using a

microplate reader. A standard curve was generated from the

standard absorbance, and the sample protein concentration was

calculated by substituting the sample absorbance. These data

supported the use of sample dilution for subsequent experiments

(e.g., Olink detection).

2.3.3 Protein quantification and QC system
The samples were diluted to 1 mg/ml for Olink analysis using the

inflammation panel as previously described (9, 15–17). For detailed

experimental procedures of the Olink experiment and internal

controls of the QC system, please refer to Supplementary Table 1.
2.4 Bioinformatic analysis

Gene Ontology (GO) analysis of the selected differentially

expressed proteins (DEPs) was analyzed in the GO database.

Pathway analysis and interaction analysis were implemented by

IPA (version 24.0.1) with P < 0.05 and a Z score > 0 or < 0 (18, 19).
2.5 Statistical analysis

A Student’s t test was performed for the comparison of a pair of

groups, and a p value < 0.05 was chosen to indicate statistical

significance, according to published studies (20). The selection

criteria for the DEPs for bioinformatic analysis were a P < 0.05

and an FCH ≥1.2 (13, 20). Statistical analysis was performed using R

software (version 4.0.1).
3 Results

We enrolled 16 adult patients with SSD and 12 HCs. There were

no significant differences in age, sex, sleep duration or sleep quality

between SSD patients and HCs (Table 1). The age distribution of the

patients with SSD is shown in Supplementary Table 2. Among the
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92 markers, 60 markers were detected in the lesional scalps of SSD

patients (Supplementary Table 3). There was no significant

difference between the SSD group and the HC (Supplementary

Figure 1). Principal component analysis demonstrated that lesional

skin of SSD patients clustered separately from that of healthy

controls (Supplementary Figure 2).
3.1 The proteomic profiles of SSD patients
have increased T-cell/lymphocyte
activation

Using the criteria of |FCH|≥1.2 and p ≤ 0.05, we identified 16

DEPs in the lesional scalps of SSD patients compared with those of

HCs (Figure 1). The expressions of IL-1a and FGF-21 were

downregulated, while the other fourteen proteins were

upregulated. Notably, the expressions of Th1-related markers,

such as IL-18 and IL-18R1, were upregulated. IL-8, also known as

CXCL8, had greater expression in SSD patients compared with that

in the control group, but the difference was not statistically

significant, although the P value was close to 0.05.

GO enrichment analysis revealed that T-cell/lymphocyte

activation was significantly upregulated in lesional skin (Figure 2).

The involved DEPs were CCL19, CD6, CD244, IL-18, IL-18R1,

CASP-8, TNFSF14, PD-L1, CD5, and CD40 (Supplementary

Table 4). Additionally, the expressions of some molecules (e.g.,

IL-8, IL-12 and TNF), which have been reported to increase in

previous studies of patients with SD, were also upregulated but were

not significantly different from those in HCs. Interestingly, the

expression of IL-1a was downregulated in SSD patients, which is

inconsistent with the findings of prior research.
Frontiers in Immunology 03
3.2 The protein interaction network
revealed that DEPs were involved mainly in
the pathogen-induced cytokine storm
signaling pathway

To obtain a systematic understanding of the synergetic

networks of DEPs in SSD, we performed network analysis using

IPA (absolute [Z score] ≥0). The top biological theme in the

network was pathogen induced cytokine storm signaling pathway

(Figure 3A). The network revealed multiple proteins (IFNB1, IFNG,

IL-15, IL-1B, IL-2, IRF1, STAT1, STAT3, and TNF) involved in the

pathogenesis-induced cytokine storm signaling pathway and the

CGAS-STING signaling pathway. Our data indicate the pivotal role

of cytokine signaling in the immune response to pathogen invasion,

leading to a potentially severe inflammatory reaction known as a

cytokine storm. Further upstream regulatory factor analysis

revealed that IL-2 is the central upstream regulator (Figure 3B).
3.3 Pathway analysis highlights Th1
skewing

To examine the functional pathways of SSD proteomics, we

performed a pathway enrichment analysis using IPA (absolute Z

score ≥0) (Supplementary Figure 3). According to our data, the Th1

pathway was predicted to be activated, and the representative

proteins were CCL19, IL-18 and IL-18R1. We observed that Th2-

related cytokines, including IL-4, IL-5, IL-10, IL-10RA, and IL-13,

were rarely or not detected in SSD patients or HCs because they

were below the LOD (Supplementary Table 5). Notably, one of the

metabolism-related pathways, farnesoid X receptor (FXR)/RXR

activation, was predicted to be inhibited.
4 Discussion

In this Olink high-throughput proteomics study, we depicted

the molecular profiles of SSD patients through a minimally invasive

3 mm trephine. To our knowledge, this is the first study to describe

the immunological characteristics of patients with SSD using Olink

proteomics. We observed an increased T-cell/lymphocyte

activation, CGAS-STING signaling pathway and Pathogen

Induced Cytokine Storm Signaling Pathway activation, and

skewing of Th1 activation, which is slightly different from the

etiology of SSD described in the previous research.

SD is related to the interplay between Malassezia dysbiosis and

immune and lipid secretion, but their relationships have not yet

been elucidated (5, 21, 22). Sebocytes play a vital role in the

interplay of skin immunology and microbiology (23), notably

through proinflammatory cytokines (such as IL-1b, IL-8, and

TNF-a) in response to fatty acids and reactive oxygen species

produced by Malassezia spp (23, 24). Consistent with these

studies, our results revealed multiple DEPs involved in the

pathogenesis-induced cytokine storm signaling pathway and the

CGAS-STING signaling pathway, indicating the immune response
TABLE 1 Demographics of patients with scalp seborrheic dermatitis and
HCs.

Characteristics
Scalp seborrheic
dermatitis (n=16)

Healthy
controls
(n=12)

P
value

Age (y)

Mean (SD) 45.4(11.6) 40.8(14.4) 0.37

Range 27-60 24-68

Sex, n (%)

Male 9(56.3) 7(58.3) 1.0

Female 7(43.8) 5(41.7)

Sleep time

Mean (SD) 7.4(1.0) 7.5(0.9) 0.74

Range 6-9 6-9

Sleep Quality

Normal 8(50.0) 9(75.0) 0.25

Poor 8(50.0) 3(25.0)
Quantitative comparisons were evaluated using Student’s t tests. Analogous comparisons were
assessed with Fisher’s exact tests.
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to pathogen invasion. Benjamin Ungar et al. (7) carried out a

transcriptomic study and reported increased levels of IL-23/Th17/

Th22-related markers (such as IL-23, IL-17, IL-36, and IL-22) and

Th1-related IL-1b in in individuals with SD. Previous studies have

demonstrated that Malassezia can promote Th17 polarization and

Th1-related cytokine expression (24–26) and that there is an

association between IL-17 and SD (25, 27). In line with the above

research, our proteomics study revealed that the DEGs caused an
Frontiers in Immunology 04
increased T-cell/lymphocyte activation and were enriched mainly in

Th1 pathways; however, our data revealed a lack of Th17-related

markers (IL-17A and IL-17C) in SSD patients. Different results

might be generated by the diverse technical methods, differences

between proteins and their corresponding mRNAs (28), and diverse

sample types or sampling sites.

We identified several important Th1-related proteins (IL-18, IL-

18R1 and IL-1a) that belong to the IL-1 family. IL-18 is a
FIGURE 1

Heatmap of 16 differentially expressed proteins (DEPs) in lesional scalps of patients with SSD compared to with those of healthy controls (HCs). Each
column represents an individual patient. Abbreviations: L, lesional scalp; C, healthy controls. The intensity of the colors reflects the degree of change
in expression. The right table provides a list of the biomarkers along with their respective FCH values in SSD patients vs. HCs. *P <.05; **P <.01; ***P
<.001; ****P <.0001.
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proinflammatory cytokine that is involved primarily in epithelial

barrier repair and polarized Th1 cell and natural killer (NK) cell

immune responses (29). Upon binding to IL-18R1 and IL-18RAP

(30), it forms a complex, triggering the synthesis of inflammatory

molecules that positively regulates IL-17 production (31) and

activates the NF-kappa-B pathway (32). IL-18 and IL-18R1 were

upregulated, suggesting increased T cell/lymphocyte activation,

especially in the Th1 cell immune response. Under oily

conditions, the expression of the IL-18 gene is upregulated in the

response of the skin to Malassezia sympodialis (33). These results

suggested that IL-18 and IL-18R1 may play important roles in the

pathogenesis of SSD. Another IL-1 family member is IL-1a, which
binds to its receptor, IL-1R1, to mediate the activation of the NF-

kappa-B, MAPK, and JNK pathways (34, 35). Interestingly, the

downregulation of IL-1a and the upregulation of IL-18 were

inconsistent with prior research (5–7, 22). As we have

demonstrated in the protein–protein interaction network, these

proteins may be regulated by other molecules or their

negative feedback.

Another important finding in our study is the global absence of

Th2-related cytokines (such as IL-4, IL-4R, IL-5, IL-10, IL-10RA, TSLP
Frontiers in Immunology 05
and IL-13) in both SSD patients and healthy individuals. Apart from

the influence of technical factors (these proteins were below the LOD),

another explanation is that Th2-related cytokines were not dominant

in processes of scalp immunity in either the disease state or the

nondisease state. These results are consistent with those of an

extensive transcriptomic study (16) but inconsistent with those of

other studies indicating that Th2-related cytokines were involved in the

pathogenesis of SD (3, 27). Sparber et al. (25) also reported that Th2

cytokines (IL-5, IL-13, and TSLP) were downregulated in mice with

cutaneous M. patchy dermatitis exposure. On the other hand,

publications have reported a reaction of SD-like rashes after

dupilumab (an IL-4Ra antagonist) treatment (36, 37). Our data

suggest that these findings might be caused by further reductions in

Th2-related cytokines after blocking IL-4 and IL-13 expression. The

expressions of Th2-type cytokines and the role of Th2-type cells in SSD

have rarely been studied, and more rigorous research employing

multiple verification methods is needed.

In clinical practice, many patients with SSD experience poor

sleep. Studies have shown that insufficient sleep can cause more SD

and affect sebum secretion (38). However, our research revealed no

difference in poor sleep between SSD patients and controls,
FIGURE 2

GO enrichment analyses were performed for 16 DEPs (FCH≥ ± 1.2, P value<0.05). The dot plot displays the top 20 significantly different GO terms. A
p value <0.05 was used for biological process selection.
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although the proportion of people with poor sleep was greater in

SSD patients than in HCs (50% vs. 25%). Notably, the sleep REM

signaling pathway was inhibited. However, the NF-kB pathway was

activated in the SSD group, which is consistent with a previous

study in which the NF-kB pathway was activated after REM sleep

deprivation (39). In in vitro and murine models, Malassezia-derived

sebum metabolites can promote Th17 polarization and Th1

cytokine expression (24–26).

Furthermore, the dysregulation of lipid metabolism could be

caused by the high lipase and phospholipase activities of Malassezia

(7, 40–42). Our data revealed that one metabolism-related pathway,

farnesoid X receptor (FXR)/RXR activation, was suppressed in the

SSD group, indicating lipid regulation dysfunction. Moreover, TSLP

is a cytokine that drives the Th2 immune response, but this

phenomenon was not detected in this study. Its deficiency at

steady state can decrease the production of sebum and

antimicrobial peptides and reduce the ability to regulate

homeostatic sebum production and skin barrier function (23). In

conclusion, the causal relationship between metabolic disorders and

pathogen invasion requires further research.
4.1 Limitations of the study

(1) The sample size was relatively small. (2) Our analysis was

limited to 92 proteins. (3) There was potential for disease

misclassification. (4) This cross-sectional study characterized SSD
Frontiers in Immunology 06
only among adults. (5) GO enrichment analysis was performed for

only 16 DEPs. Hence, the associated pathways might have only a

few leading-edge proteins contributing to the pathway.
5 Conclusions

Overall, this study identified the adult SSD proteomic signature

in skin biopsies. Further longitudinal analyses are needed, and

unique profiles in patients with immunodeficiency, contributions

of Malassezia to SSD, and nonlesional scalps should be examined.

Our data suggested that SSD is characterized by increased T-cell/

lymphocyte activation, and the skewing of Th1 activation. Our

research provides new ideas for clinical treatment. The proteomic

scalp profile can be valuable for future studies requiring biomarker

monitoring and has application prospects in dermatological

diseases (for example, the differential diagnosis between

seborrheic dermatitis and scalp psoriasis) because the Olink

platform requires as little as 10 µg of tissue, which can be easily

acquired through as little as a 1 mm punch biopsy.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
FIGURE 3

Top biological themes in the network (A) and upstream regulator analysis (URA) of 16 DEPs (FC ≥ ± 1.2, P value < 0.05) (B) according to Z scores
determined using IPA (P < 0.05, Z score > 0 or < 0). IPA determines likely upstream regulators that are connected to dataset genes through a set of
direct or indirect relationships. The top potential upstream upregulator was IL-2. The green color for protein names indicates downregulation, and
red indicates upregulation. The darker the color is, the more significant the change. The relationships among molecules are represented by lines
(solid lines for direct associations and dotted lines for indirect associations).
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