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Integrative bulk and single-cell
transcriptomic analysis identifies
a migrasome-associated lncRNA
signature predictive of prognosis
and immune landscape in clear
cell renal cell carcinoma
Junlin Shen †, Chun Wang †, Mingpeng Zhang †, Bin Chen †,
Liwei Liu*, Jing Tian* and Zhiqun Shang*

Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical
University, Tianjin, China
Introduction: Clear cell renal cell carcinoma (ccRCC) is characterized by high

recurrence and metastasis rates, leading to poor prognosis. Migrasomes, a class

of organelles mediating intercellular communication, and long noncoding RNAs

(lncRNAs) both play critical roles in tumor progression; however, the prognostic

significance of migrasome-associated lncRNAs in ccRCC remains unclear.

Methods: Migrasome-associated lncRNAs were identified using The Cancer

Genome Atlas (TCGA) dataset, and a prognostic risk signature was constructed.

The associations between the model and overall survival (OS), functional

enrichment, tumor mutation burden (TMB), tumor microenvironment (TME)

characteristics, immune evasion, and drug sensitivity were evaluated. Single-

cell transcriptomic analysis was performed to determine cell type–specific

expression patterns and intercellular communication networks. Functional

roles of key lncRNAs were validated in vitro using qRT-PCR, CCK-8

proliferation assays, wound-healing assays, Transwell assays, colony formation

assays, immunofluorescence, and Western blotting.

Results: The risk signature stratified patients into high- and low-risk groups with

significantly different survival outcomes. High-risk patients exhibited elevated

TMB and enhanced immune evasion potential. Drug sensitivity analysis revealed

distinct therapeutic response profiles between the groups. Single-cell

transcriptomic analysis uncovered pronounced cellular heterogeneity and TME

characteristics associated with the prognostic signature. High-risk cells were

predominantly enriched within tumor epithelial clusters and displayed distinct

intercellular communication patterns. Knockdown of FOXD2-AS1 markedly

suppressed tumor cell proliferation and migration and reduced the expression

of migrasome marker proteins.

Discussion: This study presents a novel migrasome-associated lncRNA risk

signature with significant prognostic and therapeutic implications for ccRCC.

The signature captures distinct immune, genomic, and pharmacologic features,

and its core lncRNAs may promote tumor progression through migrasome-

mediated signaling pathways, warranting further mechanistic investigation.
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1 Introduction

Renal cell carcinoma (RCC) ranks among the most prevalent

kidney malignancies, with clear cell renal cell carcinoma (ccRCC)

representing the predominant subtype, accounting for the majority

of RCC cases (1). Despite recent advances in diagnostic and

therapeutic strategies, the prognosis of ccRCC remains dismal,

particularly in advanced disease stages, due to the high propensity

for metastasis and recurrence (2). As such, identifying effective

prognostic biomarkers and developing stratification models for risk

assessment have become urgent to tailor personalized treatments

and improve patient outcomes. Recent research has introduced

migrasomes as a newly identified class of cellular organelles

produced during cell migration (3). Migrasome formation occurs

as cells leave retraction fibers during migration, with vesicles

forming at fiber tips or intersections, requiring cell migration and

actin polymerization. These vesicles transport cytosolic contents,

facilitating intercellular communication (3). Migrasomes have been

increasingly recognized for their roles in intercellular

communication and as carriers of proteins, RNAs, and other

bioactive molecules (4). Functionally, migrasomes play key roles

in various physiological and pathological processes, including

critical signaling pathways in embryonic development and cancer

metastasis (5, 6). Recent studies have shown that highly migratory

glioblastoma cells are capable of generating migrasomes.

Additionally, migrasomes are enriched with endoplasmic

reticulum-associated proteins, and increased endoplasmic

reticulum stress has been demonstrated to promote migrasome

formation in these cells (7). In pancreatic cancer, migrasomes

enriched with CXCL5 and TGF-b1 recruit immune cells and

induce immunosuppressive, tumor-promoting phenotypes,

thereby enhancing malignancy and facilitating immune evasion

(8). In summary, migrasomes are organelles of substantial

importance in revealing mechanisms of intercellular interactions.

Recent studies emphasize their crucial regulatory roles across

various physiological activities and disease progression, offering

new insights into disease diagnosis and prognosis. The role of long

non-coding RNAs (lncRNAs), which are transcripts over 200

nucleotides in length and do not encode proteins, is increasingly

prominent in cancer biology (9). LncRNAs are involved in

transcriptional and post-transcriptional regulation as well as

epigenetic modulation of gene expression (10). These molecules

participate in critical oncogenic and tumor-suppressive pathways,

regulating cellular processes such as proliferation, apoptosis, and

migration (11). In ccRCC, several lncRNAs have been identified as

influential in cancer cell behavior, with some emerging as promising

biomarkers for diagnosis, prognosis, and treatment response (12,

13). Importantly, while several lncRNAs are involved in RCC, the
02
subset specifically associated with migrasome-related genes remains

largely unstudied. Given the essential roles of both migrasomes and

lncRNAs in cancer progression, there is an increasing interest in

understanding migrasome-associated lncRNAs as potential

mediators in ccRCC, particularly regarding their prognostic value.

In this study, we constructed a prognostic signature based on

migrasome-related lncRNAs for ccRCC. By stratifying patients into

high- and low-risk groups, this model aims to predict survival

outcomes and assist in clinical decision-making. Our findings

provide new insights into the role of migrasome-associated lncRNAs

in ccRCC progression, highlighting their significance as prognostic

biomarkers and potential targets for therapeutic intervention.
2 Methods

2.1 Acquisition of transcriptomic and
clinical data for clear cell renal cell
carcinoma from TCGA

Transcriptomic and clinical data for clear cell renal cell

carcinoma (ccRCC) were retrieved from The Cancer Genome

Atlas (TCGA) to enable an integrated analysis of gene expression

and patient characteristics. A total of 614 RNA sequencing (RNA-

seq) files from 533 cases were obtained, comprising 542 tumor

samples and 72 normal samples. Additionally, clinical data files

were available for 537 cases, resulting in 537 clinical data files. The

Genomic Data Commons (GDC) Data Portal (https://

portal.gdc.cancer.gov) was used to access these harmonized

datasets, ensuring consistency and quality control. Our use of

public databases fully complies with the relevant ethical

guidelines and regulations.
2.2 Construction of a migrasome-related
lncRNA risk prognostic signature

Data preprocessing and analysis were conducted using the

Limma package to identify lncRNAs associated with migrasome-

related genes. Correlations were filtered with an absolute correlation

coefficient > 0.4 and p-value < 0.001 to select significant lncRNAs.

Expression data for these lncRNAs were obtained from

transcriptomic data. Visualization was performed using the

“ggalluvial” package, where a Sankey diagram was constructed to

illustrate lncRNAs with significant correlations to migrasome-

related genes. The dataset was then randomly divided into a

training set and a testing set to minimize selection bias.

Consistent filtering criteria were applied throughout the survival
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analysis, and the model was validated in both datasets to enhance

the robustness and reproducibility of the results. In the training set,

univariate Cox regression analysis was conducted to identify

lncRNAs significantly associated with overall survival, with a

significance threshold of p < 0.001. These significant lncRNAs

were subsequently subjected to Lasso regression analysis for

further variable selection and to construct a Lasso regression

model. Cross-validation was performed to determine the optimal

l value, resulting in a simplified model. This approach was used to

determine the optimal regularization parameter (l), allowing us to
control model complexity and retain only the most informative

variables, thereby effectively reducing the risk of overfitting.

Based on the lncRNAs selected by Lasso, a multivariate Cox

regression model was constructed to develop a prognostic signature.

The model was further refined and optimized using the stepwise

selection method, resulting in a final prognostic signature.
2.3 Correlation analysis between
migrasome-related genes and signature
lncRNAs

To investigate the correlation between migrasome-related genes

and the lncRNAs included in the prognostic signature, we

performed a correlation analysis using gene expression data.

Expression matrices were constructed for both migrasome genes

and lncRNAs. For each gene-lncRNA pair, the Pearson correlation

coefficient and corresponding p-value were calculated, with

significance levels defined as ***p < 0.001, **p < 0.01, and *p <

0.05. Correlation values were visualized in a heatmap, with color

intensity reflecting the strength of the correlation.
2.4 Survival analysis based on migrasome-
related lncRNA signature

To assess survival outcomes based on risk stratification, we

performed Kaplan-Meier survival analyses for overall survival (OS)

and progression-free survival (PFS). For OS, survival curves were

plotted for training test, and combined all sets, using risk status (high

vs. low) as the grouping variable. PFS was evaluated using the clinical

follow-up data. Statistical significance was determined using the log-

rank test, with p-values adjusted as needed for clarity (p < 0.001).
2.5 Risk stratification analysis of signature
lncRNAs

Risk stratification plots were created to display the distribution

of risk scores, survival status, and expression heatmap for key

signature lncRNAs across the training, testing, and combined all

datasets. For each dataset, samples were ordered by increasing risk

score and divided into high- and low-risk groups based on the

median score. The risk score plot illustrates the distribution for both

groups, with a dashed line indicating the threshold between high
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and low-risk classifications. In the survival status plot, patient

survival times are shown, where red represents deceased status

and green indicates alive status. Finally, a heatmap was generated to

show the expression levels of signature lncRNAs across high- and

low-risk groups, with values scaled by row and annotated by

risk classification.
2.6 Independent prognostic analysis via
cox regression

Univariate and multivariate Cox regression analyses were

conducted to evaluate the independent prognostic value of clinical

factors and the lncRNA-based risk score. In the univariate analysis,

clinical factors such as age, grade, stage, and the lncRNA risk score

were individually assessed using Cox proportional hazards models.

Statistical significance was determined with a threshold of p < 0.05,

and significant variables were included in the multivariate Cox

regression model to control for potential confounding factors. The

analysis results include the hazard ratio (HR), 95% confidence

interval (CI), and corresponding p-value for each factor.
2.7 ROC analysis for prognostic
performance

We conducted time-dependent ROC analysis to assess the

migrasome-related lncRNA signature’s predictive accuracy at 1, 3,

and 5 years for survival. AUC values were used to quantify the

signature ’s prognostic strength. To further evaluate its

independence as a prognostic indicator, we compared the 5-year

ROC of the signature against clinical factors (age, gender, stage

and grade).
2.8 Prognostic evaluation and nomogram
analysis

To assess the prognostic performance of the lncRNA-based risk

signature, we calculated the time-dependent concordance index (C-

index) using the pec and “survcomp” R packages, and compared it

with clinical variables including age, gender, stage, and grade. Cox

models were built via the “cph” function, and C-index values were

estimated using 1,000 bootstrap iterations. A nomogram was

constructed based on multivariate Cox regression to predict 1-, 3-

, and 5-year overall survival, using the “regplot” package. The

corresponding risk scores were computed and the calibration

curves were generated with 1,000 bootstraps to evaluate

consistency between predicted and actual survival probabilities.
2.9 PCA analysis

PCA analysis was performed on four gene expression datasets to

evaluate the distribution of high- and low-risk patients. Expression
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data from each dataset (all genes, migrasome-related genes,

migrasome-related lncRNAs, and risk lncRNAs from the

prognostic signature) were loaded, filtered for low expression, and

log-transformed. Normal samples were excluded based on TCGA

sample identifiers. PCA was conducted using “prcomp” with

scaling, and risk groups were visualized with “scatterplot3d”, with

color coding to represent high- and low-risk classifications.
2.10 GO enrichment analysis and KEGG
pathway enrichment analysis of
differentially expressed genes

We performed GO enrichment analysis on differentially

expressed genes, covering biological process (BP), cellular

component (CC), and molecular function (MF) categories. Using

the “enrichGO” function in the “clusterProfiler” package, we set

significance thresholds at p < 0.05 and q < 0.05. Enrichment results

were visualized with bar and circular plots, where the bar plot

displayed the top 10 enriched GO terms in each category, and the

circular plot illustrated gene proportions and enrichment

significance across GO terms. KEGG pathway enrichment

analysis was performed on differentially expressed genes using the

“enrichKEGG” function from the “clusterProfiler” package, with p

< 0.05 and q < 0.05 as thresholds for significance. The most enriched

pathways were visualized in a bar plot, capturing key biological

functions associated with the genes, particularly those involved in

immune response, cell signaling, and tissue structural integrity.
2.11 GSEA analysis of high and low-risk
groups

To investigate the functional and pathway enrichment between

high- and low-risk groups, we performed Gene Set Enrichment

Analysis (GSEA). After processing the gene expression data and

calculating log fold changes, GSEA was conducted using KEGG

pathway terms, with enrichment results filtered at a p-value

threshold of 0.05. We visualized the top five enriched functional

terms for each risk group, revealing significant differences in enriched

functions and pathways between the high- and low-risk categories.
2.12 Acquisition of TCGA mutation data

We also downloaded TCGA mutation data through the TCGA

GDC portal. The final mutation dataset contained comprehensive

mutation information for the selected ccRCC cases, providing a solid

basis for further mutational landscape and correlation analyses.
2.13 Analysis of tumor microenvironment

Tumor microenvironment (TME) scores, including

StromalScore, ImmuneScore, and ESTIMATEScore, were
Frontiers in Immunology 04
compared between high- and low-risk groups using violin plots

with overlaid boxplots. The Wilcoxon test assessed group

differences, with significance levels displayed. Immune cell

composition was analyzed using CIBERSORT to estimate relative

abundances in high- and low-risk groups, filtering results with a p-

value threshold of <0.05. Samples were matched to risk groups, and

differences in immune composition were visualized through bar

plots for overall abundances and box plots for statistically

significant differences. To evaluate immune function differences

between high- and low-risk groups, ssGSEA was applied to the

expression matrix using curated immune-related gene sets. Low-

expressed genes were filtered out, and immune function scores were

computed for each sample. Distribution differences between risk

groups were then visualized using box plots.
2.14 Analysis of tumor mutational burden

Tumor mutational burden (TMB) was calculated to assess the

mutational landscape of clear cell renal cell carcinoma (ccRCC)

cases. TMB was defined as the total number of somatic, coding, base

substitution, and indel mutations per megabase (Mb) of the coding

genome. TMB was analyzed by examining the top 15 genes with the

highest mutation frequencies. The “oncoplot” function from the

“maftools” package was used to visualize the mutation data for each

group, displaying the gene mutation frequencies in both high-risk

and low-risk cohorts. To evaluate the prognostic impact of TMB

and its interaction with risk status, samples were categorized as high

or low TMB. Combined with risk groups, four subgroups were

created: H-TMB + high-risk, H-TMB + low-risk, L-TMB + high-

risk, and L-TMB + low-risk. Survival curves were plotted with

“ggsurvplot” from “survminer” package. TIDE scores were

extracted and analyzed to compare immune evasion potential

between high- and low-risk groups.
2.15 Drug sensitivity analysis

Drug sensitivity analysis compared response variations between

high- and low-risk groups across multiple drugs. Drug responses

were log-transformed and tested for significance using the

Wilcoxon test, with only those drugs meeting a p-value threshold

of <0.001 visualized. Sensitivity differences for each drug were

depicted through boxplots, contrasting high- and low-risk groups.
2.16 Single-cell RNA sequencing data
acquisition and processing

Single-cell RNA sequencing (scRNA-seq) data were obtained

from two publicly available GEO datasets: GSE222703 (samples

GSM6929206, GSM6929208, and GSM6929210) and GSE152938

(samples GSM4630028 and GSM4630029), comprising a total of

five primary clear cell renal cell carcinoma (ccRCC) samples. The

raw UMI count matrices in 10X format were processed using the
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“Seurat” package in R, involving standard workflows for quality

control, doublet removal, normalization, integration, and

downstream analyses. During initial quality control, cells were

filtered out if they expressed fewer than 300 genes, had fewer

than 1,000 total UMI counts, or exhibited over 10%

mitochondrial gene content. “DoubletFinder” was used to identify

and exclude potential doublets, assuming a doublet formation rate

of approximately 7.5–8.0%. After preprocessing, Seurat objects

from individual samples were merged and batch effects were

corrected using Harmony. Dimensionality reduction was then

performed by principal component analysis (PCA) followed by

UMAP embedding based on the top 20 Harmony dimensions. Cell

type annotation was carried out manually based on differentially

expressed marker genes identified using the “FindAllMarkers”

function. Clusters were annotated as CD4+ T cells, CD8+ T cells,

tumor epithelial cells, inflammatory monocytes, tumor-associated

macrophages (TAMs), natural killer (NK) cells, endothelial cells,

cycling CD8+ T cells, proximal tubular epithelial cells, mural cells,

mast cells, B cells, plasma cells, and plasmacytoid dendritic

cells (pDCs). To assess the prognostic relevance of the lncRNA

signature at the single-cell level, a risk score was calculated for each

cell using a linear combination of the normalized expression values

of the seven signature lncRNAs, weighted by their Cox regression

coefficients. Cells with non-zero scores were stratified into high-

and low-risk groups using the median value as the cutoff.

Differences in cell type composition between risk groups were

quantified and visualized using stacked bar plots. The expression

patterns of individual signature genes across cell populations were

visualized using “FeaturePlot” and “DotPlot”. To investigate

intercellular communication, we applied the “CellChat” package.

Cell–cell interaction probabilities were inferred from the

normalized expression matrix and annotated cell identities.

Enriched signaling pathways, including MHC class I, MHC class

II, complement, collagen, TNF, and VEGF were identified and

visualized using circle plots, chord diagrams, and heatmaps,

highlighting differences in communication networks associated

with risk stratification.
2.17 Cell culture and transfection

OS-RC-2 cells and 786-O, obtained from the Cell Bank of the

Chinese Academy of Sciences (China), were cultured in RPMI 1640

medium (VivaCell, China) supplemented with 10% fetal bovine

serum (FBS; ExCell Bio, China) at 37°C in a humidified incubator

with 5% CO2. Our use of these commercially available cell lines

complies with all relevant ethical regulations. Transient knockdown

of factors were achieved using small interfering RNA (siRNA)

designed and synthesized by JTSBIO Co. (China). Transfections

were performed using Lipofectamine™ 3000 reagent (Invitrogen,

USA) according to the manufacturer’s instructions. The sequence of

the siRNA used for transfection is provided in Supplementary

Table S1.
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2.18 Quantitative real-time PCR

Total RNA was extracted from cells using Trizol reagent

(Invitrogen, USA) following the manufacturer’s protocol. Reverse

transcription was performed using a reverse transcription kit

(Thermo Scientific, USA) to synthesize cDNA. Quantitative real-

time PCR (qRT-PCR) was conducted using SYBR Green PCR

Master Mix (Roche), ensuring accurate quantification of gene

expression. The primers used for qRT-PCR are listed in the

Supplementary Table S1.
2.19 CCK-8 assay

Cell proliferation was evaluated using the Cell Counting Kit-8

(CCK-8) assay. OS-RC-2 cells and 786-O cells were seeded into 96-

well plates at a density of 1000 cells per well and maintained under

standard culture conditions. At designated time points, 10 mL of

CCK-8 reagent was added to each well, followed by incubation at

37°C for 1 hour. Absorbance at 450 nm was measured using an

enzymatic calibrator to determine cell viability.
2.20 Wound-healing assay

OS-RC-2 cells and 786-O cells were plated in six-well plates and

allowed to reach 90-100% confluence. To create a simulated wound,

a sterile 200 mL pipette tip was drawn through the cell monolayer.

Detached cells and debris were removed with two rinses of

phosphate-buffered saline (PBS), after which the cells were

maintained in serum-free medium. Baseline wound areas were

imaged under an inverted microscope at 10x magnification. After

24 hours of incubation, additional images were taken to assess

wound closure. The percentage of wound closure was calculated

using ImageJ software for quantitative analysis.
2.21 Colony formation assay

OS-RC-2 cells and 786-O cells were plated in six-well plates at a

density of 500 cells per well and maintained in complete RPMI 1640

medium containing 10% fetal bovine serum under standard culture

conditions (37°C, 5% CO2). Cells were cultured for 14 days, with

media refreshed as required, until distinct colonies became visible.

Afterward, the cells were rinsed with phosphate-buffered saline

(PBS) and fixed with 4% paraformaldehyde for 15 minutes at room

temperature. Colonies were then stained using a crystal violet

solution, washed thoroughly to remove residual dye, air-dried,

and captured for further analysis and comparison.
2.22 Cell migration assay

Transwell migration assays were conducted to assess the

migratory capacity of OS-RC-2 cells and 786-O cells using
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Transwell chambers (Corning Costar, USA). The lower chamber

was filled with medium containing serum, while the upper chamber

contained serum-free medium. A total of 10,000 cells were seeded

into each upper chamber. After 48 hours of incubation, cells were

washed with phosphate-buffered saline (PBS) and stained with

crystal violet. Stained cells on the lower membrane were

visualized under a microscope, and cell counts were quantified

using ImageJ software.
2.23 Immunofluorescence staining

Cells grown on glass coversl ips were fixed in 4%

paraformaldehyde for 15 min, followed by permeabilization with

0.1% Triton X-100 for 10 min at room temperature. After blocking

in 5% BSA for 1 h, cells were incubated with primary antibodies

overnight at 4 °C. The next day, samples were washed with PBS and

treated with fluorophore-conjugated secondary antibodies for 1 h in

the dark at room temperature. Nuclei were stained with DAPI, and

fluorescent images were acquired using a fluorescence microscope.
2.24 Western blot

Cells were placed in RIPA buffer containing PMSF (1:100),

lysed on ice for 30 minutes, followed by ultrasonic lysis. Then, the

mixture was centrifuged at 12,000×g for 20 minutes at 4°C, and the

supernatants were collected. The protein concentration was

determined using a BCA protein assay kit. Equal amounts of

protein (20 mg per lane) were separated by 10% SDS-PAGE and

then transferred onto PVDF membranes. The membranes were

blocked with 5% non-fat milk in TBST for 1 hour at room

temperature, after which they were incubated with primary

antibodies against DNST1 (1:1000, 26203-1-AP, Proteintech,

China), EOGT (1:1000, 27595-1-AP, Proteintech, China) and

GAPDH (1:50000, 60004-1-Ig, Proteintech, China) at 4°C

overnight. Subsequently, the membranes were washed three times

with TBST and then incubated with secondary antibodies for 1 hour

at room temperature. After an additional three washes with TBST,

the protein bands were developed.
3 Results

3.1 Identification of prognostic migrasome-
related lncRNAs and signature
construction in ccRCC

We identified migrasome-related genes through a literature

review and by using GeneCards. When searching for relevant

genes in GeneCards, we set the Relevance Score threshold to

greater than 1. This process ultimately yielded eleven migrasome-

related genes: ITGB1, ITGA5, EOGT, CPQ, PIGK, NDST1,

TSPAN4, EPCIP, PKD2, PKD1, and TMX2-CTNND1 (4, 7, 14,

15). We obtained transcriptomic data for ccRCC from the TCGA
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database, generating an expression matrix from 542 tumor samples

and 72 normal samples. The mRNA expression levels of

migrasome-related genes were extracted and analyzed. We then

identified co-expressed lncRNAs by filtering for those with an

absolute correlation coefficient > 0.4 and a p-value < 0.001 in

relation to migrasome-related genes (Figure 1A). The dataset was

randomly divided into two groups: a training set and a testing set.

We compared the data from the training and testing sets and

confirmed that there were no statistically significant differences in

clinical characteristics between the two groups (Supplementary

Table S2). Univariate Cox regression analysis was performed in

the training set to identify lncRNAs significantly associated with

patient survival (Figure 1B). Next, a Lasso regression analysis was

conducted to build the Lasso signature with cross-validation, and

these selected lncRNAs were then used for multivariate Cox

regression to construct the prognostic signature (Figures 1C, D).

The signature was further refined using the stepwise selection

method to obtain the final form. The resulting formula for the

risk score is as follows: Risk score = -0.350867936624671 * ZNF503-

AS1 + 0.635684241536826 * NARF-IT1 + 0.329706961392795 *

FOXD2-AS1 + 0 . 54579941265602 * AL031985 . 3 -

0.28798278420868 * LINC01843 - 0.593407946785319 * GAS5-

AS1 - 0.917182162566296 * AL162377.1.

After developing the prognostic signature formula in the

training set, we validated the signature using the testing set. In

the training set, risk scores for each sample were calculated

according to the signature, and samples were classified into high-

and low-risk groups based on the median risk score. In the testing

set, risk scores were similarly calculated, and samples were grouped

into high- and low-risk categories using the median risk score

derived from the training set. As previously mentioned, chi-square

test results showed that the p-values for variables such as gender,

age, grade, and stage were all greater than 0.05 in both the training

and testing sets, indicating no statistically significant differences

between the two groups regarding these clinical characteristics. This

result supports the homogeneity of the data across the sets. The

balanced distribution of clinical characteristics between the two

groups helps to minimize confounding effects from the outset. Next,

we further explored the correlation between migrasome-related

genes and signature lncRNAs. The results demonstrated varying

levels of association, indicating an overall strong correlation

between migrasome-related genes and the signature lncRNAs

(Figure 2A). The Kaplan-Meier survival analysis based on the

migrasome-related lncRNA signature revealed significant

differences in overall survival (OS) and progression-free survival

(PFS) between high-risk and low-risk groups. PFS analysis indicated

that patients in the high-risk group had a significantly shorter PFS

than those in the low-risk group, reinforcing the signature’s

association with poor prognosis (Figure 2B). In the training set

(Figure 2C), the high-risk group showed a notably shorter OS

compared to the low-risk group (p < 0.001). This trend was

consistently observed in the testing set and the combined all

dataset, further validating the predictive power of the signature

for OS (Figures 2D, E). These results underscore the strong

prognostic value of the migrasome-related lncRNA signature.
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Based on the prognostic signature, samples were ordered from

left to right by increasing risk score and stratified into high- and

low-risk groups using the median score as a threshold. Survival

status plots revealed that the high-risk group had a markedly higher

number of deceased samples compared to the low-risk group.

Concurrently, expression heatmaps showed distinct differences in

lncRNA expression levels between high- and low-risk groups,

consistently observed across the training, test, and full datasets.

These findings underscore the prognostic value of the lncRNA

signature in stratifying patient risk (Figures 3A-C). Univariate Cox

regression analysis showed that several clinical factors, including

age, grade, stage, and the lncRNA-based risk score, were associated

with survival outcomes in the dataset. Significant factors (p < 0.05)

were then included in the multivariate Cox regression model to

assess their independent prognostic value (Figure 3D). The

multivariate analysis further confirmed that the lncRNA-based

signature can serve as an independent prognostic factor, separate

from other clinical characteristics such as age, grade, and stage, and

is significantly associated with patient outcomes (Figure 3E). This

further controls for the potential impact of confounding factors on
Frontiers in Immunology 07
the model outcomes. We conducted ROC analysis at 1, 3, and 5

years, finding that the migrasome-related lncRNA risk score

demonstrated strong predictive accuracy for survival outcomes

(Figure 3F). When compared with other clinical factors, including

age, gender, grade, and stage, our prognostic signature

outperformed these factors as an independent predictor of patient

survival, highlighting its superior predictive power (Figure 3G).

To assess the predictive performance of the migrasome-related

lncRNA signature, we calculated the concordance index (C-index)

for the risk score and conventional clinical factors. The risk score

yielded a favorable C-index value, indicating strong prognostic

capability in overall survival prediction (Figure 4A). A nomogram

combining the risk score with clinical variables was developed to

enable individualized survival prediction (Figure 4B). Calibration

plots showed strong concordance between predicted and actual 1-,

3-, and 5-year survival outcomes, confirming the nomogram’s

reliability (Figure 4C). We further investigated the predictive

power of the migrasome-related lncRNA risk signature across

different clinical subgroups. First, in patients stratified by age

(≤65 years and >65 years), the signature classified each group into
FIGURE 1

Identification of migrasome-related lncRNAs and construction of the prognostic signature. (A) Sankey diagram illustrating the association between
migrasome-related genes and their co-expressed lncRNAs. (B) Forest plot showing lncRNAs significantly associated with overall survival in ccRCC
patients (p < 0.001). Hazard ratios (HR) and 95% confidence intervals (CI) are displayed, with red indicating high-risk lncRNAs (HR > 1) and green
indicating protective lncRNAs (HR < 1). (C) Lasso regression plot depicting the relationship between log(l) and coefficients for selected variables,
with numbers representing non-zero coefficients at different l values. (D) Cross-validation plot determining the optimal l value for Lasso regression.
***P < 0.001, **P < 0.01, *P < 0.05.
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high- and low-risk categories. Results showed that in both age

groups, the high-risk patients had significantly poorer survival

outcomes than the low-risk group (Figures 4D, E). Similarly, in

the gender subgroups, both male and female patients in the high-

risk category exhibited significantly worse survival than those in the

low-risk category (Figures 4F, G). In stages I-II and III-IV, survival

rates were consistently lower in the high-risk group across both

stages, further validating the prognostic power of the signature

across different clinical stages (Figures 4H, I). Finally, for tumor

grade, patients were grouped into G1–2 and G3–4 categories. The

high-risk group showed markedly poorer survival outcomes

compared to the low-risk group (Figures 4J, K).

Principal Component Analysis (PCA) was performed on four

data sets to assess the distribution of high- and low-risk patients

based on different gene sets. First, in the analysis using all genes,

there was no clear separation between high- and low-risk groups,

indicating that the overall gene expression profile was insufficient to

effectively distinguish these risk categories (Figure 5A). In contrast,

PCA based on migrasome-related genes and migrasome-related

lncRNAs showed relatively clearer clustering of high- and low-risk
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groups, suggesting that these genes have a stronger association with

risk stratification (Figures 5B, C). Finally, PCA using the risk

lncRNAs from our prognostic signature revealed a distinct

separation between high- and low-risk groups, further validating

the effectiveness of this signature for risk stratification (Figure 5D).
3.2 Functional enrichment analysis
highlights divergent biological pathways
between risk subgroups in ccRCC

GO enrichment analysis revealed significant enrichment of

differentially expressed genes within biological processes (BP),

cellular components (CC), and molecular functions (MF),

primarily involving immune response, extracellular matrix

organization, and transmembrane transport (Figure 6A). A

circular plot further visualizes gene proportions across categories

and KEGG pathway enrichment analysis identified significant

enrichment in pathways including cytokine-cytokine receptor

interaction, IL-17 signaling, complement and coagulation
FIGURE 2

Survival analysis and correlation of the migrasome-related lncRNA signature. (A) Heatmap illustrating the correlation between migrasome-related
genes and signature lncRNAs, with colors indicating Pearson correlation coefficients. (B) Kaplan-Meier survival curve for progression-free survival
(PFS) in high-risk and low-risk groups, with statistical significance assessed using the log-rank test. (C) Kaplan-Meier survival curves for overall
survival (OS) in the training set, comparing high-risk and low-risk groups based on the migrasome-related lncRNA signature. (D) Kaplan-Meier
survival curves for OS in the testing set, stratifying samples into high-risk and low-risk groups. (E) Kaplan-Meier survival curves for OS in the all
dataset, highlighting significant survival differences between risk groups.
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cascades, and extracellular matrix (ECM) receptor interaction

(Figures 6B, C). These pathways suggest an association of the

identified genes with immune response regulation, cell signaling,

and tissue structural integrity. We conducted GSEA analysis to

identify significant functional enrichment in the high and low-risk

groups. The results revealed that the high-risk group exhibited

enrichment in functions related to immune responses, such as B-

cell mediated immunity, immunoglobulin production, and antigen

binding (Figure 6D). In contrast, the low-risk group showed

enrichment in functions associated with metabolic processes and

cellular structures, including organic acid catabolism and

mitochondrial matrix localization (Figure 6E). These findings
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indicate that the migrasome-related lncRNA signature is linked to

distinct biological functions across risk categories. The pathway-

based GSEA analysis revealed significant enrichment in the high-

risk group for pathways related to cytokine-cytokine receptor

interaction, extracel lular matrix-receptor interact ion,

hematopoietic cell lineage, primary immunodeficiency, and taste

transduction, indicating a strong association with immune

processes (Figure 6F). Conversely, pathways enriched in the low-

risk group primarily involved fatty acid metabolism, oxidative

phosphorylation, PPAR signaling, tyrosine metabolism, and

branched-chain amino acid metabolism, highlighting metabolic

functional differences (Figure 6G).
FIGURE 3

Risk stratification and predictive performance of the migrasome-related lncRNA signature. (A-C) Risk score distribution, survival status, and lncRNA
expression heatmap for the training set, testing set, and combined dataset, with samples ordered by increasing risk score and stratified into high-
and low-risk groups. (D) Univariate Cox regression analysis displaying hazard ratios (HR) and p-values for survival outcomes across clinical factors
and the migrasome-related lncRNA signature. (E) Multivariate Cox regression analysis showing adjusted HR and p-values for significant clinical
factors and the migrasome-related lncRNA signature, highlighting its independent prognostic value. (F) Time-dependent ROC curves at 1, 3, and 5
years for the migrasome-related lncRNA signature, demonstrating strong predictive accuracy for survival outcomes. (G) Comparative ROC curves for
5-year survival prediction, evaluating the signature against clinical factors including age, gender, grade, and stage.
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3.3 Comprehensive characterization of the
immune microenvironment and tumor
mutation burden in ccRCC risk groups

The violin plot analysis compared TME scores between high-

and low-risk groups, covering the StromalScore, ImmuneScore, and

overall ESTIMATEScore. Results indicated that each TME score

was elevated in the high-risk group relative to the low-risk group,

suggesting a greater presence of stromal and immune cells within

the high-risk group (Figure 7A). Immune cell subset distributions

between high- and low-risk groups are compared. The bar plot

shows that the high-risk group exhibits a higher relative abundance
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of immune cells such as regulatory T cells (Tregs) and M0

macrophages, whereas the low-risk group displays an increased

abundance of immune cells like M1 macrophages and resting mast

cells (Figure 7B). The box plot further validates these patterns,

highlighting significant differences in immune cell subsets between

the risk groups (Figure 7C). The immune function analysis

identified notable differences between high- and low-risk groups,

particularly in specific immune responses and cell activity.

Functions such as APC co-stimulation, cytolytic activity, and

inflammation promotion were significantly elevated in the high-

risk group. These findings underscore distinct immune activation

and regulatory mechanisms between the two groups (Figure 7D).
FIGURE 4

Survival analysis of the migrasome-related lncRNA signature across clinical subgroups. (A) C-index comparison between the lncRNA-derived
prognostic signature and traditional clinicopathological features (age, gender, stage and tumor grade), indicating enhanced predictive power of the
proposed model. (B) Construction of a prognostic nomogram combining the risk score and clinical factors for individualized prediction of 1-, 3-, and
5-year overall survival. (C) Calibration curves evaluating the concordance between predicted survival probabilities and actual outcomes,
underscoring the nomogram’s reliability. (D, E) Kaplan–Meier survival curves for age subgroups (≤65 years and >65 years) demonstrate significantly
poorer survival outcomes for high-risk patients in both categories. (F, G) Kaplan–Meier survival curves for gender subgroups (male and female)
demonstrate significantly poorer survival outcomes for high-risk patients in both categories. (H, I) Kaplan–Meier survival curves for stage-based
subgroups (stages I-II and stages III-IV) demonstrate significantly poorer survival outcomes for high-risk patients in both categories. (J, K) Kaplan–
Meier survival curves for tumor grade-based subgroups (G1–2 and G3-4) demonstrate significantly poorer survival outcomes for high-risk patients in
both categories.
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The mutation profiles of the top 15 most frequently mutated

genes were analyzed separately for high- and low-risk groups. In the

high-risk group, genes such as VHL and PBRM1 show high

mutation frequencies (Figure 8A), while in the low-risk group,

significant mutations in these genes are also observed (Figure 8B).

Overall, the mutation burden is notably higher in the high-risk

group compared to the low-risk group (Figures 8A-C). In the high

TMB (H-TMB) group, overall survival was lower than in the low

TMB (L-TMB) group (Figure 8D). Combining TMB status with risk

stratification revealed that patients in the H-TMB + high-risk

subgroup had the lowest survival rates, while those in the L-TMB

+ low-risk subgroup showed the highest survival, highlighting the

combined impact of these factors (Figure 8E). TIDE analysis

revealed a significantly higher TIDE score in the high-risk group

compared to the low-risk group (Figure 8F), suggesting a potentially

enhanced immune evasion capacity within the high-risk group.
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3.4 Differential drug sensitivity profiles
between high- and low-risk groups in
ccRCC

Drug sensitivity analysis revealed significant differences in

response to multiple drugs between high- and low-risk groups. In

the low-risk group, drugs such as Dihydrorotenone, Ibrutinib,

ML323, OSI-027, Cediranib, GSK2606414, OF-1 and SB505124

demonstrated higher sensitivity (Figures 9A-H). Conversely, in

the high-risk group, drugs including ABT737, Afuresertib, AGI-

5198, XAV939, AZD7762, Dabrafenib, Entinostat and LJI308

showed enhanced sensitivity (Figures 9I-P). Comprehensive

results are presented in the Supplementary Figures S1 and S2.

These findings provide potential guidance for individualized

therapeutic strategies across risk groups, indicating that specific

drugs may yield distinct efficacy depending on the risk category.
FIGURE 5

Principal Component Analysis (PCA) for risk group separation based on different gene sets. (A) PCA plot using all genes shows minimal separation
between high- and low-risk groups, indicating low discriminatory power. (B) PCA plots based on migrasome-related genes demonstrate improved
clustering of high- and low-risk groups, highlighting their stronger association with risk stratification. (C) PCA plots based on migrasome-related
lncRNAs demonstrate improved clustering of high- and low-risk groups, highlighting stronger association with risk stratification. (D) PCA using
lncRNAs from the prognostic signature achieves the most distinct separation between high- and low-risk groups, confirming the effectiveness of the
signature in risk differentiation.
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3.5 Single-cell transcriptomic analysis
reveals cellular heterogeneity and
signature-associated tumor
microenvironmental features in ccRCC

To further explore the capacity of our constructed prognostic

signature to distinguish cellular heterogeneity and intercellular

communication patterns within the tumor microenvironment of

ccRCC, we analyzed publicly available single-cell RNA sequencing

(scRNA-seq) data. Following standard quality control, normalization,

and dimensionality reduction procedures, UMAP visualization

revealed distinct clustering of major cell populations, including

CD4+ T cells, tumor epithelial cells, CD8+ T cells, inflammatory

monocytes, tumor-associated macrophages (TAMs), NK cells,

endothelial cells, cycling CD8+ T cells, proximal tubular epithelial
Frontiers in Immunology 12
cells, mural cells, mast cells, B cells, plasma cells, and plasmacytoid

dendritic cells (pDCs) (Figure 10A). Cells from different patient

samples were evenly distributed across clusters, indicating minimal

batch effects after correction (Figure 10B). Cell-cell communication

analysis demonstrated that CD4+ T cells, CD8+ T cells and tumor

epithelial cells were central hubs in the interaction network,

exhibiting the highest number of intercellular connections

(Figure 10C). These two cell types also showed the greatest

interaction strengths, suggesting they play critical roles in

orchestrating the tumor microenvironment (Figure 10D). To

investigate the relationship between the risk signature and the

tumor ecosystem at single-cell resolution, we scored each cell based

on the signature. To minimize the potential bias from low sequencing

depth, we excluded cells with a score of zero. The remaining cells

were then divided into high- and low-risk groups using the median
FIGURE 6

Enrichment analysis reveals functional and pathway differences between high- and low-risk groups. (A) Bar plot showcasing the top 10 enriched
terms across GO categories (BP, CC, MF), emphasizing immune response, extracellular matrix organization, and transmembrane transport. (B)
Circular plot illustrating gene proportions and enrichment significance for selected GO terms in each category. (C) KEGG pathway enrichment
analysis displaying differentially expressed genes involved in key biological pathways. (D, E) GSEA plots presenting the top five enriched functions in
the high-risk and low-risk groups. (F, G) GSEA plots presenting the top five enriched pathways in the high-risk and low-risk groups.
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score as a threshold. The distribution of signature expression across

cell types revealed that high-risk cells were predominantly enriched in

the tumor epithelial population (Figure 10E). Furthermore, the

cellular composition differed markedly between the high- and low-

risk groups. The high-risk group displayed a greater proportion of

tumor epithelial cells and endothelial cells, while CD4+ T cells were

more abundant in the low-risk group (Figure 10F). These findings

highlight distinct immunological and stromal characteristics between

the two risk groups, implying that differences in the tumor

microenvironment may underlie the divergent clinical outcomes

associated with the risk signature.

Building upon our previous functional enrichment results

(Figure 6), we further explored how specific signaling pathways

enriched are mediated through intercellular communication at the

single-cell level. Given the enrichment of immune-related terms

such as “GOBP_IMMUNE_SYSTEM_PROCESS” in the high-risk

group, we focused on several key immune signaling pathways,

including MHC I, MHC II, and the complement. These analyses

revealed that tumor epithelial cells, CD8+ T cells, inflammatory

monocytes, and TAMs serve as primary contributors to immune-
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related signaling, forming dense and directional interaction

networks among these cell types (Figures 11A-C).

Additionally, the enrichment of “ECM_RECEPTOR

_INTERACTION” prompted investigation of the collagen

signaling pathway. We found that endothelial cells and mural

cells were heavily involved in collagen-mediated signaling,

primarily interacting with CD4+ T cells and inflammatory

monocytes. These findings suggest a potential role of stromal–

immune cell communication in shaping the extracellular matrix

environment within the tumor (Figure 11D).

We also examined cytokine-related pathways based on the

enrichment of “CYTOKINE_CYTOKINE_RECEPTOR_

INTERACTION” in the high-risk group. In the TNF signaling

network, inflammatory monocytes and TAMs emerged as major

signal sources, communicating predominantly with CD8+ T cells and

other monocytes. In contrast, VEGF signaling was characterized by

frequent interactions between tumor epithelial cells and endothelial

cells, indicating a strong tumor–vasculature crosstalk potentially

involved in angiogenesis. Collectively, these results provide

additional insight into the pathway-specific cellular interactions
FIGURE 7

Immune microenvironment characteristics differ between high- and low-risk groups. (A) Violin plot comparing StromalScore, ImmuneScore, and
ESTIMATEScore, with higher scores consistently observed in the high-risk group. (B) Bar plot showing the relative abundance of immune cell types,
highlighting differences in immune composition between the groups. (C) Box plot quantifying significant differences in immune cell subsets,
emphasizing specific cell types enriched in high- or low-risk groups. (D) Box plot demonstrating notable differences in immune functions,
underscoring elevated immune activity or suppression in high-risk versus low-risk groups. ***P < 0.001, **P < 0.01, *P < 0.05.
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that may underlie the differential biological behavior of high-risk

tumors (Figures 11E, F).

To further investigate the cell-type–specific expression patterns

of the seven genes comprising our prognostic signature, we

performed FeaturePlot visualization using the integrated single-

cell dataset. The results revealed heterogeneous expression across

distinct cellular clusters (Figures 12A-G). Notably, ZNF503-AS1

exhibited enriched expression in endothelial cells, suggesting its

potential involvement in aberrant angiogenesis or vascular-

associated immune and inflammatory processes. LINC01843 was
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predominantly expressed in tumor epithelial cells, indicating a

possible role in tumor-intrinsic biological functions. AL031985.3

showed preferential expression in T cell populations, implying its

potential function in modulating the tumor immune

microenvironment. In contrast, AL162377.1 displayed no strong

cell-type specificity and was expressed across multiple clusters.

These divergent expression patterns, observed at single-cell

resolution, underscore the biological relevance of the signature

genes and support their capacity to reflect both tumor-intrinsic

and immune microenvironmental characteristics in ccRCC.
FIGURE 8

Tumor mutation burden (TMB) and immune evasion differences between high- and low-risk groups. (A, B) Comparison of TMB in high-risk and low-
risk groups, respectively, showing higher mutation rates in the high-risk group. (C) Overall analysis indicating significantly elevated TMB in the high-
risk group compared to the low-risk group. (D) Kaplan-Meier survival analysis comparing high TMB (H-TMB) and low TMB (L-TMB) groups, with
poorer survival observed in the H-TMB group. (E) Combined analysis of TMB status and risk stratification reveals the lowest survival rates in the H-
TMB + high-risk subgroup and the highest in the L-TMB + low-risk subgroup. (F) TIDE score comparison between high-risk and low-risk groups,
demonstrating significantly higher immune evasion potential in the high-risk group. ***P < 0.001.
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3.6 Experimental validation of factors
supporting their role in the prognostic
signature

To further validate and reinforce the reliability of our migrasome-

associated lncRNA prognostic signature, we performed a series of

functional experiments focusing on FOXD2-AS1, one of the key

components of the model. The knockdown efficiency of FOXD2-AS1

was confirmed by qRT-PCR in OS-RC-2 and 786-O cell lines,

showing a significant reduction in expression levels following
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siRNA transfection compared with the negative control group

(Figure 13A). In addition, analysis of TCGA data revealed that

FOXD2-AS1 was significantly upregulated in ccRCC tissues

compared to adjacent normal tissues. (Figure 13B). We next

investigated whether FOXD2-AS1 influences cell proliferation.

CCK-8 assays revealed that FOXD2-AS1 silencing led to a marked

decrease in the proliferative capacity of tumor cells (Figures 13C, D).

Consistently, colony formation assays showed that knockdown of

FOXD2-AS1 significantly impaired the ability of cells to form

colonies (Figure 13E).
FIGURE 9

Drug sensitivity analysis highlights distinct responses in high- and low-risk groups. (A-H) The low-risk group demonstrates heightened sensitivity to
Dihydrorotenone, Ibrutinib, ML323, OSI-027, Cediranib, GSK2606414, OF-1, and SB505124. (I-P) The high-risk group demonstrates heightened
sensitivity to ABT737, Afuresertib, AGI-5198, XAV939, AZD7762, Dabrafenib, Entinostat, and LJI308.
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To assess the effect of FOXD2-AS1 on cell migration, we performed

wound healing and Transwell assays. The wound healing assay

demonstrated that FOXD2-AS1 knockdown markedly suppressed cell

migratory activity, as indicated by reduced wound closure after 24 hours

(Figures 14A, B). Similarly, the Transwell migration assay showed a

substantial decrease in the number ofmigrating cells in the FOXD2-AS1

knockdown group compared to the control (Figures 14C, D).

Meanwhile, we also evaluated the proliferative and migratory effects
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of two other key factors in the signature, ZNF503-AS1 and GAS5-AS1,

using the same experimental approach. The results demonstrated that

both lncRNAs significantly affect tumor cell proliferation and migration

(Supplementary Figures S3-S6).

Taken together, these findings indicate that the factors play a

pivotal role in affecting the proliferation and migration of ccRCC

cells, further supporting its functional relevance and biological

significance within the prognostic signature.
FIGURE 10

Single-cell transcriptomic analysis reveals cellular composition, intercellular communication, and risk score distribution. (A) UMAP plot showing the
distribution of major cell populations identified across all samples, including CD4+ T cells, CD8+ T cells, tumor epithelial cells, inflammatory
monocytes, tumor-associated macrophages (TAMs), NK cells, endothelial cells, cycling CD8+ T cells, proximal tubular epithelial (PT Epi) cells, mural
cells, mast cells, B cells, plasma cells, and plasmacytoid dendritic cells (pDCs). (B) UMAP visualization colored by individual sample. (C) Intercellular
communication network illustrating the number of predicted interactions among different cell types. (D) Intercellular communication network
weighted by interaction strength. (E) UMAP plot displaying the distribution of signature scores at the single-cell level. (F) Bar plot showing the
proportion of each cell type within the high- and low-risk groups.
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3.7 Knockdown of the signature factor
FOXD2-AS1 reduces the expression of
migrasome markers

We further sought to explore whether the factor in our

signature directly affects the expression of migrasomes. To this

end, we conducted relevant investigations based on the migrasome
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markers NDST1 and EOGT. After knocking down FOXD2-AS1,

immunofluorescence assays showed a significant reduction in the

fluorescence intensity of NDST1 (Figures 15A, B). Meanwhile,

western blot experiments revealed that the expression level of

NDST1 was indeed markedly decreased (Figure 15C). Consistent

results were obtained when EOGT was detected after FOXD2-AS1

knock down (Figures 15D-F). These findings suggest that the factor
FIGURE 11

Intercellular Communication Analysis Based on Functional Enrichment Results (A) Intercellular communication network within the MHC class I
signaling pathway. (B) Intercellular communication network within the MHC class II signaling pathway. (C) Intercellular communication network
within the COMPLEMENT signaling pathway. (D) Intercellular communication network within the COLLAGEN signaling pathway. (E) Intercellular
communication network within the TNF signaling pathway. (F) Intercellular communication network within the VEGF signaling pathway.
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in our signature can indeed influence migrasomes to a certain

extent, thereby ultimately affecting tumorigenesis and development.
4 Discussion

In this study, we initially identified a set of migrasome-related

genes, subsequently screening for lncRNAs associated with these

genes using transcriptomic data from patients with ccRCC. These

factors play diverse and critical roles in tumor biology. ITGB1 plays

a role in promoting chordoma progression by binding to GMFG

produced by ERS-CAFs, thereby enhancing tumor malignancy (16).

ITGA5 is implicated in IGFBP2-mediated gefitinib resistance in
Frontiers in Immunology 18
NSCLC, serving as a critical player in this process (17). EOGT

facilitates O-GlcNAcylation of NOTCH1 in pancreatic cancer,

promoting the nuclear localization of the Notch intracellular

domain (NICD) and this process contributes to the suppression

of E-cadherin and P21 transcription, supporting PDAC progression

(18). CPQ expression is elevated in glioblastoma tissues and

inversely correlated with its methylation level. Low CPQ

expression and high methylation are linked to better overall

survival, indicating CPQ’s potential as a prognostic biomarker in

glioblastoma (19). PIGK encodes a component of the GPI

transamidase complex, essential for attaching GPI anchors to

proteins. Variants in PIGK result in decreased cell surface levels

of GPI-anchored proteins, leading to inherited GPI deficiency
FIGURE 12

Single-cell expression patterns of the signature genes across cellular clusters. (A-G) Feature plots depicting the single-cell expression distribution of
the seven signature lncRNAs (ZNF503-AS1, NARF-IT1, LINC01843, GAS5-AS1, FOXD2-AS1, AL031985.3, and AL162377.1) across distinct cell clusters.
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disorders (20). NDST1, an enzyme involved in heparan sulfate

sulfation, plays a critical role in lymphatic metastasis by facilitating

chemokine interactions in the lymphatic microenvironment (21).

TSPAN4 serves as a migrasome marker in liver cancer, correlating

with CD151 expression. Its association with CD151 suggests a role

in promoting migrasome formation, contributing to liver cancer

invasiveness and angiogenesis (22). PKD1 and PKD2 mutations

cause autosomal dominant polycystic kidney disease (ADPKD),

often leading to kidney failure. Variations in disease progression

among patients suggest that factors beyond PKD1/2 mutations
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influence the rate of ADPKD advancement (23). ZNF503-AS1

acts as a tumor suppressor in bladder cancer by recruiting

transcription factor GATA6 to up-regulate SLC8A1, which

increases intracellular Ca2+ concentration. This process inhibits

cell proliferation, invasion, and migration, while promoting

apoptosis in bladder cancer cells (24). NARF-IT1, an m6A-related

lncRNA, is identified as significantly associated with prognosis in

myeloid leukemia (ML). Its expression, along with other lncRNAs

like CRNDE and CHROMR, was confirmed in ML cell lines,

suggesting potential for prognostic prediction in ML patients
FIGURE 13

FOXD2-AS1 promotes proliferation of ccRCC cells. (A) qRT-PCR analysis showing the knockdown efficiency of FOXD2-AS1 in OS-RC-2 and 786-O
cells after siRNA transfection. (B) The expression level of FOXD2-AS1 in ccRCC tissues and adjacent normal tissues based on TCGA data. (C, D) CCK-
8 assays demonstrating that silencing FOXD2-AS1 significantly suppresses the proliferation of OS-RC-2 and 786-O cells over time. (E) Colony
formation assay showing a marked reduction in the number and size of colonies formed by FOXD2-AS1-silenced cells compared to controls. ***P <
0.001, **P < 0.01, *P < 0.05.
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(25). FOXD2-AS1 promotes glioma progression by enhancing

stemness and proliferation in glioma stem cells (GSCs) through

the activation of the NOTCH signaling pathway via TAF-1

upregulation. Its silencing inhibits GSC stemness, reduces

proliferation, and promotes apoptosis, highlighting its potential as
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a therapeutic target in glioma (26). In head and neck squamous cell

carcinoma, AL031985.3 is an immune-related lncRNA linked to

overall survival, suggesting its potential role as a prognostic marker

and influence on the tumor microenvironment (27). LINC01843 is

identified as a component of a pyroptosis-related five-lncRNA
FIGURE 14

FOXD2-AS1 facilitates ccRCC cell migration. (A, B) Wound healing assay showing that FOXD2-AS1 knockdown impairs cell migration, as indicated by
reduced wound closure after 24 hours. (C, D) Transwell migration assay further confirming that FOXD2-AS1 silencing significantly decreases the
number of migrating OS-RC-2 and 786-O cells. ***P < 0.001, **P < 0.01.
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signature that correlates with prognosis and immune response in

lung adenocarcinoma, showing potential relevance for predicting

disease outcome and guiding immunotherapy strategies in cancer

patients (28). GAS5-AS1 acts as a tumor suppressor in non-small

cell lung cancer by inhibiting cell migration and invasion. Its

reduced expression, often due to epigenetic silencing, is associated

with enhanced epithelial-mesenchymal transition, promoting

tumor metastasis (29). AL162377.1 is an upstream lncRNA in

ccRCC that regulates SYDE2 expression through the miR-21-5p

axis. This lncRNA-mediated pathway influences immune cell

infiltration and has implications for ccRCC prognosis (30). Based
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on these lncRNAs, we developed a risk model for prognostic

prediction. The model construction involved segregating patients

into high- and low-risk groups to identify migrasome-associated

lncRNAs significantly linked to prognosis, and its independent

prognostic value was validated through multivariate Cox

regression analysis.

To date, various prognostic signatures have been developed for

ccRCC, and many have demonstrated utility in predicting patient

outcomes. However, the predictive performance of these models

varies depending on the factors they are based on. In this study, we

compared our constructed signature with several previously
FIGURE 15

Knockdown of FOXD2-AS1 decreases the expression of migrasome markers. (A, B) Immunofluorescence assays show that the expression level of
DNST1 is significantly decreased after knockdown of FOXD2-AS1. (C) Western blot analysis demonstrates that the protein expression level of DNST1
is reduced following FOXD2-AS1 knockdown. (D, E) Immunofluorescence assays show that the expression level of EOGT is significantly decreased
after knockdown of FOXD2-AS1. (F) Western blot analysis demonstrates that the protein expression level of EOGT is reduced following FOXD2-AS1
knockdown.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1638792
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2025.1638792
published models. Notably, many existing signatures primarily

report short-term predictive performance, whereas our model was

evaluated using time-dependent AUCs at 1, 3, and 5 years.

Importantly, our signature achieved a 5-year AUC of 0.758,

which represents a remarkably high discriminative ability

compared to other published models. This suggests that our

model has strong potential for long-term prognostic prediction in

ccRCC (31, 32). Moreover, unlike previous signatures, our signature

is the first to be developed based on the migrasome, a novel and

biologically significant organelle. This endows our signature with a

cutting-edge biological foundation, enhancing not only its value in

prognostic prediction but also its potential to provide insights into

migrasome-related research.

To further confirm the signature’s robustness, we conducted

multidimensional analyses of high- and low-risk groups, including

assessments of the immune microenvironment, tumor mutation

burden (TMB), and drug sensitivity, to explore the model’s

applicability in prognostic evaluation for ccRCC. The tumor

immune microenvironment plays a pivotal role in the dynamic

and continuous interactions between the immune system and

cancer cells, with immune evasion emerging as a central factor in

cancer progression, from the initial development of cancer cells to

the formation of metastatic disease (33). Immune checkpoint

inhibition has emerged as an increasingly effective cancer

immunotherapy. High TMB has been shown to predict clinical

benefit from immune checkpoint inhibition across various cancer

types. The TMB threshold associated with improved survival varies

by cancer type, suggesting a strong correlation between elevated

TMB and enhanced survival in patients receiving ICIs (34).

Specifically, following model construction, we validated its efficacy

through survival curve analysis. Results indicated that patients in

the high-risk group exhibited significantly lower overall survival

rates than those in the low-risk group, underscoring the potential of

this migrasome-associated lncRNA signature for stratified

prognostic prediction. Furthermore, immune function analysis

highlighted substantial differences in immune cell infiltration and

immune functions between high- and low-risk groups. The findings

showed that patients in the high-risk group had a higher proportion

of immunosuppressive cell types, such as regulatory T cells and M0

macrophages, aligning with the characteristics of TME. Tumor

mutation burden (TMB) analysis revealed that the high-risk

group exhibited significantly higher mutation frequencies

compared to the low-risk group, particularly in key driver genes

such as VHL and PBRM1. This finding aligns with the aggressive

characteristics observed in high-risk patients. VHL missense

mutations define an aggressive subtype of clear cell renal cell

carcinoma (ccRCC) with poorer survival outcomes. ccRCC with

VHL missense mutations exhibits distinct oncogenic features,

including hyperactivation of cell cycle and NF-kB pathways,

contributing to an inflamed tumor microenvironment (35).

PBRM1 regulates PD-L1 expression by enhancing PBAF complex

recruitment to the PD-L1 promoter. In clear cell renal cell

carcinoma, alternative splicing of PBRM1 exon 27, mediated by

RBFOX2, influences resistance to PD-1 blockade therapy (36). The

marked TMB differences further suggest that migrasome-associated
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lncRNAs may influence mutation patterns in ccRCC and are

potentially linked to the tumor’s immunological profile.

Additionally, we conducted a drug sensitivity analysis to explore

the model’s potential in guiding personalized therapy. The results

showed that low-risk patients were more sensitive to drugs like

Dihydrorotenone, OSI-027 and SB505124, whereas high-risk

patients responded better to treatments such as Afuresertib,

Entinostat and XAV939.

We also found that several results from our pathway enrichment

analyses provide biologically plausible explanations for the

differential drug sensitivity observed between the two risk groups.

In the low-risk group, significant enrichment was observed in

metabolic pathways, including oxidative phosphorylation, fatty acid

metabolism, and PPAR signaling, indicating a greater dependency on

metabolic processes. This may explain the increased sensitivity to

metabolism-targeting agents in this subgroup. For instance,

Dihydrorotenone, a mitochondrial complex I inhibitor, directly

disrupts oxidative phosphorylation, which may underlie its

enhanced efficacy in tumors highly reliant on mitochondrial energy

metabolism, as seen in the low-risk group. OSI-027, a dual mTORC1/

2 inhibitor, suppresses lipid biosynthesis and metabolism, thereby

targeting PPAR-regulated lipid metabolic processes, which were also

prominently enriched in the low-risk group (37, 38). Additionally,

SB505124, a TGF-b type I receptor inhibitor, modulates TGF-b–
mediated metabolic reprogramming and is relevant to pathways such

as tyrosine metabolism, which were enriched in the low-risk group

(39). In contrast, the high-risk group was predominantly enriched in

immune-related pathways, including cytokine–cytokine receptor

interaction, hematopoietic cell lineage, and extracellular matrix

(ECM)–receptor interaction, suggesting a more active or

dysregulated immune microenvironment. These features may

account for the increased predicted sensitivity to drugs targeting

immune modulation or associated signaling. For example,

Afuresertib, an AKT inhibitor, interferes with downstream

signaling of cytokine receptors, disrupting survival and immune

evasion mechanisms in tumors (40). Entinostat, a histone

deacetylase (HDAC) inhibitor, has been shown to enhance antigen

presentation and modulate immune checkpoint expression, thereby

promoting anti-tumor immunity—a mechanism consistent with the

immune-related pathway enrichment in the high-risk group (41–43).

Moreover, XAV939, a Wnt/b-catenin pathway inhibitor, can alleviate
immunosuppression and disrupt ECM remodeling, aligning with the

enrichment of ECM–receptor interaction and immune-related

pathways in this group (44, 45). These findings support the

biological relevance of our risk stratification and highlight the

potential of the migrasome-related lncRNA signature to inform

personalized therapeutic strategies based on pathway-specific drug

vulnerabilities. These findings provide a potential reference for

stratified treatment in ccRCC, suggesting that patients in specific

risk groups may benefit from tailored therapeutic approaches. In

addition, we integrated single-cell transcriptomic data to explore the

underlying mechanisms by which the lncRNA-based prognostic

signature may shape the tumor microenvironment in ccRCC. At

single-cell resolution, we observed substantial differences in cellular

composition between the high- and low-risk groups. Notably, high-
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risk tumors exhibited a greater abundance of tumor epithelial cells

endothelial cells and plasma cells, suggesting enhanced tumor

aggressiveness and abnormal angiogenic activity may contribute to

the unfavorable prognosis.

These cell types also play an important role in the TME. Tumor

epithelial cells secrete CCL9 and IL-23 in select tumors, establishing a

pro-inflammatory, pro-angiogenic, and immunosuppressive tumor

microenvironment that significantly accelerates tumor progression

(46). Tumor endothelial cells play pivotal roles not only in

supporting tumor growth but also in actively orchestrating immune

evasion. Particularly, a specialized subset termed immunomodulatory

endothelial cells (IMECs) exhibits remarkable plasticity to

dynamically regulate immune responses during tumor progression

(47). The IgG-FcgRIIA axis orchestrates plasma cell-mediated

maintenance of glioblastoma stem cell stemness in glioblastoma

multiforme, propelling tumorigenic programs through enhanced

self-renewal and proliferative capacity (48).

In our previous survival analysis of bulk RNA seq, we found

that the high-risk group had a poorer survival prognosis. Among

the cell types rated as high-risk in these single-cell analyses, we

discovered tumor epithelial cells had relatively significant cell

communication with T cells, and at the same time, endothelial

cells also had relatively significant cell communication with tumor

epithelial cells. Tumor epithelial cells actively secrete VEGF, which

stimulates endothelial cell proliferation and triggers pathological

angiogenesis through multifaceted signaling cascades, ultimately

fostering tumor neovascularization. VEGF induces upregulation of

the Notch ligand DLL4 in endothelial cells via VEGFR2 activation,

whereby DLL4-mediated Notch signaling differentially suppresses

VEGFR2/3 expression in adjacent cells to spatially restrict

endothelial sprouting and proliferation—preserving VEGFR2-

dependent angiogenic competence while restraining excessive

branching through Notch-imposed inhibition of VEGFR3 (49).

Moreover, several key lncRNAs within the signature exhibited

distinct cell-type–specific expression patterns, indicating their

potential involvement in endothelial activation, epithelial

transformation, and immune modulation, respectively. Together,

these single-cell analyses not only provide biological validation of

the prognostic model, but also uncover critical tumor–immune–

stromal interactions that may underlie risk stratification. These

findings lay the groundwork for future mechanistic investigations

and may inform the development of cell type–specific therapeutic

strategies for ccRCC. We experimentally validated the oncogenic

role of FOXD2-AS1, a key component of our migrasome-associated

lncRNA signature, in promoting ccRCC progression. Knockdown

of FOXD2-AS1 significantly reduced cell migration and

proliferation in ccRCC cells, confirming its biological relevance.

Although FOXD2-AS1 has a lower coefficient in the signature, its

experimental accessibility and stable expression in ccRCC made it

an ideal candidate for validation. These findings further support the

predictive robustness of the lncRNA signature and highlight

FOXD2-AS1 as a potential therapeutic target.

In summary, this study demonstrates that migrasome-

associated lncRNAs hold significant clinical potential in

prognostic prediction, immune modulation, and drug sensitivity
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for clear cell renal cell carcinoma (ccRCC). One limitation of this

study is the lack of external validation due to limited data

availability, which we aim to address in future research as more

independent datasets become available. Although the signature

developed in this study demonstrated promising prognostic value,

its clinical implementation requires further exploration. With the

increasing accessibility and cost-effectiveness of transcriptome-

based technologies such as qRT-PCR and RNA-seq, the detection

of lncRNA expression in biopsy samples is becoming more feasible

in clinical practice. Furthermore, considering the anatomical

characteristics of renal cell carcinoma, we propose that future

studies investigate the potential of detecting signature-related

lncRNAs in non-invasive specimens such as urine. This approach,

although still preliminary, may provide a novel direction for

developing non-invasive prognostic tools. Nevertheless, additional

validation in large-scale, multi-center cohorts will be essential

before this signature can be translated into routine clinical

application. Future research should further investigate the

molecular mechanisms of these lncRNAs in renal cancer to

enhance the clinical translational applications of the signature.
5 Conclusions

This study proposes a novel prognostic signature based on

migrasome-associated long non-coding RNAs (lncRNAs) and

validates its significant prognostic potential in clear cell renal cell

carcinoma (ccRCC). By integrating transcriptomic and clinical data,

we identified lncRNAs closely associated with migrasome-related

genes and constructed a robust risk prediction model. This signature

effectively stratifies ccRCC patients into distinct risk groups with

significant survival differences and uncovers critical associations with

immune cell infiltration, tumor mutation burden, and drug

sensitivity. Furthermore, single-cell transcriptomic analysis revealed

cell type–specific expression patterns of the signature genes and

distinct microenvironmental features across risk groups, reinforcing

the model’s biological interpretability. The findings highlight the

potential clinical utility of this model in guiding personalized

treatment for ccRCC and emphasize the practical value of

migrasome-associated lncRNAs, offering new insights for further

exploration of their biological functions and therapeutic applications.
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