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Background: Among patients with chronic kidney disease (CKD), vascular
calcification significantly contributes to cardiovascular health issues, though
the underlying molecular mechanisms remain unclear. Recent research
highlights neutrophil extracellular traps (NETs) as critical mediators of vascular
damage and pro-calcific processes.

Methods: We obtained transcriptomic data from the NCBI GEO database for
CKD rodent models and identified differentially expressed genes, selected genes
using machine learning, functional enrichment, profiling of immune infiltration,
transcription factor (TF) activity prediction and drug—gene interaction analysis.
Results: Our analysis revealed 36 NET-related genes with differential expression,
and 19 were confirmed by the RobustRankAggreg method. Among them, Mmp12
and Comp emerged as the most consistently selected diagnostic markers across
five machine learning algorithms, exhibiting excellent predictive performance
(AUC > 0.95). These genes were enriched in neutrophil chemotaxis, ECM
remodeling, and PI3K-Akt-mTOR signaling pathways. Immunohistochemistry
confirmed NET deposition in calcified arteries of rat, and quantitative PCR and
Western blot validated key NRGs expression in CKD rat aortae.

Conclusion: Our results demonstrate that NET-related genes may contribute to
CKD-associated vascular calcification in rodent models. Specifically, this work
provides evidence for a potential mechanistic link between NET biology and
vascular calcification in CKD, thereby offering insights into immune-vascular
interactions and raising the possibility of exploring NET-targeted approaches to
mitigate vascular damage.
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1 Introduction

Chronic kidney disease (CKD) is a major contributor to global
health challenges, causing an estimated 5 to 10 million deaths every
year. It involves progressive kidney failure and markedly elevated
cardiovascular risk, which continue to be the primary cause of death
in individuals with CKD (1, 2). The increased cardiovascular risk in
CKD is multifactorial and partly attributable to CKD-specific
pathophysiological processes, including vascular calcification.
Unlike age-related intimal calcification, CKD predominantly
promotes medial arterial calcification—a tightly regulated and
dynamic process driven by a combination of systemic and
local disturbances (3-6). Among the central mechanisms is
disordered mineral metabolism, particularly hyperphosphatemia,
hypocalcemia, and secondary hyperparathyroidism (7-9).

CKD is characterized by persistent low-level inflammation,
fostering a vascular environment conducive to calcification.
Inflammatory agents such as IL-6 and TNF-o promote the
recruitment of immune cells, cause oxidative damage, and disrupt
endothelial function, speeding up vascular remodeling and mineral
buildup. This chronic inflammatory milieu accelerates extracellular
matrix (ECM) degradation, facilitates vascular smooth muscle cell
(VSMC) phenotypic switching, and initiates calcific lesion
formation (10, 11). Furthermore, ECM remodeling driven by
matrix metalloproteinases (MMPs), including MMP-2 and MMP-
9, disrupts vascular elasticity and exposes nucleation sites for
mineral deposition (12, 13). Although progress has been made in
understanding the mineral dysregulation in CKD, the exact
molecular mediators that link inflammation, matrix remodeling,
and calcification are still incompletely elucidated.

In various chronic illnesses, neutrophil extracellular traps
(NETs) are being increasingly identified as significant factors in
sterile inflammation and vascular injury. NETs are crucial in
thromboinflammatory processes and are now regarded as major
contributors to immunothrombosis (14-17). NETs have also been
associated with the progression of non-infectious diseases, such as
autoimmune diseases, cancer, thrombosis, and chronic
inflammatory conditions (18). Recent studies have emphasized
the potential link between neutrophil activation, NET formation,
and increased cardiovascular risk in CKD patients. These patients
exhibit elevated serum levels of cytokines that induce NETs,
persistent low-grade inflammation, and heightened expression of
neutrophil activation markers in the bloodstream (19-22).
However, the molecular pathways of NET production in CKD
and their role in CKD-related cardiovascular risk remain poorly
understood. In particular, NET-related genes are differentially
expressed in calcified aortic tissue from uremic mice, however,
how these genes connect to major transcriptional and signaling
pathways, and whether they could be utilized as diagnostic
indicators or therapeutic targets. Hence, a systematic exploration
of NET-related gene expression profiles, immune and regulatory
networks in CKD-related vascular calcification is warranted. Such
insights could illuminate novel mechanisms underlying the CKD-
cardiovascular axis and offer mechanistic rationale for
targeted interventions.
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This research focused on mapping the molecular profile of
NET-related genes in aortic calcification caused by CKD through a
combined bioinformatics and machine learning strategy. By
analyzing transcriptomic data from murine CKD models and
incorporating differential expression analysis, immune infiltration
profiling, transcription factor (TF) activity prediction, and drug-
gene interaction mapping, we identified candidate diagnostic
biomarkers, mechanistic regulators, and potential therapeutic
targets. Our research provides new insights into how NETs
contribute to vascular calcification and lays the groundwork for
further mechanistic studies and practical interventions in CKD.

2 Materials and methods

2.1 Dataset collection and NETs-related
gene acquisition

Gene expression data were retrieved from the National Center
for Biotechnology Information’s Gene Expression Omnibus (GEO)
public repository. To ensure relevance to our research focus on
NETs-mediated vascular calcification in CKD, we used “vascular
calcification”, “CKD” and “chronic kidney disease” as key words.
The selection of GSE146638 (rat, n=5 CKD, n=5 control) and
GSE159832 (mouse, n=2 CKD, n=2 control) was driven by their
direct alignment with our experimental model. NETs-related genes
were collected from previous studies (23, 24) and the GeneCards
database (Relevance score 210). Homologous gene conversion was
conducted using the homologene function in Homologene (version
1.4.68) to map human NETs-related genes to mouse orthologs, as
well as rat genes to mouse orthologs.

2.2 Differential gene expression analysis

Differential expression analysis was performed using the limma
package (version 3.60.6) (25) on log2 transformed FPKM values.
Genes with p-value < 0.05 and [log2FC| > 1.5 were considered
significantly differentially expressed. Volcano plots were visualized
using ggplot2 (version 3.5.1).

2.3 RRA-based DEG integration

RobustRankAggreg (RRA) analysis was conducted using the
RobustRankAggreg package (version 1.2.1) (26) to integrate DEGs
from both GEO datasets. Genes with an RRA score < 0.3 were
retained as robust NETs-related candidates. Heatmaps were
generated using the ComplexHeatmap package (version 2.20.0).

2.4 Functional enrichment analysis

Gene ontology (GO: BP, CC, MF), KEGG, Reactome, and
WikiPathway enrichment analyses were performed using the
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Metascape platform (27) with a threshold of p value < 0.01 and
minimum enrichment score > 1.5. Plots were visualized using
ggplot2 (version 3.5.1) and ggh4x (version 0.3.0).

2.5 Protein—protein interaction network
analysis

PPI networks were constructed via STRING (version 12.0), with
a minimum interaction score of 0.4. K-means clustering was
applied, and networks were visualized in Cytoscape (version
3.9.1). Hub genes were identified using the cytoHubba plugin
(version 0.1) based on Degree centrality.

2.6 Gene set enrichment analysis and gene
set variation analysis

GSEA was performed using clusterProfiler (version 4.12.6) (28)
based on gene expression ranks from both DEGs and gene-
correlation analyses. Enrichment was evaluated against KEGG
and Hallmark gene sets. Enrichment scores for NETs-related gene
sets were calculated using the GSVA package (version 1.44.2) (29).
Differences between CKD and control groups were assessed using
Wilcoxon tests.

2.7 Machine learning-based feature gene
selection

Before applying the machine learning algorithms for feature
gene selection, we first performed data standardization using the z-
score method (i.e., applying the scale function in R, which centers
each feature to mean = 0 and scales to standard deviation = 1) on
the expression matrix (FPKM). This step ensures comparability
across robust NETs-related genes. Subsequently, five machine
learning algorithms—LASSO regression, random forest (RF),
recursive feature elimination, gaussian mixture modeling (GMM),
and support vector machines (SVM)—were used for
feature selection.

1. LASSO: glmnet (version 4.1-8) with 10-fold cross-
validation to determine the optimal A and select non-zero
weight genes.

2. RF: RandomForest (version 4.7-1.2), selecting top 10 genes
by importance scores.

3. RFE: caret (version 7.0-1), iteratively removing low-impact
genes to determine the optimal subset.

4. GMM: mclust (version 6.1.1) to cluster genes based on
expression variability.

5. SVM-RFE: e1071 (version 1.7-16) + caret for recursive

ranking and feature extraction.

Intersection analysis was performed using VennDiagram
(version 1.7.3) and UpSetR (version 1.4.0). Candidate diagnostic
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genes were visualized by expression boxplots (ggpubr, version 0.6.0)
and ROC curves using pROC (version 1.18.2).

2.8 Immune infiltration analysis

Immune cell proportion in GSE146638 was evaluated using the
CIBERSORT package (version 0.1.0) (30). Group comparisons
(using Wilcoxon test) and gene-immune correlations (Spearman
method) were performed.

2.9 Gene co-expression network analysis
(GeneMANIA)

The GeneMANIA database was used to construct PPI and
functional association networks of diagnostic genes and their
related partners, including co-expression, shared pathways, and
protein domain similarity.

2.10 Transcription factor activity prediction

NETact (31) was employed to infer TF activity from normalized
RNA-seq expression matrices (log2(FPKM + 1)). A transcriptional
regulatory network was constructed based on TF-target
relationships. TF activity scores were computed using expression
correlation and topological features. Heatmaps were plotted to
display TF activity differences between CKD and control groups.

2.11 Drug—gene interaction network

Candidate therapeutic drugs targeting the diagnostic genes were
retrieved using the DGIdb. A drug-gene interaction network was
constructed and visualized in Cytoscape (version 3.9.1).

2.12 Upstream—-downstream inference via
Bayesian network (CBNplot)

Enrichment analyses were performed using clusterProfiler
(version 4.12.6). Bayesian regulatory networks were inferred using
CBNplot to identify hierarchical relationships among biological
processes and predict upstream and downstream genes involved in
CKD progression.

2.13 Validation of feature genes in CKD-
MBD rat model

6-8 weeks old Sprague-Dawley (SD) rats(n=3) received adenine
at 250 mg/kg plus a 1.8% high-phosphorus diet to induce a CKD-
MBD model. Eight weeks later, thoracic aortas were collected for
gene and protein analyses.

Immunohistochemical (IHC) Staining. Paraffin sections (3 pum)
of thoracic aorta from three different CKD rats were deparaffinized,
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FIGURE 1

Identification of differentially expressed NET-related genes (NRGs) in CKD-associated vascular calcification. (A, B) Volcano plots of differentially
expressed genes (DEGs) in GSE146638 (A) and GSE159832 (B). Red dots, up-regulated genes; blue dots, down-regulated genes. (C) Venn diagram
showing the overlap between DEGs and NRGs. (D) Robust rank aggregation (RRA) reveals consistently dysregulated NRGs in GSE146638 and
GSE159832. Red, up-regulated; blue, down-regulated. (E, F) Expression levels of RRA-selected NRGs in CKD versus control groups for GSE146638

(E) and GSE159832 (F).

antigen-retrieved, and incubated with anti-MPO (1:500, Servicebio,
4°C, overnight).

2.14 Statistical analysis

All statistical analyses were conducted in R (version 4.4.1). A p
value of < 0.05 was considered statistically significant.

3 Results

3.1 Identification of NETs-associated genes
in CKD with aortic calcification

To assess how NETs contribute to vascular calcification in the
context of CKD, we examined RNA-seq data from rodent models
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mimicking arterial calcification observed in this condition of
subtotal nephrectomy, which mimic arterial calcification under
both atherosclerotic and medial calcification conditions. For this
analysis, two datasets were retrieved from the GEO database.
Differential gene expression analysis between CKD and control
groups revealed 1,058 upregulated and 771 downregulated genes in
GSE146638 (Figure 1A), and 780 upregulated and 960
downregulated genes in GSE159833 (Figure 1B), with a
significance threshold of |log2 fold change| > 0.58 and adjusted p-
value < 0.05.

We compiled a broad set of NET-associated genes (NRGs) by
aggregating entries from peer-reviewed studies and public
databases. Specifically, 69 NRGs were obtained from Zhang et al.,
137 from Wu et al,, and 459 additional candidates were retrieved
from the GeneCards database using a relevance score >10. After
removing duplicates and performing ortholog mapping, a total of
494 unique NRGs were compiled. By intersecting this list with the
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DEGs extracted from the CKD datasets, 36 overlapping genes were
identified as being associated with both NETs and CKD-related
aortic calcification (Figure 1C).

In order to further refine this gene set, we implemented the
RobustRankAggreg (RRA) algorithm (version 1.2.1), which ranks
genes based on consistent differential expression across datasets.
This analysis yielded 414 consistently dysregulated genes (RRA
score < 0.3). Cross-referencing these with the previously identified
NETs-related DEGs resulted in 19 robust candidate genes: Itgam,
Tlr7, Sgkl, C3, Clecde, Fcgr2b, Lyz2, Sppl, Timpl, C4b, Cdknla,
Serpina3n, Cd68, Mmpl2, Cdl4, Comp, Collal, Lgals3, and Apoe.
The majority of these genes were linked to the functional pathways
of neutrophils and monocyte/macrophage populations. Except for
Collal, which was downregulated, all other genes demonstrated a
significant increased expression in the CKD group (Figures 1D-F),
suggesting their potential mechanistic involvement in vascular
calcification during CKD progression.

3.2 Exploration of NETs-related
mechanisms in aortic calcification in CKD

To further explore the potential mechanisms linking NETs to
aortic calcification in CKD, we performed functional enrichment
analyses on the 19 previously identified NETs-related candidate
genes. Pathway analyses were conducted using KEGG, Gene
Ontology (GO), Reactome, and WikiPathways databases.
Enrichment analysis indicated that these genes are involved in
immune activation, inflammation, ECM reorganization, and
signaling pathways that promote calcification, notably the PI3K-
Akt-mTOR and IGF-IGFBP regulatory axes. These enriched
pathways are biologically relevant to the pathogenesis of vascular
calcification (Figure 2A).

To further assess the involvement of NETs-related genes in
CKD-associated vascular pathology, we used Gene Set Variation
Analysis (GSVA) to characterize pathway activity shifts. to the
training dataset GSE146638. A NETs-related gene score (NRGs-
score) was calculated for each sample, and differences between CKD
and control groups were assessed using the Wilcoxon test. Analysis
revealed a markedly higher NETs-related gene signature in CKD
samples relative to the control group, indicating that NETSs-
associated gene expression is markedly enriched in CKD aortic
tissue (Figure 2B).

Building upon the differential expression findings, We
employed GSEA to analyze pathway enrichment using both GO:
GO: BP and KEGG pathway databases to explore functional
differences between CKD and control groups. GSEA revealed that
CKD samples were significantly enriched in 505 GO: BP terms,
whereas control samples were enriched in 85 GO: BP terms
(Figure 2C). Furthermore, KEGG pathway analysis identified 25
significantly enriched pathways in the CKD group and 20 in the
control group (Figure 2D), highlighting profound alterations in
biological processes and signaling networks associated with CKD.
Enrichment of GO and KEGG pathways in the CKD group revealed
a pronounced activation of immune and inflammatory responses,
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particularly pathways involved in leukocyte chemotaxis,
proliferation, and extracellular trap formation.

Based on the candidate genes identified through
RobustRankAggreg (RRA) analysis, we constructed a protein-
protein interaction (PPI) network using the STRING database,
with the minimum required interaction score set to 0.4. The
resulting interaction data were imported into Cytoscape (version
3.9.1) for visualization and topological analysis. The constructed
network comprised 10 nodes and 69 edges, with a highly significant
PPI enrichment p-value (< 1.0e-16), indicating non-random,
biologically meaningful interactions among the selected genes.
The top five hub genes ranked by network centrality were Itgam,
Apoe, Lgals3, Cd68, and Timpl, suggesting their potential central
roles in the NETs-associated signaling networks underlying CKD-
related aortic calcification (Figures 2E, F).

3.3 Machine learning model to screen
NETs-related key genes

To identify robust candidate biomarkers associated with NET'-
related mechanisms in CKD-associated aortic calcification, we
applied five machine learning algorithms—Least Absolute
Shrinkage and Selection Operator (LASSO), Random Forest (RF),
Recursive Feature Elimination (32), Support Vector Machine
(SVM), and Gaussian Mixture Modeling (GMM)—for feature
selection. LASSO regression identified optimal lambda values
using 10-fold cross-validation (Figures 3A, B), and selected a
subset of genes with non-zero coefficients. RF analysis revealed
stable model performance at approximately 100 trees (Figure 3D),
and variable importance ranking highlighted several top candidates
(Figures 3C, D). RFE evaluation further identified the optimal
number of predictors based on cross-validation error (Figure 3E).
Feature importance was also evaluated using a bar plot (Figure 3F),
emphasizing consistently ranked top genes.

To integrate and compare the results across algorithms, a Venn
diagram (Figure 3G), and UpSet plot (Figure 3H) were generated.
Cross-method comparison revealed consistent gene overlaps
among the different feature selection strategies, with two genes
Mmpl2 and Comp, consistently identified by all five algorithms.

3.4 Identification of core genes and
exploration of biological functions

Using the GSE146638 dataset, we assessed the diagnostic value
of the identified hub genes by constructing individual ROC curves
for Mmp12 (Figure 4A) and Comp (Figure 4B). Both MmpI2 and
Comp showed strong ability to distinguish CKD samples from
controls, showing area under the curve (AUC) scores
approaching 1.0, indicating strong classification capability.
Furthermore, expression levels of Mmp12 (Figure 4D) and Comp
(Figure 4C) were significantly overexpressed in the CKD group
when compared to the control group.
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To explore the downstream functional implications of these
genes, GSEA was performed based on high- versus low-expression
stratification of MmpI2 and Comp. KEGG and Hallmark
gene sets revealed that both genes were associated with the
activation of neutrophil chemotaxis and neutrophil migration
pathways, suggesting their involvement in the inflammatory
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microenvironment of CKD-associated aortic calcification
(Figures 4E-H).

Additionally, co-expression analysis using the GeneMANIA
database identified genes with similar biological functions and
expression profiles. Functional inference suggested that the gene
network is heavily involved in ECM structural processes, further
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Diagnostic performance and functional characterization of key NET-related genes. (A, B) ROC curves for Mmp12 (A) and Comp (B) in the
GSE146638 dataset; both yield AUC = 1.0. (C, D) Box plots showing significantly elevated Comp (C) and Mmp12 (D) expression in CKD samples
versus controls (p < 0.001, Wilcoxon test). (E-H) GSEA results for top-ranked genes correlated with Comp (E, F) and Mmp12 (G, H); KEGG pathways
are on the left, GO: BP terms on the right. (I) GeneMANIA co-expression network illustrating functional interactions of Mmp12 and Comp with

related genes (co-expression, shared pathways, and physical binding).

supporting the role of Mmp12 and Comp in matrix remodeling and
disease progression (Figure 4I).

3.5 Immunoregulatory landscape in aortic
calcification in CKD

To characterize the immune microenvironment associated with
CKD-related aortic calcification, we applied the CIBERSORT
algorithm to the GSE146638 dataset to estimate the relative
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proportions of 22 immune cell types. Comparative analysis
between CKD and normal samples revealed significant differences
in the immune cell proportion, with dendritic cells (DCs) showing
markedly elevated infiltration in the CKD group (Figure 5A). In
addition, correlation analysis between the expression levels of the
identified hub genes and immune cell scores demonstrated that
cartilage oligomeric matrix protein (COMP) and matrix
metalloproteinase 12(MMP-12) were significantly associated with
multiple immune cell subsets, including memory B cells, regulatory
T cells (Tregs), and dendritic cells (Figure 5B).
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FIGURE 5

Immune-cell infiltration landscape of key NET-related genes in CKD-associated vascular calcification. (A) Relative abundance of 22 immune-cell
types in CKD versus control samples, determined by CIBERSORT analysis of the GSE146638 dataset. (B) Spearman correlation between Mmp12/
Comp expression and the abundance of infiltrating immune-cell subsets. * represents P<0.05, ** represents P<0.01, ns represents. P>0.05.

3.6 Molecular regulatory network and
clinical correlation of core genes

The upstream regulatory mechanisms of the hub genes were
explored using the NETact algorithm to predict TF activity. A set of
TFs—including Npas2, Pou2fl, Sox2, Foxol, Cebpa, Tfap2a, Egrl,
and Foxo3 showed significant activation in CKD samples compared
to controls (Figures 6A, B). Correlation analysis further revealed
that Foxol and Tfap2a were strongly associated with both MmpI12
and Comp (Figure 6C), suggesting that they may serve as common
upstream regulators.

Functional enrichment analysis was conducted based on genes
exhibiting high correlation (r > 0.9) with Comp and Mmp12. GO
and KEGG analyses highlighted their significant roles in matrix
remodeling and receptor-mediated interactions. Additionally,
GSEA based on expression ranking of Comp and MmpI2 revealed
enrichment in pathways related to neutrophil migration and
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immune signaling, highlighting their roles in inflammatory
microenvironments. To further investigate causal regulatory
relationships, a Bayesian network was constructed using the
CBNplot algorithm. The analysis suggested that Comp may
regulate Ltbp2 within ECM-related pathways, while Tnn may act
upstream of MmpI2. In the ECM-receptor interaction network,
Spp1 was predicted to modulate Comp, supporting its role in matrix
remodeling during vascular calcification (Figures 6D, E).

Candidate therapeutic compounds were identified by integrating
gene—drug interaction data from DGIdb and visualizing them in
Cytoscape. Several inhibitors targeting MMP12, including
Marimastat, [lomastat, and AZD-1236 exhibited known anti-
fibrotic or anti-inflammatory properties. Zileuton and Captopril
also emerged as potential modulators, with established use in
chronic inflammatory and cardiovascular conditions. Importantly,
Tadalafil, a PDES5 inhibitor with clinical approval, was identified as a
predicted interactor of COMP (Figure 6F).
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3.7 IHC staining

We attempted to perform IHC staining for MPO in the CKD
model rats(n=3) and controls(n=3). IHC staining revealed that
MPO levels in the rat thoracic aorta were significantly higher in
the CKD group than in the control group(p < 0.001)
(Figures 7A, B).
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3.8 qRT-PCR and Western blot

qRT-PCR and Western blotting were performed to evaluate the
expression of MMP-12 and COMP in the model rats and controls.

qRT-PCR confirmed statistically distinct expression patterns of
Mmp-12 and Comp between the two groups between the CKD
group and the control group (p < 0.05)(Figures 8A, B).
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Immunohistochemical detection of MPO in vascular tissue from rat models. (A) Representative whole-section images (scale bar, 200 um) and
magnified views (scale bar, 20 um) from control and CKD groups. (B) Quantitative analysis of MPO immunostaining intensity; data are presented as

mean + SD (p < 0.001 vs. control), n=3 animals. MPO, myeloperoxidase.

Western blotting analysis revealed the expression of MMP-12
was notably upregulated in the CKD group compared to the control
group (p < 0.05, Figure 8C). In contrast, the levels of COMP were
significantly decreased in the CKD group relative to the control
group (p< 0.05, Figure 8D). These findings not only validated
previous findings, but also revealed the important roles of MMP-
12 and COMP in the pathological processes underlying vascular
calcification in rodent models.

4 Discussion

In individuals with CKD, vascular calcification (VC) is a
common complication that markedly increases cardiovascular
risk. Accumulating evidence has linked VC progression to
persistent inflammation, largely driven by cytokines including
TNF-0, IL-1f, and IL-6 (33). NET formation is an inflammatory
cell death mechanism in neutrophils, characterized by the release of
chromatin and other nonspecific components (34). Hyperactivation
of NET's may provoke dysregulated inflammation and tissue injury,
primarily due to the accumulation of extracellular chromatin and
pro-inflammatory mediators like TNF-or and IL-1B (35, 36). Studies
have demonstrated the presence of NETs in both human and
experimental murine abdominal aortic aneurysms (AAAs) (37).
Specifically, neutrophils undergo NETosis during the early phase of
AAA growth, and this process requires IL-13, MMP-2, and MMP-9
within neutrophils (38). Importantly, these members of the NETs-
related family also play an important role in the development of
another cardiovascular disease—VC (33). Our validation
experiments further demonstrated that MPO expression was
markedly elevated in the thoracic aorta of rats with CKD. The
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precise molecular pathways through which NETs influence the
development and progression of VC in CKD remain to be fully
elucidated. The expanding use of high-throughput microarrays and
computational analyses has enhanced the ability to identify genes
implicated in VC.

To dissect the involvement of NETs-linked genes in CKD-
related vascular calcification, we utilized a comprehensive multi-
omics approach, integrating bioinformatics tools with machine-
learning-based gene prioritization, immune cell profiling,
transcriptional regulatory inference, and drug-gene interaction
mapping. We performed differential gene expression analyses on
two independent RNA-sequencing datasets derived from rodent
models of CKD, leading to the identification of 19 robust NETs-
related candidate genes. Enrichment analysis indicated that these
genes were primarily associated with immune-inflammatory
pathways and ECM remodeling, supporting the mechanistic
involvement of NETs in CKD-related vascular calcification.
Among the identified candidate genes, Mmp2 and Comp emerged
as the most consistently selected key biomarkers across all five
machine learning algorithms. Both genes were significantly
upregulated in CKD samples from rat and mouse, and exhibited
excellent diagnostic performance, with area under the curve (AUC)
values exceeding 0.95.

MMP-12, a macrophage-secreted elastase, mediates elastolytic
degradation of ECM components and drives pathological tissue
remodeling (39). Recent genomic analyses identified Mmp12 as the
most significantly upregulated gene in stenotic aortic valve cusps
(40). It has been reported that immunohistochemical analysis
localized MMP-12 protein to regions of advanced calcification.
Mechanistically, MMP-12 promotes RUNX-2 and BMP-2
expression, enhances alkaline phosphatase (ALP) activity, and
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accelerates calcium deposition via activation of the p38 MAPK-
LRP-6/B-catenin signaling axis (41). These findings align with
growing evidence that MMP-12 critically regulates vascular
calcification through ECM destabilization. Consistent with prior
observations, our experiments confirmed elevated MMP-12
expression in thoracic aorta of CKD rats. We propose a
pathogenic cascade wherein macrophage infiltration in chronic
inflammatory microenvironments induce MmpI2 overexpression,
thereby initiating a feed-forward loop of ECM degradation and
ectopic calcification.
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As a vascular extracellular matrix glycoprotein, COMP acts as a
natural inhibitor of vascular calcification. Experimental studies
demonstrate that COMP expression is significantly
downregulated in mineralized VSMCs and arterial tissues.
Mechanistically, Via its C-terminal domain, COMP binds directly
to bone morphogenetic protein-2 (BMP-2), thereby interfering with
BMP-2 receptor engagement and inhibiting subsequent
osteochondrogenic signaling (41). Notably, macrophages lacking
Comp exhibit pro-atherogenic and osteogenic phenotypes via
integrin PB3-dependent signaling, exacerbating atherosclerotic
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calcification (42). These findings collectively establish COMP as an
essential modulator of vascular calcification development.
Interestingly, our validation studies confirmed reduced COMP
protein levels in CKD rat models, consistent with prior clinical
observations. However, integrated bioinformatics analyses and
experimental validation revealed a paradoxical upregulation of
Comp mRNA in CKD rats. We hypothesize that this
transcriptional discordance may result from compensatory
feedback mechanisms triggered by sustained COMP
protein depletion.

Our functional enrichment analyses (GO, KEGG, Hallmark)
further revealed that both Mmpl2 and Comp are enriched in
pathways related to neutrophil chemotaxis, cell migration, and
ECM organization, suggesting their participation in immune-
mediated vascular calcification processes. In addition, TF activity
analysis identified Foxol and Tfap2a as potential shared upstream
regulators of both genes. Notably, previous research has
demonstrated that MMP-12 can promote neutrophil polarization
through activation of the FOXO1 signaling axis, leading to a pro-
apoptotic phenotype (43). Together, these findings provide a
mechanistic framework to further explore NET-associated
pathways within the framework of CKD-associated vascular
calcification, and highlight a coordinated transcriptional
regulatory network that may underlie CKD-related
vascular pathology.

Importantly, our drug-gene interaction analysis identified
several compounds with potential therapeutic relevance.
Specifically, MMP-12 was associated with a group of known
MMP inhibitors (Marimastat, Ilomastat, AZD-1236) as well as
anti-inflammatory agents (Zileuton, Captopril). Among them,
Marimastat is a broad-spectrum matrix metalloproteinase (MMP)
inhibitor capable of suppressing multiple MMPs, including MMP-
1, MMP-2, MMP-7, MMP-9, and MMP-12. Notably, in mouse
models, Marimastat has demonstrated the ability to inhibit MMP-
12-induced inflammatory responses, reduce neutrophil and
macrophage recruitment, and lower levels of pro-inflammatory
cytokines (19, 44). Meanwhile, Comp was found to be associated
with the clinically approved PDE5 inhibitor Tadalafil. In a case
report, Tadalafil was administered to treat penile calcification
lesions in a patient with end-stage renal disease, which resulted in
a favorable clinical response. This finding suggests a novel potential
role for Tadalafil in ameliorating vascular calcification in CKD
patients (45). Taken together, these findings highlight a plausible
pharmacological strategy to modulate NETs-related gene activity
and mitigate aortic calcification in CKD. Furthermore, these data
indicate that modulation of NET-related gene activity through
repurposed, clinically available agents may attenuate aortic
calcification in CKD. The established safety profiles of several of
these compounds further support the feasibility of rapid
translational evaluation.

However, there are also several limitations in our study. First,
the analyses were based on publicly available transcriptomic data
from rodent models, which may not fully recapitulate the
complexity of human CKD pathology. Second, while our
integrative approach prioritized candidate regulators and
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therapeutic agents, functional confirmation using in vivo and in
vitro experimental models is warranted to confirm their
mechanistic roles and therapeutic efficacy. Lastly, the small
sample size in one of the datasets (GSE159833) may limit
statistical power, and future validation in larger, independent
cohorts is important.

5 Conclusion

In summary, this study maps the molecular contribution of
NET-related genes to CKD-driven aortic calcification in rodent
models. Through multi-omics data and machine learning
algorithms, we pinpoint Mmpl2 and Comp as key regulators of
immune-mediated ECM remodeling and vascular pathology. Both
genes demonstrated robust diagnostic potential and were found to
be transcriptionally regulated by Foxol and Tfap2a. Importantly,
our network-based drug screen nominates Marimastat and tadalafil
as readily available agents capable of attenuating NET-driven
calcification. These findings offer both mechanistic insight and a
practical starting point for future biomarker studies and NET-
targeted treatments in CKD-related vascular disease.
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