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Background: Macrophage polarization plays a pivotal role in shaping the tumor

microenvironment and influencing rectal cancer progression. However, the

metabolic and prognostic regulators governing this process remain

largely undefined.

Methods: We constructed a macrophage polarization gene signature (MPGS) by

integrating weighted gene co-expression network analysis (WGCNA) with

multiple machine learning algorithms across two independent cohorts: 363

rectal cancer samples from GSE87211 and 177 samples from The Cancer

Genome Atlas (TCGA). The prognostic performance of MPGS was evaluated

across rectal and multiple other cancer types. Functional analyses, single-cell

RNA sequencing, immunohistochemistry of clinical specimens, and in vitro

cellular assays were employed to investigate the role of the MPGS hub gene,

PYGM, in tumor biology and immune modulation.

Results: The MPGS exhibited robust prognostic capability and effectively

predicted responses to immunotherapy and various chemotherapeutic agents.

Both MPGS and its central metabolic component, PYGM, were closely linked to

M2 macrophage infiltration, immunosuppressive tumor microenvironments, and

poor clinical outcomes in rectal adenocarcinoma. Single-cell transcriptomic

analysis revealed that malignant epithelial cells with elevated PYGM expression

aremetabolically active and closely interact with M2macrophages. Clinical tissue

analyses and functional assays confirmed that PYGM is upregulated in rectal

cancer and promotes tumor cell proliferation, migration, and M2

macrophage polarization.
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Conclusions: This study firstly highlights PYGM as a key metabolic and

immunological regulator in rectal cancer, with significant prognostic and

therapeutic implications. MPGS and PYGM may serve as novel biomarkers for

risk stratification and guide personalized treatment strategies in patients with

rectal adenocarcinoma.
KEYWORDS

rectal cancer, macrophage polarization, PYGM, metabolism, prognosis,
machine learning
1 Introduction

Rectal cancer ranks as the eighth leading cause of cancer-related

mortality globally, accounting for approximately 340,000 deaths in

2022 (1). While advances in high-resolution imaging and

multimodal therapies—such as neoadjuvant chemoradiotherapy

(nCRT), total mesorectal excision (TME), and organ-preserving

strategies—have refined clinical management (2, 3), long-term

outcomes remain suboptimal. Although colonoscopy is the gold

standard for early detection, its high-cost limits widespread

implementation in low- and middle-income countries (4). Rectal

adenocarcinoma (READ) and colon adenocarcinoma (COAD),

though both classified under colorectal cancer (CRC), exhibit

distinct embryological origins, anatomical locations, treatment

responses and clinical outcomes (5), molecular profiles (6),

immune infiltration patterns (7, 8). The molecular pathogenesis

of rectal cancer involves diverse genetic and epigenetic alterations,

including dysregulation of genes such as APC, KRAS, TP53,

MSI, SOCS2, and SOCS6 (9–11). Nonetheless, current biomarkers

and therapeutic targets have limited utility, and compared to CRC

as a whole, there is currently a relative scarcity of studies that

specifically focus on rectal adenocarcinoma (READ) as an

independent entity. Most existing prognostic models and tumor

microenvironment analyses have been developed based on

combined CRC cohorts, potentially overlooking the unique

biological, molecular, and clinical characteristics of rectal cancer.

There is a critical need to identify novel molecular determinants

that can improve diagnostic precision and prognostic stratification

in READ.

Tumor-associated macrophages (TAMs), particularly those with

an M2-like polarization phenotype, are key immunosuppressive

components of the tumor microenvironment (TME) and facilitate

tumor progression by secreting pro-tumorigenic mediators such as

CHI3L1 and TGF-b (12–14). TAMs play essential roles in modulating

immune–tumor interactions, promoting angiogenesis, metastasis,

and resistance to therapy (15–17). Phenotypically, TAMs resemble

alternatively activated (M2) macrophages linked to poor clinical
02
outcomes across multiple malignancies, including colorectal cancer

(14, 17–22). In rectal cancer specifically, several studies have reported

that individual gene alterations may affect macrophage infiltration and

correlate with adverse prognosis (23, 24). However, these investigations

are often limited to single-gene associations, lacking integrative

modeling approaches that account for the complex regulatory

landscape of macrophage polarization.

There is growing recognition that metabolic reprogramming in

the TME fuels tumor cell proliferation and shapes the immune

landscape, particularly by modulating macrophage differentiation

and polarization (25–28). Tumor-driven lipid and glucose

metabolism alterations generate a metabolically enriched and

immunosuppressive environment that favors M2 macrophage

accumulation. For instance, overexpression of sterol regulatory

element-binding proteins (SREBPs) enhances lipid biosynthesis,

contributing to M2 polarization via endoplasmic reticulum stress

pathways (29, 30). Similarly, mitochondrial dysfunction, such as

PINK1 deficiency, induces the Warburg effect in gastric cancer cells

and promotes M2 macrophage recruitment (31). These findings

underscore the potential of metabolic genes as dual-function

biomarkers—informative of both macrophage activity and

tumor progression.

In this study, we curated macrophage polarization–related

genes from the GeneCards database and analyzed gene expression

profiles from TCGA and GEO datasets (GSE87211 and others) to

identify dysregulated genes associated with prognosis in rectal

cancer. Through a combination of weighted gene co-expression

network analysis (WGCNA) and four machine learning algorithms,

we constructed a macrophage polarization gene signature (MPGS)

and validated its prognostic utility across multiple independent

cohorts. Functional enrichment, single-cell transcriptomic

profiling, clinical sample validation and cell assays were

performed to elucidate the biological role of the signature’s key

component, PYGM, in metabolic regulation and macrophage

infiltration. Our findings suggest that PYGM is a clinically

relevant metabolic biomarker associated with immune

modulation and survival outcomes in rectal cancer.
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2 Materials and methods

2.1 Data acquisition and processing

Gene expression datasets (GSE87211, GSE14333, GSE117536,

GSE17537, GSE17538, GSE38832, and GSE103479) were obtained

from the Gene Express ion Omnibus (GEO; ht tps : / /

www.ncbi.nlm.nih.gov/geo/) as of October 2023. Single-cell RNA

sequencing (scRNA-seq) data were retrieved from GEO accession

GSE132465. Bulk RNA-seq expression profiles and associated

clinical data for rectal adenocarcinoma (READ) and colon

adenocarcinoma (COAD) patients were acquired from The

Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/). The

TCGA pan-cancer dataset, comprising over 10,000 samples across

33 cancer types, was also included for external validation. A total of

10,598 macrophage polarization-related genes (MPGs) were

retrieved from GeneCards (https://www.genecards.org/) using the

keyword “macrophage polarization.” Mutation status of candidate

genes was assessed using cBioPortal (https://www.cbioportal.org/)

(32). Protein-level expression data of MPGs in normal and tumor

tissues were accessed from the Human Protein Atlas (https://

www.proteinatlas.org/) (33). Gene expression matrices were

normalized using the NormalizeBetweenArrays function from the

limma R package, and batch effect adjustment was performed using

the “ComBat” algorithm from the sva package, with default

parameters, to correct for potential batch effects across datasets.

GSE87211 was designated the training cohort, while the TCGA-

READ dataset served as the test cohort.
2.2 WGCNA for co-expression network
construction

Weighted gene co-expression network analysis (WGCNA) was

performed on the GSE87211 dataset using the WGCNA R package

(34). An optimal soft-thresholding power (b) was selected to ensure

scale-free network topology (power = 6, minimum module size = 30,

with a module merging threshold of 0.25). An adjacency matrix was

constructed and transformed into a topological overlap matrix (TOM)

to measure gene connectivity. Genes were hierarchically clustered

based on TOM dissimilarity, and distinct gene modules were

identified using average linkage clustering. Module–trait correlations

were calculated to identify modules most associated with clinical traits

in the GSE87211 cohort. These modules were prioritized for

downstream analysis.
2.3 Differential expression analysis

Differential expression analysis was conducted using the limma

package (35) in R. Genes with |log2FoldChange| ≥ 0.5, and adjusted

p-value< 0.05 were considered differentially expressed. Differentially

expressed genes (DEGs) were intersected with the curated

macrophage polarization genes (MPGs) to identify a subset of

differentially expressed MPGs (DEMPGs) relevant to rectal cancer.
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2.4 Survival analysis and machine learning
for hub gene selection

Univariate Cox regression was performed to identify DEGs

significantly associated with overall survival in the training and

validation cohorts. Candidate hub genes were identified by

intersecting WGCNA module genes, DEGs, and MPGs with

prognostic significance. To refine this gene set, four machine

learning algorithms—LASSO Cox regression (glmnet package),

support vector machine (SVM; conducted using the “e1071” R

package; Kernel function: Recursive Feature Elimination (RFE

kernel)) (36), random forest (RF; 500 trees with default settings

from the “randomForest” R package), and extreme gradient

boosting (XGBoost; xgboost package) (37)—were applied. Genes

selected by all four methods were defined as core DEMPGs for

further modeling. The cross-validation strategy for machine

learning models: 10-fold cross-validation, repeated 3 times to

ensure model stability, using the “caret” R package
2.5 Construction and validation of the
macrophage polarization signature

Multivariate Cox regression was applied to the core DEMPGs to

construct a macrophage polarization gene signature (MPGS). The

risk score for each patient was calculated as:

Risk Score =o
n

t=1
bici

where bi represents the regression coefficient, and ci is the

normalized expression value (FPKM) of each signature gene.

Patients were stratified into high- and low-risk groups based on

the median risk score. Kaplan–Meier survival curves and

multivariate Cox models were used to evaluate the prognostic

significance of MPGS, adjusting for clinical covariates. Receiver

operating characteristic (ROC) curves were generated using the

timeROC package (38), and calibration curves were plotted to

compare predicted and observed survival. Validation was

performed in the independent TCGA-READ dataset.
2.6 Functional and immune infiltration
analysis

DEGs between high- and low-risk groups (|log2FoldChange| ≥

0.5, and adjusted p-value< 0.05) were identified using limma. Gene

ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG), and gene set enrichment analysis (GSEA) were

conducted using the clusterProfiler package (39) to explore

biological processes and pathways enriched in the high-risk

group, false discovery rate (FDR)< 0.5 and normalized

enrichment score (NES) > 1 were set at the cut-off criteria.

Immune cell composition and tumor microenvironment (TME)

scores were assessed using the CIBERSORT, QuanTIseq, and

single-sample GSEA (ssGSEA) algorithms.
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2.7 Protein-protein interaction network
analysis

Protein-protein interaction (PPI) networks for hub genes

were constructed using GeneMANIA (http://www.genemania.org)

(40, 41), an integrative platform that incorporates data on co-

expression, physical interaction, co-localization, and functional

annotations. Functional enrichment analysis was conducted to

identify biological processes and pathways potentially regulated

by the candidate genes.
2.8 Drug sensitivity prediction and TIDE,
IPS scores

Drug response analysis was performed using the prophetic and

oncoPredict R packages (42, 43). Half-maximal inhibitory

concentration (IC50) values for various chemotherapeutic agents

were predicted and correlated with the MPGS risk scores.

Differences in drug sensitivity between risk groups were visualized

using scatter plots, highlighting drugs with significant IC50

variation. The TIDE scores were calculated utilizing the Tumor

Immune Dysfunc t ion and Exc lus ion (TIDE, h t tp : / /

tide.dfci.harvard.edu/login/) database (44, 45). Moreover,

immunophenoscore (IPS) of GC patients were obtained in The

Cancer Immunome Atlas (TCIA, https://tcia.at/home)

database (46).
2.9 Single-cell RNA-seq data processing

Single-cell RNA-seq data were processed using Seurat v4.3.0 for

quality control, normalization, and dimensionality reduction. Cells

with fewer than 400 genes or mitochondrial content exceeding 20%

were excluded. Doublets were removed using DoubletFinder v2.0.3.

Integration across samples was performed with Harmony v1.2.3.

Principal component analysis (PCA) and Uniform Manifold

Approximation and Projection (UMAP) were used for

dimensionality reduction and clustering and the top 30 PCs were

retained for downstream analysis. Downstream analyses were based

on integrated expression matrices.
2.10 Cell type identification

Cell type annotation was performed using the Seurat

FindAllMarkers function to identify cluster-specific marker genes

(adjusted p< 0.05, min.pct > 0.25, |log2FC| > 0.25). Initial

annotations were derived using the SingleR package and cross-

validated against the CellMarker database. Manual curation was

performed to confirm annotations based on canonical gene

expression profiles from the literature.
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2.11 Pathway enrichment analysis of
metabolic signatures

Fifty hallmark gene sets were downloaded from the Molecular

Signatures Database (MSigDB v7.5.1; https://www.gsea-

msigdb.org/gsea/msigdb) (47) Metabolic activity scores were

calculated at the single-cell level based on the mean scaled

expression of all genes within each signature, as previously

described (48). Differential expression of pathway scores between

tumor and normal tissues was assessed using the FindAllMarkers

function in Seurat, with an adjusted p-value threshold of< 0.05.
2.12 The chromosomal copy−number
variations estimation

Chromosomal copy number variations (CNVs) were inferred

using the R package “inferCNV”. Epithelial cells in normal tissues

served as reference populations. For each cell subcluster, CNV

scores were calculated by aggregating the CNV levels of all

constituent cells. The threshold parameter was set to 0.1, while

other settings remained at default.
2.13 Cell–cell communication analysis

Cell–cell communication analysis was carried out using the R

package “CellChat” (version 1.1.3). To ensure consistent sampling

across cell subclusters, 500 cells were randomly selected from each

subpopulation using the subset function. The analysis incorporated

three major signaling categories from the CellChat database:

Secreted Signaling, ECM–Receptor, and Cell–Cell Contact. A

minimum threshold of 10 cells per cluster was applied to filter

out low-abundance populations (49).
2.14 Clinical samples and ethical approval

A total of 40 paired rectal adenocarcinoma (READ) and

adjacent normal tissue samples were collected from patients

undergoing surgical resection at Yangpu Hospital, Tongji

University, between November 2018 and November 2019. All

procedures were approved by the Ethics Committee of Yangpu

Hospital (Approval No. LL-2023-LW-012). Fresh specimens were

fixed in 4% paraformaldehyde for immunohistochemistry and

snap-frozen in liquid nitrogen for RNA and protein extraction.
2.15 Quantitative real-time PCR and
Western blotting

Total RNA was extracted from paired tumor and adjacent

tissues using TRIzol reagent and reverse-transcribed into cDNA
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using a commercial kit (Takara, Dalian, China). Quantitative real-

time PCR (qRT-PCR) was performed using gene-specific primers

(Supplementary Table 1).

For protein extraction, tissues were lysed in RIPA buffer

(Solarbio, China) with protease inhibitors (1:100, Thermo

Scientific). Western blotting used the following primary

antibodies: PYGM (1:1,000; ProteinTech, 19716-1-AP), b-actin
(1:4,000; ProteinTech, 66009-1-Ig), Arg1(1:1,000; ProteinTech,

16001-1-AP), CD301(1:1,000; ProteinTech, 13590-1-AP), CD206

(1:1,000; ProteinTech, 32647-1-AP), IL-10(1:1,000; ProteinTech,

60269-1-Ig).
2.16 Immunohistochemistry

Formalin-fixed, paraffin-embedded tissue blocks were sectioned

at 4 mm thickness. Sections were dewaxed, rehydrated, and

subjected to antigen retrieval using a pressure cooker for 30

minutes. Endogenous peroxidase activity was blocked using 3%

hydrogen peroxide for 20 minutes. Non-specific binding was

minimized with 5% BSA for 40 minutes. Sections were incubated

overnight at 4°C with anti-PYGM primary antibody (1:100;

ProteinTech, 19716-1-AP). Visualization was achieved using a

DAB detection kit and counterstaining with hematoxylin.
2.17 Cell culture and transfection

Three human colorectal cancer (CRC) cell lines—HCT116,

LOVO, and SW620—and the normal colonic epithelial cell line

NCM460 were obtained from the Shanghai Institute of

Biochemistry and Cell Biology. All cell lines were maintained in

DMEM supplemented with 10% fetal bovine serum (FBS; Gibco,

Carlsbad, CA, USA) at 37°C in a humidified incubator with 5%

CO2. THP-1 cells were cultured in RPMI-1640 medium (Gibco)

supplemented with 10% fetal bovine serum (FBS). Lipofectamine

3000 (Invitrogen, Carlsbad, CA, USA) was used to transfect cells

with an siRNA specific for PYGM and a control construct

purchased from GeneChem (Shanghai, China) (Supplementary

Table 2). Cells were utilized for downstream assays at 48h post-

transfection. Analyses were conducted in triplicate. PYGM

overexpression plasmid was customized from GenePharma

(Shanghai, China).
2.18 Transwell and wound healing assays

Migration and invasion assays were performed using 24-well

Transwell chambers (Nest, China). Cells were seeded in serum-free

DMEM (250mL) into the upper chamber, and 600mL of DMEM

with 10% FBS was added to the lower chamber. For invasion assays,

inserts were pre-coated with Matrigel (2mg/mL). After 24hours,

non-migrated/invaded cells were removed, and cells on the lower

membrane surface were fixed with 4% paraformaldehyde and
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stained with crystal violet for 10 minutes. Cells were quantified in

five non-overlapping fields under a microscope (Nikon, Japan).

Confluent cells were scratched using a 10 mL pipette tip for the

wound healing assay and cultured in a serum-free medium. Images

were taken at 0 and 24hours using phase-contrast microscopy to

assess wound closure.
2.19 Assessment of cell proliferation and
M2 macrophage polarization

To assess the rate of DNA synthesis, CRC cell lines were

subjected to treatment with 5-ethynyl-2’-deoxyuridine (EDU) at a

concentration of 50 mM, which was subsequently added to the cell

culture plates. Following a 30-minute incubation, DNA was stained

using Hoechst 33342, allowing for the visualization of positively

stained cells under a microscope. HCT116 and SW620 cells,

characterized by either PYGM overexpression or knockdown,

were dissociated into single-cell suspensions using 0.25% trypsin.

These cells were then stained with Annexin V-APC and 7-

Aminoactinomycin D (7-AAD) to evaluate apoptosis rates. THP-

1 monocytes were first differentiated into macrophage-like cells by

treatment with 200 ng/mL phorbol 12-myristate 13-acetate (PMA)

for 48 hours. Following differentiation, the PMA-treated THP-1

cells were gently washed with PBS to remove residual PMA and

were then seeded into the chamber of the transwell system for

indirect co-culture.

After 48 hours of co-culture, THP-1-derived macrophages were

collected and stained with anti-CD301-APC and anti-CD206-APC,

and the number of CD301 or CD206-positive cells in macrophages

was analyzed by flow cytometry. Meanwhile, total RNA and protein

of THP-1-derived macrophages were extracted for the detection of

M2 macrophage markers.
2.20 Statistical analysis

All statistical analyses and visualizations were performed in R

(v4.2.1). Visualization packages included ggplot2, ggpubr, and

enrichplot. For comparisons between groups, the Wilcoxon rank-

sum test was applied. A two-sided p-value< 0.05 was considered

statistically significant.
3 Results

3.1 Identification of prognostically relevant
modules and hub genes

The workflow for model construction and downstream analyses

is summarized in Figure 1. Weighted Gene Co-expression Network

Analysis (WGCNA) was applied to the GSE87211 cohort to explore

gene modules associated with rectal cancer. A soft-thresholding

power of b = 18 was selected to ensure scale-free network topology
frontiersin.or
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(Figure 2A). Gene clustering yielded multiple expression modules,

visualized via a dendrogram, each represented by a distinct color

(Figures 2B, C). Among them, the dark red, dark grey, and brown

modules demonstrated the strongest correlations with clinical traits

(Pearson’s r = 0.88, –0.88, and 0.76, respectively; Figure 2D). The

grey module, comprising unassigned genes, was excluded.

Differential expression analysis identified 3,555 downregulated

and 3,750 upregulated genes in the GSE87211 cohort; integration

with TCGA-READ yielded 5,961 downregulated and 356

upregulated genes, visualized as volcano plots and heatmaps

(Figures 2E, F).

Univariate Cox regression revealed 734 and 632 survival-

associated genes in the GEO and TCGA datasets. By intersecting

prognostic DEGs, WGCNA-derived module genes, and

macrophage polarization genes (MPGs) from GeneCards, 29

candidate genes were identified (Figure 2G).

LASSO regression narrowed this set to 11 genes (BRCA1, FAR1,

GPSM2, KL, MAOB, POLA1, PTPRU, PYGM, SYP, TIMP1, TMOD1;

Figure 2H). Three additional machine learning methods—XGBoost,

SVM-RFE, and Random Survival Forest (RSF)—identified the top 15

genes by feature importance. The intersection with LASSO output

resulted in six shared hub genes (Figures 2I, J).
3.2 Development of a prognostic
macrophage polarization gene signature

Multivariate Cox regression was performed on the six hub genes

to refine the candidate genes. Three genes—TIMP1, MAOB, and
Frontiers in Immunology 06
PYGM—remained significant (p< 0.05) in both the GSE87211 and

TCGA-READ cohorts (Supplementary Figures S1A–S1F).

These genes formed the basis of a prognostic risk model

(MPGS), and the following formula was derived:

Risk Score ¼(0:33082� PYGM) + (0:43159� TIMP1) + (0:54156 

�MAOB)

Patients in both cohorts were stratified into high- and low-risk

groups based on the median risk score. Risk score distribution and

corresponding survival status are displayed in Figure 3A, and gene

expression heatmaps showed upregulation of all three genes in the

high-risk group. Kaplan–Meier analysis confirmed that low-risk

patients had significantly better overall survival (OS) in both

datasets (Figure 3B). Receiver Operating Characteristic (ROC)

analysis demonstrated good predictive performance of the MPGS

for OS in both training and validation cohorts (Figure 3C).
3.3 Prognostic independence and
stratification analyses

Univariate and multivariate Cox regression analyses were

conducted to evaluate whether the MPGS was an independent

predictor of OS. In the GSE87211 dataset, both MPGS (p<0.001)

and M (P=0,006) stage were significantly associated with OS in

univariate analysis, and MPGS remained independently prognostic

in the multivariate model (Figure 3D). Similar findings were

confirmed in the TCGA-READ cohort (Figure 3E).
FIGURE 1

Flow chart of the manuscript.
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FIGURE 2

Construction of gene co-expression network and identification of hub DEGs. (A) Analysis of the scale-free fit index for various soft-thresholding
powers (b). and the mean connectivity for various soft-thresholding powers. (B) Gene modules with different expression patterns. (C) Dendrogram of
all differentially expressed genes clustered based on a dissimilarity measure (1-TOM). (D) Heatmap of the correlation between module eigengenes
and clinical traits of rectal cancer. (E, F) Volcano plot and heat map of the differentially expressed genes in GSE87211 and TCGA datasets. (G) Overlap
of DEGs associated with macrophage polarization, prognosis and WGCNA hub genes. (H) Optimal parameter (lambda) selection and coefficient
distribution for LASSO models of 11 prognostic related genes. (I) Top 15 genes selected based on relative importance of RF, SVM-RFE and
XGBOOST. (J) Venn diagram showing crossover genes after the analyses of XGBoost, RF, SVM-RFE and LASSO.
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FIGURE 3

Validation of the prognostic signature. (A) Distribution of MPGs model based on risk score for the GSE87211 and TCGA cohorts, patterns of the
survival time, and survival status between the high- and low-risk groups for the GSE87211 and TCGA set and clustering analysis heatmap shows the
display levels of the three MPGs for each patient. (B) Kaplan–Meier survival curves of the OS of patients in the high- and low-risk cohorts for the two
datasets. (C) Time-dependent ROC analysis of accuracy of the model in two datasets. (D, E) Univariate and multivariate Cox regression analyses in
the GSE87211 and TCGA set. (F, G) Nomograms and calibration curves in 1-, 3-, and 5-year calibration curves according to signature expression.
(H, I) Survival analysis of M0 subgroups in two datasets.
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A prognostic nomogram integrating MPGS and clinical

variables was developed to predict 1-, 3-, and 5-year survival

probabilities. Calibration curves demonstrated good agreement

between predicted and observed outcomes in both cohorts

(Figures 3F, G). Stratified survival analysis within M-stage

subgroups revealed that high-risk patients in the M0 group

exhibited significantly poorer OS than low-risk patients, while no

significant difference was observed in the M1 subgroup

(Figures 3H–I, Supplementary Figure S2). Additionally, both

datasets’ Kaplan–Meier and ROC analyses showed that PYGM

and MAOB exhibited strong diagnostic and prognostic

performance (Supplementary Figure S3).
3.4 Functional enrichment and immune
infiltration analyses

To investigate the biological implications of the MPGS, Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses were conducted. GO analysis

highlighted immune- and metabolism-related processes, including

positive regulation of the MAPK cascade, macrophage activation,

and epithelial cell proliferation. KEGG pathway analysis further

identified enrichment in the TGF-b signaling pathway, oxidative

phosphorylation, and other metabolism-associated pathways in

both cohorts (Figures 4A, B).

GSEA showed that the genes in the high-risk group from both

cohorts were significantly enriched in several hallmark pathways,

including Jak-Stat signaling pathway, MAPK signaling pathway

(KEGG), glycosaminoglycan metabolism, interleukin 4 and

interleukin 13 signaling (Reactome), epithelial-to-mesenchymal

transition in colorectal cancer, and the PI3K-AKT signaling

pathway (WikiPathways) (Figures 4C, D). Additionally, several

other pathways related to cancer progression, macrophage

polarization, and metabolism were enriched in the GSE87211 and

TCGA cohorts, respectively (Figures 4E, F).
3.5 Immune infiltration, immunotherapy
and drug sensitivity analysis

Immune infiltration in the tumor microenvironment (TME)

was assessed using CIBERSORT and QuanTIseq algorithms,

revealing that M2 macrophages were enriched in the high-risk

group (Figures 5A, B)

We analyzed the IPS of patients stratified by MPGS (Figure 5C,

Supplementary Figures S4A, B) and the expression levels of three core

genes using data from the TCIA database. The results showed that

patients with low MPGS and low PYGM expression exhibited

significantly higher IPS values compared to those with high

expression levels, suggesting that lower MPGS and PYGM expression

may be associated with improved responsiveness to immunotherapy.

Subsequently, multiple datasets were analyzed using the TIDE

algorithm to evaluate the immunotherapy response between high-

and low-MPGS expression groups. In the TIDE model, higher
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scores indicate a greater likelihood of immune evasion and a

lower probability of benefiting from immune checkpoint inhibitor

(ICI) therapy (44). The analysis revealed that the high-MPGS group

exhibited significantly higher TIDE and Exclusion scores

(Figures 5D–I), suggesting reduced sensitivity to immunotherapy.

Consistently, PYGM showed a similar trend in both the training and

validation cohorts (Supplementary Figures S4C, D).

Drug sensitivity prediction using the oncoPredict and prophetic

packages indicated that IC50 values for Cytarabine and Docetaxel

were significantly lower in high-risk patients, suggesting higher drug

sensitivity while Lenalidomide, GW441756, Bosutinib, Afatinib,

Gefitinib, Methotrexate, and GW441756 shown the opposite trend

(Figure 5J). These findings may inform patient stratification and

personalized chemotherapy, pending clinical validation.
3.6 Prognostic evaluation of MPGS across
multiple cancer types

To extend the macrophage polarization gene signature (MPGS)

‘s prognostic utility, we assessed its performance in five additional

GEO datasets containing survival information. Patients with higher

MPGS-derived risk scores exhibited significantly worse overall

survival in all cohorts. ROC curve analyses confirmed consistent

predictive performance (Figures 6A–F).

Subsequently, we applied the MPGS to the TCGA pan-cancer

dataset (n >11,000; 33 cancer types). Higher MPGS scores were

significantly associated with worse disease-free survival (DFS),

disease-specific survival (DSS), progression-free interval (PFI),

and overall survival (OS) (Figures 6G–J). Furthermore, MPGS

risk scores varied significantly across clinical stages (Figure 6K).

When evaluating individual cancer types, a hazard ratio (HR) >

1 for MPGS was observed in eight malignancies—BLCA, COAD,

GBM, KIRC, LGG, LUSC, SKCM, and STAD—indicating a

potential risk association. In contrast, MPGS was inversely

associated with mortality (HR< 1) in 12 cancer types, suggesting a

protective trend (Supplementary Figure S5).
3.7 Immune infiltration, mutation profiling,
and PPI network analysis of hub genes

To further investigate the immune associations of the three hub

genes (PYGM, MAOB, TIMP1), we performed immune cell infiltration

analyses across 33 TCGA cancer types using ssGSEA and CIBERSORT

algorithms. ssGSEA showed a positive correlation between hub gene

expression and macrophage infiltration in multiple cancer types,

including BLCA, COAD, ESCA, HNSC, LGG, LUSC, PCPG, PRAD,

READ, SKCM, and UVM (Figure 7A). CIBERSORT analysis further

revealed that M2 macrophages exhibited a consistent positive

correlation with hub gene expression in cancers such as BLCA,

READ, and TGCT, while M1 macrophage correlation was limited,

observed mainly in LGG (Figure 7B). PYGM expression was also

positively associated with canonical M2 macrophage marker genes

(Supplementary Figure S6).
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FIGURE 4

Functional enrichment analysis. (A, B) GO and KEGG enrichment analyses of the of differentially expressed genes (DEGs) between the high- and
low-risk subgroups in GSE87211 and TCGA-READ dataset. (C, D) The common gene related with MPGS enriched in pathways in KEGG, Reactome,
and WikiPathway databases in the GSE87211 and TCGA cohorts. (E, F) Unique pathways enriched in the GSE87211 and TCGA datasets.
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FIGURE 5

The association between PYGM expression and immune infiltration, immunotherapy response, and drug sensitivity prediction (A, B) Differences in
tumor immune-infiltrating cell abundance between high- and low-risk groups were analyzed using the CIBERSORT and QuanTIseq algorithm.
(C) Correlation of IPS with MPGS and PYGM expression. (D–I) Correlation of MPGSexpression with TIDE, exclusion and CAF in TCGA (D), GSE87211
(E), GSE17537 (F), GSE17536 (G), GSE38832(H), GSE17538 (I) datasets. (J) Chemotherapy and immunotherapy sensitivity prediction between the
low-risk and the high-risk groups. *p< 0.05; **p< 0.01; ***p< 0.001 compared to the corresponding groups.
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FIGURE 6

MPG’s Signature value in pan-cancer cohort. (A–F) 6 independent GSE cohorts affirmed that READ patients with higher signature score had poorer
prognosis. (G–J) Patients with higher MPGS had poorer DFI, DSS, PFI, OS. (K) Signature score varies between different stages. *p < 0.05; ***p <
0.001 compared to the corresponding groups.
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FIGURE 7

Analysis of prognostic macrophage polarization genes (MPGs). (A) Heat map of illustrating the result of ssGSEA algorithm of MPGs. (B) Heat map of
illustrating the result of CIBERSORT algorithm of MPGs. (C) The mutation of MPGs in the cBioPortal database. The genetic alterations are
represented by color coding. (D) The PPI network of the three hub genes from GeneMANIA database. *p < 0.05 compared to the corresponding
groups.
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Genomic profiling of MPGS genes using cBioPortal showed

varying degrees of mutation frequency across cancer types

(Figure 7C). Protein-protein interaction (PPI) analysis via

GeneMANIA revealed that the hub genes, particularly PYGM, are

functionally linked to glucose catabolism (Figure 7D). Matrix

metalloproteinase 9 (MMP9) exhibited the strongest interaction,

consistent with its established role in tumor invasion and

metastasis (50).
3.8 Single-cell transcriptomic profiling of
MPGs and metabolic associations

To examine the relationship between MPGs and tumor

metabolism at single-cell resolution, scRNA-seq data from 23

rectal cancer patients and 10 healthy donors were analyzed. After

integration and quality control, 63,689 cells were retained. Based on

canonical markers, seven major cell types were identified: plasma

cells (TNFRSF17), B cells (CD79B, MS4A1), T cells (CD3D, CD3E),

epithelial cells (KRT18, EPCAM), myeloid cells (CD68, LYZ),

fibroblasts (ACTA2, TAGLN), and endothelial cells (PLVAP)

(Figures 8A, 9C). Cell proportion analysis showed an increased

abundance of epithelial and myeloid cells in tumor tissues

(Figure 8D). Metabolic pathway enrichment analysis using

hallmark gene sets from MSigDB revealed significant metabolic

activation in epithelial cells , fibroblasts, and myeloid

populations (Figure 8E).

Myeloid cells were further sub-clustered into 16 subsets and

annotated into seven cell types, including M1/M2 macrophages,

monocytes, cDC1, cDC2, and pDCs, based on marker expression

and Spearman correlation with established cell-type profiles

(Figures 8F–I). Tumor samples exhibited elevated M2 macrophages

and monocytes (Figure 8J). Pathway analysis indicated significant

metabolic enrichment—including glycolysis, fatty acid metabolism,

and oxidative phosphorylation—in M2 macrophages (Figure 8K).

Given the significant enrichment of metabolic pathways in the

epithelial cell subcluster, we applied the “inferCNV” R package to

analyze this subcluster (Figure 8L), distinguishing malignant from

normal epithelial populations. The results revealed that PYGM

expression was markedly elevated in malignant epithelial cells

(Figure 8M). Subsequent analyses of cell-cell communication and

intercellular interactions demonstrated a strong association

between malignant cells and M2 macrophages (Figures 8N, O).

These findings suggest that PYGM, as a metabolism-related gene

predominantly expressed by malignant epithelial cells, may play a

regulatory role in modulating M2 macrophage activity within the

tumor immune microenvironment, thereby contributing to

tumor progression.
3.9 Experimental validation of hub gene
expression in clinical and cellular models

Due to the prominent b io log i ca l func t ions and

immunotherapy-specific relevance of PYGM, it was selected for
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further validation. Immunohistochemistry (n = 21), Western

blotting (n = 26) and qRT-PCR(n=40) further confirmed

increased PYGM protein expression in READ tissues compared to

adjacent normal tissues (Figures 9A–D). In vitro, assays also

demonstrated higher PYGM expression in colorectal cancer cell

lines (HT29, SW620, LOVO) compared to normal epithelial cells

(NCM460) (Figures 9F, G). Besides, the expression patterns of

MAOB and TIMP1 were determined using qRT-PCR analysis of

clinical samples and HPA database (Supplementary Figure S7A, B).

Logistic regression analysis revealed that elevated PYGM

expression was significantly associated with advanced T stage

(p = 0.03), tumor anatomical subdivision (p = 0.003), and male

sex (p = 0.009) (Figure 9H). TCGA and clinical validation cohorts

confirmed higher PYGM levels in patients with advanced stage and

males, which was inconsistent in patients in COAD (Figures 9I–J,

Supplementary Figure S7C). Survival analysis further validated that

higher PYGM expression was associated with poor OS (Figure 9K).
3.10 PYGM regulates CRC cell proliferation,
apoptosis, migration and M2 macrophage
polarization

In order to explore the functions of PYGM in RC, it was knocked

down by siRNA in SW620 and overexpressed in HCT116, and the

efficiency was verified by western blotting (Figure 10A).

EDU results showed that SW620 had a decreased proliferation,

while HCT116 had an increased viability (Figure 10B). Furthermore,

we detected the effect of PYGM on CRC apoptosis, and our study

indicated that overexpression of PYGM significantly reduced the

apoptosis rate of CRC cells, while knockdown of PYGM significantly

increased the apoptosis rate of CRC cells (Figure 10C). The wound

healing assay showed a marked decrease in cell migration following

PYGM knockdown (Figure 10D) and an increase after its

overexpression. Consistent with the results, transwell assays verified

that PYGM knockdown inhibited SW620 invasion and migration, and

its overexpression in HCT116 had the opposite trend (Figures 10E, F).

THP-1 monocytes were induced into M2 macrophages using PMA

and IL-4. PYGM-overexpressing or -silenced HCT116 and SW620 cells

were co-cultured with these macrophages (Figure 10G). Flow

cytometry revealed that CD206 and CD301 expression were elevated

following PYGM overexpression, but reduced upon PYGM knockdown

(Figure 10H). Similarly, RT-PCR showed corresponding changes in

Arg1, CD206, CD301, and IL-10 mRNA levels in THP-1-derived

macrophages (Figure 10I), which was further validated by western

blotting (Figure 10J).
4 Discussion

Rectal cancer (RC) remains a biologically aggressive malignancy

with limited treatment efficacy and high recurrence rates. Despite

advancements in multimodal therapy, the molecular mechanisms

underlying RC progression and therapeutic resistance remain

incompletely understood. This study established a macrophage
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FIGURE 8

Single-cell transcriptomic analysis reveals cell type composition and metabolic hallmark signatures of TME in colorectal cancer. (A) UMAP showing
subtypes of plasma cells, B cells, T cells, Epithelial cells, Myeloid cells Fibroblast cells and Endothelial cells. (B, C) Expression of marker genes used for the
identification of each cluster. (D) Stacked bar plot representing the proportional distribution of cell types across different groups. (E) Dot plots showing
average expression of known markers in indicated cell clusters. The dot size represents percentage of cells expressing the genes in each cluster. The
expression intensity of markers is shown. (F, G) UMAP dimensionality reduction showing the integrated cell distribution map. A total of 16 cell clusters
were identified, classified into 5 major cell types, with different colors representing distinct cell clusters. (H, I) Expression levels of selected known marker
genes in UMAP plots from both normal and tumor tissue in CRC patients. (J) Stacked bar plot representing the proportional distribution of cell types
across different groups. (K) Dot plots showing the enrichment of metabolic function in different cell types. (L) Chromosomal landscape of inferred CNVs
among epithelial subclusters. (M) Violin plot showing the differential expression of PYGM between malignant and normal epithelial cells. (N, O) Cell-cell
communication (N) and interaction analysis (O) revealed a strong association between malignant epithelial cells and M2 macrophages.
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polarization gene signature (MPGS) using integrative bioinformatic

and machine-learning approaches. The signature comprises three

macrophage-related genes—TIMP1, MAOB, and PYGM—that

robustly stratify rectal adenocarcinoma (READ) patients by
Frontiers in Immunology 16
prognosis. By linking tumor-associated macrophage (TAM)

infiltration with metabolic remodeling and clinical outcomes, our

findings provide a framework for precision oncology strategies

targeting the tumor immune microenvironment.
FIGURE 9

Validation of PYGM in clinical samples and cell line. (A) Immunohistochemical (IHC) results in rectal tumor and normal tissues. Original
magnifications 15× and 40× (inset panels) (B) The expression levels PYGM in READ tissues (n = 21) and adjacent normal tissues (n = 21) from IHC.
(C, D) WB assay of PYGM in READ tissues (n = 26) and adjacent normal tissues (n = 26). (E) mRNA expression levels of PYGM in paired samples of
rectal cancer measured by qRT-PCR (n = 40). (F, G) WB assay of PYGM in different cell lines (HCT116, SW620, LOVO, NCM460). (H) Logistic
regression analysis of PYGM in TCGA database. (I) Violin plots evaluating PYGM expression according to different clinical characteristics. (J) Violin
plots evaluating PYGM expression of 40 clinical samples with READ according to different clinical characteristics. (K) OS curves between the
high- and low-PYGM expression groups in the Yangpu Hospital cohort. *p< 0.05; **p< 0.01; ***p< 0.001 compared to the corresponding groups.
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FIGURE 10

PYGM promotes colorectal cancer cell proliferation, migration, invasion, and M2 macrophage polarization. (A) Protein expression levels of PYGM were
detected by western blotting. (B) EDU assay analysis. (C) Apoptosis rate was detected by flow cytometry. (D–F) Migration and invasion assay analysis.
(G) Schematic illustration of the indirect co-culture system between colorectal cancer cells and THP-1-derived macrophages. (H) The expression levels of
CD206 and CD301 were determined by flow cytometry. (I) Arg1, CD206, CD301 and IL-10 gene expression levels were detected by RT-PCR. (J) The protein
levels of Arg1, CD206, CD301 and IL-10 were detected by western blotting. *p< 0.05; **p< 0.01; ***p< 0.001, compared to the corresponding groups.
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Macrophages are integral components of the tumor

microenvironment (TME), exhibiting functional plasticity that

supports tumor progression. In particular, M2-polarized

macrophages have been associated with immune suppression,

angiogenesis, and metastasis in various solid tumors, including

ovarian, breast, and gastric cancers (12, 17, 22, 51). Our study

corroborated these findings by demonstrating a significant

association between M2 macrophage infiltration and poor

prognosis in READ. These results underscore the importance of

immunological context in shaping disease trajectory and

therapeutic response.

We employed a robust modeling strategy incorporating

WGCNA and four machine learning algorithms (LASSO, SVM-

RFE, RF, and XGBoost) to construct a reliable prognostic tool. This

multi-algorithmic framework mitigated overfitting and bias,

ensuring that gene selection was statistically and biologically

grounded. The final MPGS was independently validated in

multiple datasets, demonstrating strong predictive performance.

Integrating machine learning and biological relevance positions

MPGS as a clinically applicable model for outcome prediction

in RC.

Among the three genes comprising MPG, PYGM emerged as a

particularly compelling candidate due to its metabolic functions and

correlation with poor prognosis. While PYGM is classically known

for its role in glycogen metabolism in skeletal muscle (52), recent

studies have implicated it in oncogenic metabolic pathways in gastric,

renal, breast, and head and neck cancers (53–56). However, its

immunological relevance has remained largely unexplored. Our

findings provide novel evidence linking PYGM expression with M2

macrophage enrichment and immunosuppressive phenotypes in

the TME.

MPGS demonstrated strong prognostic performance across

both training and external validation cohorts. Higher risk scores

were consistently associated with worse overall survival (OS), as

shown through Kaplan–Meier and ROC analyses. MPGS retained

independent prognostic value in multivariate Cox models after

adjusting for conventional clinical variables. These results indicate

that MPGS may complement current staging systems and provide

additional prognostic stratification in clinical settings.

Functional enrichment analyses revealed that MPGS-related genes

are involved in immune-related and oncogenic pathways, including

MAPK, TGF-b, Jak-STAT, and PI3K-AKT signaling (57, 58). These

pathways are well-documented mediators of macrophage polarization

and tumor progression. For instance, activation of STAT3 promotes

M2 macrophage differentiation and secretion of immunosuppressive

cytokines (59). Likewise, the TGF-b and PI3K-AKT pathways have

been shown to facilitate tumor angiogenesis and resistance to anti-

angiogenic therapy through macrophage reprogramming (60–62).

These findings support the hypothesis that MPGS reflects the

immunometabolic landscape of the TME.

Immune infiltration analysis further validated the relevance of

MPGS. High-risk patients exhibited increased infiltration of M2

macrophages and lower immune and stromal scores, indicative of

an immunosuppressive microenvironment. ssGSEA and

CIBERSORT analyses across multiple cancer types confirmed that
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the three core genes are positively associated with macrophage-

mediated immunosuppression, particularly through M2

polarization. These results suggest that MPGS may be a predictive

biomarker for immunotherapeutic response in RC and potentially

in other malignancies.

The MPGS model also demonstrated predictive utility for drug

sensitivity. Patients with higher MPGS scores tend to exhibit poorer

responses to immunotherapy and worse clinical outcomes. Patients

showed differential responses to several chemotherapeutic agents

with different score. These findings imply that MPGS may inform

therapeutic decision-making, enabling clinicians to tailor

chemotherapeutic and immunotherapy regimens based on an

individual’s macrophage polarization profile and risk classification.

Beyond READ, MPGS was evaluated in multiple independent

GEO datasets and TCGA pan-cancer cohorts. High-risk scores

consistently predicted poorer outcomes across various tumor

types, including bladder cancer, glioblastoma, and gastric cancer.

These results support the generalizability of MPGS and reinforce

the notion that TAM-mediated immunosuppression is a common

pathological feature across cancers.

Among the three MPGS genes, PYGM was selected for further

experimental validation due to its strong prognostic significance,

central metabolic role in the PPI network and strongest relationship

with M2 macrophage. Our single-cell transcriptomic analysis

indicates that malignant epithelial cells with elevated PYGM

expression display enhanced metabolic activity and engage in

frequent crosstalk with M2 macrophages. This suggests that PYGM

may actively contribute to establishing an immunosuppressive tumor

microenvironment by promoting M2 macrophage polarization,

ultimately facilitating tumor progression. It is well established that

distinct activation states of macrophages are accompanied by

profound intracellular metabolic reprogramming, including

glycolysis, oxidative and lipid metabolism (63, 64). CD36 serves as

a fatty-acid translocase on immune cells, modulating lipid uptake in

Tregs, CD8+ T cells and macrophages, and reshaping immune

responses through autophagy/FAO pathways (28). Similarly,

SREBPs predominantly regulate lipid biosynthesis, and could

influence immunometabolic processes via AKT/mTORC1/GPX4

signaling pathway, affecting T-cell and macrophage functions (65).

In contrast, PYGM is a key enzyme in glycogen catabolism,

converting glycogen into glucose-1-phosphate (53). Its interaction

with metabolic regulators, including AMPK, suggests a novel axis for

modulating macrophage and myeloid immune cell function in the

TME (66, 67). This complements but differs mechanistically from

SREBP/CD36 pathways that center on lipid metabolism.

The expression of PYGM was elevated in tumor tissues and cell

lines and significantly correlated with advanced tumor stages,

anatomical location, sex and poor prognosis. Moreover, a series

of cellular assays confirmed that PYGM enhances tumor cell

proliferation, inhibits apoptosis, and promotes migration and

invasion. In addition, PYGM was found to facilitate macrophage

polarization toward the M2 phenotype.

Despite the robustness of our computational and experimental

findings, this study has limitations. Most notably, the molecular

mechanisms by which PYGM and the other MPGS genes modulate
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TAM behavior remain to be elucidated. Further in vivo and

mechanistic studies are warranted to clarify the causal

relationships between PYGM expression and tumor progression

in RC.

In summary, we present a validated macrophage polarization

gene signature that effectively stratifies patients with rectal

adenocarcinoma and correlates with immunosuppressive TME

features. Among its components, PYGM emerged as a promising

metabolic and immunologic biomarker with prognostic and

potential therapeutic relevance. These findings expand our

understanding of macrophage-driven tumor progression and lay

the groundwork for clinical strategies integrating immunometabolic

profiling into precision oncology.
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Glossary

OS overall survival
Frontiers in Immunol
ROC receiver operating characteristic
GSEA gene get enrichment analysis
MPGS macrophage polarization gene signature
DEGs differentially expressed genes
qRT-PCR quantitative real-time polymerase chain reaction
IHC immunohistochemistry
WB western blotting
ROC receiver operating characteristic curves
TME total mesorectal excision
LASSO least absolute shrinkage and selection operator
SVM support vector machine
RFE recursive feature elimination
RF random forest
XGBoost eXtreme gradient boosting
ogy 22
WGCNA weighted gene co-expression network analysis
MPGs macrophage polarization genes
READ rectal adenocarcinoma
HR hazard ratio
nCRT neoadjuvant chemoradiotherapy
TAMs Tumor-associated macrophages
GO Gene ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
FDR false discovery rate
ssGSEA single-sample GSEA
PPI Protein-protein interaction
IC50 Half-maximal inhibitory concentration
TIDE Tumor Immune Dysfunction and Exclusion
TCIA The Cancer Immunome Atlas
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