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The C-type lectin receptor Dcir
(Clec4a2) restrains Aspergillus
fumigatus elimination by limiting
the degranulatory activity of
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Introduction: C-type lectin receptors (CLRs) are innate sensors crucial for

antifungal and antimycobacterial responses, contributing to host defenses

against pathogens, including the ubiquitous mold Aspergillus fumigatus.

Dendritic cell immunoreceptor (Dcir) modulates immune responses by limiting

the development of inflammation and autoimmunity; however, its involvement in

fungal infections has not been previously established.

Methods: Wild-type and Dcir-knockout C57BL/6J mice were infected with A.

fumigatus intratracheally to establish a model of pulmonary aspergillosis. For in

vitro analysis, neutrophils were purified from the bone marrow and incubated

with A. fumigatus hyphae.

Results:Mice lacking Dcir exhibited improved clearance of A. fumigatus from the

lungs, while tissue inflammation—assessed by phagocyte recruitment and

inflammatory cytokine levels within the lungs—did not change significantly

compared to Dcir competent mice. Neutrophils from Dcir-deficient mice

exhibited enhanced killing of A. fumigatus hyphae, attributed to higher

degranulatory activity, triggered by intracellular Ca2+ mobilization.

Discussion: The results indicate a potential association between Dcir and

downregulation of signalling pathways associated with neutrophil exocytosis.

Thus, Dcir is a potential novel fungal sensor that, unlike other CLR family

members, primarily fine-tunes host effector responses.
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Introduction

Aspergillus fumigatus is an environmental mold with

pathogenic potential, implicated in various clinical manifestations,

ranging from mild allergic responses to severe, life-threatening

diseases (1). Although individuals are routinely exposed to

Aspergillus spores, most remain asymptomatic due to the immune

system’s ability to facilitate fungal clearance while preventing

immune overactivation (2). Nevertheless, the precise mechanisms

underlying these protect ive responses have not been

fully elucidated.

C-type lectin receptors (CLRs) are essential innate immune

sensors involved in antifungal defense (3). CLRs activate various

effector mechanisms necessary for protecting against A. fumigatus.

For instance, dectin-1 (CLEC7A in humans and Clec7a in mice)

regulates CD4+ T helper cell polarization (4), interleukin (IL)-17A/

IL-22-driven neutrophil recruitment (5), and NK cell-dependent

control of A. fumigatus via IL-15 release (6). Dectin-2 (CLEC6A/

Clec4n) triggers extracellular trap production by plasmacytoid

dendritic cells (7), whereas MelLec (CLEC1A/Clec1a) mediates

fungal melanin recognition by endothelial cells (8).

Most CLRs use an immunoreceptor tyrosine-based activation

motif (ITAM) for kinase activation and signal transduction. In

contrast, Dendritic cell immunoreceptor (Dcir; CLEC4A/Clec4a2)

signals through an immunoreceptor tyrosine-based inhibitory motif

(ITIM), recruiting phosphatases and negatively regulating other

signaling pathways (9). Hence, Dcir primarily has immunoregulatory

functions, particularly in bone and joint health (10–12), while its

deficiency has been linked to spontaneous autoimmune responses (13).

In the area of infectious diseases, Dcir is primarily associated

with viral infections, such as HIV, where it acts as an attachment

factor on dendritic cells and facilitates CD4+ T cell invasion (14).

Furthermore, Dcir limits the induction of cytotoxic CD8+ T cells

against the neurotropic Theiler’s murine encephalomyelitis virus,

worsening brain injury (15), with similar effects in cerebral malaria

caused by the parasite Plasmodium falciparum (16). In fungal

infections, CLEC4A recognizes Pneumocystis spp (17); however,

its effector function remains unclear. Thus, despite potential roles

for Dcir in anti-fungal responses, further investigation is required to

delineate the associated pathways.

We hypothesized that Dcir participates in defense against A.

fumigatus. Our findings suggest that Dcir modulates the antifungal

response, limiting A. fumigatus clearance. Mechanistically, Dcir

dampens the degranulatory activity of neutrophils without altering
Abbreviations: AUC, area under the curve; BALF, bronchoalveolar lavage fluid;

CFU, colony-forming units; CLR, C-type lectin receptors; Dcir, Dendritic cell

Immunoreceptor; dpi, days post infection; ELISA, enzyme-linked

immunosorbent assay; FCM, flow cytometry; iFBS, inactivated fetal bovine

serum; IL, interleukin; ITAM, immunoreceptor tyrosine-based activation motif;

ITIM, immunoreceptor tyrosine-based inhibitory motif; OD, optical density;

PBS, phosphate buffer saline; PMA, phorbol 12-myristate 13-acetate; PDA, potato

dextrose agar; PVDF, polyvinylidene difluoride; ROS, reactive oxygen species;

SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis; SOD,

superoxide dismutase; WT, wild type.
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cell recruitment or inducing tissue inflammation. The findings of

this study reveal a novel immunomodulatory function for Dcir and

reinforces its role as a regulator of host homeostasis.
Materials and methods

Mice

Dcir-deficient (Clec4a2–/–) mice on a C57BL/6J background

(13) and wild-type C57BL/6J (WT) mice (CLEA Japan, Tokyo,

Japan) were co-housed for at least one week before beginning the

study. Male and female mice were used, with no observed sex bias in

the results. Mice were maintained under specific-pathogen-free

conditions with a gamma-sterilized diet and acidified tap water

(0.002 N HCl) ad libitum.

All experiments complied with the “Fundamental Guidelines

for Proper Conduct of Animal Experiments and Related Activities

in Academic Research Institutions under the Jurisdiction of the

Ministry of Education, Culture, Sports, Science, and Technology”

(Ministry of Education, Culture, Sports, Science and Technology,

Japan, 2006). The Institutional Animal Care and Use Committee

from Chiba University approved all protocols (process number:

A5-204).
Fungal strains and inoculum preparation

Aspergillus fumigatus MYA4609 (strain CBS 101355 [AF 293],

American Type Culture Collection, VA, USA) was maintained in

Sabouraud Dextrose Agar (BD, NJ, USA) at 30°C with weekly

subcultures. Conidia and germinating hyphae were generated as

described by Yoshikawa et al. (6).
Pulmonary aspergillosis model

To induce pulmonary aspergillosis, sedated mice had their

trachea accessed orally using a 20Gx 1 1/4” indwelling needle

intravenous cannula (Terumo, Tokyo, Japan). Mice then passively

inhaled 1 x 107 conidia cells in 30 mL of phosphate buffer

saline (PBS).

To deplete neutrophils, mice were intravenously treated with

200 mg of anti-Ly6G antibody (Selleck Biotechnology, Kanagawa,

Japan) or an isotype control (Rat IgG2a, k, Selleck Biotechnology,

Kanagawa, Japan) one day before infection.

To inhibit neutrophil degranulation in vivo, mice received

intraperitoneal Nexinhib 20 (Tocris Bioscience, Bristol, United

Kingdom) on days 1 and 3 post-infection (30 mg/kg), as

previously described (18). At specified post-infection days, the

mice were sedated and euthanized; bronchoalveolar lavage fluid

(BALF) was collected via tracheal injection of 1 mL ice-cold PBS.

Recovered cells underwent flow cytometric analysis (FCM, see

section below). Lungs were harvested and processed according to

the experiment’s objective.
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Fungal burden assessment
Lungs were weighed, macerated in PBS, and the suspensions

were used to measure colony-forming units (CFU) and cytokines.

For CFU determination, dilutions were seeded in potato dextrose

agar (PDA) plates, and colonies recovered after a 3-day incubation

at 30°C were counted.

Histopathological analyses
Lungs were perfused with PBS and fixed overnight in formalin

solution (Fujifilm Wako, Osaka, Japan). Samples were paraffinized,

and sections were stained with Grocott’s methenamine silver.

Immunophenotyping of the cellular infiltrate
Lungs were digested with Collagenase IV buffer (150 U/mL in

RPMI-1640 medium; Sigma-Aldrich, Germany) using a protocol

adapted from D’Agostino et al. (19). Recovered cells were stained

for FCM.
Fc chimeras and binding analysis

The Dcir-fused Fc protein chimera was generated as previously

described (6). The extracellular domain of Dcir was bound to the Fc

portion of human IgG2 in a pIRES bleo3 vector plasmid; a vector

lacking the CLR insert served as the control. Binding of Dcir to A.

fumigatus isoforms was evaluated using an enzyme-linked

immunosorbent assay (ELISA)-like assay, as previously described

(6). Optical density (OD) measurements were used to construct

binding curves for nonlinear regression analysis.
Bone marrow neutrophil assays

Neutrophils were isolated from the bone marrows of WT and

Clec4a2—/—mice using Percoll gradient centrifugation as previously

described (6). Neutrophil purity (> 90%) and Dcir expression were

analyzed by FCM.

Neutrophils were plated into 96-well plates containing RPMI-

1640 medium (Fujifilm Wako, Osaka, Japan) supplemented with

10% inactivated fetal bovine serum (iFBS; Biosera, Nuaillé, France).

Cells were incubated with A. fumigatus isoforms at 37°C and 5%

CO2 for up to 3 h at a ratio of five neutrophils per fungal cell. Cell-

free supernatants were collected and stored at –80°C for subsequent

cytokine and Lipocalin-2 quantification using a commercial Mouse

Lipocalin-2/NGAL DuoSet ELISA kit (R&D systems, MN, USA), or

used immediately in other assays.

The remaining neutrophils were lysed with 1% Triton X-100

solution, prepared in-house from polyethylene glycol mono-p-

isooctylphenyl ether (Nacalai Tesque, Kyoto, Japan). The number of

surviving conidia was determined by seeding on PDA plates for CFU

enumeration. Hyphal viability was assessed via the 3-[4,5-

dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay.

For degranulation inhibition, upon addition of A. fumigatus to

neutrophil cultures, wells were supplemented with 1 mM of
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Nexinhib 20 (Tocris Bioscience, Bristol, United Kingdom) or

DMSO as a vehicle control.

For microscopy, cells were seeded onto glass slides in 24-well

plates and incubated with A. fumigatus under the same conditions

described above. Slides were stained using the Neat Stain

Hematological Stain kit (Polysciences Inc., PA, USA), and images

were acquired via optical microscopy.
Cell viability

For assessment of cell viability, the Sytox Green incorporation

assay was employed (20). PMA (phorbol 12-myristate 13-acetate; 5

mg/mL) was used as a positive control. Fluorescence in the FITC

channel was measured with FCM, and the percentage of positive

cells was recorded.
Reactive oxygen species measurements

Intracellular ROS levels were measured using a commercial

DCFDA/H2DCFDA-Cellular ROS Assay Kit (Abcam, Cambridge,

UK) according to the manufacturer’s instructions. Fluorescence was

detected via FCM (FITC channel).

For extracellular ROS measurement, a cytochrome C reduction

assay was performed to measure superoxide (O2
-) in the

supernatants as previously described (21). Neutrophils were

plated in 96-well plates with 10% iFBS in HBSS and incubated

with A. fumigatus or 100 nM PMA. The cell-free supernatants were

combined with 1 mg/mL cytochrome C, with or without 100 U/mL

superoxide dismutase (SOD) (stock solutions prepared in HBSS;

Nacalai Tesque, Kyoto, Japan). Absorbance was recorded at 550,

540, and 560 nm. The OD at 550 nm was adjusted by the average

OD between 540 and 560 nm (ODcorr) for calculations. The O2
-

concentration was calculated using the formula:

O−
2 =  (½OD without SOD� –½OD with SOD�)=21:1 mmol=L−1cm−1

where the constant 21.1 is the extinction coefficient for reduced

cytochrome C; results are expressed as mmol/mL.
Zymography

Gelatinase activity in neutrophil cultures was assessed via

zymography. Cell-free supernatants from A. fumigatus-stimulated

neutrophil cultures were separated by sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS–PAGE) using an in-

house 6% polyacrylamide gel with 1 mg/mL gelatin under non-

reducing and non-denaturing conditions. Gels were renatured

(Zymogram Renaturing Buffer, Novex, CA, USA), developed

overnight at 37°C (Zymogram Developing Buffer, Novex), and

stained with Bio-Safe Coomassie G-250 stain (Bio-Rad, USA).

Digested regions appeared as clear bands on a blue background.
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Western blot

For MMP9 detection, supernatants were run on SDS-PAGE

(non-reducing, non-denaturing), transferred to polyvinylidene

difluoride (PVDF) membranes (Bio-Rad, USA), and analyzed by

western blot. For PLCg2/pPLCg2 detection, neutrophil lysates

underwent SDS-PAGE (reducing, denaturing) before transfer to

PVDFmembranes. Primary antibodies included: Rb mAb to MMP9

(Abcam, MA, USA), PLCgamma2 Rabbit Ab, phospho-PLCg2
(Tyr1217) Ab (Cell Signaling, MA, USA), and anti-b-actin pAb

(MBL, Tokyo, Japan). HRP donkey anti-rabbit IgG (Biolegend, CA,

USA) served as the secondary antibody. Zymography and western

blot images were quantified using ImageJ (version 1.53 for Mac OS

X, NIH, USA).
Intracellular Ca2+ measurements

Intracellular Ca2+ levels were estimated by FCM using the

fluorescent probe 4-Fluo AM (Dojindo, Tokyo, Japan). After
Frontiers in Immunology 04
stimulation with A. fumigatus, mean fluorescence intensity (MFI)

values were recorded using FCM (Fluo-4AM) in the FITC channel.
Immunophenotyping/FCM

For cell phenotyping, cells were stained for FCM analysis as

previously described. Reagents and antibodies are listed in

Supplementary Table 1. Data were acquired with a FACS Verse

flow cytometer (8-color, BD, NJ, USA) and analyzed using FlowJo

(v.10.7.1 for Mac OS X, BD, NJ, USA). Gating strategies are shown

in Supplementary Figure 3.
Cytokine measurements

Cytokines were measured with the BD Cytometric Bead Array

assay per the manufacturer’s instructions. Data were acquired on a

FACS Verse and analyzed using FCAP Array software (v.3.0.1; BD).

Detection limits were as follows: IL-1b, 1.9 pg/mL; IL-6, 1.4 pg/mL;
FIGURE 1

Dcir-deficient mice display improved anti-Aspergillus clearance. (A) WT and Clec4a2—/— mice were infected intratracheally with 1 x107 A. fumigatus
conidia, and the fungal burden in lung macerates was determined; N = 8–9 mice per group, pooled from two independent experiments. (B) Silver-
stained lung sections from WT and Clec4a2—/— mice harvested 5 days post-infection (dpi). Red arrows indicate fungal structures. Images are
representative of three mice per group. (C) Cytokine and chemokine levels in lung macerates harvested 5 dpi; N = 9 mice per group, pooled from
two independent experiments. (A, C) Data are presented as mean ± SEM (each dot represents one mouse): Mann–Whitney U-test: *p < 0.05.
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TNF, 2.8 pg/mL; IL-10, 9.6 pg/mL; MCP-1, 2.7 pg/mL; KC, 0.1 pg/mL;

CCL3/MIP-1a, 2.3 pg/mL; and CCL4/MIP-1b, 0.6 pg/mL.
Statistical analysis

Statistical analyses were conducted using GraphPad Prism (v.

10 for OSX, GraphPad Inc., CA, USA). Data were screened for

outliers using the ROUT method, and group comparisons were

made using non-parametric tests, regardless of normality results.

The statistical test employed for each analysis, sample size, and

number of replicates are disclosed in the figure legends. A p-value <

0.05 was considered statistically significant.
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Results

Dcir limits A. fumigatus clearance

In a previously described model of acute disseminated

aspergillosis, immunocompetent WT mice were shown to develop

transient, self-limiting disease, while dectin-1 knockout mice readily

succumbed to the infection (6), facilitating the rapid screening of

susceptibility factors.

We employed this model to initially assess the potential

contribution of Dcir to antifungal defense (Supplementary

Figure 1). Clec4a2—/— mice experienced no mortality, less weight

loss (Supplementary Figure 1A) (area under the curve [AUC]: mean
FIGURE 2

Dcir-deficient neutrophils display enhanced A. fumigatus-targeted killing. (A) Profile of innate cells recruited to the lungs and BALF of WT and
Clec4a2—/— mice infected with 1 x107 A. fumigatus conidia intratracheally and harvested 5 dpi. Data are presented as the normalized proportion
calculated based on the cellular counts. (B) Recruitment of neutrophils in the BALF and (C) fungal burden in the lungs of animals treated with anti-
Ly6G depleting antibody or isotype control and infected with A. fumigatus (samples harvested 5 dpi). (B, C) N = 7–8 mice per group, pooled from
two independent experiments. Data are presented as mean ± SEM (each dot represents one mouse): Two-way ANOVA and Fisher’s LSD test: ****p <
0.0001. (D) Expression of Dcir on freshly isolated bone marrow neutrophils. Histogram data are representative of three independent experiments. (E)
Neutrophil-mediated killing of A. fumigatus isoforms in vitro. Bone marrow-isolated neutrophils were incubated with A. fumigatus isoforms, and the
surviving fungi were quantified using CFU (conidia) or MTT (hyphae) assays. Data are presented as mean ± SEM, pooled from three independent
experiments: Unpaired t-test: *p < 0.05.
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47.22 vs. 17.51, p = 0.0279), and lower spleen A. fumigatus burden

than WT mice (Supplementary Figure 1B; 5 days post infection

[dpi] mean 106360 vs. 45259, p = 0.0377), with only IL-1b levels

markedly reduced among cytokines (Supplementary Figure 1C).

These results suggest that Dcir restricts pathogen clearance rather

than promoting anti-fungal responses.

Next, in a standard pulmonary aspergillosis model that more

closely mimics natural infection, WT and Clec4a2—/— mice were

intratracheally infected with A. fumigatus (Figure 1). Although WT

and Clec4a2—/— mice both cleared the infection efficiently, the

knockout group showed a lower fungal burden at mid-infection (5

dpi; Figure 1A; mean 68267 vs. 38604, p = 0.0315). This was also

observed in lung sections harvested at the same time point and

stained with Grocott (silver-based) stain (black structures against

the green-stained lung tissue) in Clec4a2—/— mice (Figure 1B).

However, pulmonary cytokine and chemokine levels were similar

between groups (Figure 1C), suggesting equivalent inflammatory

responses in WT and Clec4a2—/— mice. Overall, these results

suggest that Dcir deficiency enhances fungal elimination.
Dcir absence enhances the anti-A.
fumigatus activity of neutrophils

Neutrophils are crucial for Aspergillus clearance (22) and

neutrophil recruitment is altered in Dcir-deficient mice in

experimental models of chemical hepatitis (23) and DSS-induced

colitis (24). Thus, we investigated phagocyte recruitment by
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analyzing the phenotypes of innate immune cells within the lungs

and BALF harvested 5 dpi.

Neutrophils constituted the predominant cell population in the

lung and BALF infiltrates of infected mice (Figure 2A), with no

significant differences between WT and Clec4a2—/— mice

(Supplementary Figure 2). While Clec4a2—/— mice exhibited a

statistically significant reduction in alveolar macrophages (Mf),
inflammatory Mf, and dendritic cells counts (Supplementary

Figure 2), the frequencies of these subsets remained low, making

up less than 10% of the total infiltrate. Thus, the response of

Clec4a2—/—mice was not related to improved phagocyte recruitment.

Considering that neutropenia is a critical risk factor for

aspergillosis (25, 26) and that neutrophils dominate the cellular

infiltrates, we determined whether neutrophil-depleted Clec4a2—/—

mice retained improved infection clearance compared to the WT

group. Neutrophils were depleted using an anti-Ly6G antibody

before infection (Figure 2B) and fungal burden was subsequently

analyzed. Neutrophil depletion abolished the protective effect

conferred by Dcir deficiency (Figure 2C; isotype: mean 23695 vs.

9850, p<0.0001; anti-Ly6G: mean 18574 vs. 22933, p = 0.1222).

Additionally, Dcir was significantly expressed by neutrophils

(Figure 2D), confirming previous findings (27, 28). These results

suggest that Dcir directly regulates neutrophil effector functions

against A. fumigatus.

To further investigate this mechanism, in vitro assays were

conducted wherein bone marrow-derived neutrophils were

incubated with different A. fumigatus isoforms to assess their

phagocytic killing function. Clec4a2—/— neutrophils exhibited
FIGURE 3

Dcir recognizes A. fumigatus conidia and hyphae. Fungal cells were stained with Dcir Fc chimeras, and binding was assessed using EIA assay. Data
are presented as absorbance reads at 450 nm expressed as mean ± SEM, pooled from three independent experiments: Nonlinear regression:
****p < 0.0001.
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enhanced hyphal killing (Figure 2E; mean 60.88 vs. 78.27, p =

0.0391). However, the absence of Dcir did not uniformly enhance

conidial killing. As A. fumigatus spores evade dectin-1 recognition

due to hydrophobin A masking binding sites on the conidial surface

(29), we explored whether a similar mechanism might affect Dcir

sensing. Using a chimeric Dcir soluble protein comprising the

receptor’s extracellular domain fused to a human IgG Fc

fragment, we evaluated binding to A. fumigatus isoforms.

Unexpectedly, Dcir bound conidia and hyphae (Figure 3),

suggesting that evasion analogous to dectin-1 is not operative.

These data support the hypothesis that, while Dcir binds both

forms, it specifically modulates neutrophil effector functions against

hyphae rather than conidia.

Therefore, neutrophils from Clec4a2—/— mice eliminated fungi

more effectively, likely explaining their enhanced clearance

capabil i ty , despite unchanged tissue inflammation or

cell recruitment.
Supernatants from Clec4a2—/— neutrophils
display higher enzymatic activity

Next, the effector mechanisms through which Dcir regulates

fungicidal activity against A. fumigatus were investigated.

Neutrophils eliminate pathogens via phagocytosis, programmed

cell death (NETosis), oxidative stress, and degranulation (30).

Given the size disparity between neutrophils and A. fumigatus

hyphae, phagocytosis was ruled out and we focused on the

other possibilities.

Neutrophils accumulated around the hyphal structures

(Figure 4A); however, significant cell death was not detected

following A. fumigatus stimulation within our experimental time

frame, as assessed by SYTOX probe incorporation (Figure 4B).

Consequently, the increased killing of A. fumigatus-hyphae

promoted by Clec4a2—/— cells (Figure 2B) appears to occur

independently of neutrophil death.

The oxidative stress induced in A. fumigatus-stimulated

neutrophils was assessed in sequence. Tokieda et al. (24) reported

that Clec4a2—/— neutrophils exhibit impaired intracellular ROS

production when exposed to lipopolysaccharide. In alignment with

these findings, lower ROS production was observed in response to

A. fumigatus and the positive control TBHP, in Dcir-deficient cells

(Figure 4C). Although the underlying molecular mechanisms

responsible for this intrinsic defect remain to be elucidated, its

impact might be minimal in terms of fungal killing, given that even

the inactivation of internalized conidia can also be achieved via

non-oxidative mechanisms (31).

Subsequently, extracellular ROS production was also evaluated,

which originates from a distinct source compared to intracellular

ROS (32). Measurement of O2
- in culture supernatants using the

cytochrome C assay revealed no significant difference between WT

and Clec4a2—/— cells, despite the pronounced oxidative burst

induced by A. fumigatus (Figure 4D). These findings suggest that
Frontiers in Immunology 07
oxidative stress does not account for the increased fungicidal

activity observed in the knockout cells.

Interestingly, the supernatants from A. fumigatus-activated

neutrophil cultures exhibited gelatinase activity, which was higher in

Dcir-deficient cells (Figure 4E; mean 1.153 vs. 1.990, p = 0.0492).

However, other secreted proteins, as cytokines, were not equally

enhanced in the knockout cells (Figure 4F), suggesting that enzyme

release is being independently favored. Neutrophil gelatinases are stored

in granules and can be exocytosed sequentially (33), hinting that

Clec4a2—/— neutrophils may exert increased degranulatory responses.
Clec4a2—/— neutrophils display enhanced
degranulation in response to A. fumigatus

To determine whether Clec4a2—/— neutrophils exhibit enhanced

degranulation following A. fumigatus challenge, the levels of two proxy

markers—metalloproteinase [MMP]-9 and Lipocalin-2/NGAL (34)—

were quantified, confirming an increase in both markers in the

supernatants of knockout cells (Figure 5A, mean 35.71 vs. 46.91, p =

0.0465; Figure 5B, mean 1585 vs. 1775, p = 0.0043). Notably, elevated

NGAL concentrations were also detected in the lungs of infected

Clec4a2—/— mice, supporting the in vivo relevance of the findings

(Figure 5C; lung: mean 2090 vs. 2416, p = 0.0207).

Degranulation initiation is linked to increased cytoplasmic Ca2+,

mobilized from intracellular stores (33). Using the fluorescent probe 4-

Fluo AM, Ca2+ levels in Clec4a2—/— cells were monitored, revealing a

more pronounced increase uponA. fumigatus stimulation compared to

controls (Figure 5D; mean 1.048 vs. 1.223, p = 0.0499).

Various receptors can drive Ca2+ mobilization via their specific

stimulatory pathways; however, a common signaling hub upstream

of Ca2+ mobilization is phospholipase PLCg2 phosphorylation/

activation (35). Clec4a2—/— neutrophils displayed enhanced

PLCg2 phosphorylation after A. fumigatus stimulation (Figure 5E;

pPLCg2: mean 0.1837 vs. 0.3543, p = 0.0305). These data suggest

that Dcir negatively regulates the signaling cascade leading to

neutrophil degranulation.

To assess the importance of degranulation in A. fumigatus

killing, this pathway was pharmacologically inhibited using

Nexinhib 20—a neutrophil-specific drug (18). Inhibition of this

pathway abolished the enhanced antifungal effect observed in Dcir-

deficient neutrophils (Figure 5F; vehicle: mean 34.83 vs. 56.43, p =

0.0408; Nex20: mean 28.00 vs. 40.00, p = 0.4349). These findings

were validated in vivo, wherein Nexinhib 20 was administered

during infection. Despite the lack of changes in pulmonary

neutrophil influx (Figure 5G), Nexinhib 20 treatment neutralized

the advantage of Dcir knockout (Figure 5H; sham: mean 48782 vs.

24681, p = 0.0491; Nex20: mean 47576 vs. 54130, p = 0.5804),

consistent with the effects observed following antibody-mediated

neutrophil depletion (Figure 2).

Collectively, these results demonstrate that Dcir modulates the

neutrophil-driven elimination of A. fumigatus by dampening the

degranulation process.
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Discussion

In fungal infections, CLRs usually act as inflammatory initiators

that drive effector functions, promoting pathogen elimination. In

the current study, Dcir was identified as a regulator of the anti-

Aspergillus defense, limiting neutrophil degranulation and delaying

the fungal clearance (Figure 6).

Richard et al. (28) postulated that Dcir regulates neutrophil

activity but did not investigate beyond its expression in human cells.

In the current study, neutrophil degranulation was identified as an

essential effector mechanism for eliminating A. fumigatus hyphae.

Dcir modulated this process by influencing granule release signaling

—specifically, PLCg2 phosphorylation and intracellular Ca2+

mobilization. This mechanism aligns with ITIM-based CLR
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modulation, where Dcir regulates pathway activation via

dephosphorylation (9), and PLCg2 was identified as a potential

target of the Dcir-related phosphatase SHP2 (36).

Luo et al. showed that mast cells from Dcir-deficient mice

exhibit lower degranulation in a cockroach allergen-induced atopic

dermatitis model (37), contrasting with the current study’s results.

However, the authors pointed that mast cell exocytosis depends on

ROS-mediated oxidation of the intermediate protein calmodulin

kinase II, and Dcir-deficient mast cells also have impaired

intracellular ROS production—aligning with the current results.

Therefore, Dcir’s role likely varies by model and cell type. Thus,

data interpretation should account for these limitations.

Although A. fumigatus promotes NETosis (38), substantial cell

death was not observed within the current experimental time
FIGURE 4

Dcir alters the release of gelatinases by neutrophils. (A) Photomicrographs depicting the interaction between WT and Clec4a2—/— neutrophils
with A. fumigatus. Images are representative of three independent experiments. (B) Assessment of DNA release using SYTOX green incorporation
assay. (C) Intracellular ROS production by neutrophils incubated with A. fumigatus determined using the DCFDA conversion assay. (D) O2

-

production curves of extracellular ROS production by neutrophils incubated with A. fumigatus, determine using the cytochrome C assay; area
under the curve (AUC) was calculated. (E) Zymography assay for gelatinase activity in supernatants from the in vitro cultures. (F) Cytokines
measured in the supernatants of bone marrow neutrophils incubated with A. fumigatus. (B–D) Data are presented as mean ± SEM, pooled from
three independent experiments. Two-way ANOVA and Fischer’s LSD posttest: *p < 0.05, ****p < 0.0001. (E, F) Data are presented as mean ±
SEM, pooled from three independent experiments. Unpaired t-test: *p < 0.05.
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window (Figure 4B). Thus, the involvement of NETosis was not

investigated further. This observation may have been due to assay

timing, as NET formation is a “late phase” neutrophil response that

becomes detectable after more than six hours (39). Future studies

should investigate the relationship between Dcir and NETs using

under different experimental conditions.
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Experimental aspergillosis self-resolves quickly in resistant mice,

similar to human cases (1, 25). Therefore, the current study did not

examine Dcir’s role in adaptive responses, particularly the antifungal

TH17 profile. Previously we found that classical lymphocytes and IL-

17 are not required for A. fumigatus defense in disseminated disease

(6). However, several other aspergillosis models depend on the IL-17
FIGURE 5

Dcir dampens A. fumigatus-induced neutrophil degranulation. (A) MMP-9 detection in the supernatants of A. fumigatus-stimulated neutrophil
cultures using western blotting. Band density was calculated using ImageJ; data are presented as the mean ± SEM, pooled from three independent
experiments. (B) Lipocalin-2/NGAL levels in the supernatants of A. fumigatus-stimulated neutrophil cultures; data are presented as mean ± SEM,
pooled from three independent experiments. (A, B) Paired t-test: *p < 0.05, **p < 0.01. (C) Lipocalin-2/NGAL levels in the lungs and BALF of WT and
Clec4a2—/— mice infected intratracheally with A. fumigatus conidia (5 dpi). Data are presented as mean ± SEM (each dot represents one mouse)
pooled from two independent experiments. Mann–Whitney U-test: *p < 0.05. (D) Intracellular calcium mobilization estimated using the fluorescent
probe Fluo-4AM; Left panel: representative histograms of Fluo-4AM fluorescence. Right panel: normalized MFI values presented as mean ± SEM
pooled from three independent experiments. (E) PLCg2 phosphorylation was analyzed using western blotting from A. fumigatus-stimulated
neutrophil extracts. Left panel: representative blots of the analyzed proteins. Right panel: Band density was calculated in ImageJ; b-actin normalized
values are presented as mean ± SEM, pooled from three independent experiments. (F–H) Pharmacological inhibition of degranulation with the
compound Nexinhib 20. (F) A. fumigatus-stimulated neutrophils incubated with inhibitor, and A. fumigatus survival was assessed using the MTT
assay. Data are presented as mean ± SEM, pooled from three independent experiments. (G) Neutrophil recruitment in BALF and (H) fungal burden in
the lungs of animals treated with Nexinhib 20 (30 mg/kg) or sham, and infected with A. fumigatus (samples harvested 5 dpi). N = 8 mice per group.
Data are presented as mean ± SEM pooled from two independent experiments (each dot represents one mouse). (D–G) Two-way ANOVA and
Fischer’s LSD posttest: *p < 0.05.
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response for protection, such as fungal keratitis (40) and Aspergillus-

triggered asthma (41). Further research is needed to determine the

influence of Dcir in the IL-17 response of these models.

Nevertheless, Troegeler et al. demonstrated that Clec4a2—/—mice

are prone to developing TH1 responses in a mycobacterial infection

model (42), supporting a role for Dcir in shaping adaptive responses.

Chronic fungal infections, such as paracoccidioidomycosis, which

slowly evolve and are characterized by organ fibrosis due to the long-

term accumulation of immune-driven tissue damage (43), could be

affected by the potential of Dcir to shape this branch of the

immune system.

Modulators of the immune response, such as Dcir, function

through mechanisms maintain the host’s integrity during constant

stimulation. Daily exposure to A. fumigatus spores can cause

neutrophil overactivity, compromising lung homeostasis and

increasing the risk of acute respiratory distress syndrome (44).

Furthermore, Dcir deficiency predisposes individuals to non-

infectious diseases, such as spontaneous autoimmune arthritis

(13), experimental autoimmune encephalomyelitis/EAE (45),

colorectal cancer (46), and atherosclerosis (47). Therefore, Dcir

may participate in the regulation of immune system balance.
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Consistent with a potential immunoregulatory function, the

transient blockade of Dcir may serve as an adjunct therapy to

improve antifungal defense in patients with aspergillosis. The use of

soluble ligands, as the use of laminarin to block dectin-1 (48), is a

possible strategy. However, the identity of Dcir ligand(s) remains

poorly studied. While it has been proposed that this receptor

recognizes conserved glycan motifs from host and exogenous

sources (49), only host-derived molecules have been identified

and structurally characterized [e.g., asialo-biantennary N-glycan

in bone as reported by Kaifu et al. (10)]. Future research is necessary

to clarify the clinical significance of these findings in humans and to

identify those possible ligands in A. fumigatus, but our results

suggest that the target molecules are readily accessible to the

receptor and can be found in both conidia and hyphae.

This study has certain limitations. First, immunocompetent mice

were used, whereas human patients are often immunosuppressed due

to medication or the disease. Second, the inoculation doses do not

reflect natural infections, though the model aligns with the standards

established by other groups in the field (50–52). Translational research

should consider these variables to further investigate the role of Dcir in

the host response to A. fumigatus.
FIGURE 6

Proposed role for the regulatory function of Dcir in the host response to A. fumigatus. A. fumigatus infection promotes neutrophil recruitment, and
Dcir recognizes the hyphae structures. Dcir-dependent signaling reduces PLCg2 phosphorylation, which modulates the release of intracellular
calcium, thereby limiting the release of neutrophil granules and delaying fungal clearance.
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In conclusion, this study identified Dcir as a novel CLR family

fungal sensor that regulates the antifungal response rather than

promoting it. These findings broaden the understanding of CLR

functions in host defense, highlighting additional complexity in

host–fungi interactions.
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