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Liver fibrosis represents a universal pathological endpoint in chronic hepatic

disorders, in which hepatic macrophages play a pivotal role through dynamic

phenotypic modulation. These versatile immune cells undergo functional and

phenotypic transformations mediated by diverse molecular mediators, with their

heterogeneity arising from both cellular origin differences and disease-specific

microenvironments. The development of technologies such as single-cell and

spatial omics has broken through the traditional M1/M2 classification paradigm of

macrophages, revealing the molecular signatures and functional distinctions of

hepatic macrophages during liver injury, fibrogenesis, and regression. Hepatic

macrophages are central to the pathogenesis of chronic liver injury and

considered as potential targets for drug discovery. While numerous

macrophage-targeting strategies for liver fibrosis intervention currently remain

in preclinical development, advancing our comprehension of macrophage

plasticity and subset-specific functions holds significant potential. A deeper

understanding of macrophage heterogeneity could provide a new therapeutic

strategy against liver fibrosis, ultimately improving clinical outcomes for patients

with chronic liver diseases.
KEYWORDS
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1 Introduction

Liver fibrosis emerges as a common pathological consequence of chronic liver diseases. It

is characterized by an excessive accumulation of extracellular matrix (ECM) proteins, largely

derived from activated hepatic stellate cells (HSCs), culminating in the formation of fibrotic

scar tissue (1). During this process, hepatic macrophages serve a critical function (2). Hepatic

macrophages, including both Kupffer cells (KCs) and recruited macrophages, constitute a

heterogeneous population of immune cells characterized by remarkable functional and
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molecular diversity (3). Their strategic positioning at the interface of

hepatic blood flow and the sub-sinusoidal space of Disse, coupled

with their heightened sensitivity to microenvironmental factors and

high phagocytic capabilities, enable KCs to perform a variety of roles.

These include immune responses, protection against infections, and

the modulation of metabolic processes (4). This heterogeneity

manifests through distinct cytokine profiles, surface marker

expression patterns, and transcriptomic signatures, which

collectively define their phenotypic identity. Macrophages are also

extremely plastic, as demonstrated by their ability to alter their

phenotype to adapt to the liver microenvironment and perform

different functions (5). Injury-induced inflammation prompts the

recruitment of macrophages to the liver, where they secrete pro-

inflammatory cytokines that activate HSCs, thereby initiating liver

fibrosis (6). In contrast, their phenotypic transition leads to the

breakdown of extracellular matrix components and the secretion of

cytokines with anti-inflammatory properties (7).

Hepatic macrophages play an important role in maintaining the

dynamic balance of the liver and the pathogenesis of both acute and

chronic liver injury. They are involved in various processes related

to liver disease, such as exacerbating injury, reducing inflammation,

promoting tissue repair, and influencing fibrosis progression and

regression, as well as tumor promotion and suppression (8). These

discoveries are catalyzing the development of macrophage-centric

therapeutic strategies, with emerging evidence underscoring their

potential for improving clinical management of chronic liver

diseases. Therefore, we summarize therapeutic approaches that

target hepatic macrophages for liver fibrosis. With the current

improved understanding of the complex heterogeneity and

functional diversity of macrophages, therapies targeting

macrophages may represent a promising avenue for the treatment

of liver fibrosis.
2 Origin of hepatic macrophages

2.1 Kupffer cells

KCs originate from yolk sac-derived colony-stimulating factor 1

receptor (CSF1R)+ erythromyeloid progenitors (EMPs) (9). Hepatic

Transforming Growth Factor-beta (TGF-b) and desmosterol

synergistically regulate SMAD and Liver X receptor (LXR)

signaling pathways to maintain KCs identity (10). In healthy

livers, KCs are mainly confined to the hepatic sinusoids and do

not migrate, whereas monocyte-derived macrophages can be found

extravascularly (11). KCs-specific markers in mice include C-type

lectin domain family 4 member F (CLEC4F), V-set and

immunoglobulin domain containing 4 (VSIG4), C-type lectin

domain family 2 (CLEC2), and Folate receptor 2 (FOLR2),

whereas in humans no consensus has been reached (12). KCs

express a wide range of pattern recognition receptors (PRRs),

including toll-like receptors (TLRs), nucleotide-binding

oligomerization domain-like receptors (NLRs), and retinoic acid-

inducible gene I-like receptors (RLRs) (13). KCs help maintain liver

homeostasis and play important modulatory roles in bacterial
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clearance, antigen presentation, and modulation of iron/lipid

metabolism (14).
2.2 Monocyte-derived macrophages

In the healthy liver, monocyte-derived macrophages (MoMfs)
predominantly localize to the portal triad region, where they maintain

iron homeostasis and regulate cholesterol metabolism (15). MoMfs are
Cluster of Differentiation 11b (CD11b)+, F4/80intermediate (int),

Lymphocyte antigen 6 complex locus C (Ly6C)+ and CSF1R+, which

are derived from bone marrow (BM) C-X3-C motif chemokine

receptor 1 CX3CR1+ CD117+Lin- progenitor cells (16, 17). These

MoMfs are primarily recruited to the liver by chemokines, such as

C-C motif chemokine ligand 2 (CCL2), CCL1, and their receptors C-C

chemokine receptor type 2 (CCR2) and CCR8 (18). Themurine system

features two principal circulating monocyte subsets characterized by

Ly-6C expression levels: pro-inflammatory Ly-6C high (Ly-6Chi)

monocytes and patrolling Ly-6C low (Ly-6Clow) monocytes (19). In

humans, monocytes are classified by their expression of CD14 and

CD16 as classical (CD14hiCD16−), intermediate (CD14+CD16+) and

nonclassical (CD14−CD16hi) monocytes, which to some extent

correspond to Ly-6Chi and Ly-6Clow monocytes in mice respectively

(20). Ly-6Chi monocytes are characterized by their expression of

inflammatory chemokine receptors, pattern recognition receptors,

and cytokines, whereas Ly-6Clow monocytes demonstrate a patrolling

function within the liver and exhibit a higher expression of scavenging

receptors (20). Notably, phenotypic plasticity exists between these

subsets. Ly-6Chi MoMfs can transition to a restorative Ly-6Clow

phenotype through distinct mechanisms: phagocytic activity or

exposure to interleukin-4 (IL-4) and IL-33 released by necrotic KCs

(18). This phenotypic switching represents a critical adaptive

mechanism in the process of hepatic fibrosis. Multiple lineage-tracing

models have shown that MoMfs are also the major population of

immunosuppressive and liver metastasis-associated macrophages

(LMAM) (21). Furthermore, MoMfs can replace KCs when they are

experimentally depleted due to liver injury, and these macrophages can

subsequently acquire a phenotype that is almost identical to that of KCs

(22, 23).
2.3 Peritoneal and splenic macrophages

Peritoneal macrophages (PMs), which are located in the

peritoneal cavity, may migrate into the liver. PMs selectively

express the transcription factor GATA6, which is not expressed

by either liver-resident KCs or circulating monocytes (24). In the

context of acute liver injury, silencing the pro-inflammatory protein

High mobility group protein B1 (HMGB1) in liver-infiltrating PMs

alleviates the liver injury phenotype in mice (25). However, it has

been suggested that PMs do not deeply infiltrate the liver

parenchyma during liver injury, which seems to contradict the

conclusions of relevant studies (26, 27).

Splenic macrophages (SMs) exhibit regulatory roles in liver

homeostasis and pathology. SMs express CD11b and CD115 but
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show low or no expression of CD90, B220, CD49b, NK1.1, and Ly-

6G surface proteins (28). SMs enhance the secretion of CCL2 by

hepatic macrophages, which in turn facilitates monocyte

recruitment and the augmentation of liver fibrosis (29). In

another study, a subtype of spleen‐derived monocytes identified

as CD11b+CD43hiLy6Clo cells has been demonstrated to

preferentially infiltrate fibrotic liver tissue and adopt macrophage

characteristics, thereby exacerbating fibrogenesis (30). However, it

remains controversial whether SMs can migrate to the liver. These

hypotheses require more advanced imaging techniques or cell

tracking methods to validate the migration pathways of PMs

and SMs.
3 Heterogeneity and plasticity of
macrophages

The dynamic process of macrophage polarization entails the

acquisition of specialized phenotypes and functional capabilities by

macrophages as a reaction to stimuli present in their immediate

surroundings. In 2000, Mills et al. categorized macrophages into two

distinct subtypes, M1 andM2, based on differences in their metabolism,

secretion, and function (31). This classification was based on the

differential responses of macrophages in vitro to stimuli (32).

Moreover, these polarized states demonstrate bidirectional

interconversion when exposed to specific microenvironmental stimuli

(33). Pro-inflammatory macrophages are typically triggered by

stimulation with lipopolysaccharide (LPS), interferon-g (IFN-g),
tumor necrosis factor (TNF), granulocyte-macrophage colony-
Frontiers in Immunology 03
stimulating factor (GM-CSF), and TLR ligands (34). Normally, pro-

inflammatory macrophages are characterized by their robust secretion

of pro-inflammatory cytokines, including TNF-a, interleukin-1 beta

(IL-1b), and IL-12. These cytokines eventually drive the activation of

HSCs and promote liver fibrosis progression (35). Additionally, pro-

inflammatory macrophages generate substantial amounts of reactive

oxygen species (ROS) and reactive nitrogen species (RNS), which

collectively enable them to effectively kill invading pathogens, as well

as phagocytose and clear senescent, damaged, and degenerated cells

(36). In contrast, alternatively activated macrophages play a crucial role

in defending against parasitic infections, participating in tissue

remodeling and secreting immunomodulatory mediators such as IL-

10, TGF-b, IL-4 and IL-13 (37). Among these cytokines, TGF-b plays a

crucial role in HSCs activation and liver fibrosis (38) (Figure 1).

Recent studies have shown that the traditional M1/M2

paradigm for classifying macrophages has been rendered obsolete

by new technological breakthroughs, particularly in characterizing

the complexity of hepatic macrophage populations (39). Hepatic

macrophages are heterogeneous in the healthy liver, comprising

distinct subsets with unique transcriptional profiles and,

consequently, distinct functional roles (40). While the traditional

M1/M2 classification remains useful for a broad understanding, it is

insufficient to capture the full spectrum of macrophage

functionality. Instead, distinct macrophage subpopulations exhibit

unique biological characteristics across various disease contexts,

and the functional differences among these subpopulations play

crucial roles in disease progression and treatment response.

Moreover, reliance on this general M1/M2 classification may

impede the development of targeted therapies tailored to specific
FIGURE 1

Origin and migration pathway of hepatic macrophages. This figure illustrates the heterogeneous origins and recruitment mechanisms of hepatic
macrophages. KCs, the liver resident macrophages, are strategically positioned within the hepatic sinusoids. During liver injury, monocyte-derived
macrophages are predominantly recruited to the liver via the systemic circulation.
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diseases (31). Therefore, despite its utility as a foundational

framework, the M1/M2 paradigm’s limitations in explaining and

treating complex diseases have prompted researchers to adopt more

refined macrophage subpopulation analyses. This nuanced

approach facilitates the identification of specific roles for different

macrophage subtypes in various diseases, providing an essential

foundation for the development of personalized targeted therapies.
4 Mechanisms of macrophage
polarization

The dynamic regulation of immune cell responses by

environmental stimuli manifests particularly through modifiable

macrophage activity and functional plasticity. This adaptive “short-

term memory” mechanism induces transient yet sustained

modifications in macrophage phenotypes, thereby dynamically

influencing their pathogenic contributions during disease progression

(41). Macrophage polarization is controlled by a variety of molecular

mechanisms, mainly including metabolic reprogramming, autophagy,

iron metabolism, Signal Transducer and Activator of Transcription

(STAT) and Notch signaling pathways (35, 42) (Figure 2).
Frontiers in Immunology 04
4.1 Metabolic reprogramming

Metabolic adaptations play a pivotal role in macrophage

activation and fibrogenic processes (35). In quiescent conditions,

macrophages predominantly utilize tricarboxylic acid (TCA) cycle

coupled with oxidative phosphorylation (OXPHOS) to generate

Adenosine triphosphate (ATP), establishing energy equilibrium

through mitochondrial respiration (43). During macrophage

polarization toward pro-inflammatory phenotypes, glycolysis is the

predominant metabolic pathway, while the TCA cycle is disrupted at

two key points. These interruptions lead to the accumulation of

itaconate and succinate, which are critical metabolites that contribute

to the pro-inflammatory phenotype of macrophages (44). Excessive

succinate stabilizes hypoxia inducible factor-1a (HIF-1a), which
in turn activates the transcription of glycolytic genes, thereby

maintaining glycolytic metabolism in pro-inflammatory

macrophages (44). Moreover, HIF-1a exerts a regulatory influence

on sphingosine 1-phosphate (S1P) metabolism, thereby modulating

the migration, activation, differentiation, and polarization of

macrophages (45). However, recent research suggests that the

stabilization of HIF-1a takes place at a later stage in the process of

inflammatory macrophage polarization. Furthermore, it indicates
FIGURE 2

Mechanisms of macrophage polarization. (A) The tricarboxylic acid cycle is impaired in pro-inflammatory-polarized macrophages. Both Annexin A5
(Anx A5) and succinate upregulate HIF-a, which in turn promotes glycolytic gene expression and pro-inflammatory factor IL-1b expression. (B) CD5L
induces ID3 expression and promotes alternatively activated polarization via the autophagy protein ATG7. (C) SPM-mediated KCs autophagy
promotes alternatively activated polarization in TAA-induced liver injury through downregulation of P62 and upregulation of ATG5 expression.
(D) Autophagy in hepatocellular carcinoma tissue is triggered by TLR2 ligand activation, which causes NF-kB RelA to be ubiquitinated and
recognized by Sequestosome 1 (SQSTM1). This results in inhibition of the NF-kB pathway and consequently promotes alternatively activated
polarization. (E) LPS, IFN, TLR ligands and iron supplementation promote pro-inflammatory polarization through different signaling pathways, while
IL-10, IL-4, IL-13 and IL-3 promote alternatively activated polarization. SPM, spermine; TAA, thioacetamide.
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that the initial production of lactate through glycolysis is not

governed by HIF-1a (46). Pro-inflammatory macrophages are

distinguished by their enhanced glycolysis, elevated levels of

glutathione, increased expression of ferritin, upregulated expression

of cyclooxygenase (COX) 2, low expression of COX1, robust activity

of inducible nitric oxide synthase (iNOS), and diminished activity of

arginase 1 (Arg1) (47).

In contrast, alternatively activated macrophages exhibit a

greater dependence on OXPHOS. Their TCA cycle remains

intact, providing essential substrates for the electron transport

chain (ETC). The coupling of mitochondrial OXPHOS with the

TCA cycle is a slower process but generates significantly more ATP

through the ETC (48). Although glycolysis produces less ATP

compared to OXPHOS, its rapid rate of ATP generation is crucial

for maintaining energy levels, especially under conditions

demanding a rapid response (49). These macrophages are

characterized by augmented fatty acid oxidation (FAO), reduced

expression of ferritin, lower levels of glutathione, decreased

production of COX2, heightened COX1 expression, weak iNOS

activity, and enhanced Arg1 activity (47). Among the myriad

metabolic alterations, the divergent metabolism of L-arginine

represents one of the earliest described and most distinctive

features used to differentiate between pro-inflammatory and

alternatively activated macrophages. iNOS and Arg1 serve as

quintessential effector molecules for pro-inflammatory and

alternatively activated macrophages, respectively (50).

Pyruvate kinase M2 (PKM2) is a key determinant of macrophage

glycolytic reprogramming and maintenance of pro-inflammatory

polarization (51). Follistatin-like protein 1 (FSTL1) binds directly to

PKM2 and promotes PKM2 phosphorylation and nuclear

translocation (52). Conversely, Annexin A5 targeting to PKM2

causes glycolysis inhibition and activation of mitochondrial oxidative

metabolism, thereby triggering macrophages to switch to an anti-

inflammatory phenotype (53). In addition, growth differentiation factor

15 (GDF15) reprograms macrophage metabolic pathways, leading

them to acquire an OXPHOS-dependent anti-inflammatory

functional fate (54). Collectively, these distinct metabolic adaptations

are not merely energetic adaptations, but constitute essential regulatory

nodes that biochemically enforce macrophage polarization while

dynamically coordinating immune functionality within specific

microenvironmental niches.
4.2 Autophagy

Autophagy is essential for maintaining cellular homeostasis and

significantly contributes to macrophage development, while also

influencing their apoptosis via modulation of colony-stimulating

factors (55, 56). Previous studies showed that cell division cycle 5-

like (CD5L) regulates the up-regulation of inhibitor of DNA binding 3

(ID3) through the autophagy-related gene 7 (ATG7) and promotes an

anti-inflammatory cytokine profile in response to TLR activation (57).

In Thioacetamide (TAA)-induced KCs injury, spermine (SPM)

pretreatment decreases P62 protein expression and increases ATG5

protein expression, thereby promoting anti-inflammatory polarization
Frontiers in Immunology 05
(58). Furthermore, TLR2-induced autophagosomal degradation of

NF-kB RelA (P65) inhibits the NF-kB signaling pathway and drives

alternatively activated macrophage polarization (59). In addition, it

has been demonstrated that enhancing macrophage autophagy flux

through ubiquitin-specific protease 19 (USP19) promotes the

polarization of macrophages towards an anti-inflammatory

phenotype (60). Fibroblast growth factor 21 (FGF21) significantly

attenuates pro-inflammatory macrophage activation through

autophagy-mediated degradation of HIF-1a (61). Additionally,

inhibition of macrophage autophagy promotes M2-like polarization

through ubiquitination-mediated degradation of TGF-b-activated
kinase 1 and MAP3K7-binding protein 3 (TAB3), resulting in

destabilization of the NF-kB signaling pathway (62). Collectively,

these findings underscore the multifaceted role of autophagy in

modulating macrophage polarization.
4.3 Iron metabolism

Iron homeostasis and the expression of iron-related genes

strikingly shift during macrophage polarization, indicating a potential

role for iron in macrophage activation. For example, in pro-

inflammatory macrophages, the expression of Hepcidin antimicrobial

peptide (Hamp) and FtH/FtL is highly upregulated, while Ferroportin

(FPN) and IRP1/2 are downregulated (63). Upregulation of iron uptake

and storage activates liver macrophages through the NF-kB pathway

(64). Iron overload can polarize macrophages to the pro-inflammatory

phenotype through the ROS/acetyl-p53 pathway (65). A recent study

has shown that glycyrrhetic acid 3-O-mono-b-d-glucuronide (GAMG)

induces ferroptosis of inflammatory macrophages through

downregulation of solute carrier family 7 member 11 (SLC7A11)

(66). However, exogenous iron supplementation and iron-rich ECM

from human dermal fibroblasts induce the polarization of THP-1 cells

and bone marrow-derived macrophages (BMDMs) into alternatively

activated macrophages (67). These studies demonstrate the complexity

of iron metabolism in macrophage polarization and function.
4.4 STAT signaling pathway

The STAT signaling pathway is a crucial mediator of cytokine

signaling (e.g., IL-4, IL-6, IFN-g) (68). Its core mechanism involves

ligand binding to transmembrane receptors, which triggers JAK

phosphorylation and subsequent STAT protein activation.

Phosphorylated STAT proteins dimerize, translocate to the nucleus,

and regulate target gene expression (69). In macrophage polarization,

this pathway modulates the transition between pro-inflammatory and

anti-inflammatory phenotypes through selective activation of distinct

STAT isoforms (68). Specifically, IFN-g and TLR-activated

IRF-STAT1-signaling pathways orient macrophage function toward

the pro-inflammatory phenotype, whereas IL-4 and IL-13 activate

alternatively activated macrophages through STAT6 (70).

Additionally, IL-10 and IL-3 activate STAT3 and STAT5,

respectively, to promote alternatively activated macrophage

polarization (71).
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4.5 Notch signaling pathway

Notch signaling, known for its critical role in liver development, is

also involved in liver regeneration, carcinogenesis, and metabolism

(72). Macrophages express Notch ligands and receptors, indicating

that Notch signaling participates in macrophage activation (73). LPS

can upregulate Notch1 expression in macrophages via MyD88-

dependent pathways, thereby induces the expression of its

downstream genes (74). The Notch1 signaling pathway enhances

the pro-inflammatory activation of hepatic macrophages by directly

increasing the transcription of pro-inflammatory genes and by altering

mitochondrial metabolism toward glucose oxidation, which leads to

the production of mitochondrial reactive oxygen species (mtROS),

further boosting the expression of pro-inflammatory genes (75).
5 The role of macrophages in liver
fibrosis

Increasing evidence has shown that liver-resident macrophages

and recruited monocyte-derived macrophages, which play an

important role in liver fibrosis, are involved from initial liver

injury and fibrosis formation to fibrosis regression (8). Among

these cells, the existence of specialized subpopulations with distinct

functional roles in health and disease has been documented (76).

Scar-associated macrophages (SAMs), which derive from

BMDMs, accumulate in mouse fibrotic livers (77). There is a

notable proliferation of the Scar-associated TREM2+ CD9+

macrophage subset. These cells are derived from circulating

monocytes and play a role in enhancing the fibrotic response

(78). In the initial phases of hepatic fibrosis, the activation of

HSCs by macrophages through the release of inflammatory

cytokines constitutes a pivotal mechanism that intensifies fibrosis

(79). Macrophages accelerate fibrosis by secreting various cytokines,

including TGF-b1, Vascular Endothelial Growth Factor (VEGF),

and angiotensin II, which activate local tissue cells such as HSCs

and myofibroblasts (80). Interestingly, activated HSCs further

promote the transformation of macrophages into pro-

inflammatory and pro-fibrogenic phenotypes. Activated HSCs

attract monocytes/macrophages through the production of

chemokines such as CCL2 and the infiltrating monocytes or

macrophages can then further activate HSCs (81). For instance,

sphingosine kinase 1 (SphK1) in KCs mediates CCL2 secretion,

while SphK1 in HSCs upregulates CCR2 by downregulating miR-

19b-3p (82). Furthermore, SphK1 aggravates liver fibrosis by

promoting macrophage recruitment and M1/M2 polarization

(83). The interaction between Jagged-1 on liver macrophages and

Notch1 on HSCs drives Notch1-mediated HSCs activation and liver

fibrosis (84). Additionally, MyD88 signaling in HSCs increases the

secretion of CXCL10, which promotes macrophage polarization

toward a pro-inflammatory phenotype and subsequent fibrosis (85).

Notably, in a carbon Tetrachloride (CCl4)-induced liver fibrosis

model, macrophages exhibit contrasting functions in development

and resolution of fibrosis: their elimination curbs development of

fibrosis, while their absence following the cessation of injury hinders
Frontiers in Immunology 06
the resolution process, thereby worsening the fibrosis (86). In recent

studies, the Ly6CloCD11BhiF4/80int macrophage population

aggregates in the liver and constitute the main matrix

metalloproteinase (MMP)-expressing macrophage subset during

maximal fibrosis regression. It is crucial for degradation of tissue

scar and originates from the infiltration of Ly-6Chi inflammatory

monocytes (87). Collectively, these observations highlight that the

dual regulation between macrophages and HSCs is a principal

driver of fibrosis advancement.
6 The role of macrophages in different
liver fibrosis induced by multiple
disease

6.1 Metabolic dysfunction-associated
steatotic liver disease

Metabolic dysfunction-associated steatotic liver disease

(MASLD), formerly known as nonalcoholic fatty liver disease, is

characterized by excessive hepatic lipid accumulation (88). The

spectrum of MASLD extends from hepatic steatosis to metabolic

dysfunction-associated steatohepatitis (MASH), which may progress

to advanced liver fibrosis, cirrhosis, or even hepatocellular carcinoma

(HCC) (89). Recent single-cell sequencing analyses have revealed a

significant characteristic of both human and murine MASH, namely

the formation of crown-like macrophage clusters. These clusters are

observed encircling hepatocytes that are either dead or dying, which

are characterized by substantial lipid accumulation. Additionally,

these macrophage aggregates are found in close proximity to

regions exhibiting fibrosis and to areas where HSCs have been

activated (39, 40). Macrophages are important mediators of the

inflammatory response that underlies the progression of MASLD

to fibrosis.

Under normal physiological conditions, KCs are attached to the

space of Disse within the hepatic sinusoids, and display thin, silk-like

or flat, plate-like pseudopodia. In contrast, during the course of

steatohepatitis, KCs tend to form clusters and lose their typical villus-

like or digit-like extensions (90). Knockdown of Jun N-terminal

kinase-1/2 (JNK-1/2) in KCs reverses liver fibrosis in choline-

deficient, L-amino acid-defined (CDAA) diet-fed mice and reduces

inflammatory responses (91). Dietary fat and cholesterol can suppress

type 1 cytokine expression and oppositely upregulate the type 2

cytokines in murine KCs (92). The equilibrium among macrophage

polarization states significantly influences the advancement of

steatohepatitis. For instance, arginase-2 knockout mice develop

spontaneous steatohepatitis, which can be mitigated by KCs

depletion (93). Histidine-rich glycoprotein (HRG), produced by

hepatocytes, induces macrophage pro-inflammatory polarization,

whereas HRG knockout mice are protected from experimental

steatohepatitis (94).

As MASLD progresses, resident KCs in the liver are gradually

replaced by recruited macrophages (95). KCs expressing TREM2

localize to sites of inflammation, hepatic damage and fibrosis, and

soluble TREM2 correlates with disease severity in humans (96).
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Additionally, TREM2 ligation inhibits TLR4-driven inflammation

in KCs (97). Single-cell analysis has revealed that recruited

macrophages exist in two subsets with distinct activation states,

either CCR2+, CX3CR1+, Ly-6Chi monocytes or TREM2+,CD63+,

CD9+ lipid-associated macrophages (LAMs) (98, 99). Genetic

deletion of TREM2 in LAMs significantly impairs their tissue

repair capacity, leading to exacerbated macrophage-mediated

hepatic inflammation and accelerated fibrogenesis (100, 101).

Given the crucial role of TREM2 in regulating both lipid

metabolism and immune responses, therapeutic interventions

targeting TREM2 modulation may offer promising novel

strategies for the treatment of MASH (102). Another study has

shown that hepatic LAMs express osteopontin (SPP1), a biomarker

for patients with MASH, which is linked with the development of

fibrosis (95). SPP1 has been reported to be upregulated in liver

fibrosis and is tightly linked to dismal prognosis in end-stage

hepatocellular carcinoma (103, 104). Studies have reported that

myeloid-specific Glycoprotein Non-Metastatic Melanoma Protein

B (GPNMB) knockout contributes to monocyte-derived

macrophages occupation of the KCs niche and inhibits the

formation of LAMs, thereby decreasing liver fibrosis (105).

Another study suggested that the absence of Breast Regression

Protein 39 (BRP39) reduces infiltration of LAMs, quelling liver

inflammation and fibrosis (106). Notably, TREM2 also promotes

lung fibrosis via protecting against macrophage apoptosis (107),

while itaconate secreted by TREM2+ macrophages prevents

apoptosis in cardiomyocytes and stimulates the growth of

fibroblasts, which in turn enhances the process of cardiac tissue

repair (108). Therefore, searching for new targets for LAMs is of

great significance in the treatment of liver fibrosis in MASLD.

The genes elevated in MASLD have also been found to regulate

macrophage polarization. In human and murine MASH,

upregulated CD47 on necroptotic hepatocytes (necHC) and

SIRPa on liver macrophages impair necHC uptake by liver

macrophages, thereby promoting HSCs activation and fibrosis

(109). Furthermore, macrophage-derived FGF12 and Tim3 have

been shown to differentially activate HSCs through distinct

mechanisms via the Monocyte Chemoattractant Protein-1 (MCP-

1)/CCR2 axis and TGF-b secretion, respectively, all of which

contribute to MASH pathogenesis (110, 111). Another study

found that Niemann-Pick C1 (NPC1)-deficient macrophages

exhibited inefficient efferocytosis in MASLD (112). HIF-1a,
particularly in macrophages is increased in mice and patients

with MASH, stimulating the release of inflammatory cytokines,

which exacerbates both hepatic steatosis and inflammation (113).

Simultaneously, it has been reported that macrophage HIF-2a
mitigates insulin resistance and inflammation in adipose tissue by

promoting an alternative activation polarization state (114). While

PPARg, rather than PPARd, is essential for initiating the metabolic

shift in response to IL-4, the deletion of either isoform has been

demonstrated to hinder IL-4-triggered alternative macrophage

activation, leading to insulin resistance and the development of

hepatic steatosis (115, 116). Notably, a recent study identified a

dopamine receptor D2 (DRD2) antagonist that selectively inhibits

Yes-associated protein (YAP) in macrophages but not hepatocytes
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and thereby blocks the crosstalk between macrophages and the

CTGF+VCAM1+ vascular niche, thereby promoting liver

regeneration rather than fibrosis (117).
6.2 Alcoholic liver disease

Alcohol-associated liver disease (ALD) ranks among the most

common liver conditions globally (118). Pericellular and

perisinusoidal matrix accumulation with a chicken-wire

appearance are also a characteristic fibrotic pattern in ALD (119).

Alcohol consumption leads to malondialdehyde-acetaldehyde

(MAA) adduct accumulation and stimulates KCs to produce IL-6,

thereby accelerating hepatic inflammation and fibrosis in aldehyde

dehydrogenase 2 (ALDH2) knockout mice (120). During ALD, the

death of hepatocytes releases damage-associated molecular

patterns, which in combination with necrotic cellular remnants

and acetaldehyde—a byproduct of ethanol metabolism—induce the

activation of KCs. This activation initiates hepatic inflammation

through both innate and adaptive immune reactions (119, 121).

Additionally, KCs produce nitric oxide (NO) and nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase, which further

contribute to ALD (122).

Intestinal barrier dysfunction is an important contributor to

ALD. Excessive alcohol consumption disrupts gut epithelial tight

junctions, which increases intestinal permeability and facilitates the

translocation of gut-derived LPS to the liver (123). During alcohol

ingestion, high miR-212 expression suppresses zonula occludens-1

(ZO-1), a major component of tight junctions, causing disruption of

gut integrity and permeability, thereby leading to LPS transport to

the liver and subsequent activation of KCs (122, 124). Both KCs and

activated HSCs contribute to fibrosis progression in alcohol-

induced fibrosis through TLR4 (125). Silvia Affò et al. suggested

that the upregulation of CCL20, mainly produced by macrophages,

was strongly associated with LPS and silencing of CCL20 in mice

reduces the expression of LPS-induced hepatic pro-inflammatory

and pro-fibrogenic genes (126). In another study, monocyte-derived

macrophages exhibit a pronounced inflammatory phenotype in a

Notch-dependent manner (127).
6.3 Viral hepatitis

The global prevalence of viral hepatitis is predominantly

attributed to five distinct hepatotropic viruses that are biologically

unrelated, including hepatitis B virus (HBV), hepatitis C virus

(HCV) among others (128). The estimated number of deaths due

to viral hepatitis increased from 1.1 million in 2019 to 1.3 million in

2022, with 83% of deaths caused by HBV and 17% caused by HCV

globally (129). Both adaptive and innate immunity are involved in

the immune response to viral hepatitis, and the essential role of

non-specific defense—especially the function of hepatic

macrophages—has received wide attention (130).

A high HBV/HCV titer not only suppresses the polarization of

pro-inflammatory macrophages, but also encourages their
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1639455
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1639455
differentiation into a tolerogenic state (131). During immune

activation in human and rodent infections, hepatitis B virus

suppresses NF-kB pathway and ROS production in LPS-induced

KCs, thereby inhibiting NOD-like receptor thermal protein domain

associated protein 3 (NLRP3) inflammasome activation and IL-1b
production (132). In agreement with the finding, HCV core protein

can inhibit the NF-kB pathway to greatly reduce the expression of

CCL2 and CXCL10 in macrophages (133). Similarly, HBV splicing-

generated protein (HBSP) impacts liver monocyte/macrophage

recruitment through a down-regulation of hepatocyte CCL2

expression upon acute liver injury (134).

In human liver, primarily via stimulating macrophages, IFN-l
not only drives antiviral responses, but also promotes inflammation

and fibrosis in viral diseases (135). Research corresponding to this

statement has uncovered that IFN-l3, but not IFN-l4, is likely to be
the major IFN-l subclass mediating hepatic inflammation and

fibrosis progression in HCV patients (136). However, exposure of

human naive liver macrophages to HBV leads to an increased

proportion of anti-inflammatory macrophages, which favors HBV

development by releasing IL-10 (137). Moreover, HBV stimulates

monocyte/macrophage secretion of TGF-b (138), while inhibiting the
secretion of IL-12 induced by TLR2 to induce immune suppression

(139). A recent study has confirmed that TLR2 is the direct binding

receptor of hepatitis B e-antigen (HBeAg), which promotes the

proliferation of HSCs in a macrophage-dependent manner (140).

Consistently, prokineticin 2 (PK2), as a potential cytokine expressed

in KCs, modulates the number of pro-inflammatory cells, thereby

regulating their role in the progression of liver fibrosis after HBV

infection (141). In addition, the activation of Stimulator of Interferon

Genes (STING) signaling suppresses macrophage inflammasome

activation by activating autophagic flux to alleviate HBV-induced

liver fibrosis (142). The present investigation identifies MMP9+

macrophages as the pivotal drivers of end-stage hepatocellular

carcinoma in patients with chronic HCV infection (143).
6.4 Cholestatic disease

Cholestatic diseases such as primary biliary cholangitis (PBC)

and primary sclerosing cholangitis (PSC) are characterized by the

retention of bilirubin and bile salts in the liver and elevations of

these metabolites in systemic circulation with a significant impact

on organ function (144). The activation and recruitment of

macrophages are mediated by ductular reactive cells (the

epithelial cells characterized as a biliary phenotype) via the

secretion of various factors (145). Exosomal lncRNA H19 derived

from cholangiocytes enhances the pro-inflammatory polarization of

KCs and promoted the recruitment and differentiation of BMDMs

via inducing the expression and secretion of CCL2 and IL-6 in KCs

(146). Flow cytometry analysis of non-parenchymal liver cells in

PBC reveals massive infiltration of BMDMs in the liver, whereas the

number of KCs decreases. These BMDMs exhibit high levels of

TREM2 and SPP1 expression, which are characteristics of hepatic

bile duct-associated macrophages. They are predominantly found

surrounding the portal triad, a pattern that has been validated in
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patients with PSC (147). In contrast, SPP1+ macrophage infiltration

in intrahepatic cholangiocarcinoma is associated with reduced

tumor aggressiveness and improved patient survival (148).

Another study has shown that high expression levels of IL-23

mRNA in CX3CR1hiCD11c+ BMDMs, inducing a significant

intrahepatic increase in the frequency of hepatic IL-17A-

producing CD4+ T cells and activity of the IL-23-IL17 axis,

thereby aggravating PBC (149).

Moreover, KCs isolated from PBC mice showed increased

surface RAE-1 protein expression and cytokine secretion, which

subsequently activated NK cell-mediated target cell killing via

Natural Killer Group 2 Member D (NKG2D)/Retinoic Acid Early

Transcript 1 (RAE-1) recognition, increased inflammation, and

fibrosis (150). IFN-g further increased frequencies of

inflammatory macrophages in the liver and aggravated liver

fibrosis (151). In the absence of Protein Tyrosine Phosphatase 1B

(PTP1B), which normally restricts the duration of pro-

inflammatory signaling cascades, the activation and recruitment

of hepatic macrophages are markedly enhanced after bile-duct

ligation (BDL) (152). Macrophage phagocytosis of apoptotic cells

was delayed by the induced high expression of CD16 in PBC

BMDMs, promoting inflammation and fibrosis (153). In Mdr2-/-

mice, CCL24-driven macrophages induce proliferation of HSCs and

cholangiocytes to promote cholestasis and fibrosis (154).
7 Therapeutic approach for targeting
macrophage in liver fibrosis

Hepatic macrophages, including KCs and other resident

macrophages, play a crucial role in maintaining liver homeostasis and

modulating the progression or regression of liver fibrosis. These cells are

of significant therapeutic interest due to their central role in normal

tissue homeostasis and their dual functions in promoting and inhibiting

fibrosis. As the first line of defense against liver injury, hepatic

macrophages orchestrate both pro-fibrotic and anti-fibrotic responses,

making them attractive targets for therapeutic intervention. Although

most macrophage-based therapies have been tested primarily in

experimental animal models, some have been evaluated in clinical

trials (155). Emerging translational strategies focus on

multidimensional modulation of macrophage biology:
• Dampening KCs activation: Targeting the activation of KCs

to reduce pro-inflammatory signaling and subsequent

fibrogenesis.

• Inhibiting the recruitment of inflammatory cells (monocytes

and macrophages) to the injured liver: Preventing the

recruitment of inflammatory cells, such as monocytes and

macrophages , to the injured l iver to mit igate

excessive inflammation.

• Shaping the heterogeneity of liver macrophages: Shaping

the diverse phenotypes and functions of hepatic

macrophages to promote an anti-fibrotic environment.

• Augmenting the differentiation into restorative

macrophages: Shifting the hepatic microenvironment
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from inflammation toward resolution, as well as enhancing

restorative differentiation pathways in macrophages by

delivering phagocytic stimuli.

• Cell-based therapies involving autologous macrophages

infusion: Utilizing autologous macrophage infusion to

introduce macrophages with specific anti-inflammatory or

pro-resolving properties.

• Targeting macrophages with nanostructures: Employing

nanostructures to selectively target and modulate macrophage

function in the liver.
7.1 Dampening KCs activation

Emricasan, a pan-caspases inhibitor, reduces inflammation and

apoptosis by inhibiting KCs activation caused by NLRP3

inflammasome cascades (156, 157). However, it did not improve

liver fibrosis in patients with MASH (158).

Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously

expressed redox-sensitive regulator of both JNK and p38-mediated

inflammation and apoptosis (159). KCs are activated by p38 and JNK

in liver fibrosis and blocking the inflammatory signaling pathway of

KCs can reduce inflammation and fibrosis in NASH. Selonsertib, an

ASK1 inhibitor, failed to demonstrate improvement in liver fibrosis in

phase III trials (160).

The farnesoid X receptor (FXR) is a bile acid-activated nuclear

receptor that is abundantly expressed in the liver and intestine (161).

Direct activation of FXR enhances anti-inflammatory cytokines (162).

Obeticholic acid (OCA), an effective FXR agonist, has been shown to

prevent liver fibrosis by inhibiting KCs activation by blocking multiple

inflammatory signaling pathways (163). In a Phase III trial, OCA

significantly improved fibrosis in patients with MASH (164).
7.2 Inhibiting the recruitment of
inflammatory cells to the injured liver

The recruitment of inflammatory cells to the injured liver is a

critical step in the progression of liver inflammation and fibrosis. This

process is largely dependent on the chemotactic effects of various

chemokines secreted by activated hepatocytes, macrophages, and

HSCs. Among these inflammatory cells, Ly-6Chi MoMfs are

particularly reliant on the signaling pathways involving CCL2/

CCR2, CCL1/CCR8, and CCL25/CCR9 (165). Inhibition or

elimination of macrophage recruitment via these signaling pathways

can significantly ameliorate liver inflammation and global fibrosis in

mice. Currently, strategies to interfere with chemokine signal

transduction include the use of monoclonal antibodies, receptor

antagonists, or small-molecule inhibitors to block chemokine-

induced intracellular signaling (8). Among patients with

steatohepatitis, the activation of KCs triggers the attraction of

BMDMs via the CCR2/CCL2 and CCR5/CCL5 interaction

pathways. This process promotes inflammation and contributes to

the progression of fibrosis (166).
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Notably, a dual inhibitor of CCR2/CCR5, known as Cenicriviroc

(CVC), effectively blocks CCL2-mediated monocyte recruitment to the

liver and exhibits anti-fibrotic effects in a mouse model of liver fibrosis

(167). The phase III clinical trial demonstrated that a 12-month

regimen of CVC 150 mg once daily failed to achieve histological

improvement in liver fibrosis among MASH patients. However, CVC

maintained a favorable safety profile and was well tolerated in this

cohort with MASH and liver fibrosis (168).

In addition, medium chain fatty acid receptor G protein

junction acceptor 84 (GPR84) has been identified as a mediator

of myeloid immune cell infiltration under inflammatory conditions.

Small-molecule antagonists (CpdA and CpdB) targeting GPR84

have been shown to obstruct macrophage recruitment to sites of

injury in mice with both acute and chronic liver injury, thereby

alleviating liver inflammation and fibrosis (169). Moreover, CCR9-

deficient HSCs exhibit reduced fibrotic potential in vitro (170).

Blocking the CCR9/CCL25 axis with a CCR9 antagonist represents

an effective approach to mitigate the progression of hepatic

fibrosis (171).
7.3 Shaping the heterogeneity of hepatic
macrophages

Macrophage phenotypes exert contrasting functions, with pro-

inflammatory macrophages typically associated with pro-

inflammatory responses and alternatively activated macrophages

with anti-inflammatory and tissue-repair functions. Consequently,

therapeutic strategies aimed at promoting a switch from a

pathogenic phenotype to a restorative phenotype hold promise

for accelerating disease resolution and liver regeneration. This can

be achieved using therapies that regulate macrophage polarization

or reprogram macrophages into a restorative phenotype (155).

b-cryptoxanthin, a lutein carotenoid, has been shown to exert

protective effects on markers of hepatic fat accumulation and

inflammation (172). b-cryptoxanthin can directly attenuate LPS-

induced pro-inflammatory macrophage activation while enhancing

IL-4-induced alternatively activated macrophage activation,

suggesting that b-cryptoxanthin may represent a promising

therapeutic option for patients with liver fibrosis (173).

Astaxanthin exhibits stronger antioxidant activity than b-
carotene, and is particularly effective in reducing liver

inflammation and inhibiting the activation of HSCs (174). It

inhibits the activation of JNK/P38 and NF-kB signaling pathways

by suppressing T-cell activity, macrophage recruitment, and KCs

activation (175). Similarly, astaxanthin has been shown to decrease

pro-inflammatory macrophages (176).

Glucagon-like peptide-1 (GLP-1) is a hormone secreted by the

gut that lowers blood glucose levels by promoting glucose-

dependent insulin secretion and inhibiting glucagon secretion.

The glucose-lowering drug liraglutide, an analogue of GLP-1, has

shown good efficacy in liver fibrosis (177). In vitro experiments

showed that liraglutide counteracted the pro-inflammatory

polarization of F4/80+ macrophages induced by palmitic acid

(PA) in wild type mice, mediated through modulation of the
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1639455
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1639455
cAMP–PKA–STAT3 signaling cascade (178). Moreover, corilagin, a

gallotannin, mediating the reprogramming of alternatively activated

macrophages to a pro-inflammatory phenotype by regulating the

expression of Indoleamine 2,3-dioxygenase 1 (IDO1) in vitro,

thereby alleviating liver fibrosis (179).
7.4 Augmenting the differentiation into
restorative macrophages

Peroxisome proliferator-activated receptors (PPARs) play a key

regulatory role in the liver, controlling insulin sensitivity, glucose and

lipid metabolism, inflammation, and fibrosis (180). PPAR d plays an
anti-inflammatory role by promoting alternatively activated

polarization of KCs and decreasing the expression of NLRP3,

caspase-1 and IL-1b upon stimulation with saturated fatty acids

and LPS. Elafibranor (GFT505), a dual PPARa/d agonist, has been

shown to reduce steatosis, inflammation, and fibrosis in several

mouse models of steatohepatitis and decrease the gene expression

of pro-inflammatory and pro-fibrotic markers (181). Lanifibranor, as

a novel pan-PPAR agonist, decreases the pro-inflammatory

activation of macrophages in the liver (182). In a phase 2b trial, it

has been indicated that lanifibranor can alleviate liver fibrosis (183).

Gal-3 can directly trigger the NOD-like receptor thermal

protein domain associated protein 3 (NLRP3) inflammasome in

liver macrophages. Macrophage-derived pro-inflammatory

cytokines ultimately result in the cascade of events leading to

fibrosis (184). Gal-3 ablation protects mice from diet-induced

steatohepatitis and reduces liver inflammation and fibrosis in

HFD-fed mice (185). Gal-3 inhibitor GR-MD-02 shows potential

efficacy in MASH with advanced fibrosis (186).

GPBAR-1 (TGR5) is a bile acid-activated receptor (BAR)

expressed in various liver cells, including KCs, sinusoidal

endothelial cells, and HSCs (187, 188). Bar501, a selective ligand

of GPBAR-1, can effectively reduce bile duct inflammation, mitigate

liver fibrosis and restore bile acid homeostasis (189).
7.5 Cell therapy with autologous
macrophage infusion

More recently, mesenchymal stem cell (MSC) therapy has

emerged as a promising alternative for treating liver diseases

(190). MSCs possess the potential to differentiate into hepatocytes

and exhibit immunomodulatory properties. They also secrete

various trophic factors, including growth factors and cytokines,

which have therapeutic implications. In addition, mesenchymal

stem cells can inhibit the inflammatory response, reduce hepatocyte

apoptosis, promote hepatocyte regeneration, attenuate liver fibrosis,

and enhance liver function (191). However, depending on the route

of MSC injection and the status of liver disease, MSCs may

differentiate into myofibroblasts, thereby exacerbating liver

fibrosis. Despite these potential risks, the therapeutic efficacy of

MSCs in liver fibrosis has been demonstrated in both preclinical

and clinical studies (192).
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In addition to MSC therapy, cell therapy involving the transfer

of autologous beneficial macrophages has also been explored.

Macrophage cell therapy improves clinically relevant parameters

in experimental chronic liver injury (193). BMDMs can recruit and

modify endogenous macrophages to activate natural killer (NK)

cells by modulating the hepatic microenvironment. Pro-

inflammatory macrophages also increase the total number of NK

cells and activated NK cells in the fibrotic liver, which promoted

HSCs apoptosis through TRAIL release. (194).
7.6 Targeting macrophages with
nanostructures

Nanodrugs have been demonstrated to improve inflammation

and liver fibrosis by targeting macrophages. The polarization and

reprogramming of macrophages can be differentially modulated by

nanoparticles that vary in their physicochemical attributes, such as

chemical makeup, size, and surface modification (195). A

nanomedicine delivery system has been engineered to target KCs by

exploiting receptors that are predominantly present on them, such as

mannose and scavenger receptors. This system is intended to deliver a

range of therapeutics, including anti-inflammatory medications, ROS

scavengers, agents that modify the KCs phenotype, and small

interfering RNA (siRNA) drugs aimed at inflammatory mediators,

directly to KCs. This approach holds significant promise for the

treatment of liver fibrosis (196). A polydatin-loaded micelle

demonstrates highly efficient liver-targeted drug release in response

to the fibrotic microenvironment (197). Moreover, researchers have

developed a dual-drug-loaded lipid nanoparticle. It can effectively

suppress macrophage pro-inflammatory signaling and degrade the

ECM barrier (198). Therapeutic approaches for targeting

macrophages in liver diseases are summarized in Table 1.
8 Conclusions and perspectives

In summary, translating the concept of macrophage heterogeneity

into clinically effective therapy for liver fibrosis requires addressing

two fundamental questions: (i) What are the precise functional roles

and pathophysiological significance of distinct macrophage

phenotypes across different disease stages? (ii) How can we achieve

spatiotemporally precise reprogramming macrophage phenotypes to

favor fibrosis resolution while minimizing off-target effects?

The current translational challenges primarily stem from

interspecies discrepancies and human-specific complexities.

Although murine models have provided foundational insights,

they often fail to fully recapitulate the multidimensional

heterogeneity of human macrophages, which is shaped by genetic

polymorphisms, epigenetic modifications, demographic variables

(age, sex, ethnicity), and dynamic host-microbiome interactions.

This biological divergence contributes to the frequent discordance

between preclinical efficacy and clinical trial outcomes. The

functional plasticity of macrophages—acting as double-edged

swords in disease initiation (pro-inflammatory), progression (pro-
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fibrotic), and resolution (pro-reparative)—demands phenotype-

specific targeting strategies rather than global macrophage

modulation. In addition, macrophage biology in the liver is

complicated by phenotypic plasticity, overlapping markers, and

inconsistent classification, making it difficult to distinguish

between different populations and their functional roles. On the

one hand, microenvironmental signals drive rapid phenotypic

switching in both KCs and BMDMs, leading to shared surface

markers and functional profiles. This bidirectional interconversion

blurs the line between resident and recruited macrophages,

challenging traditional identification methods. On the other hand,

inconsistent nomenclature and unclear definitions further

complicate the field. Many studies classify macrophage subsets

with distinct names, yet there is significant overlap between

datasets, raising questions about whether identified clusters

represent true distinct populations or merely different activation

states. Additionally, much of the existing research remains

descriptive, lacking mechanistic insights into macrophage

functions in health and disease.

Future studies would be focused on elucidating the precise roles

of distinct macrophage phenotypes at each stage of liver fibrosis and

developing targeted therapies that can precisely modulate

macrophage function in a spatiotemporal manner. This approach
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holds promise for improving therapeutic outcomes and addressing

the inherent complexities in liver fibrosis.
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TABLE 1 Therapeutic approaches for targeting macrophages in liver diseases.

Strategy Classification and Compound Mechanism/Cytokines References

Dampening KC activation

pan-Caspases inhibitor
(Emricasan)

Inhibiting KCs activation caused by NLRP3 inflammasome
cascade and reducing inflammation and apoptosis

(156–158)

ASK-1 inhibitor
(Selonsertib)

Inhibiting ASK1 and its downstream P38 and C-Jun N-
terminal kinase phosphorylation

(160)

Bile acid FXR agonist
(Obeticholic acid, GW4064)

Inhibiting endotoxin-induced KCs activation and
liver inflammation

(163, 164)

Inhibiting inflammatory monocyte
recruitment to injured liver

CCR2-CCR5 dual antagonist
(Cenicriviroc)

Blocking CCR2 and CCR5 which mediate inflammatory
and fibrotic

(167, 168)

GPR84 antagonists
(CpdA and CpdB)

Reducing macrophage accumulation (169)

Shaping the heterogeneity of
Hepatic macrophages

b-cryptoxanthin
Directly decreasing M1 macrophage activation and
increasing M2 macrophage activation

(172, 173)

Astaxanthin
Inhibiting the activation of Jun-N/P38 and NF-kB
signaling pathways.

(174, 176)

GLP-1 analogue
(Liraglutide)

Regulating the cAMP-PKA-STAT3 signaling. pathway (177, 178)

Augmenting the differentiation
into restorative macrophages

Dual PPARa/d agonist
(Elafibranor, GFT505)

Promoting M2 polarization of KCs and decreasing the
expression of NLRP3, caspase-1 and IL-1b

(181)

Pan-PPAR agonist
(Lanifibranor)

Decreasing pro-inflammatory activation of macrophages (182, 183)

Galectin-3 inhibitor
(GR-MD-02, Belapectin)

Inhibiting a variety of pro-fibrosis factors (186)

GPBAR-1 agonist
(Bar501)

Reducing steatosis, inflammation, and fibrosis (189)

Cell therapy with autologous
macrophage infusion

BMDM activating NK cells and promoting HSCs apoptosis (194)

Nanometer carrier Nanoparticles Targeting macrophages (196–198)
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