AUTHOR=Chen Shuangyu , Chen Wenqian , Xu Tinghui , Li Jiayang , Yu Jianghao , He Yibo , Qiu Shengliang TITLE=The impact of aberrant lipid metabolism on the immune microenvironment of gastric cancer: a mini review JOURNAL=Frontiers in Immunology VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1639823 DOI=10.3389/fimmu.2025.1639823 ISSN=1664-3224 ABSTRACT=Gastric cancer (GC) remains one of the leading causes of cancer-related mortality worldwide, with limited responses to immune checkpoint blockade (ICB) therapies in most patients. Increasing evidence indicates that the tumor immune microenvironment (TIME) plays a crucial role in immunotherapy outcomes. Among various metabolic abnormalities in the TIME, dysregulated lipid metabolism has emerged as a critical determinant of immune cell fate, differentiation, and function. In this review, we comprehensively summarize the current understanding of the immune landscape in GC, focusing on how altered lipid metabolism reshapes immune cell populations—including tumor-associated macrophages (TAMs), dendritic cells (DCs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and cytotoxic CD8+ T cells. We highlight key metabolic pathways such as fatty acid oxidation(FAO), cholesterol homeostasis, and lipid uptake that impact immune cell activity, contributing to immune evasion and therapeutic resistance. Importantly, we explore emerging therapeutic strategies targeting lipid metabolism, including inhibitors of cluster of differentiation 36 (CD36), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBP1) and discuss their synergistic potential when combined with ICB therapies. In conclusion, lipid metabolic reprogramming represents a promising yet underexplored axis in modulating antitumor immunity in GC. Integrating metabolic intervention with immunotherapy holds potential to overcome current treatment limitations and improve clinical outcomes. Future studies incorporating spatial omics and single-cell profiling will be essential to elucidate cell-type specific metabolic dependencies and foster translational breakthroughs.