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Development of a machine
learning model to predict overall
survival for large hepatocellular
carcinoma at BCLC stage A or B
after curative hepatectomy
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‘Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning,
Guangxi, China, 2Guangxi Medical University, , Nanning, China, *Key Laboratory of Early Prevention
and Treatment for Regional High Frequency Tumors, Guangxi Medical University, Ministry of

Education, Nanning, China, “Guangxi Key Laboratory of Early Prevention and Treatment for Regional
High Frequency Tumors, Nanning, China

Introduction: Patients with large hepatocellular carcinoma (LHCC) have a poor
prognosis even after curative hepatectomy. This study aimed to develop and
validate an interpretable machine learning (ML) model to predict their overall
survival (OS).

Methods: This study included 2,565 patients with hepatocellular carcinoma
(HCC) who underwent curative hepatectomy between January 2014 and
December 2021. The LHCC patients were randomly assigned (7:3 ratio) to a
training (n=1069) or validation (n=457) group. Independent risk factors for OS
were identified using multivariable Cox regression. Eight ML models were
developed and compared. The optimal model's interpretability was assessed
using Shapley Additive Explanations (SHAP).

Results: LHCC patients experienced a considerable reduction in OS (Hazard
Ratio, HR: 1.810, 95% Confidence Interval, Cl: 1.585-2.068) compared to SHCC
patients. Among eight ML models, the gradient boosting machine (GBM) model
demonstrated superior performance. In the validation group, the GBM model
achieved area under the receiver operating characteristic curve (AUC) values of
0.742,0.744, and 0.750 for 1-, 3-, and 5-year OS, respectively. These results were
comparable with or superior to established postoperative predictive models. The
GBM model showed the ability to stratify patients with LHCC into distinct
prognostic groups. A web-based calculator was developed for risk score
generation. Notably, the GBM model showed enhanced predictive accuracy in
patients with a high neutrophil-lymphocyte ratio (C-index: 0.819).
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Conclusions: The GBM-based model demonstrated the potential to predict
prognosis for patients with LHCC after curative hepatectomy. This
interpretable model may assist in personalized risk assessment and tailoring
postoperative management strategies.

gradient boosting machine, hepatectomy, large hepatocellular carcinoma, overall

survival, SHAP

1 Introduction

Across the globe, hepatocellular carcinoma (HCC) is the third
leading cause of death related to cancer, with many patients
receiving a diagnosis after tumors have reached an advanced size
(1, 2). Despite advancements in treatment modalities—including
hepatectomy, liver transplantation, local ablation, targeted therapy,
and immunotherapy—the prognosis for patients with large
hepatocellular carcinoma (LHCC) remains poor, characterized by
low 5-year survival rates (3-7). This grim outlook is largely
attributed to the higher risk of microvascular invasion (MVI)
associated with LHCC, a critical oncological factor linked to
unfavorable outcomes (8, 9).

Accurate prognosis predictions for LHCC patients enable
medical professionals to design individualized treatment
strategies, assess survival risks, and enhance the overall quality of
life for patients. In clinical practice, the Barcelona Clinic Liver
Cancer (BCLC) staging system stands as a commonly employed
approach for liver cancer, but it inadequately addresses the complex
variations in individual patient factors and tumor malignancy
behaviors (10). Machine learning (ML) technology is rapidly
evolving and is increasingly applied in the medical field. ML can
potentially analyze complex datasets, uncover hidden patterns, and
derive insights that could pave the way for novel approaches to
tumor prognostication (11-14).

In recent years, ML has demonstrated considerable advantages
in predicting HCC prognosis by analyzing multidimensional
clinical information. However, the “black-box” nature of ML
models presents challenges for clinical practice. To overcome
these obstacles, the explainable artificial intelligence emerges as a
reliable tactic to interpret ML models” outputs and elucidate the
derivation process of these models. This transparency is crucial for
clinicians to trust and effectively integrate ML models into their
practice (15-19). In this study, we utilize the ML models in
combination with the Shapley Additive Explanations (SHAP)
explainability framework to stratify patients with LHCC and
assist in treatment decisions (20-23).
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2 Materials and methods

2.1 Patients

The investigation focused on HCC patients who received
curative hepatectomy at Guangxi Medical University Cancer
Hospital from January 2014 through December 2021. Curative
hepatectomy was defined as an RO resection, with no microscopic
tumor cells at the surgical margin, according to the Diagnosis and
Treatment Guidelines for Primary Liver Cancer (24); The study’s
criteria for participant selection were defined by specific inclusion
and exclusion parameters. Inclusion criteria included: (1) patients
were underwent RO resection and all enrolled patients had adequate
liver function reserve, as defined by an indocyanine green 15-
minute retention rate (ICG R15) <30%; (2) Child-Pugh score of
5-7; (3) Eastern Cooperative Oncology Group performance status
(ECOG PS) of 0 or 1; and (4) BCLC stage A or B. Exclusion criteria
comprised: (1) history of other malignancies, (2) any preoperative
anticancer treatment such as adjuvant chemotherapy, targeted
therapy, immunotherapy, interventional therapy, or radiotherapy;
(3) postoperative therapy, including aforementioned treatments;
and (4) incomplete clinical data and follow-up duration of less than
2 months.

The Guangxi Medical University Ethics Committee
(KY2025413) approved this study, which adhered to the
Declaration of Helsinki principles.

2.2 Clinicopathologic variables and follow-
up

Clinicopathological information of patients with HCC were
collected, including (1) demographic information: gender, age,
height, weight, etc. (2) laboratory parameters: total bilirubin,
alpha-fetoprotein (AFP), albumin, platelets, etc. (3) liver disease-
related information: Hepatitis B virus (HBV) infection status, HBV
DNA level, etc. (4) tumor-related information: tumor number,
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tumor size, postoperative pathology, etc. The HCC stage was
evaluated according to the BCLC staging classification system (25).

The main purpose was to assess overall survival (OS), tracked
from the date of curative hepatectomy to either death from any
cause or the last follow-up. The secondary endpoint was recurrence-
free survival (RFS), defined as the time from curative hepatectomy
until to the first occurrence of either disease recurrence or death
from any cause.

Postoperative follow-ups were conducted at intervals of 1-2
months for the first year, followed by every 3 months thereafter
until recurrence occurred. The follow-up programs included regular
evaluations of liver function, AFP levels, and at least one contrast-
enhanced imaging. HCC recurrence was diagnosed through a
thorough evaluation of clinical history, AFP tests, and imaging
results. The follow-up continued until 26 January 2025.

2.3 Statistical analysis

Continuous variables were expressed as means along with
standard deviations (SD) and analyzed via Student’s t-test.
Alternatively, they were presented as medians together with
interquartile ranges (IQR) and analyzed using the Mann-Whitney
U test. Categorical variables were presented as n (%) and compared
with the Chi-square test. The Kaplan-Meier method was employed
to generate the OS curves, and the log-rank test was utilized for their
analysis. A multivariable Cox regression analysis model was
developed to estimate the likelihood of hepatectomy risk,
incorporating predictive factors identified through
univariate analysis.

The dataset used for this analysis was complete, with no missing
values for the analyzed variables. To develop and validate the
predictive models, the entire dataset was randomly split into a
training group (70%) and an internal validation group (30%) using
the createDataPartition function from the caret package in R. This
function employs a stratified random sampling strategy based on
the OS status to ensure an equal distribution of deaths between the
training and validation sets, thereby improving the robustness of
the model evaluation. The random seed was set to 123 to ensure the
complete reproducibility of the data partitioning.

Univariate Cox regression analyses were first performed to
identify potential prognostic factors. To control the false
discovery rate resulting from multiple testing, the p-values from
the univariate analysis were further adjusted using the False
Discovery Rate (FDR) correction via the Benjamini-Hochberg
method. Variables with an FDR-adjusted p-value (P_FDR) < 0.05
were considered statistically significant and selected for inclusion in
the subsequent multivariate Cox regression analysis. The
proportional hazards assumption for the final multivariate model
was verified using Schoenfeld residual tests, and no significant
violations were found (global test p >0.05). Multicollinearity
among the covariates in the multivariate Cox regression was
assessed using the variance inflation factor (VIF). All VIF values
were well below the threshold of 5 (BCLC: 1.23, MVTI: 1.15, Size:
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1.08), indicating no severe multicollinearity that would adversely
affect the model estimates.

The independent risk factors identified from the multivariate
Cox regression (BCLC stage, MVI, and tumor size) were used as
input features for constructing eight ML models. These models
include least absolute shrinkage and selection operator regression
(Lasso_Cox), gradient boosting machine (GBM), random survival
forests (RSF), boosting for Cox’s proportional hazards model
(Coxboost), survival support vector machine (Survivalsvm),
extreme gradient boosting (xgboost), super-predictor Cox model
(superpc), and partial least squares with Cox’s proportional hazards
model (plsRcox). The details of the algorithms and their
hyperparameters are summarized in Supplementary Table S1 and
Supplementary Figure S1.

Hyperparameter tuning is a critical step to optimize model
performance and prevent overfitting. For all models,
hyperparameter tuning was conducted exclusively on the training
group using resampling methods to avoid any information leakage.
The specific tuning strategy, search spaces for key hyperparameters,
and the criterion for evaluating model performance are described in
detail for each algorithm in Supplementary Table S1 and
Supplementary Figure S1. We employed a systematic approach
based on K-fold cross-validation (with K = 10) for hyperparameter
exploration. The internal validation for hyperparameter tuning was
performed using stratified 10-fold cross-validation (CV) on the
training set. The stratification was based on the OS status to
maintain the proportion of events (deaths) consistent across all
folds. The performance of each hyperparameter combination was
evaluated using the concordance index (C-index). The model
configurations identified through this CV process were then
evaluated on the independent internal validation set. The final
optimal hyperparameter configuration for each algorithm was
selected based on the highest average C-index across the 10
stratified CV folds. Critically, the independent internal validation
set (30% of the data, held out from all tuning processes) was used
only for post-selection evaluation of generalizability to unseen
data—this strict separation ensures no information leakage into
model selection. The mean and standard deviation of the C-index
from both the 10-fold CV process and the independent internal
validation for each final model are reported in Supplementary
Table S2.

The final model for each algorithm, with its hyperparameters
fixed to the optimized values, was then refit on the entire training
group and subsequently applied to the held-out validation group for
an unbiased assessment of its performance. The performance of the
ML models was comprehensively assessed using multiple metrics:
the C-index, the area under the receiver operating characteristic
curve (AUC), calibration curves, decision curve analysis (DCA), the
Integrated Brier Score (IBS), and the Net Reclassification Index
(NRI). In this study, a Cox proportional hazards model containing
no predictor variables (the Null Model) was selected as the reference
for NRI calculation. This model represents the average risk of the
entire study cohort. This setup allows us to evaluate the absolute
incremental value of all ML models over a “no-information”
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baseline. The NRI was calculated on the training set at 1-, 3-, and 5-
year post-hepatectomy. The risk stratification threshold for all
models was set at the median of their predicted risk probabilities.

The GBM model was also further compared with previously
reported predictive models, including the BCLC staging
system, metroticket Cox regression, Tumor-burden score (TBS),
ERASL-pre score, and ERASL-post score, using similar evaluation
metrics. These comparator models were applied based on their
original published algorithms and were not re-trained on our
dataset. Patients diagnosed with LHCC were divided into high-
risk and low-risk groups based on the median risk scores obtained
from the ML models.

The shapviz package was used to visualize contributions in the
GBM model. SHAP summary plots showed feature impacts on
predictions. Higher SHAP values in the GBM model meant a higher
death likelihood. The SHAP feature importance plot orders features
based on their average absolute SHAP values. SHAP force plots

10.3389/fimmu.2025.1640075

used colors (orange for positive, dark red for negative) to denote
feature contributions.

For two-tailed tests, statistical significance was defined as a
p-value of less than 0.05. All the statistical analyses were carried out
using R version 4.4.2 (http://www.r-project.org/).

3 Results

3.1 Postoperative prognosis of patients
with HCC

The LHCC group’s OS was much shorter than that of the SHCC
group. (Hazard Ratio, HR: 1.81, 95% Confidence Interval, CI:
1.585-2.068, Figure 1A). A total of 1,017 people died in the
LHCC group, resulting in an overall mortality rate of 66.6%. In
the LHCC group, the survival rates were 81.5% at the 1-year mark,

==<5cm (median : NA, 95% CI: NA - NA)
== >5cm (median : 68, 95% CI : 60 — 78)

A 100%] Overall survival probability
£ 75%
z
=
=
e
£
=3
E
1117 [0
£
H
]
g
z
=]
25%
p <0.001
0%
0 12 24 36 48

72 84 96 108 120 132

<Scm 1039 925
>Sem 1526 1215

Time(Months)
776 589 498 409 286 211
923 688 566 459 311 214

Numbers at risk

118
133

67
81

24
41

2
6

B

100%

75%

Recurrence—free survival probability

=~ <5cm (median : 31, 95% CI : 26 — 38)
=~ >5cm (median : 10,95% CI: 9 - 12)

50%

25%

Recurrence—free survival probability

0%

p <0.001;

0 12

<Scm 1039 643
>5em 1526 700

FIGURE 1

24 36 48 60 72 84
Time(Months)

499 411 341 282 191 147
501 380 324 261 178 127

Numbers at risk

Overall survival and recurrence-free survival in the LHCC and SHCC groups.

Frontiers in Immunology

04

96 108 120
85 46 13
75 45 21

frontiersin.org


http://www.r-project.org/
https://doi.org/10.3389/fimmu.2025.1640075
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yang et al.

60.5% at the 3-year mark, and 52.2% at the 5-year mark. Similarly,
the RFS of the LHCC group was significantly shorter compared to
the SHCC group (HR: 1.526, 95% CI: 1.376-1.693, Figure 1B). A
total of 1,035 people experienced recurrence in the LHCC group,
leading to an overall recurrence rate of 67.8%. Among the patients
in the LHCC group, the rates of RFS were 47.6% after 1 year, 32.3%
after 3 years, and 30.0% after 5 years.

3.2 Clinicopathologic characteristics

Between 2014 and 2021, 2,565 HCC patients were enrolled,
including 1,526 patients with LHCC and 1,039 patients with SHCC.
For additional analysis, LHCC patients were randomly split into the
training group (n = 1,069) and the validation group (n = 457) in a
7:3 ratio (Figure 2). The baseline characteristics for both groups
were presented (Table 1). Notably, 41.3% of patients in the training
group were classified as BCLC stage B, whereas 43.5% of the
validation group fell into the same category. MVI was present in
52.5% of the training group and 51.0% of the validation group. In
the training group, the average tumor size was 9.20 cm, while in the

10.3389/fimmu.2025.1640075

validation group, it was 9.05 cm. No statistically significant
differences were observed between the two groups (p>0.05). The
median OS follow-up times were 42.2 months for the training and
41.5 months for the validation group.

3.3 Independent risk factors associated
with OS of patients with LHCC

Univariate Cox regression analysis identified significant risk
factors for OS in HCC patients, including the BCLC stage
(p_FDR<0.001), number of tumors (p_FDR <0.001), MVI
(p_FDR <0.001), and tumor size (p_FDR <0.001). After FDR
adjustment, variables including BCLC stage, number of tumors,
MV], and tumor size remained significant (P_FDR <0.05). The
multivariate Cox regression analysis, which satisfied the
proportional hazards assumption (Schoenfeld global test p=0.439,
Supplementary Table S3), identified BCLC stage (HR: 1.87, 95% CI:
1.48-2.36, p<0.001), MVI (HR: 1.55, 95% CI: 1.29-1.88, p < 0.001),
and tumor size (HR: 1.04, 95% CI: 1.01-1.07, p = 0.005) were
associated with an independent risk factors for OS in patients with

HCC patients underwent curative hepatectomy from 2014 to 2021 (n=2,967) |

Excluded (n=402)
History of other malignancies (n=106)
Preoperative anticancer treatment(n=148)
Postoperative therapy (n= 88)
Incomplete clinical data and follow-up
duration of less than 2 months(n=60)

| 2,565 patients were included in this study |
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‘
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<—| Randomization (7:3) |

| Training group (n=1,069) I——| Validation group (n=457) |
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FIGURE 2
Flowchart of patient selection and analysis
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TABLE 1 Characteristics of the training and validation groups. TABLE 1 Continued

Characteristic (Tr:':llngl 699) X\aiigg;i)on Characteristic -(I;:illng]egg) Xﬁaiig;;i)on

Gender Number of tumors
Female 153 (14.3) 53 (11.6) 0.180 Single 766 (71.7) 340 (74.4) 0.300
Male 916 (85.7) 404 (88.4) Multiple 303 (28.3) 117 (25.6)

Age (years) Microvascular invasion
<65 859 (80.4) 373 (81.6) 0.615 Absence 508 (47.5) 224 (49.0) 0.632
265 210 (19.6) 84 (18.4) Presence 561 (52.5) 233 (51.0)

BMI (kg/m?) Child-Pugh stage
<24 95 (8.9) 33(7.2) 0.330 A 989 (92.5) 425 (93.0) 0.823
>24 974 (91.1) 424 (92.8) B 80 (7.5) 32 (7.0)

Hypertension Total bilirubin (umol/L)
Absence 943 (88.2) 393 (86.0) 0.264 <17.1 948 (88.7) 400 (87.5) 0.578
Presence 126 (11.8) 64 (14.0) >17.1 121 (11.3) 57 (12.5)

Diabetes Albumin (g/L)
Absence 984 (92.0) 413 (90.4) 0.328 <35 255 (23.9) 108 (23.6) 0.978
Presence 85 (8.0) 44 (9.6) >35 814 (76.1) 349 (76.4)

Smoke Pre-albumin (mg/L)
Absence 636 (59.5) 271 (59.3) 0.989 <200 683 (63.9) 283 (61.9) 0.502
Presence 433 (40.5) 186 (40.7) 2200 386 (36.1) 174 (38.1)

Family history Alanine transaminase (U/L)
Absence 886 (82.9) 372 (81.4) 0.533 <40 629 (58.8) 259 (56.7) 0.466
Presence 183 (17.1) 85 (18.6) >40 440 (41.2) 198 (43.3)

BCLC stage Aspartate aminotransferase (U/L)
A 628 (58.7) 258 (56.5) 0.439 <40 409 (38.3) 180 (39.4) 0.721
B 441 (41.3) 199 (43.5) >40 660 (61.7) 277 (60.6)

HBsAg (ng/mL) Alpha-fetoprotein (ng/mL)
Negative 168 (15.7) 85 (18.6) 0.189 <400 583 (54.5) 233 (51.0) 0.223
Positive 901 (84.3) 372 (81.4) >400 486 (45.5) 224 (49.0)

HBeAg (ng/mL) CA19_9 (KU/L)
Negative 555 (51.9) 239 (52.3) 0.936 <37 943 (88.2) 404 (88.4) 0.985
Positive 514 (48.1) 218 (47.7) >37 126 (11.8) 53 (11.6)

HBV DNA (IU/mL) Prothrombin time (s)
<500 399 (37.3) 191 (41.8) 0.113 <13 687 (64.3) 283 (61.9) 0.417
=500 670 (62.7) 266 (58.2) 213 382 (35.7) 174 (38.1)

HCV Platelets (10°/L)
Negative 1,059 (99.1) 454 (99.3) 0.811 <300 899 (84.1) 388 (84.9) 0.750
Positive 10 (0.9) 3(0.7) >300 170 (15.9) 69 (15.1)

(Continued) (Continued)
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TABLE 1 Continued

Validation
(n=457)

Training

Characteristic

(n=1,069)
Platelets (10°/L)

Absolute value of white 676 (2.14) 669 (2.10) 0.504
blood cell (10°/L) ’ ’ : ’ ’
Absolute value of 182 (1.96) 171 (0.60) 0.260
lymphocyte (10°/L) B T ’
NLR
<5 966 (90.4) 404 (88.4) 0.286
>5 103 (9.6) 53 (11.6)
Tumor size (cm) 9.20 (3.56) 9.05 (3.54) 0.461

Categorical data are n (%); Continuous data are reported as mean +SD or as median (IQR).
BMI, body mass index; BCLC, Barcelona Clinic Liver Cancer staging system; NLR, neutrophil-
lymphocyte ratio.

LHCC (Supplementary Table S4). No significant multicollinearity
was detected among these variables in the multivariate model (all
VIFs <5).

3.4 Performance of the GBM model

Among the eight ML models, the GBM model achieved AUC of
0.738 in the training group and 0.750 in the validation group, with
corresponding C-index values of 0.715 and 0.737 (Figures 3A-D). The
GBM model attained an IBS of 0.27 on the test set, indicating low
overall prediction error. Compared to the null model, the GBM model
demonstrated better NRI at 1-, 3-, and 5-year post-surgery, with NRI
values of 32.84%, 32.74%, and 33.91%, respectively (Supplementary
Table S5). The GBM model attained AUC values of 0.738 (95% CI:
0.696-0.780), 0.708 (95% CI: 0.675-0.740), and 0.700 (95% CI: 0.668-
0.732) for 1-, 3-, and 5-year OS, respectively (Supplementary Figures
S2A-C). The validation groups showed AUC values for 1-, 3-, and 5-
year OS of 0.742 (95% CI: 0.690-0.794), 0.744 (95% CI: 0.697-0.791),
and 0.750 (95% CI: 0.706-0.795), respectively (Supplementary Figures
S2D-F). Additionally, the calibration curves of the GBM model showed
improved alignment between actual observations and model
predictions for 1-, 3-, and 5-year OS in both the training
(Supplementary Figure S3) and validation groups (Supplementary
Figure S4). The DCA curves for 1-, 3-, and 5-year OS in both the
training (Supplementary Figures S5A-C) and validation groups
(Supplementary Figures S5D-F) suggested potential clinical utility of
the GBM model, indicating a certain degree of positive benefit under
the study’s evaluation framework. Patients with low GBM scores
exhibited significantly better OS outcomes than those with high
GBM scores (Figures 3E, F). Compared to other ML models, this
was evident in both the training and validation groups (Supplementary
Figures S6 and S7, respectively).
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3.5 Significance of GBM features
interpreted by SHAP value

The SHAP summary plot for the GBM model illustrated the
influence of individual features on the predictive outcomes
(Figure 4A). The most influential features, ranked in descending
order, were BCLC stage, tumor size, and MVI (Figure 4B).
Furthermore, SHAP force plots (Figures 4C, D) were applied to
explain the individual predictions. For example, for patient A, with
MVT, BCLC stage B, and a 6 cm tumor, the GBM model predicted a
risk score of “-0.9117, so he was classified into the high-risk group.
For patient B, with MVI, BCLC stage A and a 6 cm tumor, the GBM
model predicted a risk score of “-1.67, so he was classified into the
low-risk group.

3.6 Development of web server and clinical
application of GBM model

A wuser-friendly website (Figure 4E, https://
ytx000.shinyapps.io/GBM-Shinyapp/) has been developed to
facilitate the application of the GBM model in clinical practice.
Practitioners can easily calculate individualized predicted risk
scores for patients with LHCC by entering each patient’s clinical
data into an online web server. Clinicians can input three key
clinical parameters for LHCC patients—BCLC stage, MVI status,
and tumor size—to generate individualized predictions of 1-, 3-,
and 5-year OS rates. To illustrate its functionality, we present a
representative case: a patient with BCLC stage A and absence of
MVI, but with a large tumor size of 9.1 cm, received a GBM risk
score of -1.33. As this score is higher than the mean risk score
threshold of -1.34 used in our study, the model classified this patient
into the high-risk group. The corresponding predicted 1-, 3-, and 5-
year OS rates for this individual were 76.70%, 45.12%, and 26.54%,
respectively. This example underscores the model’s ability to
identify high-risk patients even among those with otherwise
favorable clinical features (early BCLC stage and no MVI),
highlighting the critical prognostic weight of tumor size captured
by the GBM algorithm.

3.7 Comparison of GBM model with
previous postoperative predictive models

We compared the performance of the GBM model with
previous postoperative predictive models (Supplementary Table
S6). The GBM model achieved AUC values of 0.714 (95% CI:
0.679-0.749), 0.708 (95% CI: 0.679-0.738), and 0.705 (95% CI:
0.674-0.736) for 1-, 3-, and 5-year OS, respectively (Figures 5A-
D). The GBM model reached C-index values of 0.680, 0.663, and
0.656 that correspond to 1-, 3-, and 5-year OS, respectively
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FIGURE 3

Performance evaluation of eight ML models. (A) The AUC values of eight ML models in the training group. (B) The AUC values of eight ML models in

the validation group. (C) The C-index values of eight ML models in the trai

ning group. (D) The C-index values of eight ML models in the validation

group. (E) Overall survival Kaplan-Meier curves of the GBM model in the training group. (F) Overall survival Kaplan-Meier curves of the GBM model in

the validation group.

(Supplementary Figure S8A). The DCA curves (Supplementary
Figures S8B-D) for 1-, 3-, and 5-year OS showed the GBM
model’s strong clinical utility and superior net benefit. The
calibration curves (Supplementary Figure S9) for the GBM model
showed improved alignment between predicted probabilities and
observed outcomes for 1-, 3-, and 5-year OS.
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3.8 Differential performance of the GBM
model stratified by neutrophil-lymphocyte
ratio

Notably, the GBM model demonstrated differential predictive
performance between patients with high (NLR 25, n=156) and low
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The SHAP plots of the GBM model. (A) The SHAP summary plot of the GBM model showed the distribution of the SHAP values of each feature.
(B) The feature importance of GBM model variables was shown according to the mean absolute SHAP value of each feature. (C-D) The
representative SHAP force plot of two patients with GBM risk score. (E) The development of an online website for clinical application of the

GBM Model (https://ytx000.shinyapps.io/GBM-Shinyapp/). Clinicians input three parameters: BCLC stage, MVI status, and tumor size. The tool
instantly returns an individualized prediction, including a continuous risk score and the corresponding 1-, 3-, and 5-year OS probabilities. The risk
category (High or Low) is determined by comparing the calculated score to the median risk score threshold of -1.34 derived from our cohort.

(NLR <5, n=1,370) neutrophil-lymphocyte ratios, using a cutoff
value supported by prior literature (26-28). The GBM model
achieved a C-index of 0.819 in the high NLR group and 0.718 in
the low NLR group, with corresponding AUC values of 0.814 and
0.732 (Figures 6A-D). The GBM model attained AUC values of
0.814 (95% CI: 0.729-0.899), 0.762 (95% CI: 0.685-0.840), and 0.774
(95% CI: 0.699-0.849) for 1-, 3-, and 5-year OS in high NLR groups,
respectively (Figure 6E).The low NLR groups showed AUC values
for 1-, 3-, and 5-year OS of 0.732 (95% CI: 0.697-0.768), 0.712 (95%
CI: 0.683-0.740), and 0.708 (95% CI: 0.680-0.736), respectively
(Figure 6F). Patients with low GBM scores exhibited significantly
better OS outcomes than those with high GBM scores in both the
high NLR group (log-rank p <0.01; Figure 6G) and the low NLR
group (log-rank p <0.01; Figure 6H).

4 Discussion

Compared with SHCC patients, those with LHCC had a
significantly reduced OS and RFS. This discrepancy was likely

Frontiers in Immunology

attributed to tumor size. Larger tumors frequently involve
multiple hepatic segments and are often located near major
vascular structures. Moreover, larger tumors are more likely to be
associated with MVT or satellite nodules. These factors culminate in
a high level of tumor heterogeneity in LHCC. Moreover, they
intricately complicate the processes of hepatectomy (29-31).
Conversely, smaller tumors are typically confined to a single
hepatic segment or remain within the boundaries of the same
hepatic lobe, even when multiple tumors are present. In such
situations, hepatectomy usually yields favorable outcomes (32).
Beyond its established role as a histological marker of
invasiveness, MVI may signify a profoundly permissive tumor
immune microenvironment (TIME) that is instrumental in
facilitating immune escape (33, 34). This permissive TIME is
characterized by a loss of cytotoxic effector cells, such as CD8+ T
cells and B lymphocytes, and a relative increase in
immunosuppressive populations (35). The process of
intravascular infiltration is mechanistically linked to programs
like epithelial-mesenchymal transition (EMT). Importantly, such
adaptations not only enhance cellular motility but are also
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increasingly recognized to directly promote immune evasion. This
can occur through mechanisms that impair tumor antigen
presentation and, critically, through the upregulation of
immunosuppressive checkpoints like PD-L1 (36, 37).
Consequently, the potent predictive power of MVI in our model
likely reflects this underlying immunosuppressive phenotype, a
hallmark of aggressive cancers that enables tumors to evade host
immunity and ultimately drive both local recurrence and distant
metastasis (33, 38).

This study developed a novel ML model utilizing the GBM
algorithm to predict the prognosis of LHCC based on data from
1,526 patients with LHCC who underwent curative hepatectomy.
Among the eight ML models evaluated in this study, the GBM
model showed relatively better information fitting capacity and
preliminarily captured the complex relationships between risk
factors and patient survival, demonstrating promising predictive
performance in our group. Notably, this novel model outperformed
existing postoperative prediction models. We utilized SHAP to
thoroughly investigate the influence of features on the GBM
model’s decision-making process.

The GBM model demonstrated superior predictive
performance compared to seven other ML algorithms. Its
excellence can be attributed to three key mechanisms: Firstly,
GBM’s iterative optimization of residuals enabled it to effectively
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capture subtle signals, even in studies with limited patient samples.
This is essential for HCC research. Secondly, the model’s
regularization parameters (39, 40), including a shrinkage value of
0.01 and tree depth control (interaction depth=5), ensured a
balance between overfitting and model complexity, preventing the
model from being overly adapted to the training information.
Finally, the use of the Cox partial likelihood as the survival loss
function improved the consistency in survival time ranking,
enhancing the clinical relevance of predictions. These findings are
consistent with previous studies that suggest GBM may have certain
advantages in similar scenarios (36, 41, 42).

In addition, we have demonstrated how the individualized
SHAP waterfall chart (43) can transform abstract risk scores into
specific and actionable decision nodes. These nodes were designed
to be accessible and comprehensible within a clinical context, while
effectively reflecting the model’s output. Unlike previous
postoperative prediction models, we have unraveled the “black
box” decision-making process inherent to the GBM model,
enabling clinicians to confidently rely on its predictive outcomes.
Through feature importance ranking, the BCLC staging system
emerged as the most critical factor. Comparatively, BCLC
incorporated several tumor-related characteristics, such as the
number of tumors, extrahepatic metastasis, and vascular invasion
status (44). Moreover, BCLC integrated crucial factors, including
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the Child-Pugh score for liver function and the ECOG PS score,
which reflects the patient’s overall condition. These aspects serve as
valuable reference points for predicting the OS prognosis of LHCC
patients after curative hepatectomy®> However, prior studies have
indicated that the BCLC staging system has limitations in accurately
predicting OS, signaling the need for improved predictive
methodologies (45, 46).

In this study, MVI was again identified as an important
prognostic feature in our GBM model, which is consistent with
findings in many cancer types where vascular invasion is associated
with immunosuppressive microenvironments and poor clinical
outcomes (33, 38). Previous studies indicated that MVI
represented a critical process through which aggressive tumor
cells remodel the TME to foster immune escape, primarily
through recruitment of immunosuppressive cells via cytokine
signaling (34, 47, 48). Specifically, MVI-positive tumors secreted
cytokines (e.g., VEGF, TGF-B, IL-10) that recruit
immunosuppressive cells including myeloid-derived suppressor
cells and regulatory T cells, creating an “immune desert”
characterized by diminished cytotoxic T-cell infiltration and
function (33, 36). This immunosuppressive landscape was further
compounded by the frequent upregulation of PD-L1 in MVI-
capable cells, which directly inhibits T-cell function through PD-
1/PD-L1 checkpoint interaction, thereby facilitating immune
evasion and early recurrence (36, 37). Previous studies have
identified MVI as a major risk factor contributing to high
recurrence risk in patients, urging clinicians to consider MVI
status when making clinical decisions and formulating treatment
plans (49). Early MVI was defined as small clusters of malignant
cells located at the margin of the primary lesion, while late MVI
referred to the presence of scattered malignant cell clusters across
the liver. The formation of MVI may be linked to the activation of
the epithelial-mesenchymal transition transcriptional program,
which could explain its association with poor post-hepatectomy
prognosis in patients with LHCC (50, 51). Furthermore, tumor size
was the second most significant feature in the GBM model. Unlike
the BCLC staging system, which categorized tumor size based on
designated specific cut-off values, this analysis treated tumor size as
a continuous variable (52, 53). This approach provided a more
nuanced reflection of the TBS for patients with LHCC. The TBS had
proven to be a vital parameter in assessing the OS prognosis of
patients with HCC (54, 55).

Compared with previous postoperative predictive models (56,
57), the GBM model was specifically focused on predicting the
prognosis of LHCC patients after curative hepatectomy. Although
Zhong’s ERASL-pre/post model (57) incorporated the MVI
indicator, it still prioritized early recurrence prediction. The GBM
model integrated the postoperative pathological feature of MVI,
enhancing its ability to predict the long-term OS and overcome the
ERASL models’ narrow focus on short-term recurrence outcomes.
In addition, compared with Zeng et al.’s nomograms for predicting
outcomes in patients with LHCC after curative hepatectomy (58),
which were constructed using cox regression, the GBM algorithm
offered distinct advantages in handling nonlinear relationships.
What’s more, the GBM model employed the SHAP to
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transparently visualize how variables like BCLC stage, tumor size,
and MVI influence predictions. Under the interpretability
evaluation criteria adopted in this study, the GBM model’s
interpretability performance was better than that of traditional
multivariable analyses, which may help clinicians better
understand the model’s decision-making logic within the
framework of this study and enhance their confidence in its
potential clinical application. Unlike the shiny online tool of the
nomogram, which was limited to fixed-formula calculations, the
GBM model leveraged ML algorithms to generate dynamic
predictions (59), which may provide the possibility of real-time
adaptation to patient-specific data changes under
appropriate conditions.

Our study found that the GBM model demonstrated better
performance in patients with high NLR compared to those with low
NLR group (C-index: 0.819 vs. 0.718). This finding may be
explained by immunological mechanisms. The elevated NLR
reflected a systemic inflammatory state where neutrophils
promote immunosuppression through the release of neutrophil
extracellular traps (NETs) and suppression of CD8+ T cell
function (60, 61), while lymphocytopenia directly impaired anti-
tumor immune responses (62). Previous studies have indicated that
the poor prognosis of HCC results from the combined effects of
MVT and high immunosuppressive state (60, 63). In our study, the
GBM model effectively captured this synergistic effect, which may
provide a reference for clinical stratification and intervention.

While our SHAP analysis effectively underscored the
significance of established clinical risk factors such as BCLC stage,
MV], and tumor size, we recognized that the inclusion of novel
biomarkers and complex feature interactions might further refine
the model’s predictive capability. Future studies could explore the
integration of multi-omics data—such as genomic (e.g., TP53 or
CTNNBI1 mutations), transcriptomic (e.g., immune signatures,
EMT profiles), or radiomic features—which may not only
enhance prognostic accuracy but also contribute to a more
comprehensive mechanistic understanding of tumor
heterogeneity, immune evasion, and the aggressive behavior of
LHCC. These insights could potentially offer new directions for
therapeutic targeting.

The present study has several limitations. Firstly, the primary
limitation of the current study is its single-center design with
relatively small sample size. Secondly, the lack of external cohort
also requires further validation of the reliability for our GBM model.
The patient population, surgical techniques, and perioperative
management protocols are all specific to our institution. This
homogeneity limits the generalizability of our GBM model to
other centers with different patient demographics and clinical
practices. Third, although we collected a broad set of clinical and
laboratory variables, our feature selection was necessarily stringent
to avoid overfitting, potentially omitting more complex or novel
biomarkers. More importantly, the model does not incorporate
advanced omics data (e.g., genomic, transcriptomic, or radiomic
features), which could significantly enhance predictive performance
and biological interpretability. Fourth, our model is a static
prediction model based solely on preoperative parameters. Thus,
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multi-center and large-scale randomized controlled trials are
necessary to confirm the clinical application value of our GBM
model. The development of a dynamic prediction model that
updates risk estimates over time based on new clinical data
represents a valuable and necessary future direction to further
enhance clinical utility.

To sum up, we have developed and internally validated a novel
prognostic prediction model utilizing the GBM ML algorithm. The
model demonstrated promising performance in stratifying the
survival risk of LHCC patients within our group. While these
results are positive, external validation in independent, multi-
center populations is imperative to confirm its generalizability
and ultimate clinical utility.
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SUPPLEMENTARY FIGURE 1

Lasso-Cox regression for identifying prognostic factors in LHCC patients after
curative hepatectomy. (A) Partial likelihood deviance plot as a function of log-
transformed penalty parameter lambda value. (B) Coefficient profile plot from
LASSO regression.
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SUPPLEMENTARY FIGURE 2

The 1-, 3-, and 5-year ROC curves of eight ML prognosis models. (A-C) The 1-
, 3-, and 5-year ROC curves of eight ML models in the training groups. (D-F)
The 1-, 3-, and 5-year ROC curves of eight ML models in the
validation groups.

SUPPLEMENTARY FIGURE 3
The 1-, 3-, and 5-year calibration curves of eight ML models in the
training group.

SUPPLEMENTARY FIGURE 4
The 1-, 3-, and 5-year calibration curves of eight ML models in the
validation group.

SUPPLEMENTARY FIGURE 5

The 1-, 3-, and 5-year DCA curves of eight ML models. (A, B) The 1-, 3-,and 5-
year DCA curves of eight ML models in the training groups. (C, D) The 1-, 3-,
and 5-year DCA curves of eight ML models in the validation groups.

SUPPLEMENTARY FIGURE 6
The Kaplan-Meier curves of eight ML models in the training group.

SUPPLEMENTARY FIGURE 7
The Kaplan-Meier curves of eight ML models in the validation group.

SUPPLEMENTARY FIGURE 8
Comparison of the predictive performance of the GBM model and
previous prognostic models. (A) The C-index values of the GBM model
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