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Development of a machine
learning model to predict overall
survival for large hepatocellular
carcinoma at BCLC stage A or B
after curative hepatectomy
Tai-Xin Yang1,2†, Jia-Yong Su1,2†, Min-Jun Li1,2†, Shuang Shen1,2†,
Yu Wang2, Huan-Nan Wei2, Ming-Jian Huang2, Qing-Man Qin2,
You-Yin Ran2, Yao-Ting Huang2, Jin-Yan Huang2,
Bang-De Xiang1,3,4, Jie Zhang1,2* and Wen-Feng Gong1*

1Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning,
Guangxi, China, 2Guangxi Medical University, , Nanning, China, 3Key Laboratory of Early Prevention
and Treatment for Regional High Frequency Tumors, Guangxi Medical University, Ministry of
Education, Nanning, China, 4Guangxi Key Laboratory of Early Prevention and Treatment for Regional
High Frequency Tumors, Nanning, China
Introduction: Patients with large hepatocellular carcinoma (LHCC) have a poor

prognosis even after curative hepatectomy. This study aimed to develop and

validate an interpretable machine learning (ML) model to predict their overall

survival (OS).

Methods: This study included 2,565 patients with hepatocellular carcinoma

(HCC) who underwent curative hepatectomy between January 2014 and

December 2021. The LHCC patients were randomly assigned (7:3 ratio) to a

training (n=1069) or validation (n=457) group. Independent risk factors for OS

were identified using multivariable Cox regression. Eight ML models were

developed and compared. The optimal model’s interpretability was assessed

using Shapley Additive Explanations (SHAP).

Results: LHCC patients experienced a considerable reduction in OS (Hazard

Ratio, HR: 1.810, 95% Confidence Interval, CI: 1.585-2.068) compared to SHCC

patients. Among eight ML models, the gradient boosting machine (GBM) model

demonstrated superior performance. In the validation group, the GBM model

achieved area under the receiver operating characteristic curve (AUC) values of

0.742, 0.744, and 0.750 for 1-, 3-, and 5-year OS, respectively. These results were

comparable with or superior to established postoperative predictive models. The

GBM model showed the ability to stratify patients with LHCC into distinct

prognostic groups. A web-based calculator was developed for risk score

generation. Notably, the GBM model showed enhanced predictive accuracy in

patients with a high neutrophil-lymphocyte ratio (C-index: 0.819).
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Conclusions: The GBM-based model demonstrated the potential to predict

prognosis for patients with LHCC after curative hepatectomy. This

interpretable model may assist in personalized risk assessment and tailoring

postoperative management strategies.
KEYWORDS

gradient boosting machine, hepatectomy, large hepatocellular carcinoma, overall
survival, SHAP
1 Introduction

Across the globe, hepatocellular carcinoma (HCC) is the third

leading cause of death related to cancer, with many patients

receiving a diagnosis after tumors have reached an advanced size

(1, 2). Despite advancements in treatment modalities—including

hepatectomy, liver transplantation, local ablation, targeted therapy,

and immunotherapy—the prognosis for patients with large

hepatocellular carcinoma (LHCC) remains poor, characterized by

low 5-year survival rates (3–7). This grim outlook is largely

attributed to the higher risk of microvascular invasion (MVI)

associated with LHCC, a critical oncological factor linked to

unfavorable outcomes (8, 9).

Accurate prognosis predictions for LHCC patients enable

medical professionals to design individualized treatment

strategies, assess survival risks, and enhance the overall quality of

life for patients. In clinical practice, the Barcelona Clinic Liver

Cancer (BCLC) staging system stands as a commonly employed

approach for liver cancer, but it inadequately addresses the complex

variations in individual patient factors and tumor malignancy

behaviors (10). Machine learning (ML) technology is rapidly

evolving and is increasingly applied in the medical field. ML can

potentially analyze complex datasets, uncover hidden patterns, and

derive insights that could pave the way for novel approaches to

tumor prognostication (11–14).

In recent years, ML has demonstrated considerable advantages

in predicting HCC prognosis by analyzing multidimensional

clinical information. However, the “black-box” nature of ML

models presents challenges for clinical practice. To overcome

these obstacles, the explainable artificial intelligence emerges as a

reliable tactic to interpret ML models’ outputs and elucidate the

derivation process of these models. This transparency is crucial for

clinicians to trust and effectively integrate ML models into their

practice (15–19). In this study, we utilize the ML models in

combination with the Shapley Additive Explanations (SHAP)

explainability framework to stratify patients with LHCC and

assist in treatment decisions (20–23).
02
2 Materials and methods

2.1 Patients

The investigation focused on HCC patients who received

curative hepatectomy at Guangxi Medical University Cancer

Hospital from January 2014 through December 2021. Curative

hepatectomy was defined as an R0 resection, with no microscopic

tumor cells at the surgical margin, according to the Diagnosis and

Treatment Guidelines for Primary Liver Cancer (24); The study’s

criteria for participant selection were defined by specific inclusion

and exclusion parameters. Inclusion criteria included: (1) patients

were underwent R0 resection and all enrolled patients had adequate

liver function reserve, as defined by an indocyanine green 15-

minute retention rate (ICG R15) ≤30%; (2) Child–Pugh score of

5-7; (3) Eastern Cooperative Oncology Group performance status

(ECOG PS) of 0 or 1; and (4) BCLC stage A or B. Exclusion criteria

comprised: (1) history of other malignancies, (2) any preoperative

anticancer treatment such as adjuvant chemotherapy, targeted

therapy, immunotherapy, interventional therapy, or radiotherapy;

(3) postoperative therapy, including aforementioned treatments;

and (4) incomplete clinical data and follow-up duration of less than

2 months.

The Guangxi Medical University Ethics Committee

(KY2025413) approved this study, which adhered to the

Declaration of Helsinki principles.
2.2 Clinicopathologic variables and follow-
up

Clinicopathological information of patients with HCC were

collected, including (1) demographic information: gender, age,

height, weight, etc. (2) laboratory parameters: total bilirubin,

alpha-fetoprotein (AFP), albumin, platelets, etc. (3) liver disease-

related information: Hepatitis B virus (HBV) infection status, HBV

DNA level, etc. (4) tumor-related information: tumor number,
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1640075
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2025.1640075
tumor size, postoperative pathology, etc. The HCC stage was

evaluated according to the BCLC staging classification system (25).

The main purpose was to assess overall survival (OS), tracked

from the date of curative hepatectomy to either death from any

cause or the last follow-up. The secondary endpoint was recurrence-

free survival (RFS), defined as the time from curative hepatectomy

until to the first occurrence of either disease recurrence or death

from any cause.

Postoperative follow-ups were conducted at intervals of 1–2

months for the first year, followed by every 3 months thereafter

until recurrence occurred. The follow-up programs included regular

evaluations of liver function, AFP levels, and at least one contrast-

enhanced imaging. HCC recurrence was diagnosed through a

thorough evaluation of clinical history, AFP tests, and imaging

results. The follow-up continued until 26 January 2025.
2.3 Statistical analysis

Continuous variables were expressed as means along with

standard deviations (SD) and analyzed via Student’s t-test.

Alternatively, they were presented as medians together with

interquartile ranges (IQR) and analyzed using the Mann–Whitney

U test. Categorical variables were presented as n (%) and compared

with the Chi-square test. The Kaplan-Meier method was employed

to generate the OS curves, and the log-rank test was utilized for their

analysis. A multivariable Cox regression analysis model was

developed to estimate the likelihood of hepatectomy risk,

incorpora t ing pred ic t i ve fac tor s ident ified through

univariate analysis.

The dataset used for this analysis was complete, with no missing

values for the analyzed variables. To develop and validate the

predictive models, the entire dataset was randomly split into a

training group (70%) and an internal validation group (30%) using

the createDataPartition function from the caret package in R. This

function employs a stratified random sampling strategy based on

the OS status to ensure an equal distribution of deaths between the

training and validation sets, thereby improving the robustness of

the model evaluation. The random seed was set to 123 to ensure the

complete reproducibility of the data partitioning.

Univariate Cox regression analyses were first performed to

identify potential prognostic factors. To control the false

discovery rate resulting from multiple testing, the p-values from

the univariate analysis were further adjusted using the False

Discovery Rate (FDR) correction via the Benjamini-Hochberg

method. Variables with an FDR-adjusted p-value (P_FDR) < 0.05

were considered statistically significant and selected for inclusion in

the subsequent multivariate Cox regression analysis. The

proportional hazards assumption for the final multivariate model

was verified using Schoenfeld residual tests, and no significant

violations were found (global test p >0.05). Multicollinearity

among the covariates in the multivariate Cox regression was

assessed using the variance inflation factor (VIF). All VIF values

were well below the threshold of 5 (BCLC: 1.23, MVI: 1.15, Size:
Frontiers in Immunology 03
1.08), indicating no severe multicollinearity that would adversely

affect the model estimates.

The independent risk factors identified from the multivariate

Cox regression (BCLC stage, MVI, and tumor size) were used as

input features for constructing eight ML models. These models

include least absolute shrinkage and selection operator regression

(Lasso_Cox), gradient boosting machine (GBM), random survival

forests (RSF), boosting for Cox’s proportional hazards model

(Coxboost), survival support vector machine (Survivalsvm),

extreme gradient boosting (xgboost), super-predictor Cox model

(superpc), and partial least squares with Cox’s proportional hazards

model (plsRcox). The details of the algorithms and their

hyperparameters are summarized in Supplementary Table S1 and

Supplementary Figure S1.

Hyperparameter tuning is a critical step to optimize model

performance and prevent overfitt ing. For all models ,

hyperparameter tuning was conducted exclusively on the training

group using resampling methods to avoid any information leakage.

The specific tuning strategy, search spaces for key hyperparameters,

and the criterion for evaluating model performance are described in

detail for each algorithm in Supplementary Table S1 and

Supplementary Figure S1. We employed a systematic approach

based on K-fold cross-validation (with K = 10) for hyperparameter

exploration. The internal validation for hyperparameter tuning was

performed using stratified 10-fold cross-validation (CV) on the

training set. The stratification was based on the OS status to

maintain the proportion of events (deaths) consistent across all

folds. The performance of each hyperparameter combination was

evaluated using the concordance index (C-index). The model

configurations identified through this CV process were then

evaluated on the independent internal validation set. The final

optimal hyperparameter configuration for each algorithm was

selected based on the highest average C-index across the 10

stratified CV folds. Critically, the independent internal validation

set (30% of the data, held out from all tuning processes) was used

only for post-selection evaluation of generalizability to unseen

data—this strict separation ensures no information leakage into

model selection. The mean and standard deviation of the C-index

from both the 10-fold CV process and the independent internal

validation for each final model are reported in Supplementary

Table S2.

The final model for each algorithm, with its hyperparameters

fixed to the optimized values, was then refit on the entire training

group and subsequently applied to the held-out validation group for

an unbiased assessment of its performance. The performance of the

ML models was comprehensively assessed using multiple metrics:

the C-index, the area under the receiver operating characteristic

curve (AUC), calibration curves, decision curve analysis (DCA), the

Integrated Brier Score (IBS), and the Net Reclassification Index

(NRI). In this study, a Cox proportional hazards model containing

no predictor variables (the Null Model) was selected as the reference

for NRI calculation. This model represents the average risk of the

entire study cohort. This setup allows us to evaluate the absolute

incremental value of all ML models over a “no-information”
frontiersin.org
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baseline. The NRI was calculated on the training set at 1-, 3-, and 5-

year post-hepatectomy. The risk stratification threshold for all

models was set at the median of their predicted risk probabilities.

The GBM model was also further compared with previously

reported predictive models, including the BCLC staging

system, metroticket Cox regression, Tumor-burden score (TBS),

ERASL-pre score, and ERASL-post score, using similar evaluation

metrics. These comparator models were applied based on their

original published algorithms and were not re-trained on our

dataset. Patients diagnosed with LHCC were divided into high-

risk and low-risk groups based on the median risk scores obtained

from the ML models.

The shapviz package was used to visualize contributions in the

GBM model. SHAP summary plots showed feature impacts on

predictions. Higher SHAP values in the GBMmodel meant a higher

death likelihood. The SHAP feature importance plot orders features

based on their average absolute SHAP values. SHAP force plots
Frontiers in Immunology 04
used colors (orange for positive, dark red for negative) to denote

feature contributions.

For two-tailed tests, statistical significance was defined as a

p-value of less than 0.05. All the statistical analyses were carried out

using R version 4.4.2 (http://www.r-project.org/).
3 Results

3.1 Postoperative prognosis of patients
with HCC

The LHCC group’s OS was much shorter than that of the SHCC

group. (Hazard Ratio, HR: 1.81, 95% Confidence Interval, CI:

1.585-2.068, Figure 1A). A total of 1,017 people died in the

LHCC group, resulting in an overall mortality rate of 66.6%. In

the LHCC group, the survival rates were 81.5% at the 1-year mark,
FIGURE 1

Overall survival and recurrence-free survival in the LHCC and SHCC groups.
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60.5% at the 3-year mark, and 52.2% at the 5-year mark. Similarly,

the RFS of the LHCC group was significantly shorter compared to

the SHCC group (HR: 1.526, 95% CI: 1.376-1.693, Figure 1B). A

total of 1,035 people experienced recurrence in the LHCC group,

leading to an overall recurrence rate of 67.8%. Among the patients

in the LHCC group, the rates of RFS were 47.6% after 1 year, 32.3%

after 3 years, and 30.0% after 5 years.
3.2 Clinicopathologic characteristics

Between 2014 and 2021, 2,565 HCC patients were enrolled,

including 1,526 patients with LHCC and 1,039 patients with SHCC.

For additional analysis, LHCC patients were randomly split into the

training group (n = 1,069) and the validation group (n = 457) in a

7:3 ratio (Figure 2). The baseline characteristics for both groups

were presented (Table 1). Notably, 41.3% of patients in the training

group were classified as BCLC stage B, whereas 43.5% of the

validation group fell into the same category. MVI was present in

52.5% of the training group and 51.0% of the validation group. In

the training group, the average tumor size was 9.20 cm, while in the
Frontiers in Immunology 05
validation group, it was 9.05 cm. No statistically significant

differences were observed between the two groups (p>0.05). The

median OS follow-up times were 42.2 months for the training and

41.5 months for the validation group.
3.3 Independent risk factors associated
with OS of patients with LHCC

Univariate Cox regression analysis identified significant risk

factors for OS in HCC patients, including the BCLC stage

(p_FDR<0.001), number of tumors (p_FDR <0.001), MVI

(p_FDR <0.001), and tumor size (p_FDR <0.001). After FDR

adjustment, variables including BCLC stage, number of tumors,

MVI, and tumor size remained significant (P_FDR <0.05). The

multivariate Cox regression analysis, which satisfied the

proportional hazards assumption (Schoenfeld global test p=0.439,

Supplementary Table S3), identified BCLC stage (HR: 1.87, 95% CI:

1.48-2.36, p<0.001), MVI (HR: 1.55, 95% CI: 1.29-1.88, p < 0.001),

and tumor size (HR: 1.04, 95% CI: 1.01-1.07, p = 0.005) were

associated with an independent risk factors for OS in patients with
FIGURE 2

Flowchart of patient selection and analysis.
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TABLE 1 Characteristics of the training and validation groups.

Characteristic
Training
(n=1,069)

Validation
(n=457)

p

Gender

Female 153 (14.3) 53 (11.6) 0.180

Male 916 (85.7) 404 (88.4)

Age (years)

<65 859 (80.4) 373 (81.6) 0.615

≥65 210 (19.6) 84 (18.4)

BMI (kg/m2)

<24 95 (8.9) 33 (7.2) 0.330

≥24 974 (91.1) 424 (92.8)

Hypertension

Absence 943 (88.2) 393 (86.0) 0.264

Presence 126 (11.8) 64 (14.0)

Diabetes

Absence 984 (92.0) 413 (90.4) 0.328

Presence 85 (8.0) 44 (9.6)

Smoke

Absence 636 (59.5) 271 (59.3) 0.989

Presence 433 (40.5) 186 (40.7)

Family history

Absence 886 (82.9) 372 (81.4) 0.533

Presence 183 (17.1) 85 (18.6)

BCLC stage

A 628 (58.7) 258 (56.5) 0.439

B 441 (41.3) 199 (43.5)

HBsAg (ng/mL)

Negative 168 (15.7) 85 (18.6) 0.189

Positive 901 (84.3) 372 (81.4)

HBeAg (ng/mL)

Negative 555 (51.9) 239 (52.3) 0.936

Positive 514 (48.1) 218 (47.7)

HBV DNA (IU/mL)

<500 399 (37.3) 191 (41.8) 0.113

≥500 670 (62.7) 266 (58.2)

HCV

Negative 1,059 (99.1) 454 (99.3) 0.811

Positive 10 (0.9) 3 (0.7)

(Continued)
F
rontiers in Immunology
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TABLE 1 Continued

Characteristic
Training
(n=1,069)

Validation
(n=457)

p

Number of tumors

Single 766 (71.7) 340 (74.4) 0.300

Multiple 303 (28.3) 117 (25.6)

Microvascular invasion

Absence 508 (47.5) 224 (49.0) 0.632

Presence 561 (52.5) 233 (51.0)

Child-Pugh stage

A 989 (92.5) 425 (93.0) 0.823

B 80 (7.5) 32 (7.0)

Total bilirubin (mmol/L)

≤17.1 948 (88.7) 400 (87.5) 0.578

>17.1 121 (11.3) 57 (12.5)

Albumin (g/L)

<35 255 (23.9) 108 (23.6) 0.978

≥35 814 (76.1) 349 (76.4)

Pre-albumin (mg/L)

<200 683 (63.9) 283 (61.9) 0.502

≥200 386 (36.1) 174 (38.1)

Alanine transaminase (U/L)

<40 629 (58.8) 259 (56.7) 0.466

≥40 440 (41.2) 198 (43.3)

Aspartate aminotransferase (U/L)

<40 409 (38.3) 180 (39.4) 0.721

≥40 660 (61.7) 277 (60.6)

Alpha-fetoprotein (ng/mL)

<400 583 (54.5) 233 (51.0) 0.223

≥400 486 (45.5) 224 (49.0)

CA19_9 (KU/L)

≤37 943 (88.2) 404 (88.4) 0.985

>37 126 (11.8) 53 (11.6)

Prothrombin time (s)

<13 687 (64.3) 283 (61.9) 0.417

≥13 382 (35.7) 174 (38.1)

Platelets (109/L)

<300 899 (84.1) 388 (84.9) 0.750

≥300 170 (15.9) 69 (15.1)

(Continued)
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LHCC (Supplementary Table S4). No significant multicollinearity

was detected among these variables in the multivariate model (all

VIFs <5).
3.4 Performance of the GBM model

Among the eight ML models, the GBM model achieved AUC of

0.738 in the training group and 0.750 in the validation group, with

corresponding C-index values of 0.715 and 0.737 (Figures 3A-D). The

GBM model attained an IBS of 0.27 on the test set, indicating low

overall prediction error. Compared to the null model, the GBMmodel

demonstrated better NRI at 1-, 3-, and 5-year post-surgery, with NRI

values of 32.84%, 32.74%, and 33.91%, respectively (Supplementary

Table S5). The GBM model attained AUC values of 0.738 (95% CI:

0.696-0.780), 0.708 (95% CI: 0.675-0.740), and 0.700 (95% CI: 0.668-

0.732) for 1-, 3-, and 5-year OS, respectively (Supplementary Figures

S2A-C). The validation groups showed AUC values for 1-, 3-, and 5-

year OS of 0.742 (95% CI: 0.690-0.794), 0.744 (95% CI: 0.697-0.791),

and 0.750 (95% CI: 0.706-0.795), respectively (Supplementary Figures

S2D-F). Additionally, the calibration curves of the GBMmodel showed

improved alignment between actual observations and model

predictions for 1-, 3-, and 5-year OS in both the training

(Supplementary Figure S3) and validation groups (Supplementary

Figure S4). The DCA curves for 1-, 3-, and 5-year OS in both the

training (Supplementary Figures S5A-C) and validation groups

(Supplementary Figures S5D-F) suggested potential clinical utility of

the GBM model, indicating a certain degree of positive benefit under

the study’s evaluation framework. Patients with low GBM scores

exhibited significantly better OS outcomes than those with high

GBM scores (Figures 3E, F). Compared to other ML models, this

was evident in both the training and validation groups (Supplementary

Figures S6 and S7, respectively).
Frontiers in Immunology 07
3.5 Significance of GBM features
interpreted by SHAP value

The SHAP summary plot for the GBM model illustrated the

influence of individual features on the predictive outcomes

(Figure 4A). The most influential features, ranked in descending

order, were BCLC stage, tumor size, and MVI (Figure 4B).

Furthermore, SHAP force plots (Figures 4C, D) were applied to

explain the individual predictions. For example, for patient A, with

MVI, BCLC stage B, and a 6 cm tumor, the GBMmodel predicted a

risk score of “-0.911”, so he was classified into the high-risk group.

For patient B, with MVI, BCLC stage A and a 6 cm tumor, the GBM

model predicted a risk score of “-1.6”, so he was classified into the

low-risk group.
3.6 Development of web server and clinical
application of GBM model

A u s e r - f r i e n d l y w e b s i t e ( F i g u r e 4 E , h t t p s : / /

ytx000.shinyapps.io/GBM-Shinyapp/) has been developed to

facilitate the application of the GBM model in clinical practice.

Practitioners can easily calculate individualized predicted risk

scores for patients with LHCC by entering each patient’s clinical

data into an online web server. Clinicians can input three key

clinical parameters for LHCC patients—BCLC stage, MVI status,

and tumor size—to generate individualized predictions of 1-, 3-,

and 5-year OS rates. To illustrate its functionality, we present a

representative case: a patient with BCLC stage A and absence of

MVI, but with a large tumor size of 9.1 cm, received a GBM risk

score of -1.33. As this score is higher than the mean risk score

threshold of -1.34 used in our study, the model classified this patient

into the high-risk group. The corresponding predicted 1-, 3-, and 5-

year OS rates for this individual were 76.70%, 45.12%, and 26.54%,

respectively. This example underscores the model’s ability to

identify high-risk patients even among those with otherwise

favorable clinical features (early BCLC stage and no MVI),

highlighting the critical prognostic weight of tumor size captured

by the GBM algorithm.
3.7 Comparison of GBM model with
previous postoperative predictive models

We compared the performance of the GBM model with

previous postoperative predictive models (Supplementary Table

S6). The GBM model achieved AUC values of 0.714 (95% CI:

0.679-0.749), 0.708 (95% CI: 0.679-0.738), and 0.705 (95% CI:

0.674-0.736) for 1-, 3-, and 5-year OS, respectively (Figures 5A-

D). The GBM model reached C-index values of 0.680, 0.663, and

0.656 that correspond to 1-, 3-, and 5-year OS, respectively
TABLE 1 Continued

Characteristic
Training
(n=1,069)

Validation
(n=457)

p

Platelets (109/L)

Absolute value of white
blood cell (109/L)

6.76 (2.14) 6.69 (2.10) 0.594

Absolute value of
lymphocyte (109/L)

1.82 (1.96) 1.71 (0.60) 0.260

NLR

<5 966 (90.4) 404 (88.4) 0.286

≥5 103 (9.6) 53 (11.6)

Tumor size (cm) 9.20 (3.56) 9.05 (3.54) 0.461
Categorical data are n (%); Continuous data are reported as mean ±SD or as median (IQR).
BMI, body mass index; BCLC, Barcelona Clinic Liver Cancer staging system; NLR, neutrophil-
lymphocyte ratio.
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(Supplementary Figure S8A). The DCA curves (Supplementary

Figures S8B-D) for 1-, 3-, and 5-year OS showed the GBM

model’s strong clinical utility and superior net benefit. The

calibration curves (Supplementary Figure S9) for the GBM model

showed improved alignment between predicted probabilities and

observed outcomes for 1-, 3-, and 5-year OS.
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3.8 Differential performance of the GBM
model stratified by neutrophil-lymphocyte
ratio

Notably, the GBM model demonstrated differential predictive

performance between patients with high (NLR ≥5, n=156) and low
FIGURE 3

Performance evaluation of eight ML models. (A) The AUC values of eight ML models in the training group. (B) The AUC values of eight ML models in
the validation group. (C) The C-index values of eight ML models in the training group. (D) The C-index values of eight ML models in the validation
group. (E) Overall survival Kaplan-Meier curves of the GBM model in the training group. (F) Overall survival Kaplan-Meier curves of the GBM model in
the validation group.
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(NLR <5, n=1,370) neutrophil-lymphocyte ratios, using a cutoff

value supported by prior literature (26–28). The GBM model

achieved a C-index of 0.819 in the high NLR group and 0.718 in

the low NLR group, with corresponding AUC values of 0.814 and

0.732 (Figures 6A-D). The GBM model attained AUC values of

0.814 (95% CI: 0.729-0.899), 0.762 (95% CI: 0.685-0.840), and 0.774

(95% CI: 0.699-0.849) for 1-, 3-, and 5-year OS in high NLR groups,

respectively (Figure 6E).The low NLR groups showed AUC values

for 1-, 3-, and 5-year OS of 0.732 (95% CI: 0.697-0.768), 0.712 (95%

CI: 0.683-0.740), and 0.708 (95% CI: 0.680-0.736), respectively

(Figure 6F). Patients with low GBM scores exhibited significantly

better OS outcomes than those with high GBM scores in both the

high NLR group (log-rank p <0.01; Figure 6G) and the low NLR

group (log-rank p <0.01; Figure 6H).
4 Discussion

Compared with SHCC patients, those with LHCC had a

significantly reduced OS and RFS. This discrepancy was likely
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attributed to tumor size. Larger tumors frequently involve

multiple hepatic segments and are often located near major

vascular structures. Moreover, larger tumors are more likely to be

associated with MVI or satellite nodules. These factors culminate in

a high level of tumor heterogeneity in LHCC. Moreover, they

intricately complicate the processes of hepatectomy (29–31).

Conversely, smaller tumors are typically confined to a single

hepatic segment or remain within the boundaries of the same

hepatic lobe, even when multiple tumors are present. In such

situations, hepatectomy usually yields favorable outcomes (32).

Beyond its established role as a histological marker of

invasiveness, MVI may signify a profoundly permissive tumor

immune microenvironment (TIME) that is instrumental in

facilitating immune escape (33, 34). This permissive TIME is

characterized by a loss of cytotoxic effector cells, such as CD8+ T

cel ls and B lymphocytes , and a relat ive increase in

immunosuppressive populations (35). The process of

intravascular infiltration is mechanistically linked to programs

like epithelial-mesenchymal transition (EMT). Importantly, such

adaptations not only enhance cellular motility but are also
FIGURE 4

The SHAP plots of the GBM model. (A) The SHAP summary plot of the GBM model showed the distribution of the SHAP values of each feature.
(B) The feature importance of GBM model variables was shown according to the mean absolute SHAP value of each feature. (C-D) The
representative SHAP force plot of two patients with GBM risk score. (E) The development of an online website for clinical application of the
GBM Model (https://ytx000.shinyapps.io/GBM-Shinyapp/). Clinicians input three parameters: BCLC stage, MVI status, and tumor size. The tool
instantly returns an individualized prediction, including a continuous risk score and the corresponding 1-, 3-, and 5-year OS probabilities. The risk
category (High or Low) is determined by comparing the calculated score to the median risk score threshold of -1.34 derived from our cohort.
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increasingly recognized to directly promote immune evasion. This

can occur through mechanisms that impair tumor antigen

presentation and, critically, through the upregulation of

immunosuppressive checkpoints like PD-L1 (36, 37).

Consequently, the potent predictive power of MVI in our model

likely reflects this underlying immunosuppressive phenotype, a

hallmark of aggressive cancers that enables tumors to evade host

immunity and ultimately drive both local recurrence and distant

metastasis (33, 38).

This study developed a novel ML model utilizing the GBM

algorithm to predict the prognosis of LHCC based on data from

1,526 patients with LHCC who underwent curative hepatectomy.

Among the eight ML models evaluated in this study, the GBM

model showed relatively better information fitting capacity and

preliminarily captured the complex relationships between risk

factors and patient survival, demonstrating promising predictive

performance in our group. Notably, this novel model outperformed

existing postoperative prediction models. We utilized SHAP to

thoroughly investigate the influence of features on the GBM

model’s decision-making process.

The GBM model demonstrated superior predictive

performance compared to seven other ML algorithms. Its

excellence can be attributed to three key mechanisms: Firstly,

GBM’s iterative optimization of residuals enabled it to effectively
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capture subtle signals, even in studies with limited patient samples.

This is essential for HCC research. Secondly, the model’s

regularization parameters (39, 40), including a shrinkage value of

0.01 and tree depth control (interaction depth=5), ensured a

balance between overfitting and model complexity, preventing the

model from being overly adapted to the training information.

Finally, the use of the Cox partial likelihood as the survival loss

function improved the consistency in survival time ranking,

enhancing the clinical relevance of predictions. These findings are

consistent with previous studies that suggest GBMmay have certain

advantages in similar scenarios (36, 41, 42).

In addition, we have demonstrated how the individualized

SHAP waterfall chart (43) can transform abstract risk scores into

specific and actionable decision nodes. These nodes were designed

to be accessible and comprehensible within a clinical context, while

effectively reflecting the model’s output. Unlike previous

postoperative prediction models, we have unraveled the “black

box” decision-making process inherent to the GBM model,

enabling clinicians to confidently rely on its predictive outcomes.

Through feature importance ranking, the BCLC staging system

emerged as the most critical factor. Comparatively, BCLC

incorporated several tumor-related characteristics, such as the

number of tumors, extrahepatic metastasis, and vascular invasion

status (44). Moreover, BCLC integrated crucial factors, including
FIGURE 5

Comparison of the GBM model with previous postoperative predictive models. (A) The AUC values of the GBM model with previous postoperative
predictive models. (B-D) The 1-year, 3-year, and 5-year ROC curves of the GBM model and previous postoperative predictive models.
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FIGURE 6

Differential performance of the GBM model stratified by Neutrophil-lymphocyte ratio. (A) The C-index value of GBM model in the low neutrophil-
lymphocyte ratio group. (B) The C-index value of GBM model in the high neutrophil-lymphocyte ratio group. (C) The AUC value of GBM model in
the low neutrophil-lymphocyte ratio group. (D) The AUC value of GBM model in the high neutrophil-lymphocyte ratio group. (E) The 1-year, 3-year,
and 5-year ROC curves of the GBM model in the low neutrophil-lymphocyte ratio group. (F) The 1-year, 3-year, and 5-year ROC curves of the GBM
model in the high neutrophil-lymphocyte ratio group. (G) Overall survival Kaplan-Meier curves of the GBM model in the low neutrophil-lymphocyte
ratio group (NLR <5, n=1,370), stratified by the GBM model risk score (high vs. low). (H) Overall survival Kaplan-Meier curves of the GBM model in
the high neutrophil-lymphocyte ratio group (NLR ≥5, n=156), stratified by the GBM model risk score. The difference between the survival curves was
assessed by the log-rank test (p < 0.01 for both comparisons).
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the Child-Pugh score for liver function and the ECOG PS score,

which reflects the patient’s overall condition. These aspects serve as

valuable reference points for predicting the OS prognosis of LHCC

patients after curative hepatectomy25. However, prior studies have

indicated that the BCLC staging system has limitations in accurately

predicting OS, signaling the need for improved predictive

methodologies (45, 46).

In this study, MVI was again identified as an important

prognostic feature in our GBM model, which is consistent with

findings in many cancer types where vascular invasion is associated

with immunosuppressive microenvironments and poor clinical

outcomes (33, 38). Previous studies indicated that MVI

represented a critical process through which aggressive tumor

cells remodel the TME to foster immune escape, primarily

through recruitment of immunosuppressive cells via cytokine

signaling (34, 47, 48). Specifically, MVI-positive tumors secreted

cy tok ine s ( e . g . , VEGF , TGF-b , IL -10 ) tha t r ec ru i t

immunosuppressive cells including myeloid-derived suppressor

cells and regulatory T cells, creating an “immune desert”

characterized by diminished cytotoxic T-cell infiltration and

function (33, 36). This immunosuppressive landscape was further

compounded by the frequent upregulation of PD-L1 in MVI-

capable cells, which directly inhibits T-cell function through PD-

1/PD-L1 checkpoint interaction, thereby facilitating immune

evasion and early recurrence (36, 37). Previous studies have

identified MVI as a major risk factor contributing to high

recurrence risk in patients, urging clinicians to consider MVI

status when making clinical decisions and formulating treatment

plans (49). Early MVI was defined as small clusters of malignant

cells located at the margin of the primary lesion, while late MVI

referred to the presence of scattered malignant cell clusters across

the liver. The formation of MVI may be linked to the activation of

the epithelial-mesenchymal transition transcriptional program,

which could explain its association with poor post-hepatectomy

prognosis in patients with LHCC (50, 51). Furthermore, tumor size

was the second most significant feature in the GBM model. Unlike

the BCLC staging system, which categorized tumor size based on

designated specific cut-off values, this analysis treated tumor size as

a continuous variable (52, 53). This approach provided a more

nuanced reflection of the TBS for patients with LHCC. The TBS had

proven to be a vital parameter in assessing the OS prognosis of

patients with HCC (54, 55).

Compared with previous postoperative predictive models (56,

57), the GBM model was specifically focused on predicting the

prognosis of LHCC patients after curative hepatectomy. Although

Zhong’s ERASL-pre/post model (57) incorporated the MVI

indicator, it still prioritized early recurrence prediction. The GBM

model integrated the postoperative pathological feature of MVI,

enhancing its ability to predict the long-term OS and overcome the

ERASL models’ narrow focus on short-term recurrence outcomes.

In addition, compared with Zeng et al.’s nomograms for predicting

outcomes in patients with LHCC after curative hepatectomy (58),

which were constructed using cox regression, the GBM algorithm

offered distinct advantages in handling nonlinear relationships.

What ’s more, the GBM model employed the SHAP to
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transparently visualize how variables like BCLC stage, tumor size,

and MVI influence predictions. Under the interpretability

evaluation criteria adopted in this study, the GBM model’s

interpretability performance was better than that of traditional

multivariable analyses, which may help clinicians better

understand the model’s decision-making logic within the

framework of this study and enhance their confidence in its

potential clinical application. Unlike the shiny online tool of the

nomogram, which was limited to fixed-formula calculations, the

GBM model leveraged ML algorithms to generate dynamic

predictions (59), which may provide the possibility of real-time

adap t a t i on to pa t i en t - sp ec ific da t a change s unde r

appropriate conditions.

Our study found that the GBM model demonstrated better

performance in patients with high NLR compared to those with low

NLR group (C-index: 0.819 vs. 0.718). This finding may be

explained by immunological mechanisms. The elevated NLR

reflected a systemic inflammatory state where neutrophils

promote immunosuppression through the release of neutrophil

extracellular traps (NETs) and suppression of CD8+ T cell

function (60, 61), while lymphocytopenia directly impaired anti-

tumor immune responses (62). Previous studies have indicated that

the poor prognosis of HCC results from the combined effects of

MVI and high immunosuppressive state (60, 63). In our study, the

GBM model effectively captured this synergistic effect, which may

provide a reference for clinical stratification and intervention.

While our SHAP analysis effectively underscored the

significance of established clinical risk factors such as BCLC stage,

MVI, and tumor size, we recognized that the inclusion of novel

biomarkers and complex feature interactions might further refine

the model’s predictive capability. Future studies could explore the

integration of multi-omics data—such as genomic (e.g., TP53 or

CTNNB1 mutations), transcriptomic (e.g., immune signatures,

EMT profiles), or radiomic features—which may not only

enhance prognostic accuracy but also contribute to a more

comprehens ive mechanis t ic unders tanding of tumor

heterogeneity, immune evasion, and the aggressive behavior of

LHCC. These insights could potentially offer new directions for

therapeutic targeting.

The present study has several limitations. Firstly, the primary

limitation of the current study is its single-center design with

relatively small sample size. Secondly, the lack of external cohort

also requires further validation of the reliability for our GBMmodel.

The patient population, surgical techniques, and perioperative

management protocols are all specific to our institution. This

homogeneity limits the generalizability of our GBM model to

other centers with different patient demographics and clinical

practices. Third, although we collected a broad set of clinical and

laboratory variables, our feature selection was necessarily stringent

to avoid overfitting, potentially omitting more complex or novel

biomarkers. More importantly, the model does not incorporate

advanced omics data (e.g., genomic, transcriptomic, or radiomic

features), which could significantly enhance predictive performance

and biological interpretability. Fourth, our model is a static

prediction model based solely on preoperative parameters. Thus,
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multi-center and large-scale randomized controlled trials are

necessary to confirm the clinical application value of our GBM

model. The development of a dynamic prediction model that

updates risk estimates over time based on new clinical data

represents a valuable and necessary future direction to further

enhance clinical utility.

To sum up, we have developed and internally validated a novel

prognostic prediction model utilizing the GBM ML algorithm. The

model demonstrated promising performance in stratifying the

survival risk of LHCC patients within our group. While these

results are positive, external validation in independent, multi-

center populations is imperative to confirm its generalizability

and ultimate clinical utility.
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SUPPLEMENTARY FIGURE 1

Lasso-Cox regression for identifying prognostic factors in LHCC patients after
curative hepatectomy. (A) Partial likelihood deviance plot as a function of log-

transformed penalty parameter lambda value. (B) Coefficient profile plot from

LASSO regression.
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SUPPLEMENTARY FIGURE 2

The 1-, 3-, and 5-year ROC curves of eight ML prognosis models. (A-C) The 1-
, 3-, and 5-year ROC curves of eight ML models in the training groups. (D-F)
The 1-, 3-, and 5-year ROC curves of eight ML models in the
validation groups.

SUPPLEMENTARY FIGURE 3

The 1-, 3-, and 5-year calibration curves of eight ML models in the

training group.

SUPPLEMENTARY FIGURE 4

The 1-, 3-, and 5-year calibration curves of eight ML models in the

validation group.

SUPPLEMENTARY FIGURE 5

The 1-, 3-, and 5-year DCA curves of eight MLmodels. (A, B) The 1-, 3-, and 5-
year DCA curves of eight ML models in the training groups. (C, D) The 1-, 3-,

and 5-year DCA curves of eight ML models in the validation groups.

SUPPLEMENTARY FIGURE 6

The Kaplan-Meier curves of eight ML models in the training group.

SUPPLEMENTARY FIGURE 7

The Kaplan-Meier curves of eight ML models in the validation group.

SUPPLEMENTARY FIGURE 8

Comparison of the predictive performance of the GBM model and

previous prognostic models. (A) The C-index values of the GBM model
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and previous postoperative predictive models. (B-D) The 1-year, 3-year,
and 5-year DCA curves of the GBM model and previous postoperative

predictive models.

SUPPLEMENTARY FIGURE 9

The 1-, 3-, and 5-year calibration curves of the GBM model and previous
postoperative predictive models.

SUPPLEMENTARY TABLE 1

The parameters of the machine learning algorithms.

SUPPLEMENTARY TABLE 2

Discriminative performance of eight ML models evaluated by C-index in
stratified 10-Fold cross-validation and independent internal validation.

SUPPLEMENTARY TABLE 3

The Schoenfeld residual tests of the multivariate Cox regression.

SUPPLEMENTARY TABLE 4

Univariable and multivariable Cox regression analysis of factors in the
training group.

SUPPLEMENTARY TABLE 5

IBS in training and test sets and NRI at 1-, 3-, and 5-year follow-up for
different ML models.

SUPPLEMENTARY TABLE 6

Predictive performance of the previous postoperative predictive models.
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