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Regulatory T cells (Tregs) are a unique subset of T cells vital for maintaining

immune balance, preventing autoimmune diseases, and controlling immune

responses. First identified in the early 1990s, Tregs are now well recognized for

their role in suppressing excessive immune reactions and promoting tolerance to

the body’s tissues. Among the broader Treg population, Tissue regulatory T cells

(Tissue Tregs) are distinct as they do more than suppress immunity; they actively

contribute to tissue repair and regeneration. Studies in both mice and humans

have highlighted the important role of in aiding tissue repair and maintaining

tissue integrity. Recent research reveals that Tregs participate in wound healing

and tissue regeneration across various organs, including the heart, liver, kidneys,

muscles, lungs, bones, and central nervous system. These discoveries emphasize

the wide-ranging and significant influence of Tregs in fostering recovery and

healing in different tissues throughout the body. These cells are characterized by

their ability to produce a variety of growth factors, cytokines, and signaling

molecules that support the repair and regeneration of damaged tissues. In this

review, we present an overview of the emerging understanding of Treg-

mediated repair processes in damaged tissues and organs.
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Introduction

The worldwide rise in organ dysfunction caused by acute

injuries, chronic diseases, or aging is increasing the need for

organ transplants. However, the limited availability of donor

organs and the use of immunosuppressive drugs pose significant

challenges (1), leading to the search for alternative therapies. Recent

advances in human pluripotent stem cell research, known for their

ability to self-renew and differentiate into various cell types, offer a

potentially limitless source of therapeutic cells for transplantation

(2, 3). Despite this potential, there is limited clinical evidence of

their long-term survival after transplant, possibly due to issues like

poor cell viability and ongoing immune rejection (4, 5).

Additionally, regenerative therapies focused on natural tissue

repair, such as growth factor-based methods, have shown mixed

results in clinical trials because of safety and cost concerns (6, 7).

Therefore, it is crucial to develop strategies to improve tissue repair

and regeneration.

Traditionally, the immune system has been seen mainly as a

defense against pathogens, a view that has shaped how it appears in

textbooks for over a century (8). However, beyond its protective

role, the immune system is now understood as a crucial part of

maintaining tissue homeostasis and supporting physiological

processes like development, reproduction, wound healing, and

tissue regeneration (9). Recent studies have emphasized the

important role of innate immunity, especially the different

polarization states of macrophages, in coordinating the complex

events needed for tissue repair and regeneration (10, 11). Still, new

evidence suggests that the adaptive immune system, particularly

tissue Tregs, also has a key role in these processes (12, 13).

Forkhead box P3-expressing (Foxp3+) Tregs have long been

recognized for their role in modulating immune responses and

maintaining immune homeostasis (14). These cells, traditionally

seen as suppressors of excessive immune activation, are now

understood to have non-traditional functions that go beyond

immune regulation (15, 16). Recent studies using transgenic

mouse models, in which Tregs were specifically removed, have

revealed their important roles in influencing non-immunological

processes, including tissue repair and regeneration (15, 17). This

new evidence indicates that Tregs are crucial in promoting repair

and regeneration within injured tissues (18). A particularly

intriguing aspect of Treg biology is their organ-specific

functionality, with recent studies showing how tissue-resident

Tregs respond to injury tailored to each organ’s distinct

microenvironment (19, 20). This organ-specific behavior of Tregs

highlights their role in tissue repair, not only as suppressors of

inflammation but also as active contributors to the regeneration of

damaged tissues (9, 11, 21). Treg cells not only suppress immune

responses but also promote tissue repair by secreting pro-repair

mediators. These factors act directly on resident structural and

parenchymal cells within a tissue-specific context (22).

In this review, we will focus on the emerging roles of Tregs in

tissue repair and regeneration, emphasizing their ability to

modulate inflammation, promote healing, and interact with other

immune cells. By exploring recent advancements in our
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understanding of tissue-resident Tregs and their functions, this

review aims to shed light on the complex interplay between tissue

Tregs and tissue regeneration, offering insights that could lead to

new therapeutic strategies for enhancing tissue repair and restoring

function more effectively.
Treg diversity

Tregs are essential for immune regulation and exhibit

considerable diversity. Besides the well-known CD25 marker, they

express a range of activation markers, including both co-

stimulatory and co-inhibitory molecules such as PD-1, ICOS,

LAG-3, CD27, CD69, LAP, and CTLA-4. They can also express

members of the TNF receptor superfamily, like GITR and OX40,

along with adhesion-related markers such as CD62L and CD49b.

Additionally, they possess receptors involved in guiding their

migration to peripheral tissues, including CCR7, CCR4, CCR6,

CD103, and CCR5 (23). Foxp3 is a key transcription factor

primarily expressed in CD4+ CD25+ Tregs in mice. It is present

at minimal levels in CD4+ CD25- effector T cells and is mainly

absent in CD8+ T cells (24, 25). Foxp3 is crucial for Treg

development and their capacity to suppress immune responses

(24–27). In mice, Tregs are typically identified as CD4+ CD25high

Foxp3+. However, in humans, not all Foxp3-expressing cells display

high CD25 levels (23), nor do they all possess immunosuppressive

functions (28).

In humans, the expression of the IL-7 receptor alpha chain

(CD127) is inversely related to Foxp3 expression. CD4+ CD127low T

cells in humans exhibit similar suppressive functions to CD4+

CD25high T cells observed in laboratory settings (29). Therefore,

human Tregs are more accurately defined as CD4+ CD25high

CD127low/- Foxp3+. While this constitutes the core phenotype of

Tregs, studies utilizing flow cytometry and RNA sequencing have

demonstrated that both human and mouse Tregs are highly diverse

(30). Their origin can also be used to categorize Tregs. Thymic

Tregs (tTregs) are derived from CD4+ CD25high thymocytes that

undergo positive selection after their T-cell receptors (TCRs)

engage with high-affinity self-peptides presented by antigen-

presenting cells and medullary thymic epithelial cells on MHC

class II molecules. This process, combined with signals from

cytokines such as IL-2 or IL-15 and TGF-b, promotes the

differentiation of these cells into fully committed tTregs (31, 32).

Peripheral Tregs (pTregs) develop from naive CD4+ Foxp3- T cells

in secondary lymphoid organs and peripheral tissues, in response to

cytokines like TGF-b upon encountering antigens (33).

Moreover, Tregs can be further classified by their differentiation

stage (e.g., naive Tregs marked by CD45RA+ or activated Tregs) and

their activation status (e.g., quiescent central Tregs characterized by

CD44low CD62Lhigh or effector Tregs with CD44high CD62Llow).

They can also be identified based on the expression of transcription

factors that define specific T helper cell lineages, such as T-bet for

Th1, Gata3 for Th2, and RoRgt for Th17 (30, 34). In recent years,

the role of Tregs localized in non-lymphoid tissues has garnered

increasing interest, extending beyond their traditional immune-
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suppressive functions. Tregs are present in various tissues under

steady-state conditions and often accumulate following tissue

injury. They are essential for maintaining tissue homeostasis and

supporting repair through interactions with local tissue cells. These

Tregs, called “tissue Tregs,’ share common features across different

tissues but also display tissue-specific characteristics that suit the

needs of each environment (35). Tissue-resident Tregs possess a

limited T cell receptor (TCR) repertoire, likely recognizing self-

antigens unique to the tissues they inhabit, such as fat tissue, muscle

tissue, skin, lung tissue, intestines, and other non-lymphoid tissues.

They exhibit distinct phenotypes compared to those in lymphoid

tissues (18, 36).
Tregs in skeletal muscle repair and
regeneration

The role of Tregs in skeletal muscle repair and regeneration has

become an increasingly important topic in immunology and

regenerative biology. Originally known for their ability to

suppress immune responses and maintain self-tolerance, Tregs

are now seen as active players in tissue repair processes, including

those in skeletal muscle (10, 11, 37, 38). Their regenerative

functions have been documented in organs such as the skin (21,

39–41), lungs (42), heart (43–45), and intestines (46), and it is

becoming clearer that Tregs also have a vital role in skeletal muscle

regeneration after both acute and chronic injuries. Skeletal muscle

has a notable capacity to regenerate following injury, mainly due to

the presence of muscle stem cells, or satellite cells (MuSCs), located

between the basal lamina and sarcolemma of muscle fibers (47–49).

The process of muscle regeneration involves several precisely

coordinated steps, including inflammation (50, 51), stem cell

activation (52), differentiation (52, 53), and tissue remodeling

(47). The immune system is crucial to this regenerative process,

with immune cells not only helping clear debris and fight infection

but also regulating MuSC activity through cytokines, growth

factors, and direct cell interactions (53–55).

Following muscle injury, there is a rapid and temporary

infiltration of various immune cells. Among these, a distinct

subset of CD4+Foxp3+ Tregs accumulates at the injury site.

Murine models of muscle damage, such as cardiotoxin-induced

injury, show a significant rise in Treg frequency in the injured tissue

within the first few days after injury (11). These muscle resident

Tregs are phenotypically and functionally different from those

found in lymphoid tissues, with unique transcriptional and

epigenetic signatures compared to lymphoid organ Tregs. Single-

cell RNA sequencing (scRNA-seq) studies have revealed that

muscle Tregs form a distinct cluster enriched for genes involved

in tissue repair, such as amphiregulin (AREG), Il1rl1 (encoding

ST2), and Gata3, as well as increased expression of BATF and IRF4

transcription factors linked to tissue adaptation and repair (11, 56,

57). Muscle-resident Tregs are not only present in experimental

injury models but have also been identified in chronic muscle

disorders. In conditions like Duchenne muscular dystrophy

(modeled by mdx mice) and myotonic dystrophy in humans, an
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accumulation of Tregs with similar gene expression patterns has

been observed (56, 58). This supports the idea that skeletal muscle

contains a reparative Treg population that reacts dynamically to

injury and ongoing degeneration.

The role of Tregs in skeletal muscle regeneration is complex.

One key function is controlling the innate immune response,

especially the activity of neutrophils and macrophages.

Neutrophils quickly respond to muscle injury and are crucial for

removing dead tissue (38). However, they also release reactive

oxygen species and proteases that can cause additional tissue

damage (59). Tregs help regulate neutrophil activity and

infiltration. In laboratory experiments, activated Tregs have been

shown to boost the anti-inflammatory nature of neutrophils by

encouraging the release of IL-10, TGF-b, haem oxygenase-1, and

indoleamine 2,3-dioxygenase (9). These substances help resolve

inflammation and create an environment that supports healing.

The interaction between Tregs and macrophages is equally

important. In skeletal muscle, macrophages go through a well-

understood change in their behavior during regeneration. At first,

they display a pro-inflammatory M1-like phenotype, producing

TNF-a, IL-1b, and other cytokines that promote inflammation and

activate MuSCs (60). As healing advances, macrophages switch to

an anti-inflammatory M2-like phenotype, which secretes IL-10 and

TGF-b to help tissue remodeling and reduce inflammation (60, 61).

Tregs are crucial in encouraging this change by releasing IL-4, IL-

10, and IL-13 (62, 63). This cytokine-driven shift not only dampens

excessive inflammation but also supports the growth and

development of MuSCs, directly aiding muscle repair.

Studies have also shown that Tregs help maintain the

homeostasis of macrophage subsets in injured muscle. For

example, Treg depletion causes a decrease in MHCII+

macrophages and an overexpansion of MHCII+ macrophages,

which are linked to increased antigen presentation and

interferon-g (IFN-g) responses (64). This imbalance boosts

inflammation and disrupts the regenerative process. Conversely,

Tregs help stabilize macrophage populations and reduce excessive

IFN-g signaling, thus creating a favorable environment for muscle

regeneration (64). In addition to their role in modulating the innate

immune response, Tregs also influence adaptive immunity during

skeletal muscle repair. After injury, effector T cells, including Th1,

Th2, Th17, and CD8+ T cells, infiltrate the damaged muscle and

contribute to local immune responses (62). Tregs suppress excessive

effector T cell activation through various mechanisms. One

important pathway involves the downregulation of costimulatory

molecules CD80 and CD86 on dendritic cells via contact-dependent

interactions involving CTLA-4 and LAG-3 (62). This process

induces indoleamine 2,3-dioxygenase in dendritic cells, which

limits T cell proliferation and inflammatory cytokine production,

ultimately supporting tissue repair (62).

Tregs also exert direct suppressive effects on effector T cells.

They can downregulate IFN-g production from Th1 and CD8+ T

cells, which is crucial because IFN-g drives macrophage activation

toward a pro-inflammatory state by inducing CIITA and promoting

MHCII expression (38, 43, 65–67). By limiting IFN-g levels, Tregs
help maintain a favorable balance of immune activation that
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encourages regeneration rather than chronic inflammation (64).

This immunoregulatory loop involving Tregs, macrophages, and

effector T cells is central to coordinating muscle repair. One of the

most compelling mechanisms by which Tregs contribute to skeletal

muscle regeneration is through the secretion of AREG, an EGFR

ligand that acts directly on muscle satellite cells. AREG binds to the

EGFR expressed on MuSCs, activating downstream signaling

pathways that support satellite cell proliferation and survival (68).

Burzyn et al. (2013) demonstrated that myogenic precursors

exposed to AREG show enhanced regenerative potential (11, 69).

This direct crosstalk between Tregs and muscle progenitor cells

highlights a non-immune mechanism by which Tregs influence

tissue regeneration (Figure 1). The importance of AREG has been

supported in both injury and disease models. For example, mice

subjected to cryoinjury show increased Treg numbers and elevated

expression of AREG, IL-10, and TGF-b at the injury site, supporting
the idea that Tregs promote tissue regeneration through a

combination of immunomodulation and direct action on satellite

cells (70). Similarly, in models of influenza-induced lung damage,

Treg-specific deletion of AREG impairs tissue repair despite a

normal antiviral immune response, indicating that the role of

AREG is specifically regenerative (70). AREG treatment also

improves muscle function and reduces Th1-driven inflammation,

partly through effects on the transcription factor T-bet in Tregs and

the promotion of CD206hi Ly6Clow macrophages, further

supporting its therapeutic potential (71).
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Despite its regenerative benefits, AREG does not directly

increase Treg proliferation or survival. Instead, it affects the post-

translational regulation of Foxp3, leading to its degradation via

EGFR–GSK-3b signaling pathways (72, 73). This feedback

mechanism may serve as a regulatory checkpoint to prevent

prolonged or excessive Treg activation. Additionally, AREG

upregulates key myogenic markers such as Pax7, MyoD, and

myogenin, which promote MuSC activation and differentiation

during regeneration (71). Various external signals regulate Treg

accumulation and activation in injured muscle. The IL-33–ST2 axis

has been identified as a crucial regulator of Treg expansion at the

injury site. IL-33, an alarmin released by stressed or damaged cells,

enhances ST2 expression on Tregs, promoting their activation and

retention (57, 74, 75). Mice lacking ST2 exhibit delayed Treg

recruitment and impaired muscle regeneration, confirming the

importance of this axis in tissue repair (57).

Furthermore, IL-33 may interact with neuro-immune

pathways, as IL-33+ muscle mesenchymal stem cells have been

shown to communicate with nerves and stromal elements,

influencing Treg accumulation through CGRP signaling (76, 77).

Importantly, IL-33 is not limited to Tregs; it can also affect other

IL1RL1+ cells, such as type 2 innate lymphoid cells (ILC2s) (78),

eosinophils, and alternatively activated macrophages (79), all of

which assist in muscle regeneration. While Tregs are the primary

responders to IL-33 during tissue repair, it remains crucial to study

its diverse effects carefully for therapeutic purposes. Other
FIGURE 1

Skeletal muscle resident Tregs in injury repair: In injured skeletal muscle, IL-33 attracts Tregs to the damaged area. Once present, Tregs suppress
inflammation driven by M1 macrophages and facilitate the transition to tissue repair. Additionally, Tregs directly stimulate satellite cell proliferation
and differentiation by releasing AREG, supporting muscle regeneration.
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regulatory molecules, such as PD-1 and sex hormones, also regulate

Treg function in muscle. PD-1 is vital for the formation of

peripherally induced Tregs, and its absence reduces Treg

accumulation and delays repair (80, 81). Estrogen, on the other

hand, promotes Treg recruitment and suppresses Th1-mediated

inflammation, further supporting the reparative environment (82,

83). Whether reparative Tregs in skeletal muscle are thymus-

derived or peripherally induced still needs investigation. However,

studies using neuropilin-1 (Nrp1) expression as a surrogate marker

suggest that most tissue-resident Tregs, including those in skeletal

muscle, are thymus-derived (84). This distinction has therapeutic

implications because thymus-derived Tregs may provide more

stable lineage characteristics, while peripherally induced Tregs can

potentially be generated in vitro from conventional CD4+ T cells for

adoptive cell therapy.
Role of Tregs in CNS repair and
regeneration

Tregs are extensively studied for their vital role in maintaining

immune balance and controlling inflammatory responses. Their

role in tissue repair and regeneration has attracted significant

interest, especially in the context of central nervous system (CNS)

injuries. The CNS, known for its limited ability to regenerate, poses

a unique challenge for repair processes. However, recent research

highlights the potential of Tregs in supporting CNS repair and

regeneration. In models of ischemic brain injury, Tregs have been

found to infiltrate the CNS during the sub-acute to chronic phases,

where they gather around the lesion site. Their presence is linked to

better neurological outcomes, indicating a reparative role (85). One

way Tregs may assist CNS repair is by modulating the inflammatory

environment. Tregs release anti-inflammatory cytokines like IL-10

and TGF-b, which can inhibit the activity of pro-inflammatory cells

such as microglia and astrocytes (86, 87). This inhibition is essential

for minimizing secondary damage and creating a supportive

environment for neural repair.

The specific mechanisms by which Tregs promote CNS repair

are still being clarified, but several key processes have been

identified. One important factor is the secretion of AREG, a

molecule known for its tissue-protective and regenerative

properties (35, 85). AREG produced by Tregs has been shown to

reduce the activation of astrocytes, a type of glial cell that, when

overly activated, can inhibit neural repair by forming a glial scar

(85). By suppressing astrocyte activation, Tregs help prevent the

formation of inhibitory scar tissue, thus supporting neuronal

survival and axonal regrowth. In addition to AREG, Tregs in the

CNS also express unique molecules that may contribute to their

reparative functions. For instance, brain-infiltrating Tregs have

been found to express high levels of serotonin receptor 7 (Htr7)

(35), which enhances cAMP levels (88). cAMP is known to improve

the proliferation of Tregs and boost their functional capabilities

(89). Activation of Htr7 by serotonin or selective serotonin reuptake

inhibitors (SSRIs) has been shown to increase Treg numbers in the

brain, further supporting their role in CNS repair (35). This finding
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opens the door to potential therapeutic strategies that involve

modulating Treg activity through pharmacological agents.

Tregs also interact with other CNS cells to promote repair. For

instance, they influence the behavior of oligodendrocyte precursor

cells (OPCs), which are responsible for remyelination. In

experimental autoimmune encephalomyelitis models, transferring

Tregs into Treg-deficient mice restores impaired remyelination

(90), partly by secreting cell communication network factor 3

(CCN3), a protein that encourages OPC differentiation and

myelination (90). This interaction between Tregs and OPCs

highlights the diverse role of Tregs in CNS repair, extending

beyond their traditional immune-regulatory functions. Another

key interaction is between Tregs and resident CNS immune cells

(macrophages, microglia, and gdT cells). Tregs can influence these

macrophages (microglia), shifting them from a pro-inflammatory

M1 phenotype to a more reparative M2 phenotype (35). This shift is

crucial for clearing debris and supporting tissue regeneration after

injury. Additionally, Tregs may also regulate the infiltration and

activity of other immune cells, such as gdT cells and microglia,

which participate in the inflammatory response after CNS injury

(35). By modulating the immune response, aiding remyelination,

and interacting with essential CNS cells, Tregs help create a

supportive environment for tissue repair (Figure 2).
Tregs in cardiomyocyte repair and
regeneration

In lower vertebrates like zebrafish, Tregs are known to promote

heart regeneration (91). However, in mammals, adult heart

regeneration is limited due to the minimal proliferation of

cardiomyocytes and is insufficient to repair large necrotic areas (92).

Unlike the neonatal heart, which can regenerate during the first week of

life—though the extent depends on injury size—this ability is absent in

adults (93, 94). Despite this limitation, Tregs have been shown to

contribute to heart repair in adults and support neonatal heart

regeneration after myocardial injuries through various mechanisms

(95, 96). For example, when Tregs are ablated using diphtheria toxin in

FOXP3DTR mice or depleted with an anti-CD25 antibody, adult mice

experience significant heart deterioration after myocardial infarction

(MI), including increased dilation of the left ventricles and impaired

cardiac function (95, 96).

Furthermore, the absence of Tregs raises the risk of severe

complications like apical aneurysm and cardiac rupture in adult

mice post-MI (97). Similarly, depleting Tregs in neonatal mice

results in increased fibrosis and reduced cardiomyocyte

proliferation after injury, while adoptive transfer of Tregs

promotes regeneration of neonatal heart cells by encouraging

their proliferation (96). In adults, adoptive transfer of Tregs has

been shown to improve cardiac function and reduce adverse

remodeling after injury (96, 98). Additionally, activating Tregs

through the administration of a super-agonistic anti-CD28

antibody (95). Collectively, these findings emphasize the essential

role of Tregs in protecting the heart by minimizing adverse

remodeling in adults and promoting regeneration in neonates.
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Mechanistically, Tregs support heart tissue repair and improve

cardiac function by regulating macrophage activity. In vitro studies

have shown that Tregs encourage macrophages to adopt an M2-like

phenotype (95), which is typically linked to tissue repair. However,

this relationship depends on the context. In the neonatal heart,

increased M2 macrophages have been seen in non-regenerating

tissue after Treg depletion, while adoptive transfer of Tregs lowers

M2 macrophages and enhances regeneration (96). Conversely, in

the adult heart, Treg depletion reduces M2 markers and raises M1

cytokines after MI, indicating that M2 polarization benefits adult

repair (95). These findings emphasize the dual role of M2

macrophages—pro-regenerative in adults but possibly pro-fibrotic

in neonates—highlighting the need for a nuanced understanding of

their function in cardiac recovery. This points to the importance of

reconciling the pro-repair versus pro-fibrotic roles of M2

macrophages, especially when evaluating regenerative therapies

across age groups.

In addition to modulating macrophages, Tregs can also

suppress the pro-inflammatory responses of other immune cells,

such as CD4+ and CD8+ T cells. Intriguingly, CD4+ T cells have a

developmentally distinct role in heart repair and regeneration,

where they inhibit heart regeneration in juvenile mice but support

repair in adults (99). Unlike CD4+ T cells, CD8+ T cells are mostly
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unresponsive to heart injury in juvenile mice (99). Th1 and Th17
cells, known for producing pro-inflammatory cytokines like TNF-a,
IFN-g, and IL-17A, can directly inhibit cardiomyocyte proliferation

and induce apoptosis in neonatal cardiomyocytes in vitro. Tregs

likely contribute to heart regeneration by inhibiting these pro-

inflammatory activities after myocardial injury.

Tregs also help reduce cardiomyocyte apoptosis through a

mechanism involving CD39. In vivo studies have shown that

transferring CD39-deficient Tregs does not decrease infarct size

after MI as effectively as transferring normal Tregs (100). CD39 is

known to catalyze the production of adenosine, which replicates the

protective effects of Tregs on cardiomyocytes (101). The adenosine

produced via CD39/CD73 signaling activates the adenosine A2A

receptor, promoting mitochondrial stabilization, reducing oxidative

stress, and preserving cellular ATP levels—effects critical for

cardiomyocyte survival and function during ischemic stress (102).

Furthermore, Tregs help prevent apoptosis of heart cells via the

CD39/adenosine/reperfusion injury salvage kinase (RISK) pathway.

The RISK pathway includes kinases such as Akt and ERK1/2, which

collectively promote cardiomyocyte survival by preventing

mitochondrial permeability transition pore opening and

activating anti-apoptotic cascades (103). It is also important to

distinguish between the reparative and anti-fibrotic functions of
FIGURE 2

Treg-mediated recovery in CNS injury: Following CNS injury, Tregs infiltrate the brain parenchyma and interact with resident cells, including neurons,
astrocytes, microglia, and oligodendrocyte progenitor cells (OPCs), to promote tissue recovery. Tregs suppress proinflammatory cytokines and
stimulate the release of neuroprotective factors such as AREG, IL-10, and TGF-b, supporting remyelination, limiting glial scar formation, and
enhancing debris clearance.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1640113
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Raheem et al. 10.3389/fimmu.2025.1640113
Tregs, as these represent distinct processes with separate molecular

regulators. Reparative functions typically involve paracrine factors

that support cardiomyocyte proliferation and survival (104). At the

same time, anti-fibrotic effects stem from Treg-mediated

suppression of fibroblast activation and ECM deposition through

IL-10, AREG, and adenosine signaling (20, 105). Tregs play a crucial

role in the regeneration of heart cells during the neonatal period by

enhancing their proliferation. The limited ability of adult

cardiomyocytes to regenerate can be linked to factors such as

their binucleated state, which leads to cell cycle arrest, and the

unique immune response observed in adults after injury. For

instance, neonates exhibit a less dominant Th1 and Th17

response, instead favoring Th2-type immunity. The differentiation

of Tregs from naive CD4+ T cells appears to be a natural default

process in this context (106). Consequently, the impact of Treg-

driven cardiomyocyte regeneration is more significant in neonates.

The paracrine effects of Tregs seem to be a key mechanism, as the

culture medium of Tregs alone can stimulate neonatal

cardiomyocyte proliferation (96). Further analysis through single-

cell RNA sequencing of Tregs after myocardial injury identified

factors like CST7, MATN2, CCL24, GAS6, TNFSF11, FGL2, IGF2,

AREG, IL33, as potential candidates that promote cardiomyocyte

proliferation (96, 97). One important factor, AREG, secreted by
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Tregs, plays a key role in cardiac repair following myocardial

infarction. Although it remains unclear whether AREG acts

directly on cardiac progenitor cells, endothelial cells, or through

intermediaries, its mitogenic and tissue-protective functions suggest

broad regenerative roles. Treg-derived AREG has been shown to

enhance cardiomyocyte proliferation and modulate macrophage

polarization (96), and may also support endothelial cell function

and neovascularization (104), highlighting its multifaceted

contributions to heart regeneration. These findings expand the

understanding of Tregs’ reparative abilities through their

interactions with local cells like cardiomyocytes, enhancing tissue

repair and regeneration. Overall, Tregs are crucial for both adult

heart repair and neonatal heart regeneration, working through

immune modulation, fibrosis reduction, prevention of apoptosis,

and stimulation of cardiomyocyte proliferation (Figure 3).
Functions and specialization of skin-
resident Tregs

Skin-resident Tregs can differentiate into subsets similar to

helper T cells (TH1, TH2, TH17) through specific transcription

factors. Specifically, “Type 2” or “repair type” Tregs, marked by
FIGURE 3

Treg role in cardiac repair and remodeling: In both neonatal and adult hearts, Tregs reduced adverse remodeling and enhanced cardiomyocyte
proliferation. Tregs modulate M2 macrophage polarization, promoting repair in adults and limiting fibrosis in neonates. They reduce inflammation,
inhibit apoptosis through the CD39–adenosine axis, and secrete paracrine factors like IGF2, CST7, and AREG to stimulate myocardial regeneration.
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IRF4, GATA-3, and BATF, are essential for managing type 2

immune responses and supporting tissue repair (21, 107, 108).

GATA-3 acts as a master regulator of type 2 immunity, while BATF

(basic leucine zipper transcription factor ATF-like) further refines

the reparative phenotype by promoting IL-10 and AREG

production (109, 110). GATA-3+ Tregs not only suppress type 2

inflammation but also perform reparative functions associated with

TH2 and ILC2 cells. These cells detect tissue damage via receptors

for alarmins such as IL-33, IL-18, TSLP, and IL-25, which are

released by stressed cells (111). In various tissues, including the skin

(36), wounded muscle (11), and visceral fat (112), GATA-3+ Tregs

express the IL-33 receptor ST2, enabling them to engage in repair

mechanisms triggered by IL-33 from damaged cells, a process

independent of TCR stimulation. ST2+ Tregs are more effective at

promoting wound healing by regulating inflammation and

enhancing epithelial regeneration (113). Similarly, TSLP, released

by keratinocytes during inflammation, helps activate skin Tregs

(114). IL-18, another key cytokine, might also influence skin Tregs’

reparative function, though the presence of its receptor on skin

Tregs needs further confirmation (115, 116). Thus, skin-resident

type 2 Tregs are specialized for utilizing type 2 immune

mechanisms in tissue repair (Figure 4).
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Skin injury triggers a strong inflammatory response that attracts

immune cells, including Tregs, from the bloodstream to the

damaged area. This response occurs not only in the skin but also

in tissues that generally lack resident Tregs, such as the brain and

muscle, emphasizing their role in healing (11, 85). Tregs gather in

the skin after both minor and severe wounds, reaching their peak

around one week post-injury (117, 118). The precise mechanisms

behind Treg accumulation—whether through blood recruitment or

local proliferation—are not entirely understood. Inflammation

typically involves both processes and the movement of cells into

the lymphatic system (119). Skin-resident Tregs respond promptly

to injury, while circulating Tregs need time to activate and migrate,

potentially supporting the repair process initiated by resident

Tregs (21).

AREG, which interacts with epidermal growth factor receptor

(EGFR), is essential for tissue repair and is produced by various type

2 immune cells, including GATA-3+ Tregs (120). The production of

AREG in Tregs is stimulated by interleukins IL-18 and IL-33 (20).

When bound to EGFR, AREG promotes the proliferation and

differentiation of target cells, aiding in the repair and regeneration

of damaged tissue. Interestingly, autocrine EGFR signaling in Tregs

has been primarily described in skin wound healing (117), but
FIGURE 4

Skin-resident Tregs in wound healing: Skin-resident GATA-3-expressing Tregs express receptors for alarmins such as TSLP, IL-33, and potentially IL-
18, which are released upon tissue injury. These signals enable Tregs to detect local damage and induce AREG production, promoting keratinocyte
proliferation and facilitating the regeneration of stromal components in injured skin.
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emerging evidence suggests similar mechanisms operate in lung and

muscle repair (11, 20). For example, in muscle injuries, AREG from

Tregs supports the regeneration of myofibers from satellite cell

progenitors (11). While several cell types, such as basophils, ILC2s,

TH2 cells, and macrophages, can produce AREG, its expression by

Tregs is particularly significant (20). Mice lacking AREG specifically

in Tregs show increased mortality following influenza infection and

extensive lung damage, highlighting the critical role of Tregs in

AREG-mediated tissue repair (20).

Although research on Treg-derived AREG in skin injury is

limited, evidence indicates its importance. Skin-resident Tregs

express AREG (36), which promotes keratinocyte proliferation

(120), similar to its effects on other epithelial tissues. AREG,

along with keratinocyte growth factor (KGF) and fibroblast

growth factor 2 (FGF2), synergist ical ly enhances re-

epithelialization by stimulating keratinocyte migration and

proliferation (121). Additionally, these growth factors contribute

to stromal remodeling by activating fibroblasts and promoting

extracellular matrix reorganization (122). AREG also helps

maintain vascular integrity by activating TGF-b signaling in

pericytes (123), which may support stromal repair following skin

injury. In wounded skin, Tregs express the EGFR receptor for

AREG, and removing EGFR specifically from Tregs leads to fewer

Tregs and slower wound healing, suggesting that AREG may have

an autocrine effect in boosting Treg numbers during skin injury

(117). Besides AREG, Tregs secrete other growth factors that aid

repair by acting directly on non-hematopoietic cells. For example,

Tregs release keratinocyte growth factor (KGF) to support alveolar

regeneration after lung damage (124) and fibroblast growth factor 2

(FGF2) to enhance intestinal epithelial growth during colitis (125).

In the skin, KGF and FGF2 likely contribute to epidermal repair by

stimulating keratinocyte proliferation and migration. In zebrafish,

Tregs help regenerate various organs after injury by secreting

growth factors such as neuregulin 1 (NRG1) in the heart, nerve

growth factor (NGF) in the spinal cord, and insulin-like growth

factor 1 (IGF-1) in the retina (91). Both KGF and IGF-1 are also

produced by dendritic epidermal T cells (DETCs) to support

epidermal regeneration after skin injury (126). This suggests that

skin-resident Tregs may employ similar mechanisms to facilitate

repair processes following skin injury. The roles of IL-10 and TGF-b
in skin repair seem to be both sequential and context-dependent.

Early after injury, IL-10 predominates to suppress excessive

inflammation, while TGF-b becomes more prominent in later

stages to regulate fibrosis and promote matrix remodeling (127,

128). Tregs dynamically adjust their cytokine production in

response to the wound microenvironment, ensuring a balanced

healing response (117).
Tregs in lung repair and regeneration

The lung’s ability to maintain homeostasis despite constant

exposure to airborne pathogens and particulates reflects its complex

immune-regulatory networks (129, 130). In disease states like

infection-induced acute respiratory distress syndrome (ARDS),
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this balance is disrupted, requiring not only pathogen clearance

and inflammation control but also regeneration of damaged tissue

(131). This regenerative process involves carefully coordinated

interactions among epithelial, endothelial, and mesenchymal

compartments (132). Tregs, beyond their typical anti-

inflammatory functions, gather in injured alveolar spaces in both

mice and humans and actively aid in lung repair (133, 134). Among

epithelial cells, alveolar type II (AT2) cells are crucial for

regeneration because of their progenitor role—they proliferate,

secrete surfactant, and differentiate into alveolar type I (AT1) cells

to restore the gas exchange surface (130). Tregs support AT2

proliferation and survival through various mechanisms, including

secreting keratinocyte growth factor (KGF) and engaging in direct

cell interactions. Specifically, Mock et al. (2014) showed that Tregs

expressing CD103 (aE integrin) physically interact with AT2 cells

via E-cadherin, a key adhesion molecule on epithelial cells (135).

This CD103/E-cadherin axis helps retain Tregs within the alveolar

niche and enables localized communication with AT2 cells. Co-

culture experiments further support this interaction. In vitro studies

using isolated Tregs and primary AT2 cells show that CD103+ Tregs

promote AT2 proliferation and maintain their stem-like

transcriptional profile, partly through E-cadherin-dependent

adhesion (135, 136). When CD103 or E-cadherin is disrupted in

these systems, Tregs’ ability to promote epithelial regeneration

decreases, indicating that this interaction is not just structural but

also essential for Treg-driven epithelial repair. Importantly, this

adhesion-dependent mechanism likely allows close-range delivery

of trophic signals, such as KGF and AREG, enhancing repair

pathways in a context-specific manner (124, 135).

AREG, an EGFR ligand, has become an important mediator of

Treg-driven tissue protection and repair in the lungs and other tissues

(11, 20, 137, 138). In a mouse model of influenza-induced lung injury,

IL-18 and IL-33 signaling promote Treg-derived AREG production,

which helps preserve alveolar structure and gas exchange (136).

Interestingly, the IL-18/IL-33-induced AREG expression seen in

lung Tregs mirrors similar mechanisms in skin and gut tissue-

resident Tregs. In the skin, AREG production by GATA3+ Tregs

promotes keratinocyte proliferation, while in the gut, AREG supports

maintaining the epithelial barrier during colitis (20). However, the

lung microenvironment, rich with alveolar macrophages and

surfactant-secreting epithelial cells, may uniquely boost IL-18/IL-33

signaling, making lung-resident Tregs especially powerful producers

of AREG after infection or injury (68). This tissue-specific response

could explain the strong repair response observed in the lungs.

NOTCH4 is a key transcriptional regulator of IL-18–induced

AREG expression in Tregs, and its levels are inversely related to

serum AREG levels and COVID-19 severity, linking this pathway to

clinical outcomes (138). Furthermore, a mesenchymal cell population

expressing Col14a1 has been identified as a target of Treg-derived

AREG signals, supporting alveolar epithelial organoid growth and

aiding tissue repair in vivo (139). Deletion of EGFR in these stromal

cells worsens hypoxia after influenza infection, indicating that Treg-

derived AREG acts on mesenchymal targets as well.

However, mesenchymal cell populations are heterogeneous.

While some subsets support epithelial regeneration, others (e.g.,
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AXIN2+ myogenic precursors) can worsen injury by promoting

fibrosis through myofibroblast activation (140). Tregs help control

this maladaptive response. During the fibroproliferative phase of

acute lung injury, Tregs decrease the recruitment of collagen-

producing bone marrow–derived cells by modulating CXCL12/

CXCR4 signaling (141). Pharmacologic inhibition of CXCR4 with

AMD3100 reduces fibrosis independently of CXCL12, indicating

CXCR4 as a potential therapeutic target. While epithelial repair has

been a primary focus, endothelial regeneration is equally important

for restoring lung homeostasis. Coordinated signaling between

epithelium and endothelium is crucial for regenerating the

alveolar-capillary interface (142). CAR4+ endothelial cells, which

depend on VEGFA signaling from epithelial cells, play a vital role in

this process during both development and post-viral injury (143,

144). These cells are enriched in tip-cell markers (Vegfr2, Nrp1,

Apln) and are located near AT1 cells, suggesting their involvement

in vascular regeneration.

Beyond acute injury, Tregs also have roles in chronic lung

diseases. In pulmonary fibrosis models, Tregs regulate fibroblast

activity and reduce excessive collagen buildup through TGF-b-
dependent and independent pathways (145). In chronic obstructive

pulmonary disease (COPD), lower Treg numbers and impaired
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function are linked to ongoing inflammation and alveolar damage

(146). These findings indicate that improving or restoring Treg

function could be important for preventing or treating chronic lung

remodeling and dysfunction. Tregs have multiple roles in lung

repair, including secreting trophic factors (KGF, AREG), directly

interacting with epithelial cells via CD103/E-cadherin, controlling

fibrotic responses through the CXCL12/CXCR4 axis, and

supporting endothelial regeneration (Figure 5).
Tregs in bone repair and regeneration

Tregs have proven to be key players in bone healing and

regeneration. Unlike many tissues that heal with scar tissue, bone

has a remarkable ability to regenerate without scarring through the

combined action of osteoblasts and osteoclasts (9). Osteoblasts,

originating from mesenchymal stem cells (MSCs), build new bone,

while osteoclasts, derived from bone marrow cells, break down old

bone. Tregs help regulate this process by influencing both bone

formation and breakdown [131]. Mechanistically, Tregs suppress

osteoclastogenesis mainly by inhibiting receptor activator of nuclear

factor kappa-B ligand (RANKL) signaling, which is crucial for
FIGURE 5

Treg-mediated lung repair post-injury: After lung injury, signals like IL-18 and IL-33 released from damaged epithelial cells and activated immune
cells interact with their respective receptors on Tregs, stimulating the production of epithelial-repair-promoting factors such as AREG and KGF.
Tregs also contribute to vascular repair by releasing VEGF to support alveolar capillary endothelial cell recovery, while limiting fibrotic responses
through the CXCL12/CXCR4 signaling axis.
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osteoclast differentiation and activation. This suppression occurs via

secretion of anti-inflammatory cytokines like IL-10, which inhibit

osteoclast precursor maturation and function (147, 148). Tregs also

produce TGF-b, contributing to osteoblast differentiation and

supporting bone formation (149). Although direct interactions of

Tregs with osteoblast precursors are less well defined, recent

evidence suggests Tregs may promote osteoblast maturation

indirectly by modulating the inflammatory environment to favor

bone growth (150). MSCs can induce Tregs to develop from naive

T-cells and help them multiply, partly through a protein called

haeme oxygenase-1 (HO-1) (151). Notably, this MSC-induced Treg

differentiation appears to be largely antigen-independent, relying

instead on paracrine signals like TGF-b and prostaglandin E2,

which create an immunosuppressive environment conducive to

Treg expansion (152). Moreover, CD3+ T-cells aid in the

differentiation of other blood cells into osteoclasts, and Tregs

intervene to inhibit this process, using signaling molecules such

as TGF-b and IL-4 (148, 153) (Figure 6). This inhibition is

important because higher levels of Tregs in the blood are

associated with lower levels of markers indicating bone loss, a

trend observed in both healthy individuals and those with

rheumatoid arthritis. Animal studies also support the idea that

Tregs help prevent bone destruction. For instance, Tregs can protect

against bone loss caused by TNF-a and reduce bone damage in

ovariectomized mice (154, 155). Using specific antibodies to
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enhance Treg activity has also shown promise in reducing

arthritis and increasing bone density in mice, likely by limiting

osteoclast activity (9, 156).

Tregs may also directly aid in the maturation of bone-forming

cells. In a bacterial-induced bone injury model, Tregs were drawn to

the injury site by a signaling molecule called CCL22. There, they

helped prevent bone loss by reducing inflammation (156).

Additionally, Tregs support MSC-based bone repair by

suppressing CD4+ T-cells that produce inflammatory cytokines

like IFN-g and TNF-a, which can impede bone formation (157,

158). Therefore, Tregs are vital for bone repair and regeneration.

They not only help regulate bone resorption but also promote new

bone growth, making them essential for maintaining bone health

and facilitating healing.
Role of Tregs in liver diseases

When chronic wounds persist and cause ongoing inflammation,

they can trigger a series of events that lead to liver fibrosis and

eventually cirrhosis (159). Different liver inflammatory diseases,

such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic

steatohepatitis (NASH), hepatitis B (HBV), and hepatitis C (HCV),

contribute to liver fibrosis (160, 161). Reduced activity of Treg cells

(indicated by low FoxP3 mRNA levels) has been observed in the
FIGURE 6

Treg regulation of osteoclastogenesis and bone formation: Tregs suppress osteoclastogenesis by inhibiting RANKL signaling, crucial for osteoclast
differentiation and activation. They secrete anti-inflammatory cytokines like IL-10 to block osteoclast precursor maturation, and they release TGF-b
and IL-4 to further inhibit osteoclast differentiation. Additionally, Tregs produce TGF-b to support osteoblast differentiation and bone formation.
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NAFLD mouse model of the liver. This decline negatively affects

NAFLD progression by disrupting the balance between Tregs and

Th17 cells, resulting in an increased Th17-driven inflammatory

response (162). An association has also been noted between an

increased number of Foxp3+ lymphocytes in liver lobules and

NAFLD-driven hepatic inflammation, further indicating the role

of Tregs in hepatic disease (163). Similarly, fewer Tregs was

observed in mice with steatohepatitis, but adoptively transferring

Tregs into these mice helped reduce liver injury and slow disease

progression (164). In autoimmune liver diseases, the number of

infiltrating Tregs in the liver surpasses that circulating in the

bloodstream (165). In these conditions, persistent inflammation

causes hepatocyte apoptosis and necrosis. Consequently, the anti-

inflammatory potential of Tregs helps mitigate this damage,

providing a protective effect against liver inflammation (166).

Studies also suggest that Tregs can contribute to liver fibrosis by

influencing Kupffer cells through the TGF-b pathway (167, 168).

Treg-derived TGF-b appears to act mainly through an indirect

mechanism — modulating Kupffer cell polarization rather than

acting directly — thereby shaping the immune microenvironment

toward a more fibrotic or anti-fibrotic state (167, 169–171). Recent

research proposes a dual role for Tregs in liver fibrosis: initially
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offering anti-inflammatory effects that protect hepatocytes, but later

contributing to fibrotic progression (172, 173). In early NAFLD/

NASH, Tregs suppress Th17-driven inflammation and inhibit

hepatic stellate cell (HSC) activation (172, 173). However, in

advanced fibrosis, they may switch roles (Figure 7). For example,

AREG-expressing Tregs have been shown to directly stimulate

EGFR signaling in HSCs, promoting fibrosis in both human and

mouse models of NASH (171). This underscores a stage- and

context-dependent shift from protective to pathogenic Treg

activity. Single-cell RNA sequencing from mouse models and

spatial transcriptomics from human liver tissue both reveal the

presence of Tregs with a profibrotic gene signature, such as Areg

and CTLA-4, which closely interact with hepatic stellate cells during

fibrosis. This supports the idea that Tregs in fibrotic livers not only

suppress inflammation but also actively contribute to fibrosis

through cellular interactions and signaling (174, 175).

Tregs play a vital role in wound healing and reducing

inflammation. However, some studies indicate that lowering

Tregs could help reverse fibrosis. Activated HSCs release IL-2,

which increases Tregs in fibrotic tissue. In a healthy liver, Kupffer

cells (KCs) secrete matrix metalloproteinases (MMPs) that break

down and regulate the liver’s ECM. Tregs produce TGF-b, which
FIGURE 7

Dual role of liver Tregs in fibrosis regulation and repair: Liver Tregs (Helios+, ST2+) play a dual role in liver fibrosis and regeneration. During repair,
hepatic stellate cells (HSCs) promote Treg regeneration via MMP 9/13-dependent TGF-b activation, supporting wound healing. In contrast, liver
Tregs suppress pro-fibrotic immune cells, such as Th2 and Ly-6Chigh monocytes/macrophages, through IL-10 and TGF-b secretion. They also
inhibit CD8+ T cell proliferation and modulate HSC activity by suppressing NK cells, influencing fibrosis progression.
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can inhibit KCs-mediated MMP release, potentially hindering

fibrosis reversal (172). Research using DEREG transgenic mice,

which lack Tregs, showed that removing these cells led to increased

liver fibrosis, mainly due to an increase in CD8+ and IL-17A+ T cells

and higher secretion of inflammatory factors (161). TGF-b is an

essential cytokine that influences whether T cells develop into Th17

cells or Tregs. When TGF-b is low along with IL-6, it promotes

Th17 cell differentiation. Conversely, high levels of TGF-b cause

naïve CD4+ T cells to develop into Tregs. During liver fibrosis, both

IL-6 and TGF-b levels increase, stimulating HSCs to produce more

ECM proteins. This process heightens Th17 cell numbers and

creates an imbalance between Tregs and Th17 cells (160).
Tregs in kidney repair and
regeneration

Tregs, known for their immune-modulatory functions, have

increasingly been recognized for their key role in renal injury repair

and regeneration, especially after ischemia-reperfusion injury (IRI).

Studies show that Tregs infiltrate the kidneys during the healing

process and are crucial in reducing damage and aiding recovery. In a

murine model of ischemic acute kidney injury, Tregs were observed to

migrate into the kidneys within 3 to 10 days following the injury. Their

presence was linked to less renal tubular damage, increased tubular

proliferation, and lower production of pro-inflammatory cytokines

(176), all of which contributed to better renal function and lower

mortality. Tregs primarily protect by suppressing excessive immune

responses that can worsen renal injury. For example, depleting Tregs in

animal models before inducing renal IRI resulted in more kidney

damage, with higher blood urea nitrogen (BUN) and serum creatinine

(Scr) levels, along with increased tubular necrosis scores. Conversely,

infusing Tregs after IRI onset significantly enhanced renal repair by

decreasing inflammatory cytokine production and supporting the

recovery of renal function (177).

In addition to their immunosuppressive functions, Tregs also

support tissue regeneration. In models of renal fibrosis, Tregs

induced by mesenchymal stem cells (MSCs) pretreated with

interferon-gamma (IFN-g) were found to significantly decrease

fibrosis and improve kidney function. This effect was mediated by

the enzyme indoleamine 2,3-dioxygenase (IDO), whose expression was

increased by IFN-g (178). IDO played a key role in the anti-fibrotic

effects of Tregs, indicating a potential therapeutic approach for

preventing renal fibrosis. Further evidence emphasizes the role of

Tregs in chronic kidney disease and transplantation. Foxp3+ Tregs

have been shown to limit autoimmune kidney disease and aid in

transplant tolerance. In kidney transplant models, depleting Tregs

disrupted transplant tolerance, while their presence was linked to

higher levels of immunosuppressive cytokines like TGF-b and IL-10

(179). This indicates that Tregs are not only vital for repairing acute

injury but also crucial for maintaining long-term kidney health. It is

important to distinguish the role of Tregs in acute versus chronic

kidney conditions. In acute settings such as IRI, Tregs mainly work to

suppress inflammation and protect renal tubular epithelial cells,

primarily within the peritubular interstitium, thus promoting
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regeneration (180, 181). In contrast, in chronic conditions like renal

fibrosis or transplantation, Tregs display functional plasticity and

phenotypic diversity, driven by the inflammatory and alloimmune

microenvironment. These cells may show altered FOXP3 stability,

demethylation patterns, or cytokine expression—shifting between

protective immune regulation, promotion of fibrotic processes, or

tolerance induction after transplantation (181–183).

The mechanisms by which Tregs contribute to renal repair

involve several pathways. One key process is suppressing innate

immune responses, especially those mediated by neutrophils and

macrophages (180), which are often elevated after IRI and

contribute to ongoing tissue damage. Tregs accomplish this by

secreting anti-inflammatory cytokines such as IL-10 and producing

adenosine via CD73, which activates the adenosine A2A receptor

(A2AR) on immune cells to further reduce inflammation. The

CD73/adenosine A2A receptor (A2AR) axis plays a crucial role in

controlling immune cell infiltration and supporting tubular

epithelial cell survival. During injury, Tregs express CD73,

converting extracellular AMP into adenosine. The adenosine then

binds to A2AR on neutrophils and macrophages in the peritubular

interstitium, decreasing their recruitment and cytokine production,

thus creating a microenvironment (184).

Furthermore, activation of A2AR on renal epithelial cells and

immune cells enhances tubular epithelial cell resistance to apoptosis

and encourages proliferation, aiding kidney repair (185). Animal

studies demonstrate the significance of this pathway: in models of

ischemic kidney injury, Tregs lacking CD73 or A2AR fail to provide

protection, whereas pharmacological activation of A2AR restores

their protective function (184). Additionally, recent research

emphasizes the role of chemokine receptors like CXCR3 in

recruiting and functioning of Tregs during renal injury. CXCR3

expression on Tregs is linked to their migration into the kidney and

subsequent improvement of IRI. Notably, CXCR3 is mainly found

on activated effector Tregs, which helps them home to inflamed

renal tissues. Evidence from human T-cell studies suggests that a

small subset of CXCR3+ naïve-like T cells, which have ready effector

potential, may upregulate CXCR3 after injury—indicating that even

naïve or central-memory Tregs can gain homing ability during

inflammation (186, 187). Mice overexpressing CXCR3 showed

increased Treg infiltration, reduced inflammation, and better

renal function (177, 186), highlighting the importance of

chemokine signaling in Treg-mediated protection during renal

IRI. Therefore, Tregs are essential for renal injury repair and

regeneration by modulating immune responses, reducing

inflammation, and promoting tissue regeneration. Their

therapeutic potential is evident in both acute and chronic kidney

diseases, making them a promising target for future therapies aimed

at enhancing kidney repair and preventing fibrosis (Figure 8).
Role of Treg in the gastrointestinal
tract

Tregs are increasingly recognized not only for their

immunosuppressive abilities but also for their active role in
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gastrointestinal (GI) tissue repair and regeneration (188). Instead of

passively maintaining tolerance, Tregs dynamically adjust to

environmental cues in the inflamed gut, where they play key roles

in managing damage, preserving epithelial integrity, and supporting

tissue renewal (46). During mucosal injury or infection, Tregs are

recruited to affected sites, where they help control excessive

immune activation. By secreting anti-inflammatory cytokines like

IL-10 and TGF-b, they reduce collateral tissue damage by

modulating both innate and adaptive immune responses (189,

190). Importantly, their functions go beyond immune

suppression. In the intestinal mucosa, Tregs support the survival

of intestinal epithelial cells (IECs) (22), promoting barrier stability

and preventing microbial translocation. These effects are partly

mediated through IL-10-dependent pathways that strengthen tight

junctions and prevent IEC apoptosis (191, 192).

In response to inflammatory signals and epithelial-derived

alarmins such as IL-33, a subset of Tregs expressing the transcription

factor GATA3 becomes functionally active. These GATA3+ IL-33R+

Tregs are essential for reducing immunopathology and aiding tissue

recovery during infection and inflammation (78, 193). Their

accumulation is vital for maintaining mucosal balance, especially in

the small intestine, where losing GATA3 expression impairs Treg

localization and function during enteric infections (193). These cells

show transcriptional stability even in germ-free conditions, indicating a

thymic origin and a specialized adaptation to the GI environment (194,
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195). Tregs also reprogram the inflammatory microenvironment to

support regeneration. One key process involves shifting macrophage

phenotypes from pro-inflammatoryM1 states to reparativeM2 profiles

(196, 197). This shift improves debris clearance and fosters conditions

favorable for tissue remodeling (112). Additionally, Tregs produce

several paracrine mediators, including AREG (198, 199), insulin-like

growth factor 2 (IGF-2) (200), and CST7, all of which aid epithelial

repair and functional recovery (188). The environment in which Tregs

operate is crucial. While they protect against inflammation-related

damage during infection or injury, their presence in the tumor

microenvironment, such as in colorectal cancer (CRC), can have

different effects. Depending on the cytokine environment and subset

type, Tregs may either suppress tumor-promoting inflammation or

facilitate immune evasion by reducing anti-tumor immunity (201,

202). Collectively, Tregs are increasingly recognized as critical

mediators of gastrointestinal tissue regeneration, functioning at the

interface between immune regulation and epithelial restoration.
Role of Treg in oral mucosa

The oral mucosa represents a unique immunological niche,

continuously exposed to dietary antigens, commensal microbes,

and mechanical stress. Within this dynamic environment, Tregs

play a crucial role in maintaining immune balance and preserving
FIGURE 8

Tregs in kidney injury and repair: In kidney injury, Tregs are recruited to the site of damage, where they suppress immune responses and promote
repair. By secreting IL-10 and producing adenosine via CD73, Tregs activate A2A receptors on immune and epithelial cells, inhibiting immune
infiltration and apoptosis, leading to enhanced kidney regeneration.
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epithelial integrity (203). Unlike other mucosal sites where local

Treg induction is prominent, the oral mucosa is mainly populated

by circulating Tregs that are recruited and acquire tissue-specific

phenotypes, notably expressing CD103 and high levels of CTLA-4

to support retention and function within the oral tissue

microenvironment (203). Mechanistically, Tregs suppress local

effector T cell functions (Th1 and Th17). In Foxp3 knockout or

IL-2 knockout mice (both of which lack functional Tregs),

researchers observed a significant increase in Th1 (IFNg+) and

Th17 (IL-17A+) cells in the cervical draining lymph nodes, along

with histological evidence of severe mucosal inflammation and

damage, compared to wild-type controls (204). These findings

emphasize that Tregs actively limit pathogenic T cell expansion to

prevent mucosal injury.

Furthermore, the oral microenvironment is unique in that it

minimally induces local peripheral Treg development; instead, the

mucosa is mainly populated by recruited peripheral Tregs that

adopt a tissue-resident phenotype (CD103
+

, CTLA-4 high) in situ,

thereby maintaining homeostasis despite continuous exposure to

food antigens, commensals, and mechanical stress (203). Tregs also

influence microbiome-driven mucosal immunopathology. In

murine models of oropharyngeal candidiasis, antibiotic disruption

of resident bacteria resulted in decreased Foxp3+ Tregs and IL-17A+

cells, leading to worsened oral mucosal pathology (205, 206).

Supplementing with short-chain fatty acids restored Treg

frequencies (including Foxp3+IL-17A+ “Treg17” cells) and

reduced tissue damage—showing that microbiota-derived

metabolites support Treg-mediated protection of oral barrier

tissues (206). The balance between Treg suppression and Th17

immunity is especially important. Some evidence indicates Tregs in

the oral mucosa can promote protective Th17 responses by

consuming IL-2 (a negative regulator of Th17 differentiation) and

by producing TGF-b, thus allowing controlled IL-17 production

that supports barrier immunity without causing pathological

inflammation (207). This suggests that Tregs manage a finely

tuned balance between tolerance and defense.

In disease contexts such as oral lichen planus (OLP), the role of

Tregs appears complex. Immunohistochemical analysis of FOXP3+

Tregs in OLP lesions revealed correlations with disease activity,

suggesting that Tregs may be either insufficient or dysregulated in

chronic inflammatory conditions of the oral mucosa (208). Functional

studies further support this, showing that FOXP3+ Tregs in OLP

patients express reduced levels of immunosuppressive cytokines like

TGF-b and demonstrate impaired suppressive capacity, indicating a

loss of regulatory efficiency despite elevated cell counts (209). While

CD8+ cytotoxic T cells mediate keratinocyte apoptosis in OLP,

inadequate Treg suppression likely contributes to unchecked local

immune activation. In contrast, evidence from celiac disease further

illustrates the dynamic role of Tregs in oral mucosal injury. Sanchez-

Solares et al. (2021) demonstrated that celiac disease disrupts oral

epithelial integrity, shown by reduced E-cadherin and claudin-1

expression. This epithelial injury was accompanied by an increased

infiltration of Foxp3+ Tregs and elevated expression of AREG, a key

tissue repair molecule. The positive correlation between Treg presence

and Areg expression suggests a compensatory, pro-repair function of
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Tregs in response to mucosal damage (210). Together, these findings

indicate that Tregs may play dual roles in oral mucosal diseases—being

insufficient or dysfunctional in chronic inflammation like OLP, while

adopting a reparative phenotype in barrier-restoration settings such as

celiac disease.
Role of Treg in genitourinary

The genitourinary (GU) tract, including urinary and

reproductive organs, requires a finely tuned immune balance to

tolerate beneficial agents like sperm and commensals while

defending against pathogens such as sexually transmitted

infections. Tregs have emerged as central mediators in

orchestrating this immune balance, modulating immune

responses to favor tissue protection and homeostasis within the

GU tract (46). For a successful and healthy pregnancy, the maternal

immune system must accept both sperm and the fetus, which

expresses paternal antigens and is therefore partially foreign.

Tregs present in maternal blood and at the maternal–fetal

interface has been shown to expand during gestation, playing a

crucial role in preventing fetal rejection, spontaneous abortion, and

complications like preeclampsia in both humans and animal models

(211–214). In mice, Treg accumulation begins shortly after first

contact with seminal antigens, even before embryo implantation,

with recruitment seen in the uterus and draining lymph nodes

(215–217). During pregnancy, the number of CD25+ T cells doubles

in iliac and inguinal lymph nodes, and Tregs make up roughly 30%

of uterine CD4+ T cells. Additionally, uterine Foxp3 expression

increases nearly 1,000-fold compared to non-pregnant

counterparts, indicating a significant surge in local Treg

populations (211). Treg deficiency early in gestation has been

linked to impaired uterine artery remodeling, supporting their

role in preventing hypertensive disorders like preeclampsia (218).

Immune suppression observed during the luteal phase of the

reproductive cycle and after exposure to seminal extracellular

vesicles suggests that Tregs in the uterus and vagina may facilitate

early pregnancy through localized immunosuppression (219–223).

Growing interest in Treg-based therapies highlights their potential

to address pregnancy-related complications. However, further

clinical research is needed to develop diagnostic tools for early

pregnancy Treg profiling and to identify optimal therapeutic

windows (224).
Cervical and vaginal Tregs

The healthy vaginal ecosystem is usually dominated by

Lactobacillus species, which help prevent colonization by harmful

bacteria and fungi. Disruption of this balance (dysbiosis) can cause

overgrowth of damaging microorganisms, leading to bacterial

vaginosis, candidiasis, urinary tract infections, and a disrupted

vaginal pH—factors that collectively increase the risk of STIs and

infertility (225, 226). Like the gastrointestinal system, vaginal

immunity must tolerate beneficial microbes while remaining able
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to respond properly to infections. Growing evidence shows that

Tregs support this balance. For example, Lactobacillus crispatus, a

common commensal species, has been shown to induce Treg

differentiation from naive CD4+ T cells in vitro (227).

Additionally, microbial imbalance is often linked with increased

inflammatory cytokines and decreased Treg levels in peripheral

blood, suggesting that loss of microbial harmony may shift immune

responses from regulation to inflammation (226, 228, 229). These

findings highlight the need for further research on how vaginal

Tregs mediate the balance between tolerance and immunity based

on microbial signals. Tregs in the uterine and vaginal mucosa not

only support homeostasis and pregnancy but also help in immune

responses to infections. In mouse models of vaginal HSV-2

infection, Tregs in the draining lymph nodes are crucial for

proper movement of antigen-presenting dendritic cells from the

infection site. When these Tregs are absent, virus-specific immune

responses are delayed, emphasizing their vital role in antiviral

defense (46, 214).
Future prospective

The increasing focus on the immune system’s role in tissue

repair and regeneration reflects a shift in regenerative medicine.

However, a significant knowledge gap remains about how the

adaptive immune system—especially Treg cells—affects tissue

healing. Important questions include whether neoantigens

produced during injury can trigger specific repair responses, and

how T cells distinguish between self- and non-self-antigens in this

process. The mechanisms behind T cell recruitment, activation, and

function during tissue injury are still not fully understood. To

address these issues, future research should utilize advanced models

such as antigen tracing in transgenic reporter mice and mass

spectrometry to discover neoantigens specific to injury that may

induce Treg recruitment and activation. At the same time,

combining lineage tracing with single-cell transcriptomics can

reveal Treg clonal behavior and antigen specificity in their local

environments, shedding light on how individual clones contribute

to repair in specific tissues. Progress in immune-based regenerative

therapies is also slowed by the lack of specific markers for immune

cell subsets involved in tissue repair. Advances in single-cell

genomics and multi-omics profiling may identify lineage- and

function-specific markers that differentiate reparative immune

cells from non-reparative ones. Additionally, the difference

between tissues that regenerate without scarring (such as bone)

and those prone to fibrosis (like the heart and liver) remains

unclear. Gaining a deeper understanding of how immune cells,

tissue-resident progenitors, and myofibroblasts interact could reveal

mechanisms that promote regeneration over fibrosis and help

develop targeted repair strategies.

Another important aspect is the impact of aging on immune-

mediated tissue repair. The decline in immune function with age

may impair Treg recruitment, function, or stability, ultimately

reducing regenerative capacity in older individuals. However,
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most current studies on Treg function in tissue repair rely on the

Foxp3DTR mouse model, which has limitations due to the

development of systemic autoimmunity with prolonged Treg

depletion. To address this, future studies should include gain-of-

function approaches, such as adoptive transfer of purified Tregs

into Rag1+/+ mice, to assess Treg function without the confounding

effects of autoimmunity. Emerging conditional genetic models, like

Foxp3-CreERT2 mice, offer better temporal control over Treg

depletion and avoid long-term systemic effects. When combined

with adoptive transfer into lymphopenic hosts, these models enable

precise examination of Treg stability, plasticity, and reparative

functions over time in vivo. These tools are crucial for moving

beyond correlative findings toward mechanistic understanding.

From a therapeutic standpoint, modulating tissue-resident Tregs

to enhance local repair is a promising strategy. Treg populations in

tissues such as the lung, skeletal muscle, and skin help maintain

local immune homeostasis. Notably, IL-33 signaling expands tissue-

resident Tregs and boosts their reparative ability, partly through the

induction of AREG, a key factor in tissue repair. However, the full

functional diversity among these Tregs and their direct roles in

regeneration are still not fully understood.

To translate preclinical findings into human applications, advanced

organoid systems and humanized mouse models serve as powerful

platforms. Organoids derived from lung, skin, and gut tissues that

include immune components can mimic tissue-specific

microenvironments, enabling detailed mechanistic and therapeutic

screening. Similarly, humanized mice with reconstituted human

immune systems provide an in vivo environment to study human

Treg trafficking, stability, and antigen specificity during tissue injury

and repair. Despite their therapeutic potential, Treg-based regenerative

treatments encounter key obstacles. These include maintaining the

phenotypic stability of Tregs after transfer, ensuring effective trafficking

and retention in injured tissues, and selecting antigen-specific Tregs to

prevent broad immunosuppression. Overcoming these hurdles is

essential for fully realizing the therapeutic potential of Treg-based

strategies for tissue repair and regeneration.
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