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Bone marrow-derived
extracellular vesicles from
multiple myeloma patients
promote adaptive immune
dysfunction via HLA-G,
PD-1, and PD-L1
Debora Soncini1†, Danilo Marimpietri2†, Francesco Ladisa3,
Francesco Lai3, Irma Airoldi2, Roberto Gramignoli2,
Michele Cea1,3‡ and Fabio Morandi2*‡

1Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy,
2UOSD Laboratory of Cell Therapies, IRCCS Istituto Giannina Gaslini, Genova, Italy, 3IRCCS Ospedale
Policlinico San Martino, Genoa, Italy
Introduction: Extracellular vesicles (EVs) are critical mediators of intercellular

communication and contribute to cancer progression and immune regulation.

Methods: We characterized EVs isolated from bone marrow (BM) plasma

harvested from healthy donors and patients affected by Multiple Myeloma

(MM) by Nano Tracking Analysis and by flow cytometry.

Results: EVs from MM patients were significantly more abundant and enriched in

CD138, supporting their partial origin from malignant plasma cells, with

additional input from BM resident cells, including monocytes and NK cells.

Phenotypic profiling revealed increased expression of immune checkpoint

molecules HLA-G, PD-1, and PD-L1 on MM-derived EVs compared to healthy

controls. Functionally, MM-EVs suppressed Staphylococcal enterotoxin B (SEB)-

induced T cell activation, as evidenced by reduced IFN-g production and CD4+ T

cell proliferation. Such effects were partially reversed by HLA-G blockade.

Moreover, MM-derived EVs modulated cytokine secretion profiles suppressing

IL-2, IFN-a, TNF-a, and IL-6, and enhancing GM-CSF, with some changes

attributed to HLA-G and PD-L1 activity. Transcriptomic analysis showed higher

HLA-G expression in patients with gain of chromosome 1q, suggesting a link

between high-risk cytogenetics and EV-driven immune suppression. While

clinical correlations were not observed, likely due to limited sample size, these

findings underscore the immunosuppressive role of MM-derived EVs.

Discussion: HLA-G+, PD-1+, and PD-L1+ EVs contribute to immune dysfunction

in MM and represent promising targets to restore anti-tumor immunity.
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1 Introduction

Multiple myeloma (MM) is a hematological malignancy primarily

affecting individuals over the age of 60 years and accounts for

approximately 0.9% of all cancers worldwide and contributes to 1.2%

of cancer-related deaths (1). MM is characterized by the clonal

expansion of malignant plasma cells (PCs) within the bone marrow

(BM). While etiology remains incompletely understood, several

cytogenetic abnormalities, including chromosomal deletions and

translocations, have been identified as key drivers of disease

progression and are frequently associated with high-risk MM (2).

MM often arises from asymptomatic precursor conditions such as

monoclonal gammopathy of undetermined significance (MGUS) and

smoldering multiple myeloma (SMM). Progression to symptomatic

MM is typically marked by organ damage, generally manifested as

hypercalcemia, renal insufficiency, anemia, and bone lesions (2).

Malignant PCs within the BM express various immune checkpoint

molecules supporting immune evasion. Among these, HLA-G and PD-

L1 have been implicated in suppressing anti-tumor immune responses

(3, 4). HLA-G is a non-polymorphic HLA class I molecule, identified in

seven isoforms, functioning either as a surface molecule or in soluble

form. HLA-G exerts immunomodulatory effects by interacting with

inhibitory receptors on T lymphocytes and natural killer (NK) cells (5).

Soluble HLA-G has been described as released by patients’ primary

malignant PCs and MM cell lines (6, 7), while surface protein and

mRNA expression have been confirmed in patient-derived PCs (4, 8).

Notably, HLA-G can be transferred from malignant PCs to T cells via

trogocytosis, thereby impairing anti-tumor immunity (4). Programmed

cell death protein 1 (PD-1) is another inhibitory receptor primarily

expressed on activated T cells and, to a lesser extent, on NK cells (9, 10).

PD-1 is upregulated during the late stages of T cell activation and

functions to suppress immune responses by modulating intracellular

signaling upon ligand engagement (3, 4, 11). PD-1 ligands, PD-L1, and

PD-L2 have distinct expression patterns: PD-L2 is restricted to antigen-

presenting cells, whereas PD-L1 is broadly expressed on both normal

and malignant tissues (12, 13). In MM, PD-L1 is upregulated not only

on malignant PCs but also in other components of the tumor

microenvironment (9, 14, 15). Preclinical and early-phase clinical

studies have shown that inhibition of the PD-1/PD-L1 axis can

enhance the efficacy of standard MM therapies (13, 16, 17). Tumor-

derived extracellular vesicles (EVs) are present in the BM of MM

patients and have been shown to participate in various pathogenic

processes, including immune suppression, tumor progression, drug

resistance, angiogenesis, osteolysis, and metastatic niche formation

(18–21). We previously demonstrated that MM-derived EVs are

enriched in adenosinergic ectoenzymes (CD38, CD39, CD203a, and

CD73), which catalyze the production of extracellular adenosine

(ADO), a potent immunosuppressive metabolite (22). These enzymes

contribute to shaping the immunosuppressive BM microenvironment

by increasing local ADO levels (23, 24). Given the multifaceted role of

EVs in MM biology, this study aimed to: i) characterize EVs isolated

from BM plasma of MM patients; ii) assess the expression of the

immune checkpoint molecules HLA-G, PD-1, and PD-L1 on these EVs;

iii) investigate their immunoregulatory functions, with a particular focus

on the roles of HLA-G and the PD-1/PD-L1 axis.
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2 Materials and methods

2.1 Patients

BM samples were collected from 42 patients with MM,

including newly diagnosed (NDMM, n = 31) and relapsed/

refractory (RRMM, n = 11) cases admitted to IRCCS Ospedale

Policlinico San Martino. Control BM samples were collected from

healthy donors (HD, n = 12) undergoing BM donation. Written

informed consent was obtained from all participants in accordance

with the Declaration of Helsinki. Clinical characteristics of MM

patients are summarized in Table 1.
2.2 Isolation and characterization of EV

BMplasmawas obtained by centrifugation of BMblood at 3,000 × g

for 15 minutes at 4°C. One plasma aliquot (300 mL), or two plasma

aliquots (for a small number of patients) were stored at –80°C until

analysis. EVs were isolated as previously described (24). Briefly, plasma

was diluted 1:3 in PBS and centrifuged at 3,000 × g for 15minutes at 4°C

to remove platelets and debris. Supernatants were collected and

analyzed using a NanoSight NS500 (NTA 2.3 software, 488 nm laser)

to determine EV size and concentration. Subsequently, EVs were

pelleted by centrifugation at 20,000 × g for 1 hour at 4°C, washed

with PBS, and resuspended in 50 mL MACS buffer (PBS/EDTA with

0.5% BSA). For functional experiments, EVs were resuspended in

serum-free RPMI-1640 under sterile conditions.
2.3 Flow cytometric analysis

EV obtained from 300 mL of BM plasma samples were used for

flow cytometric analysis. The number of EV used for flow cytometry

was variable among samples from patients and controls. The

cellular origin of BM-derived EVs was assessed on a small

number of MM patients (n=10) depending on the availability of

two different aliquots of BM plasma. This analysis was performed

using monoclonal antibodies (mAbs) directly conjugated with

fluorochromes, targeting CD45 (FITC, BD), CD34 (PE, Miltenyi

Biotec), HLA-DR (APC, BD), CD3 (PE-CF594, BD), CD19 (FITC,

BD), CD105 (PE, BD), and CD14 (PC5, Beckman Coulter). CD38

(APC, BD) was included as a marker of malignant PCs. Immune

checkpoint molecules were evaluated on the whole cohort of

patients and controls using anti-HLA-G (PE, BioLegend, clone

87G), anti–PD-1 (Alexa Fluor 488, BioLegend, clone NAT105),

and anti–PD-L1 (PE/Cy7, BioLegend, clone 29E2A3). CD138

expression was analyzed using rat anti-CD138 (Alexa Fluor 488,

R&D Systems, clone 359103). EVs were incubated with mAbs for 20

minutes in the dark at 4°C, washed, centrifuged at 20,000 × g for 1

hour at 4°C, and resuspended in 200 mL MACS buffer. Flow

cytometric analysis was performed on a Gallios cytometer

(Beckman Coulter) and analyzed using Kaluza software. A

minimum of 2,000 events were acquired per sample using

appropriate gating based on forward and side scatter parameters
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TABLE 1 Patients’ characteristics.

Age at diagnosis Disease stage Myeloma subtype R-ISS-stage CA

67 NDMM IgG kappa III hyperdiploidy

58 NDMM IgA lambda, III t (4;14), del17 p, amp 1q

85 RRMM Non-secretory II none

64 RRMM Non-secretory II none

77 RRMM IgG kappa I standard

78 NDMM micromolecular K I N/A

49 RRMM IgG kappa II del17p

70 NDMM IgA lambda I none

68 NDMM IgG kappa I N/A

78 NDMM IgA kappa I N/A

75 RRMM IgG kappa N/A N/A

64 RRMM IgA kappa III del17p

77 NDMM IgG lambda II none

81 NDMM IgG lambda I N/A

82 NDMM IgA kappa II none

55 NDMM IgG kappa I none

84 NDMM IgG lambda II none

64 NDMM IgG kappa II none

65 NDMM IgA lambda III none

78 NDMM IgG kappa II none

65 NDMM IgG kappa I none

62 NDMM IgA lambda III amp1q

85 RRMM Non-secretory II none

70 NDMM IgG kappa III none

70 RRMM IgG kappa I none

79 NDMM IgG kappa I none

78 NDMM IgG lambda III del17p

70 NDMM micromolecular K I t (4;14)

82 NDMM IgG kappa I none

71 RRMM IgG kappa II del17p; t (14;16)

70 RRMM IgA kappa III none

75 NDMM IgA kappa III del17p

78 NDMM micromolecular K I none

50 NDMM IgA lambda III t (4,14)

85 NDMM IgG lambda I N/A

81 NDMM IgG Kappa I N/A

76 NDMM IgG Kappa I none

62 NDMM IgG Kappa I none

(Continued)
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to exclude debris and background. Results were expressed as mean

relative fluorescence intensity (MRFI) or percentage of positive EVs

for the indicated markers.
2.4 Functional studies

Buffy coats from healthy donors (n = 3) were obtained from

IRCCS San Martino. Mononuclear cells (MNCs) were isolated via

Ficoll-Paque density gradient centrifugation (2,000 × g, 30 min),

and seeded into 96-well plates (1 × 106 cells/well) in RPMI-1640

supplemented with 5% human AB serum. To achieve a sufficient

number of EVs for functional assays, we isolated them from pooled

BM plasma of 4 MM patients, including 2 NDMM and 2 RRMM

cases. The pooled EVs were subsequently split into three treatment

groups: untreated, pre-treated with anti–HLA-G mAb, or pre-

treated with anti–PD-L1 mAb. EVs (200 × 106 particles/well)

were pre-incubated with blocking antibodies (10 mg/well) for 30

minutes at room temperature before being added to MNCs. Control

wells contained MNCs without EVs. Plates were incubated

overnight at 37°C, 5% CO2.
2.5 IFN-g secretion assay

IFN-g secretion was measured using the Rapid Cytokine

Inspector kit (Miltenyi Biotec) according to the manufacturer’s

instructions. After overnight incubation, MNCs were stimulated

with SEB (2 mg/mL, Sigma Aldrich) for 2 hours, followed by the

addition of Brefeldin A (1:5 dilution). Cells were then incubated for

an additional 4 hours. After removal of supernatant, staining

solution containing anti–IFN-g mAb was added. Fixation and

permeabilization steps were performed, and cells were washed

and analyzed using a MACSQuant 10 cytometer. Results were

expressed as the percentage of IFN-g+ cells among CD3+CD4+

and CD3+CD8+ T cells.
2.6 T cell proliferation assay

T cell proliferation was assessed using the CellTrace™ CFSE Cell

Proliferation Kit (Thermo Fisher Scientific). MNCs were stained with

CFSE (2 mM, 15 min, 37°C), washed, and resuspended in RPMI-1640

with 5% AB serum. Cells were incubated overnight with or without

EVs and stimulated with SEB (1 mg/mL) for 6 days. Non-stimulated
Frontiers in Immunology 04
wells served as controls. After incubation, supernatants were stored at

–20°C. Cells were stained with anti-CD3 (PC7), anti-CD4 (APC), and

anti-CD8 (PE) for 20 minutes at room temperature, washed, and

analyzed using a Gallios cytometer. Results were expressed as the

percentage of proliferating CD3+CD4+ and CD3+CD8+ T cells based

on CFSE dilution.
2.7 Cytokine secretion

Cytokine concentrations in supernatants collected from the

proliferation assay (after 6 days of culture) were measured using

the MACSPlex Cytokine 12 kit (Miltenyi Biotec), following the

manufacturer’s instructions. This bead-based multiplex assay

quantified GM-CSF, IFN-a, IFN-g, IL-2, IL-4, IL-5, IL-6, IL-9, IL-
10, IL-12p70, IL-17A, and TNF-a. Supernatants were centrifuged

(10,000 × g, 10 min, 4°C), incubated with capture beads for 2 hours,

followed by detection reagent incubation for 1 hour. After washing,

samples were acquired on the MACSQuant 10 using the specific

“Express Mode.” Cytokine levels were expressed in pg/mL.
2.8 Transcriptomic analysis

To complement phenotypic data, transcriptomic analyses were

performed using publicly available RNA-sequencing data from the

Multiple Myeloma Research Foundation (MMRF) CoMMpass

study (IA18 release). Gene expression levels in CD138+ plasma

cells were analyzed with respect to cytogenetic subgroups, including

patients with or without translocation in t(4;14) or gain of 1q

abnormalities. Expression data were retrieved in TPM (transcripts

per million) format and log2-transformed for comparative analyses.

Statistical correlations between gene expression and cytogenetic

features were assessed using appropriate non-parametric tests.
2.9 Statistical analysis

Statistical analysis was performed using GraphPad Prism v5.03.

Data normality was assessed using the D’Agostino–Pearson

omnibus test. Parametric (t-test) or non-parametric (Mann–

Whitney) tests were applied accordingly. Correlations were

assessed using linear regression and Spearman’s r. p values < 0.05

were considered statistically significant. Correlograms were

generated in R v4.4.1 using RStudio v2024.12.0 + 467.
TABLE 1 Continued

Age at diagnosis Disease stage Myeloma subtype R-ISS-stage CA

65 NDMM IgG Kappa III t (14;16), 1q amp

76 RRMM IgG Kappa I N/A

61 NDMM micromolecular lambda III t (4;14) 1qamp

60 NDMM IgG kappa II t (14;16)
NDMM, newly diagnosed multiple myeloma; RRMM, relapsed/refractory multiple myeloma; CA, chromosomal abnormalities; N/A, not available.
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3 Results

3.1 Extracellular vesicle characterization in
bone marrow samples from MM patients
and healthy donors

We characterized EVs isolated from BM plasma of 42 MM

patients, comprising 34 NDMM and 8 RRMM cases, as well as 7

HDs. EVs were analyzed using NTA to assess size distribution and

concentration. As shown in Figure 1A, the mean EV size was

comparable across groups: MM patients (mean ± standard error

[SE]: 97.3 ± 2.43 nm) and healthy donors (103.8 ± 4.34 nm), with no

significant differences observed between NDMM (98.55 ± 2.76 nm)

and RRMM (93.4 ± 4.68 nm) subgroups. A representative EV

distribution for healthy donors, NDMM and RRMM is shown in

Figure 1B. In contrast, EV concentration changed significantly

among groups (Figure 1C). HDs exhibited a significantly lower

EV concentration (mean ± standard deviation [SD]: 0.14 ± 0.01 ×

10¹² particles/ml) compared to MM patients overall (0.43 ± 0.07 ×

10¹² particles/ml, p = 0.0004). Such increase of EV was confirmed

also in NDMM (0.41 ± 0.07 × 10¹² particles/ml, p = 0.0009) and

RRMM (0.77 ± 0.18 × 10¹² particles/ml, p = 0.0002) patients, with a

significantly higher EV concentration in RRMM group (p = 0.01),

suggesting a potential association between disease progression and
Frontiers in Immunology 05
increased EV release. Together, these findings indicate that EV

concentration is markedly elevated in MM patients, particularly in

relapsed/refractory cases, while EV size remains consistent across

healthy and diseased individuals. This highlights the potential of EV

concentration as a biomarker for disease activity, progression, and

possibly treatment monitoring in MM.
3.2 Immunophenotypic profiling of bone
marrow-derived EVs reveals monocyte, NK
cell, and plasma cell contributions in MM
patients

To investigate the BM EV cellular origin, we performed flow

cytometric profiling on bone marrow plasma-derived EVs from

selected MM patients (n = 10) using a panel of lineage-specific

surface markers. As shown in Figure 1D, the majority of EVs

expressed CD45 (median ± SE: 94.3 ± 1.38%), indicating a

predominant leukocyte-derived origin. In contrast, CD34

expression was minimal (1.1 ± 0.4%), effectively excluding the

hematopoietic stem cells as origin. To further delineate the

contributions from distinct immune cell subsets, we evaluated

markers including CD3 (T cells), CD19 (B cells), CD14

(monocytes), and CD16 (NK cells). CD16 can also be expressed
FIGURE 1

Characterization of EV in BM samples. The size of EVs was analyzed in BM samples harvested from HDs (white dots) and MM patients (black dots),
including newly diagnosed (ND; light grey dots) and relapsed/refractory (RR; dark grey dots) subgroups (A). A representative size distribution (in
nanometers, nm) for HDs and MM patients (ND, RR) is shown in panel (B) The analysis of EV concentration in BM samples from HD (white dots) and
MM patients (black dots), including newly diagnosed (ND; light grey dots) and relapsed/refractory (RR; dark grey dots) subgroups is shown in Panel
(C) Results are expressed as particles/ml x 1012. Expression of markers representative of BM-resident cell subsets (CD45, CD34, CD3, CD19, CD14,
CD16, CD105 and CD38) on EVs isolated from BM samples of 10 MM patients, expressed as % of positive EVs is shown in Panel (D) Horizontal bars
indicated medians. Statistically significant differences are indicated (ns p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001).
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by neutrophils and a subset of monocytes and macrophages, but it is

usually expressed by NK cells at the highest levels. CD3 and CD19

expression was low (1.7 ± 0.71% and 1.7 ± 0.43%, respectively),

whereas CD14 and CD16 showed notably high expression (25 ±

4.9% and 24.8 ± 4.5%, respectively), suggesting that monocytes and

NK cells are significant contributors to EV production in MM,

while T and B cell contribution on such regard is comparatively

minor. Interestingly, we detected moderate expression of CD105

(15.59 ± 4.48%), typically associated with stromal cells. However,

CD105 co-expression with CD45 suggests a leukocyte origin, likely

from endothelium-associated monocytes or M2-like macrophages,

rather than stromal cells. Such results support a prominent role in

EV generation played by monocyte/macrophage lineage. PCs were

also identified as an active source of EVs, as indicated by CD138

expression (7.6 ± 4.6%). We further analyzed CD38 expression on

EVs, an established marker of myeloma cells and other immune

subsets such as NK cells and monocytes. CD38 expression was

heterogeneous (14 ± 7.9%), consistent with a diverse cellular origin

for EVs within the BM microenvironment. To specifically evaluate

EVs derived from malignant PCs, we measured CD138 expression

across the entire MM cohort and HDs. As shown in Figure 2A,

CD138 expression was significantly lower in HD-EVs (CD138

MRFI, median ± SE: 1.85 ± 0.33) compared to MM patients

(14.08 ± 4.56, p < 0.0001), including both NDMM (10.01 ± 5.71,

p < 0.0001) and RRMM (16.76 ± 6.18, p < 0.0001) subgroups. No

significant difference was observed between NDMM and RRMM

patients. Similarly, the percentage of CD138+ EVs was significantly

lower in HDs (5.13 ± 0.88%) compared to whole MM patients

(10.30 ± 2.47%, p = 0.02) and subgroups NDMM (10.19 ± 2.2%, p =

0.01), and RRMM (22.35 ± 7.1%, p = 0.02), again without a

significant difference between disease stages (Figure 2B).

Collectively, these results validate that MM-derived EVs are

predominantly released by leukocytes, particularly monocytes and

NK cells, in the bone marrowmilieu, with a substantial contribution

from malignant plasma cells. These data underscore the potential of

EVs as disease-specific biomarkers and key mediators of tumor–

microenvironment interactions in MM.
3.3 Expression of immune checkpoint
molecules is increased in EVs from MM
patients

To assess the immunoregulatory potential of MM-derived EVs,

we analyzed the surface expression of HLA-G, PD-1, and PD-L1 via

flow cytometry. As shown in Figure 2C, HLA-G expression levels

(measured by MRFI) were significantly higher in EVs isolated from

MM patients (MRFI, median ± SE: 10.91 ± 3.08) compared to HDs

(2.29 ± 0.23, p < 0.0001). Similar values were measured in NDMM

(10.72 ± 3.76, p < 0.0001) and RRMM (15.12 ± 5.16, p < 0.0001)

subgroups, both significantly elevated over controls (p<0.0001). The

percentage of HLA-G+ EVs followed a similar trend (Figure 2D)

with MM patients showing increased frequencies (16.24 ± 2.53%)

relative to HDs (6.59 ± 1.52%, p = 0.001). Again, both NDMM

(16.23 ± 2.44%, p = 0.0006) and RRMM (16.24 ± 7.13%, p = 0.01)
Frontiers in Immunology 06
were significantly higher than controls, without significant

differences between the disease stages. PD-1 expression, as

assessed by MRFI, was also significantly elevated in MM-derived

EVs (3.65 ± 2.7) compared to HDs (1.53 ± 0.44, p = 0.0005), with no

notable differences between NDMM (3.35 ± 3.52) and RRMM

(4.86 ± 1.02) (Figure 2E). However, the percentage of PD-1+ EVs

was uniformly low across all groups, including HDs (1.44 ± 1.63%),

MM patients (3.28 ± 0.69%), NDMM (3.41 ± 0.83%), and

RRMM (2.74 ± 1.21%), with no significant differences

(Figure 2F). Among the checkpoint molecules we assessed, PD-L1

showed the highest expression and the most striking differences. As

shown in Figure 2G, PD-L1 MRFI was significantly higher in

MM-derived EVs (52 ± 14.1) compared to healthy controls (9.2 ±

2.15, p < 0.0001) with a marked increase in RRMM (78.66 ± 31.47)

compared to NDMM (43.49 ± 15.69, p = 0.04). The percentage

of PD-L1+ EVs was also significantly increased in MM patients

(89.63 ± 2.17%) versus HDs (75.68 ± 11.46%, p = 0.001), with

comparably high levels in NDMM (94.73 ± 2.8%) and RRMM (95.7

± 0.75%) (Figure 2H). A representative experiment and flow

cytometry profiles from three HD and three MM patients are

shown in Figures 3A, B, respectively. Next, we analyzed the

correlation between the expression of CD138 and immune

checkpoints on MM-derived EV. A significant correlation was

found between CD138 and HLA-G expression (p < 0.0001,

Figure 4A), suggesting malignant PCs as a source of HLA-G+

immunosuppressive EVs. Conversely, no correlation was observed

between CD138 and PD-1/PD-L1 (Supplementary Figure 1). To

validate these data, we assessed the co-expression of CD138 and

HLA-G. As shown in Figure 4B, we identified 10.3 ± 2.47% CD138+

EVs, 16.2 ± 2.53% HLA-G+ EVs, and 5.83 ± 2.25% double-positive

CD138+/HLA-G+ EVs in patients, confirming that a considerable

fraction of PCs-derived EVs carries HLA-G. To further validate

these observations at the transcriptomic level, we analyzed HLA-G

mRNA expression in PCs from patients and donors using the

CoMMpass database. As shown in Figure 4C, HLA-G transcript

levels were significantly higher in malignant PCs compared to other

BM cell populations (log2(TPM+1), p = 0.0416), supporting the

protein-level data and reinforcing the immunosuppressive

phenotype of tumor cells. Overall, MM-derived EVs exhibit a

distinct immune checkpoint profile, with markedly elevated levels

of HLA-G and PD-L1. The correlation between CD138 and HLA-G

suggests that malignant PCs-derived EVs actively contribute to

immune evasion within the BM microenvironment. These findings

highlight checkpoint-expressing EVs as potential biomarkers and

therapeutic targets to restore anti-tumor immunity and overcome

resistance in MM.
3.4 EVs from MM patients modulate
immune responses

We next investigated whether EVs isolated from the BM plasma

of MM patients modulate immune responses to the bacterial

superantigen staphylococcal enterotoxin B (SEB). To assess early

immune activation, we measured intracellular IFN-g production in
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T lymphocytes from HDs post SEB stimulation of total MNCs, with

or without the addition of MM-derived EVs. As shown in

Figure 5A, SEB stimulation markedly increased the percentage of

IFN-g+ CD4+ T lymphocytes (median ± SE: unstimulated, 0.035 ±

0.01%; SEB-stimulated, 2.7 ± 0.06%). Co-incubation with MM-
Frontiers in Immunology 07
derived EVs significantly attenuated this response (1.83 ± 0.03%,

p = 0.02). Importantly, the addition of an anti-HLA-G blocking

antibody partially restored IFN-g production (2.03 ± 0.04%,

p = 0.05), suggesting a key role for HLA-G in mediating EV-

induced immunosuppression. In contrast, the blockade of PD-L1
FIGURE 2

Phenotypical analysis of EVs in BM samples. Expression of CD138 (A, B), HLA-G (C, D), PD-1 (E, F) and PD-L1 (G, H) on EVs from HD (grey dots) and
MM patients (black dots), including ND (grey dots) and RR (black dots) patients. Results are expressed as median relative fluorescence intensity (MRFI)
and percentage of CD138+ EVs. Horizontal bars indicated medians. Statistically significant differences are indicated. (ns p > 0.05; *p≤ 0.05; **p≤ 0.01;
***p≤ 0.001).
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FIGURE 4

Phenotypic analysis of EV in BM samples. (A) Correlations and linear regressions between CD138 and HLA-G expression. (B) Percentages of EVs
expressing CD138, HLA-G, or co-expressing both molecules. Horizontal bars indicated medians. (C) HLA-G transcript levels in MM plasma cells and
BM healthy counterparts expressed as log2(TPM+1). Box plots indicated first and third quartiles and medians, whereas whiskers indicated maximum
and minimum values. P values (t-test) and correlation values (Pearson’s) are indicated.
FIGURE 3

Phenotypical analysis of EV in BM samples. Representative flow cytometry profiles for each marker in three HDs (A) and three MM patients (B). Light
grey profiles indicate isotype-matched controls, and dark grey profiles represent specific antibody staining.
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did not significantly rescue IFN-g expression (1.91 ± 0.1%). Similar

results were observed in CD8+ T lymphocytes (Figure 5B), where

SEB stimulation increased the percentage of IFN-g+ cells from a

basal level of 0.06 ± 0.01% (unstimulated) to 4.11 ± 0.08%. This

activation was significantly reduced by MM-derived EVs (2.88 ±

0.08%, p = 0.02) and partially restored by anti-HLA-G blockade

(3.14 ± 0.07%, p = 0.05). Again, PD-L1 blockade had no significant

effect (2.93 ± 0.09%). To assess the impact of EVs on later stages of

the immune response, we evaluated T cell proliferation six days

post-SEB stimulation. As shown in Figure 5C, SEB significantly

enhanced CD4+ T cell proliferation (unstimulated, 10.3 ± 2.2%;

SEB-stimulated, 76.5 ± 0.21%). The addition of MM-derived EVs

led to a modest but significant reduction in cell proliferation (71.9 ±

3.6%, p = 0.02). In contrast, EVs had no suppressive effect on CD8+

T cell proliferation (Figure 5D) (unstimulated, 18.4 ± 4.6%; SEB,

39.4 ± 0.96%; SEB + EVs, 45.4 ± 5.8%). Notably, blocking HLA-G or

PD-L1 did not restore CD4+ or CD8+ T cell proliferation in this
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late-phase setting. Overall, these results suggest that MM-derived

EVs suppress early T cell activation, particularly IFN-g production,
and that HLA-G expressed on the surface of these EVs is partially

involved in this immunosuppressive effect. However, EV effect on T

cell proliferation at later stages appears limited. These findings

support a model in which tumor-derived EVs contribute to early

immune evasion, and suggest that targeting EV-associated HLA-G

may represent a promising strategy to restore anti-tumor immunity

in MM.
3.5 EVs from MM patients’ BM modulate
cytokine secretion in SEB-stimulated MNCs

Next, we evaluated whether EVs derived from the BM plasma of

MM patients modulate pro-inflammatory cytokine production by

total MNCs. Again, we use SEB stimulation to induce cytokine release
FIGURE 5

Immunoregulatory functions of BM-derived EV from MM patients. Peripheral blood mononuclear cells (PBMCs) from HDs were stimulated with
Staphylococcal enterotoxin B (SEB, 1 mg/mL) in presence or absence of BM-derived EVs isolated from NDMM patients. A total of 1 × 109 EVs per
condition were added to each well. In selected conditions, blocking antibodies were included to assess the contribution of immune checkpoint
molecules: anti–HLA-G (clone 87G, BioLegend) and anti–PD-L1 (clone 29E.2A3, BioLegend), each at a final concentration of 10 mg/mL, added at the
time of stimulation. (A, B) Intracellular IFN-g production by CD4+ and CD8+ T cells was evaluated after 18 hours of culture in the presence of
brefeldin A, for the final 6 hours. Cells were then fixed, permeabilized, and stained for intracellular IFN-g. Data are expressed as the median ±
standard error (SE) of the percentage of IFN-g+ cells among gated CD4+ (A) and CD8+ (B) T cells. (C, D) T cell proliferation: PBMCs labeled with
CFSE before SEB stimulation and cultured for 6 days in the presence or absence of MM-derived EVs and/or blocking antibodies, FACS quantification
for proliferating CD4+ (C) and CD8+ (D) T cells. Results are expressed as the median ± SE of the percentage of proliferating cells. Each experiment
was performed using PBMCs from at least three independent healthy donors, and EVs from pooled MM BM samples were used to ensure
consistency and reduce inter-patient variability. Statistical significance was assessed using paired or non-parametric tests as appropriate and is
indicated in the figure (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns, not significant).
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by MNCs. Cytokine concentrations in culture supernatants were

measured under various experimental conditions, as previously

described. As shown in Figure 6A, SEB induced a robust release of

GM-CSF (pg/mL, median ± SE: 6154 ± 49.2 vs. 0 ± 0.2 unstimulated),

which was further increased in the presence of MM-derived EVs

(7119 ± 77.72, p = 0.02). This effect was significantly reduced by anti-

HLA-G blockade (5660 ± 460.2, p = 0.05), while anti-PD-L1 had no

impact (6888 ± 190.5). IL-2 secretion was also markedly induced by

SEB (1297 ± 80.5 vs. 1.15 ± 2.1 unstimulated) and strongly suppressed

by MM-derived EVs (184.5 ± 25.73, p = 0.05; Figure 6B). This

inhibition was partially reversed by PD-L1 blockade (243.1 ± 25.93,

p = 0.05), while anti-HLA-G had no significant effect (172.3 ± 27.53).

IFN-a production was also significantly inhibited in EV-treated

cultures compared to SEB alone (0 ± 0.16 vs. 15.35 ± 2.02, p =

0.02) (Figure 6C). Both anti-HLA-G (3.5 ± 1.1, p = 0.03) and anti-

PD-L1 (3.1 ± 0.97, p = 0.03) partially restored IFN-a levels. For IL-4,

SEB modestly increased secretion (1 ± 0.16 vs. 0.35 ± 0.23

unstimulated), reduced by exposure to MM-EVs (0.6 ± 0.11, p =

0.02; Figure 6D). However, neither checkpoint blockade significantly

reversed this effect. Analysis of inflammatory and regulatory

cytokines showed that SEB stimulation induced IL-10 (583 ±

30.29), IL-6 (617.2 ± 35.16), and TNF-a (153.7 ± 5.84)

(Figures 6E–G, respectively). MM-derived EVs significantly

suppressed all three cytokines: IL-10 (348.8 ± 52.76, p=0.02), IL-6

(360.7 ± 11.58, p=0.02), and TNF-a (132.2 ± 5.18, p = 0.02). These

effects were reversed by anti-HLA-G, which restored IL-10 (646.5 ± 8,

p = 0.05), IL-6 (839.6 ± 88.7, p = 0.03), and TNF-a (158 ± 12.41, p =

0.05). Anti-PD-L1 partially restored IL-10 (610.8 ± 39.87, p = 0.05)

and IL-6 (565.9 ± 31, p = 0.03), but not TNF-a. No significant

modulation was observed for IL-5, IL-9, IL-12p70, or IL-17A under

any condition (data not shown). IFN-g levels exceeded the upper

detection limit of the assay across all conditions and are therefore not

reported. Collectively, these results demonstrate that MM-derived

EVs can profoundly alter cytokine responses in SEB-stimulated

MNCs, with HLA-G playing a central role in suppressing key pro-

inflammatory and immunoregulatory cytokines, and PD-L1

contributing more selectively. These findings reinforce the

immunosuppressive role of EVs in the MM BM microenvironment

and provide additional rationale for targeting EV-associated immune

checkpoint molecules to restore effective anti-tumor immunity.
3.6 Clinical correlations

As no significant associations were observed between EV

parameters and clinical outcomes (data not shown), likely due to

the limited sample size, we redirected our focus toward biological

features, specifically examining potential correlations with key

cytogenetic abnormalities. We evaluated the expression of CD138

and HLA-G on EVs, as well as HLA-G transcript levels, in relation

to high-risk alterations such as t(4;14) and gain of 1q (plus1q). As

shown in Figure 7A, patients harboring the t(4;14) translocation

exhibited a trend toward higher percentages of CD138+ EVs,

compared to those without the abnormality, although this

difference did not reach statistical significance (p = 0.177).
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Similarly, CD138+ EV levels were comparable between patients

with or without gain of 1q (p = 0.854). We next analyzed HLA-G

protein expression on EVs and HLA-G mRNA levels in malignant

plasma cells using the CoMMpass dataset, stratified by cytogenetic

risk groups. As shown in Figure 7B, patients with t(4;14) also

showed a non-significant trend toward increased HLA-G

expression at both the protein (EV) and transcriptomic levels (p

= 0.298 and p = 0.229, respectively). Interestingly, while HLA-G

expression on EVs did not differ between patients with or without

1q gain (p = 0.997), HLA-G transcript levels were significantly

higher in patients with 1q+ (p = 0.0396). Taken together, these

findings suggest that high-risk cytogenetic features, particularly

gain of 1q, may be associated with increased expression of

immunosuppressive molecules such as HLA-G at the mRNA

level, potentially contributing to an immune-evasive phenotype in

MM. Although most associations did not reach statistical

significance, the consistent trends observed, especially in the

context of known high-risk genomic alterations, underscore the

need for larger, well-powered studies to validate these preliminary

observations and to further elucidate the role of EVs in MM

immune regulation.
4 Discussion

Although initially considered marginal players in cancer biology,

EVs are now recognized as important contributors to tumor

progression. Over the past decade, mounting evidence has firmly

established EV involvement in key oncogenic processes across both

solid and hematologic malignancies (25, 26). As a result, EVs have

emerged as valuable biomarkers for diagnosis and disease

monitoring, and increasingly as potential therapeutic targets

(27, 28). By mediating intercellular communication, tumor-derived

EVs actively shape the tumor microenvironment, facilitating immune

escape, supporting metastasis, and promoting drug resistance

(19, 26). We previously reported the immunoregulatory and anti-

inflammatory functions of BM-derived EVs in neuroblastoma,

mediated by expression of HLA-G and PD-L1 (29). Such results

advocated for plausible similar mechanisms in myeloma, where EVs

have already been implicated in key pathological processes such as

modulation of the BM microenvironment (30), leading to

metastatic (31) and pathological processes such as angiogenesis and

osteolysis (32–35). In addition, the concentration of circulating

exosomes is significantly increased in MM patients compared to

individuals with MGUS and healthy controls, as previously reported

using plasmonic biosensing technologies (36). Furthermore, MM-

derived EVs are known to carry surface ligands for inhibitory

immune receptors, suggesting a broader role in immune

modulation (37, 38). However, despite these insights, a systematic

evaluation of their immunosuppressive functions in MM has

remained limited.

Mechanistically, EVs retain membrane components from cells

of origin, enabling them to interact with immune cells and suppress

effector functions, most notably by inhibiting T cell and NK cell

activity. This concept is supported by the identification of HLA-G+
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FIGURE 6

Modulation of cytokine production by BM-derived EVs from MM patients. PBMCs from HDs stimulated with SEB (1 mg/mL) and cultured for 6 days in
the presence or absence of MM-derived BM-EVs and/or blocking antibodies against HLA-G (10 mg/mL, clone 87G) or PD-L1 (10 mg/mL, clone
29E.2A3). A total of 1 × 109 EVs were added per condition. Supernatants were collected at day 6 and analyzed using a bead-based multiplex flow
cytometry assay (Miltenyi Biotec) to quantify cytokine concentrations. The production of the following cytokines was assessed: GM-CSF (A), IL-2
(B), IFN-a (C), IL-4 (D), IL-10 (E), IL-6 (F), and TNF-a (G). Results are expressed as pg/mL (median ± SE) from three independent experiments, each
performed using PBMCs from different HDs and pooled EVs from MM patients. Statistical significance is indicated as follows: ns (not significant),
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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EVs in various tumor types, where their presence correlates with

disease progression (39–44). Similarly, PD-L1+ EVs have been

detected across multiple cancers (45–58), with their abundance

associated with clinical outcomes and responses to CAR-based

therapies and immune checkpoint blockade (50–52, 57, 59–64).

Building on this evidence, we measured BM-derived EVs from MM

patients expressing significantly higher levels of HLA-G, PD-L1,

and PD-1, compared to healthy subjects. To our knowledge, this is

the first report of HLA-G+ EVs in the BM of MM patients. Such

findings broaden mechanistic knowledge on EV-mediated immune

checkpoint regulation in MM, and the results here described

complement previous studies where the role of soluble HLA-G in

tumor burden and disease progression was suggested as a potential

biomarker for disease monitoring and risk stratification (7, 65).

While PD-L1+ EVs have previously been described, particularly in

patients receiving anti-CD38 monoclonal antibody therapy such as

daratumumab (66, 67), our findings extend this observation to

treatment-naïve patients, highlighting the relevance of EV-

mediated immune suppression across disease stages. To gain

insight into the cellular origin of these checkpoint-expressing

EVs, we assessed tumor-associated antigens, with the detection of

CD138 supporting a malignant plasma cell origin for a subset of

EVs. However, our immunophenotypic analysis revealed that

monocytes, NK cells, and potentially MSC also contribute to the

EV pool. Notably, PD-1+ EVs may be primarily derived from

monocytes, whose contribution to EV release was demonstrated
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by a high percentage of CD14+ EVs. NK cells, despite their

cytotoxic potential, may instead play a regulatory role in limiting

EV release, consistent with their established anti-tumor functions.

Interestingly, we observed no significant differences in the

expression of immune checkpoint molecules between EVs from

newly diagnosed and relapsed/refractory MM patients, suggesting

that these immunosuppressive features are established early in

disease progression. However, the limited follow-up duration in

our cohort precluded a definitive assessment of their prognostic

significance. In support of a potential link between EV-mediated

immune suppression and MM pathobiology, we observed that

patients with high-risk cytogenetic alterations, particularly gain of

chromosome 1q, exhibited significantly higher HLA-G expression

at the mRNA level in malignant plasma cells. This association

suggests that immune-evasive mechanisms involving HLA-G may

be more prominent in genomically aggressive disease, and that EV-

associated checkpoints could serve as both functional and molecular

markers of high-risk MM. Functionally, our data demonstrate that

MM-derived EVs impair key aspects of T cell immunity, reinforcing

their role as active participants in immune evasion. EVs

significantly reduced IFN-g production by both CD4+ and CD8+

T cells, an effect primarily mediated by HLA-G, as PD-L1 blockade

had little impact. Given the central role of IFN-g in orchestrating

anti-tumor responses (68), this finding underscores the

immunosuppressive capacity of HLA-G–expressing EVs. While

we initially attempted to quantify secreted IFN-g using a
FIGURE 7

Clinical correlations of EV markers with cytogenetic abnormalities. (A, B) Percentage of CD138+ EVs in MM patients stratified by the presence or
absence of high-risk cytogenetic alterations, including t(4;14) (left) and gain of 1q (1q+) (right) (C, D). Expression of HLA-G on EVs (left panels) and
HLA-G mRNA levels in CD138+ plasma cells from the CoMMpass dataset (right panels) in patients stratified by t(4;14) (C) and 1q gain (D). Protein-
level results are expressed as percentage of HLA-G+ EVs, while transcript levels are shown as log2 (TPM + 1). Box plots display the median,
interquartile range (IQR), and minimum/maximum values. Statistical significance was assessed using appropriate non-parametric tests and the
corresponding p value is indicated.
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multiplex assay, technical limitations, such as signal saturation, and

the inability to dilute samples without compromising detection of

other cytokines, prevented reliable measurement. To overcome

such limitations, we plan to implement omic-based experiments

in future analyses to implement current results with complementary

insights. In contrast, T cell proliferation was only modestly affected,

with slight reductions in CD4+ cells. Notably, blocking HLA-G or

PD-L1 did not restore proliferative capacity, implicating additional

immunoregulatory pathways, such as adenosinergic signaling, in

EV-mediated suppression, as previously reported (22). Beyond

direct effects on T cells, MM-derived EVs altered cytokine

secretion profiles in SEB-stimulated MNCs. They enhanced GM-

CSF production, partially via HLA-G, which may promote the

recruitment of tumor-associated neutrophils and macrophages and

induce PD-L1 expression on these cells (69, 70). Conversely, IFN-a
and IL-6 secretions were suppressed. While IFN-a has known anti-

tumor effects and is used therapeutically in MM (71), IL-6 plays a

dual role, both supporting tumor growth and stimulating T cell

activity (72). Partial restoration of these cytokines upon checkpoint

blockade supports a direct role for HLA-G and PD-L1 in

modulating cytokine responses. Additional cytokines, including

IL-2, IL-4, IL-10, and TNF-a, were also influenced. Among these,

IL-2 and TNF-a are especially relevant for T cell expansion and

anti-tumor immunity (73, 74), while IL-4 and IL-10, linked to Th2

responses, may play a lesser role in MM immune surveillance. The

incomplete reversal of cytokine suppression by checkpoint

inhibition suggests involvement of other immunosuppressive

mediators, such as adenosine and additional inhibitory

ligands (22, 37).

In conclusion, this study provides a comprehensive

characterization of BM-derived EVs in MM, highlighting their

expression of key immune checkpoint molecules and their ability

to suppress T cell function and modulate cytokine networks. We

demonstrated that HLA-G and PD-L1 are partially involved in EV-

mediated immunosuppression, qualifying them as potential

therapeutic targets. Moreover, the observed association between

HLA-G expression and high-risk cytogenetic features, particularly

1q gain, suggests that EV-driven immune regulation may be linked to

more aggressive disease biology. Future studies are warranted to

explore the prognostic relevance of checkpoint-expressing EVs and to

evaluate whether targeting EV-associated immune checkpoints can

restore anti-tumor immunity and improve clinical outcomes in MM.
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