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Diagnostic lncRNA biomarkers
and immune-related ceRNA
networks for osteonecrosis
of the femoral head in
metabolic syndrome identified
by plasma RNA sequencing
and machine learning
Haoyan Sun †, Meng Xu †, Dianlong Mi, Qingyu Li, Haipeng Sun
and Yang Song*

Orthopedic Medical Center, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
Osteonecrosis of the femoral head (ONFH) is a disabling orthopedic condition

that remains challenging to diagnose at an early stage. Recent evidence suggests

that immune dysregulation plays a central role in the development of both ONFH

and metabolic syndrome (MetS), a cluster of metabolic abnormalities associated

with increased ONFH risk. However, reliable noninvasive diagnostic biomarkers

for ONFH, particularly in high-risk MetS populations, are still lacking. This study

aimed to identify key diagnostic long non-coding RNAs (lncRNAs) in ONFH

patients with MetS and to construct an immune-related competitive

endogenous RNA (ceRNA) network. Plasma lncRNA and mRNA expression

profiles from 9 ONFH patients and 6 healthy controls were analyzed to identify

differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs), followed

by ceRNA network construction. The MetS dataset from the Gene Expression

Omnibus (GEO) was integrated, and weighted gene co-expression network

analysis (WGCNA), functional enrichment, protein-protein interaction (PPI)

network analysis, MCODE, CytoHubba-MCC, and random forest (RF)

algorithms were employed to identify hub mRNAs and their associated

lncRNAs. A nomogram model was developed, and diagnostic potential was

evaluated using receiver operating characteristic (ROC) analysis and validation

in an independent cohort (45 ONFH and 45 control samples). A total of 424

DElncRNAs and 1,431 DEmRNAs were identified, and a ceRNA network involving

7 lncRNAs, 24 miRNAs, and 683 mRNAs was constructed. Integration with the

MetS dataset yielded 506 intersecting mRNAs, from which 11 hub mRNAs and 6

related lncRNAs were screened. Five key lncRNAs were selected by RF analysis to

construct a diagnostic model with strong predictive performance (AUC > 0.7 in

both RNA-seq and qRT-PCR validation). The immune-related ceRNA network

also demonstrated significant associations with immune cell infiltration patterns.

In conclusion, five candidate lncRNAs (MRPS30-DT, LINC01106, MIR100HG,
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WDR11-AS1, and PELATON) were identified as promising noninvasive diagnostic

biomarkers for ONFH inMetS populations. These findings offer novel insights into

immune-related regulatory mechanisms and may support early diagnosis using

peripheral blood.
KEYWORDS

osteonecrosis of the femoral head, lncRNA, diagnostic biomarker, immune infiltration,
metabolic syndrome
1 Introduction

Osteonecrosis of the femoral head (ONFH) is pathologically

characterized by localized death of bone cells (osteocytes,

osteoblasts, osteoclasts, etc.) and bone marrow, which is primarily

caused by disruption of the femoral head’s blood supply (1, 2). As

reparative processes fail to restore the necrotic area, structural

deterioration and eventual collapse of the femoral head occur (3).

According to epidemiological estimates, over 20,000 new ONFH

cases are diagnosed annually in the United States, with a total

patient population ranging from 300,000 to 600,000 (4). Despite its

high disease burden, early ONFH is difficult to diagnose due to its

insidious onset, lack of specific symptoms, and limited sensitivity of

imaging modalit ies. Osteoimmunological studies have

demonstrated that immune cells regulate the activity of bone

marrow mesenchymal stem cells (BMSCs), osteoblasts, and

osteoclasts, thereby influencing bone formation and repair (5–9).

However, current clinical tools are inadequate for detecting early

immune microenvironmental disturbances before structural bone

damage becomes apparent. This highlights the urgent need for

novel strategies to monitor early immunopathological changes and

identify minimally invasive biomarkers for timely ONFH

diagnosis (10).

Metabolic syndrome (MetS) is a state of metabolic

dysregulation, clinically characterized by obesity, dyslipidemia,

hyperglycemia, and hypertension (11). Obesity, dyslipidemia, and

hyperglycemia have been shown to increase the risk of ONFH and

are considered to be associated with its development (12, 13).

Evidence also indicates that immune cells participate in the

physiological and pathological processes of MetS and its

complications (14, 15).

Recent studies suggest that ONFH and MetS share overlapping

molecular mechanisms, including lipid metabolic disorders,

dysregulated signaling pathways, and chronic low-grade

inflammation. Impaired fatty acid degradation and lipid

accumulation are implicated in vascular injury and bone necrosis

in ONFH, as well as in insulin resistance and inflammation in MetS

(12, 16, 17). The Wnt/b-catenin signaling pathway, which regulates

bone formation and metabolic homeostasis, is suppressed in both

glucocorticoid-induced ONFH and MetS, suggesting a shared

pathogenic mechanism (18–21). Likewise, the Hedgehog signaling
02
pathway regulates hepatic lipid metabolism and osteogenesis,

underscoring its dual involvement in ONFH and metabolic

disorders (22–24). Although this study does not primarily focus

on MetS itself, we chose to investigate ONFH within the MetS

population based on their potential associations in terms of

metabolic abnormalities, immune mechanisms, and key signaling

pathways. Moreover, compared with the general population, MetS

patients represent a clinically high-risk group for ONFH and are

more likely to undergo routine blood testing, making them well-

suited for non-invasive plasma biomarker–based screening

strategies. Therefore, identifying ONFH-related immune

biomarkers in this population is not only feasible but also of

greater clinical relevance.

Increasing evidence suggests that long non-coding RNAs

(lncRNAs) play important roles in immune regulation (25, 26),

and have been widely explored as potential diagnostic biomarkers in

various diseases, such as cancer (27), periodontitis (28), and

cardiovascular diseases (29). In the context of ONFH, lncRNAs

such as MALAT1 (30, 31), HOTAIR (32), GAS5 (33), EPIC1 (34),

NORAD (35), MIAT (36), and DGCR5 (37) have been implicated

in dexamethasone-induced cytotoxicity or in the regulation of

osteogenic and adipogenic differentiation of BMSCs—both of

which are important to ONFH pathogenesis. Moreover, lncRNA

expression profiles in necrotic bone tissue and BMSCs from ONFH

patients differ significantly from those of fracture patients (38–41),

further supporting the diagnostic potential of lncRNAs in early

ONFH. Recent studies have shown that several lncRNAs participate

in MetS-related processes and may serve as valuable biomarkers

(42, 43). For example, APQ AS expression correlates with

inflammatory biomarkers , whi le MALAT1 modulates

inflammation and oxidative stress by targeting NF-kB and

Keap1–Nrf2 pathways, and is positively associated with pro-

inflammatory cytokines such as IL-6 and TNF-a (44–46).

HOTAIR and GAS5 have been implicated in metabolic

dysregulation, particularly in processes such as insulin resistance,

adipose tissue inflammation, and lipid metabolism abnormalities

(47). These findings suggest that certain lncRNAs may have

overlapping relevance to both ONFH and MetS. In particular,

MALAT1, HOTAIR, and GAS5 have been studied in the context

of both conditions, indicating their potential as molecular links.

However, most ONFH-related lncRNA studies have focused on
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bone tissue or BMSCs, with limited analyses using peripheral blood

and few comparisons to healthy controls. Given their accessibility

and noninvasive nature, plasma lncRNAs hold promise as

biomarkers for early ONFH detection, especially in high-risk

populations such as those with MetS.

Despite the potential of lncRNAs in ONFH diagnosis, functional

annotation remains challenging due to their non-coding nature and

lack of well-defined ontology. In contrast, mRNAs are better

characterized. The competitive endogenous RNA (ceRNA)

hypothesis provides an indirect approach to infer lncRNA function

by constructing regulatory networks based on shared microRNA

(miRNA) interactions (48). In this model, lncRNAs competitively

bind miRNAs, relieving their inhibition on target mRNAs and thus

influencing downstream gene expression (48). Recent studies have

highlighted the relevance of ceRNA networks in bone-related

diseases. For example, MALAT1 promotes osteoclast differentiation

by sponging miR-329-5p and upregulating PRIP (49), and FGD5-

AS1 enhances STAT3 expression via miR-296-5p to reduce steroid-

induced apoptosis in ONFH cells (50). HOTAIR has also been shown

to regulate osteogenic differentiation in non-traumatic ONFH by

targeting miR-17-5p (51). Additionally, immune cell-associated gene

signatures have been identified in steroid-induced ONFH, suggesting

that immune infiltration plays a key role in its progression (52). Given

the contribution of immune dysregulation to ONFH, especially in the

context of MetS, constructing an immune-associated lncRNA–

miRNA–mRNA ceRNA network may help uncover novel

regulatory pathways and diagnostic biomarkers.

In this study, we aimed to identify plasma lncRNA biomarkers

for the early diagnosis of ONFH, particularly in individuals with

MetS, a high-risk population. To this end, we first performed high-

throughput RNA sequencing to identify differentially expressed

lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in plasma

samples from ONFH patients and healthy controls. A lncRNA–

miRNA–mRNA ceRNA network was then constructed to explore

potential regulatory interactions. To further enhance disease

specificity and functional relevance, we incorporated the

GSE98895 dataset to identify MetS-related mRNA co-expression

modules via weighted gene co-expression network analysis

(WGCNA). MRNAs shared between the ONFH ceRNA network

and MetS modules were defined as ONFH–MetS–related targets,

from which upstream regulatory lncRNAs were extracted. Finally,

machine learning algorithms were employed to select robust

lncRNA biomarkers with diagnostic potential. This integrated

approach may provide new insights into ONFH pathogenesis and

facilitate the development of noninvasive plasma-based

screening strategies.
2 Materials and methods

2.1 Clinical sample collection

Figure 1 illustrates the study’s workflow. This study was

approved by the Ethics Committee of Second Affiliated Hospital

of Jilin University (Ethical Approval No.: 2023-207). Between
Frontiers in Immunology 03
February and November 2023, nine patients diagnosed with non-

traumatic ONFH who underwent hip replacement at the

Department of Joint Surgery, The Second Affiliated Hospital of

Jilin University, were enrolled in the ONFH group, alongside six

healthy controls from routine physical exams. The diagnosis of

ONFH was based on imaging, clinical history, and Ficat staging.

Patients with ONFH secondary to trauma, tumors, autoimmune

diseases, congenital hip anomalies, or genetic disorders were

excluded from the study. The controls had no history of ONFH,

hip disorders, malignancies, immune diseases, heavy alcohol

consumption, or prolonged corticosteroid use. Fasting peripheral

blood samples (5 mL) were collected between 6:00 and 7:00 AM on

the second day after admission. Plasma was isolated and stored at

−80 °C.
2.2 RNA extraction and RNA sequencing

Total RNA was extracted from plasma using TRIzol™ reagent

(Invitrogen, Thermo Fisher Scientific, China) according to the

manufacturer’s protocol. rRNA was removed using the MGIEasy

rRNA Depletion Kit (MGI Tech Co., Ltd., China) to enrich

lncRNAs and mRNAs. The remaining RNA was fragmented and

reverse-transcribed into double-stranded cDNA using the MGIEasy

RNA Directional Library Preparation Kit (MGI Tech Co., Ltd.,

China). The double-stranded cDNA was adenylated and ligated

with adapters, followed by amplifying the ligated product and

circularizing the PCR product to generate a single-stranded

circular DNA library. Sequencing was performed on the

DNBSEQ platform (MGI Tech Co., Ltd., China).

This RNA extraction was performed on a total of 15 plasma

samples (9 ONFH patients and 6 healthy controls), which were used

exclusively for RNA sequencing to identify differentially

expressed lncRNAs.
2.3 Quality control and differential
expression analysis of lncRNAs and mRNAs

The raw sequencing data were strictly filtered using SOAPnuke

(v1.5.2). Clean reads were aligned to the human reference genome

using HISAT (v2.0.4), and Bowtie2 was further employed to align

the clean reads to the reference genome, generating alignment

results. Transcriptome sequencing was conducted on human

plasma samples using the NCBI reference genome Homo_sapiens

(GCF_000001405.39_GRCh38.p13). In the quantitative transcript

expression analysis, transcript randomness, coverage, and

sequencing saturation were evaluated to ensure the biological and

statistical validity of the data. Pearson correlation coefficients of

gene expression levels between samples were calculated to assess

sample correlations. Principal component analysis (PCA) was

applied to gene expression data for dimensionality reduction,

identifying outliers and closely related sample clusters. Box plots

of gene expression were generated for each sample to assess data

dispersion and gene expression density plots were created to
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identify the primary distribution range of gene expression. Genes

were classified based on expression levels (TPM ≤ 1, TPM: 1-10,

TPM ≥ 10), and TPM values were log2-transformed before

downstream analysis to stabilize variance. Their distribution

across samples was visualized using stacked bar charts.

Differentially expressed lncRNAs and mRNAs between the ONFH

and control groups were identified using DESeq2, with thresholds

of |log2 (fold change) | ≥ 1 and Q-value ≤ 0.05. Volcano plots and

heatmaps were generated using the R (Version 4.4.2) packages

ggplot2 and pheatmap.
2.4 Construction of the lncRNA ceRNA
network and enrichment analysis of
mRNAs in the network

Seven lncRNAs were selected for ceRNA network analysis based

on the following criteria: (1) |log2(fold change)| ≥ 1 and adjusted p-

value < 0.05; (2) consistent and detectable expression across ONFH

plasma samples; (3) annotation in both starBase v2.0 (53) (https://

rnasysu.com/encori/index.php) and LncBase v3 databases (54)

(https://diana.e-ce.uth.gr/lncbasev3/interactions); and (4) reliable

primer design feasibility for Quantitative real-time Polymerase

Chain Reaction (qRT-PCR).
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MiRNAs predicted to interact with the selected lncRNAs were

identified using both starBase v2.0 and LncBase v3, and only the

overlapping miRNAs from the two databases were retained.

Subsequently, miRNA-targeted mRNAs were predicted using the

MiRWalk database (http://mirwalk.umm.uni-heidelberg.de/), and

intersected with the DEmRNAs identified from ONFH plasma

samples to generate the final target mRNA set. The ceRNA

regulatory network was then constructed based on these filtered

lncRNA–miRNA and miRNA–mRNA interaction pairs.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were performed on the final

mRNAs using the Metascape database (55) (https://metascape.org).

GO terms and KEGG pathways with p-values less than 0.05 were

considered statistically significant, and the enrichment results were

visualized using the ggplot2 R package.
2.5 Acquisition of the MetS dataset
(GSE98895) and WGCNA analysis

The raw dataset GSE98895 (56), which contains samples from

20 normal individuals and 20 patients with MetS, was downloaded

from the Gene Expression Omnibus (GEO) database (57) (https://

www.ncbi.nlm.nih.gov/geo/). Weighted Gene Co-expression
FIGURE 1

Workflow of this study.
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Network Analysis (WGCNA) (58) was executed to identify modules

associated with MetS. A weighted adjacency matrix was constructed

using a power function, and the optimal soft threshold (b) was

determined using the “pickSoftThreshold” function. The adjacency

matrix was then transformed into a Topological Overlap Matrix

(TOM). The network connectivity of each gene was defined as the

sum of its adjacency relationships with all other genes, and

dissimilarity (1-TOM) was computed. Hierarchical clustering was

applied to group genes with similar expression profiles into gene

modules, with a minimum module size of n = 30. A gene

dendrogram was constructed, and module eigengene dissimilarities

were calculated. Finally, the feature gene network was visualized.
2.6 ONFH-MetS-mRNAs enrichment
analysis

The mRNAs from the ONFH lncRNA ceRNA network were

intersected with genes from the key modules in the MetS dataset to

identify ONFH-MetS-mRNAs, which were subsequently subjected

to GO and KEGG enrichment analysis using the method described

in Section 2.4.
2.7 Identification of key mRNAs and
lncRNAs

A protein-protein interaction (PPI) network was constructed

using the STRING database (59) (www.string-db.org) with a

minimum interaction score threshold of 0.400 and subsequently

visualized using Cytoscape (60). Key nodes in the network were

identified using the CytoHubba-MCC and MCODE plugins, which

were applied to select the intersection of key ONFH-MetS mRNAs.

The lncRNA ceRNA network for these mRNAs was then identified

based on the constructed ceRNA network. To further prioritize

candidate lncRNAs, Random Forest (RF) analysis (61) was

performed using the “randomForest” R package (62) (version

4.7.1.2), with the number of trees (ntree) set to 500. A fixed

random seed was applied before model training using set.seed

(123) to ensure reproducibility. Variable importance was

evaluated using the Mean Decrease in Gini index.
2.8 The construction and evaluation of key
lncRNAs risk prediction model

A nomogram was developed to provide clinical value for the

diagnosis of ONFH. Based on the selected candidate lncRNAs, the

nomogram was constructed using the “rms” R package. “Points”

represent the score for each candidate lncRNA, and “Total Points”

refers to the sum of the scores of all selected lncRNAs. We used the

‘pROC’ R package to evaluate the accuracy of our model by plotting

the receiver operating characteristic (ROC) curve and calculating

the area under the curve (AUC), with an AUC > 0.7 considered an

ideal diagnostic threshold.
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To mitigate overfitting and assess generalizability, we further

implemented 3-fold cross-validation using the “caret” package.

Cross-validated predictions were pooled to construct an overall

ROC curve, which was used to evaluate model discrimination.

These predictions were also used to generate Decision Curve

Analysis (DCA) curves to assess clinical utility. Finally, to

simulate real-world deployment, a final logistic regression model

was retrained on the full dataset, and the corresponding nomogram

and calibration curve were plotted. Calibration was performed

using bootstrap resampling (B = 1000), demonstrating strong

agreement between predicted and observed risks.
2.9 Validation of key lncRNAs risk
prediction model by qRT-PCR

To validate the reliability of the results, RNA was extracted from

plasma samples of 45 ONFH patients and 45 controls using the

Starvio cfRNA Easy Kit (Shanghai Starvio Biotechnology Co., Ltd.,

China). Reverse transcription was conducted using the SureScript™

First-Strand cDNA Synthesis Kit (Cat. No. QP056, GeneCopoeia,

China). qRT-PCR was used according to the manufacturer’s

instructions using BlazeTaq™ SYBR® Green qPCR Mix 2.0 (Cat.

No. QP031, GeneCopoeia, China). The results were analyzed using

the 2−DDCt method, with ACTB as the internal reference gene for

normalizing lncRNA expression data. Five candidate lncRNAs

(MRPS30-DT, LINC01106, MIR100HG, PELATON, and

WDR11-AS1) were selected for validation. Primer sequences used

for each lncRNA are provided in Table 1 at the end of the

manuscript. ROC curves for each lncRNA were plotted, and AUC

values were calculated to construct the diagnostic model.

This validation step involved an independent cohort of 90

plasma samples (45 ONFH patients and 45 healthy controls) and
TABLE 1 Primers designed for qRT-PCR validation of lncRNAs in the
diagnostic model.

LncRNA name Forward and reverse primer

MRPS30_DT
F:GTGGGGATCTGGAGTGGAAG

R:TGGGTTGCAAAAAGCCCCTT

LINC01106
F:GTGGGGATCTGGAGTGGAAG

R:TGGGTTGCAAAAAGCCCCTT

MIR100HG
F:TCGAACTTTGGAGTGTGGCA

R:GGCACAAAGCTCCCTGGTTA

PELATON
F:CCTGAGGACTGTGTGTTCCC

R:CCTCAGCAGCCAACAGGTTA

WDR11_AS1
F:TGTGGTGCCCAAGAGCTATG

R:ATGGCTCAAGTGTCAGAGGC

ACTB
F:GTGGCCGAGGACTTTGATTG

R:CCTGTAACAACGCATCTCATATT
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aimed to confirm the differential expression of key lncRNAs

revealed by RNA sequencing.
2.10 Immune infiltration analysis

Immune cell infiltration analysis was conducted using the

“CIBERSORT” R package (63) to estimate the relative abundance

of 22 lymphocyte subtypes in both normal and ONFH samples. The

LM22 signature matrix was used as a reference, with 100

permutations (perm = 100). A fixed random seed (set.seed(123))

was applied prior to model execution to ensure reproducibility. Cell

types with zero abundance across all samples were removed from

the results. To evaluate differences in immune cell composition

between groups, Wilcoxon rank-sum tests were performed.

Additionally, Spearman correlation analysis was executed between

the expression levels of lncRNA-regulated key mRNAs and immune

cell proportions, using ONFH samples only.
2.11 Statistical analysis

Data processing and analyses were performed using SPSS

version 26.0 and R software (Version 4.4.2). Comparisons

between samples were carried out using t-tests or chi-square tests.

Patient baseline characteristics are presented as the mean ±

standard deviation, and a p-value < 0.05 was considered

statistically significant. Spearman correlation analysis was applied

to examine the relationship between mRNAs regulated by key

lncRNAs and immune cells. A p-value < 0.05 was considered

statistically significant.
3 Results

3.1 Patient basic information and quality
control

The average age of patients in the ONFH group was 58.67 ± 9.46

years, whereas the average age of healthy participants in the control

group was 63.33 ± 9.22 years (Supplementary Material, Table 1).

Statistical analysis revealed no significant differences between the

two groups in terms of age (P > 0.05). The results of data quality

control were carefully evaluated to ensure the reliability of

downstream transcriptomic analysis and are provided in the

supplementary material (Supplementary Material, Figure 1-11,

Tables 2-4).
3.2 Identification of DElncRNAs and
DEmRNAs

In the ONFH patient group, 424 DElncRNAs (43 upregulated

and 381 downregulated) (Figures 2A–C) and 1431 DEmRNAs (147

upregulated and 1284 downregulated) (Figures 2D–F) were
Frontiers in Immunology 06
identified, compared to the control group. These results indicate a

substantial transcriptomic alteration associated with ONFH.

Notably, among the differentially expressed mRNAs, several

immune-related genes, including SPOP, TNF, CD22, CD1D, and

others, were known to play key roles in immune cell activation and

inflammatory regulation. Furthermore, ceRNA network analysis

revealed that these immune genes are regulated by lncRNAs

including MRPS30-DT, LINC01106, MIR100HG, PELATON, and

WDR11-AS1 (Figure 3C). Detailed differential expression statistics

of these lncRNA–mRNA pairs are provided in Supplementary

Material, Table 5.
3.3 Construction of the lncRNA ceRNA
network and enrichment analysis of
mRNAs in the network

Seven lncRNAs were selected for further analysis based on their FC

value, Q-value, expression levels in the samples, and inclusion in

starBase v2.0 and LncBase v3. Annotation details for the lncRNAs

are summarized in Table 2. These lncRNAs overlapped with 24

miRNAs predicted by starBase v2.0 and LncBase v3 (Figure 4A).

19,877 mRNAs were predicted as targets of the 24 miRNAs using

miRWalk. By intersecting the lncRNA-predicted target mRNAs with

1,431 DEmRNAs from the plasma of ONFH patients, 683 target

mRNAs were identified (Figure 4B). A ceRNA regulatory network

was constructed, consisting of 7 lncRNAs, 24 miRNAs, and 683

mRNAs (Supplementary Material, Table 6). This network reflects the

potential post-transcriptional regulatory landscape mediated by

lncRNAs in ONFH. KEGG analysis further revealed significant

enrichment in fatty acid degradation, Wnt signaling pathways, NF-

kappa B signaling pathways, Hedgehog signaling pathways, mTOR

signaling pathways, PPAR signaling pathways, and fatty acid

metabolism (Figure 4C). These pathways are associated with

inflammation, lipid metabolism, and cell proliferation, suggesting

their involvement in ONFH pathogenesis. GO analysis of these 683

mRNAs revealed significant enrichment in the biological process of

protein modification by small protein conjugation or removal. The

most enriched molecular functions included transcription coregulator

activity, protein kinase binding, and kinase binding. The cellular

component analysis revealed that the most enriched category was the

external side of the plasma membrane (Figure 4D).
3.4 WGCNA analysis and identification of
key gene modules in the MetS dataset
(GSE98895)

WGCNA was performed to identify gene modules significantly

associated with MetS. A scale-free network was constructed using a

soft threshold of b = 1, achieving a scale independence of R² = 0.9

(Figures 5A, B). A hierarchical clustering tree was generated,

followed by dynamic tree cutting (Figure 5C), which resulted in

eight distinct gene modules visualized as a heatmap (Figure 5D).

The MEturquoise module (cor = 0.66, P = 6 × 10-6) and the
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MEpurple module (cor = −0.64, P = 1 × 10-5) showed the strongest

positive and negative correlations with MetS, respectively. The

MEturquoise module comprised 15,840 genes, indicating a

potentially critical gene set for metabolic regulation.
3.5 ONFH-MetS-mRNAs enrichment
analysis

A total of 506 overlapping mRNAs were identified by intersecting

the mRNAs from the lncRNA ceRNA network with genes in the MetS-

associated MEturquoise module (Figure 6A). KEGG pathway analysis

indicated significant enrichment in the Hedgehog signaling pathway,

fatty acid degradation, and Wnt signaling pathway (Figure 6B). These

pathways are known to be involved in tissue development, lipid

metabolism, and inflammatory signaling, and may contribute

toxONFH pathogenesis through metabolic–immune crosstalk.

GOxenrichment analysis revealed that the most significantly

enriched biological process was protein modification by small protein

conjugation or removal. The top molecular functions

included acyltransferase activity and transcription coregulator

activity. The most enriched cellular components included the

ubiquitin ligase complex, cullin-RING ubiquitin ligase complex, and

microtubule (Figure 6C).
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3.6 Identification of key mRNAs and
lncRNAs

A PPI network analysis was first conducted on 506 ONFH-MetS-

related mRNAs (Supplementary Material, Table 7), and hub genes with

a degree ≥ 5 were visualized using Cytoscape v3.10.3 (Figure 7A). A key

cluster of 15 mRNAs was further identified using MCODE (Figure 7B).

The top 15 hub mRNAs were selected using the CytoHubba-MCC

plugin (Figure 7C), and their intersection yielded 11 candidate mRNAs

(Figure 7D), including BIRC5, KIF14, SEM1, SPOP, BTRC, CD1D,

CD69, CDC6, TNF, CD22, and SDC1. These 11mRNAs were regulated

by six lncRNAs in the ceRNA network, namely LINC00630, MRPS30-

DT, LINC01106, MIR100HG, PELATON, and WDR11-AS1. To

construct a more robust diagnostic model, Random Forest was used

to select the top five most important lncRNAs (Figures 7E, F), MRPS30-

DT, LINC01106, MIR100HG, PELATON, and WDR11-AS1.
3.7 The construction and evaluation of key
lncRNAs risk prediction model

A nomogram incorporating five key lncRNAs was constructed

(Figure 8A). Calibration curve analysis demonstrated minimal

discrepancies between the predicted and observed risks
FIGURE 2

The bar plots, volcano plots, and heatmaps of DElncRNAs and DEmRNAs. (A) Bar plot of the number of DElncRNAs. (B) Volcano plot of DElncRNAs.
(C) Clustering heatmap of DElncRNAs. (D) Bar plot of the number of DEmRNAs. (E) Volcano plot of DEmRNAs. (F) Clustering heatmap of DEmRNAs.
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(Figure 8B). The diagnostic performance of the model and each

individual lncRNA was assessed by ROC analysis. The combined

model demonstrated excellent discriminatory power, achieving an

AUC of 1.00 on the training data (Figure 8C). To reduce overfitting

and assess generalization, 3-fold cross-validation was performed,

and the pooled cross-validated predictions were used to draw an
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overall ROC curve, yielding an AUC of 0.796 (Figure 8D). DCA

analysis based on the same predictions showed a net clinical benefit

over default strategies in the 0.4–0.8 threshold range (Figure 8E).

The AUC values for the five lncRNAs were as follows: MRPS30_DT

= 0.731, LINC01106 = 0.815, MIR100HG = 0.796, PELATON =

0.889, and WDR11_AS1 = 0.648 (Figure 8F). Although the
FIGURE 3

Immune cell infiltration analysis in ONFH. (A) Comparative analysis of 22 immune cell types between ONFH and control groups (ns: no significance,
*p < 0.05, **p < 0.01). (B) Correlation analysis of 8 mRNAs with various immune cell types. (C) Core lncRNA immune-related ceRNA network.
Orange diamonds represent upregulated lncRNAs, red diamonds indicate downregulated lncRNAs, rectangles represent miRNAs, green ovals
correspond to upregulated mRNAs, and blue ovals represent downregulated mRNAs.
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combined model’s AUC was lower than that of some individual

lncRNAs, this is likely due to the use of cross-validation, which

provides a more realistic and conservative estimate. These findings

support the robustness and clinical relevance of the multivariable

model compared with individual biomarkers.
3.8 Validation of key lncRNAs risk
prediction mode

To further validate the accuracy of the integrated bioinformatics

analysis, qRT-PCR was conducted to measure the expression levels

of five candidate lncRNA diagnostic biomarkers in plasma samples

from 45 patients with ONFH and 45 healthy controls. The results

revealed that MRPS30-DT and LINC01106 were significantly

upregulated in patients with ONFH, while MIR100HG exhibited

an increasing trend. In comparison, PELATON and WDR11-AS1

show a downward trend (Figure 9A). These expression trends are

consistent with those observed in the RNA sequencing data,

confirming the robustness of the findings. The combined lncRNA

model achieved an AUC greater than 0.7 (Figure 9B), surpassing the

AUCs of individual lncRNAs (Figure 9C), indicating the potential

clinical utility and translational value of this diagnostic model.
3.9 Immune infiltration analysis

The CIBERSORT algorithm was employed to estimate the

relative proportions of 22 immune cell types in each sample.

Compared to the control group, the ONFH group exhibited

elevated proportions of resting dendritic cells and monocytes, and

a decreased proportion of M2 macrophages, indicating a substantial

alteration in the immune microenvironment (Figure 3A). Further

analysis revealed associations between the 11 hub mRNAs and

immune cell infiltration. Specifically, BIRC5, BTRC, CD1D, CD22,

KIF14, SEM1, SPOP, and TNF were correlated with various

immune cell types, suggesting potential roles in immune

regulation (Figure 3B). A ceRNA subnetwork comprising five

lncRNAs and eight immune-related mRNAs was constructed

(Figure 3C), highlighting possible lncRNA-mediated regulation of

immune signaling pathways in ONFH.
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4 Discussion

ONFH is a debilitating orthopedic condition that markedly

impairs patients’ quality of life (64). Owing to poorly understood

molecular mechanisms and a lack of reliable biomarkers, early

diagnosis and targeted therapy for ONFH remain challenging (65).

Although several lncRNAs, such as MALAT1 (66) and AWPPH

(67), have been implicated in the regulation of ONFH,

comprehensive analyses of peripheral blood lncRNA profiles in

ONFH patients versus healthy controls remain limited.

MetS, which has been increasingly associated with ONFH,

involves immune dysregulation and disordered lipid metabolism

—both of which are also important features of ONFH—suggesting a

potential molecular link between the two conditions. However,

existing studies have largely overlooked the association between

ONFH and MetS, limiting the diagnostic potential of lncRNAs in

metabolic contexts. Notably, several lncRNAs, including MALAT1,

HOTAIR, and GAS5, exhibit dysregulated expression in both

ONFH and MetS, suggesting that they may serve as molecular

bridges linking the two diseases. Our functional enrichment

analysis revealed that the 506 mRNAs overlapping between the

lncRNA ceRNA network and MetS-related WGCNA modules were

significantly enriched in metabolism-related pathways, including

fatty acid degradation, Wnt signaling, and Hedgehog signaling,

indicating potential shared regulatory mechanisms between ONFH

and MetS. Impaired fatty acid degradation may contribute to lipid

accumulation (16, 17), while disturbances in Wnt and Hedgehog

signaling could affect bone formation (18, 24). Additionally, altered

protein degradation pathways suggest potential disruption of

cellular homeostasis, leading to chronic inflammation and tissue

damage (68, 69). These findings provide a theoretical basis and new

perspective for early ONFH screening in the context of

metabolic dysfunction.

In this study, we performed high-throughput sequencing of

peripheral blood lncRNAs and mRNAs from ONFH patients and

healthy controls. By integrating bioinformatics and machine learning

approaches, we identified five key lncRNAs (MRPS30_DT,

LINC01106, MIR100HG, PELATON, and WDR11_AS1) and their

immune-related ceRNA networks, and constructed a predictive

nomogram specific to ONFH in patients with MetS. Given that all

samples in this study and the MetS dataset from the GEO database
TABLE 2 Annotation information of lncRNAs.

Gene symbol Regulation Chromosome Map loc Start End Strand log2FoldChange Q-value

LINC00630 UP NC_000023.11 Xq22.1 10276913 10264323 + 22.18125013 1.56048E-12

MRPS30-DT UP NC_000005.10 5p12 4474328 4408793 - 6.527571158 0.024635353

LINC01106 UP NC_000002.12 2q13 110375109 110384536 - 6.631867245 0.035579441

FAM201A UP NC_000009.12 9p13.1 38621088 38623384 + 5.450417187 0.0124588

MIR100HG UP NC_000011.10 11q24.1 12202839 12242871 - 7.103866475 6.66E-04

PELATON DOWN NC_000020.11 20q13.13 50267478 50279788 + -6.954937628 0.039044083

WDR11-AS1 DOWN NC_000011.10 11q26.12 120761812 120851179 - -6.123165599 0.027309225
fr
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were derived from peripheral blood, assessing the expression levels of

these five lncRNAs in MetS patients represents a feasible strategy for

ONFH risk prediction. Peripheral blood testing is widely used in the

diagnosis of various diseases (70, 71). Although these lncRNAs have

shown potential as independent diagnostic biomarkers, we aim to

further refine the model by developing a quantitative scoring system

based on their expression levels (72). Higher scores would indicate
Frontiers in Immunology 10
greater predictive value, thus enabling early monitoring and

intervention in MetS patients—critical for timely diagnosis and

management of ONFH.

The five lncRNAs identified in this study as potentially

associated with ONFH have not been previously reported in the

context of this disease. LINC01106 is upregulated in lung

adenocarcinoma, non-small cell lung cancer, and bladder cancer
FIGURE 4

Enrichment analysis of mRNAs in the network. (A) The intersection of miRNAs predicted by starBase v2.0 and LncBase v3. (B) The intersection of
mRNAs predicted by miRWalk and DEmRNAs in the plasma of ONFH patients. (C) KEGG analysis of the mRNAs. (D) GO analysis of the mRNAs.
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(73–75) and functions as a novel diagnostic and prognostic marker

in colorectal and gastric adenocarcinomas (76, 77). LINC01106

regulates mRNA expression by acting as a sponge for hsa-miR-34a-

5p (78). lncRNA Tmem235 modulates BIRC5 expression by

competitively binding to miR-34a-3p (79). Our results suggest

that LINC01106 upregulation enhances the expression of BIRC5

and SEM1 by sequestering hsa-miR-34a-5p. In ONFH samples,

BIRC5 and SEM1 expression is closely correlated with immune cell

infiltration, suggesting a potential role in modulating the immune

microenvironment of ONFH.

MIR100HG is implicated in a variety of human diseases. It is

highly expressed in the blood of patients with herniated discs and in

several cancers, including colorectal, gastric, and osteosarcoma (80–
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83). MIR100HG promotes the proliferation of nasopharyngeal

carcinoma cells via the miR-136-5p/IL-6 axis (84) and enhances

the growth of triple-negative breast cancer cells through the miR-

5590-3p/OTX1 axis (85). TGFb induces MIR100HG expression,

amplifying TGFb signaling by promoting the expression and

secretion of TGFb1 (86). TGFb also promotes Th17 cell

differentiation (87), with elevated levels of Th17 cells and IL-17

observed in the peripheral blood of ONFH patients (88). Th17 cells

secrete IL-9 (89), which is elevated in ONFH cartilage and

contributes to cartilage degradation via activation of the JAK-

STAT signaling pathway in vitro (90). MRPS30-DT is

significantly upregulated in breast cancer (91), and its co-

expressed genes are enriched in pathways related to Th17 cell
FIGURE 5

Identification of the most relevant module genes in MetS through WGCNA. (A) Scale-free Topology Fit Index Plot, selecting b = 1 as the optimal soft
threshold. (B) Mean Connectivity Plot. (C) Gene co-expression modules in MetS. (D) Heatmap showing the association between modules and MetS.
The turquoise module shows a strong positive correlation with MetS. The correlation coefficients and p-values are represented by the numbers and
the numbers in parentheses, respectively.
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differentiation (92). Collectively, MIR100HG and MRPS30-DT may

play pivotal roles in ONFH pathogenesis.

WDR11-AS1 expression is downregulated in osteoarthritic

cartilage and inhibits inflammation-induced extracellular matrix

(ECM) degradation by directly binding to PABPC1, highlighting its

potential as a therapeutic target for osteoarthritis (93). WDR11-AS1 is

positively co-expressed with TNF (94). In our ceRNA network,

downregulation of WDR11-AS1 reduces its sequestration of hsa-

miR-34a-5p, thereby diminishing TNF expression. TNF activates the

NF-kB signaling pathway, which regulates the production of pro-

inflammatory cytokines and the recruitment of inflammatory cells,
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thereby promoting inflammation (95). Therefore, we hypothesize that

WDR11-AS1 may be critical in ONFH pathogenesis.

PELATON is upregulated in the tissues and plasma of patients

with inflammatory bowel disease and gastric cancer (96, 97) and

may serve as a potential biomarker for assessing the incidence and

prognosis of acute coronary syndrome (ACS) (98). PELATON

functions as an inhibitor of ferroptosis. Knockdown of PELATON

enhances reactive oxygen species (ROS) production and induces

ferroptosis (99). Ferroptosis is critically involved in the

pathogenesis of steroid-induced ONFH (SONFH), while SIRT6

suppresses ferroptosis, mitigates vascular endothelial damage,
FIGURE 6

Enrichment analysis of the intersecting genes between ONFH and MetS. (A) Intersection of mRNAs in the ONFH lncRNA ceRNA network and genes
in the MEturquoise module. (B) KEGG analysis of the mRNAs. (C) GO analysis of the mRNAs.
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promotes osteogenic differentiation, and prevents femoral head

necrosis (100). Inhibiting ferroptosis may protect bone cells from

oxidative damage, enhance bone repair in necrotic regions, and

improve skeletal outcomes in SONFH patients, offering a promising

strategy for disease intervention (101–103). Accordingly, reduced

PELATON expression may promote ferroptosis and contribute to

ONFH development. Thus, PELATON may serve as a diagnostic

biomarker and a therapeutic target for ONFH.

Grow ing ev i d en c e i nd i c a t e s t h a t i nfl amma to r y

osteoimmunology plays a critical role in the pathogenesis of

ONFH (104–107). ONFH is a chronic inflammatory disorder in

which persistent inflammation within and around the lesions

disrupts the dynamic balance between bone formation and

resorption, enhancing osteoclastic activity, suppressing

osteogenesis, and ultimately accelerating femoral head collapse

(108–111). Studies have demonstrated that a macrophage-

mediated chronic inflammatory immune microenvironment plays

a pivotal role in ONFH progression. During the progression of

ONFH, macrophages infi l trating necrotic bone tissue

predominantly undergo polarization toward the pro-

inflammatory M1 phenotype, leading to a disrupted M1/M2

macrophage ratio and elevated secretion of pro-inflammatory

cytokines, including IL-1b, TNF-a, and IL-6. This immunological

shift contributes to local immune dysregulation, perpetuates

chronic inflammatory responses, and ultimately impairs bone
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tissue regeneration (18, 112). In addition to macrophages,

neutrophils, T cells, and B cells are also implicated in ONFH

pathogenesis. Activated neutrophils release neutrophil

extracellular traps (NETs), which are web-like structures

composed of chromatin and antimicrobial proteins. In ONFH

patients, NET formation within small blood vessels surrounding

the femoral head disrupts local microcirculation, contributing to

ischemia (113). Imbalances in T cell subsets, B cell populations, and

cytokine expression have been observed in ONFH tissues (107, 110,

114). Consistent with our findings, ONFH patients exhibit

increased proportions of resting dendritic cells and monocytes,

along with reduced levels of M2 macrophages. Elucidating the

inflammatory signaling pathways and immune cell interactions

underlying ONFH is essential for advancing diagnostic and

therapeutic strategies.

Our study has several limitations. First, although high-

throughput sequencing of lncRNAs and mRNAs was performed

on samples from nine ONFH patients and six healthy controls, the

overall sample size remains relatively limited, which may affect the

generalizability of the findings. Second, the findings from our

bioinformatics analyses—including the ceRNA network, the

CIBERSORT-based immune cell differences between ONFH

patients and healthy controls, and the correlations between hub

genes and immune cell subsets—were all derived from

computational predictions and have not been experimentally
FIGURE 7

Identification of key mRNAs and lncRNAs. (A) PPI analysis of OMFH-MetS-mRNAs, displaying only nodes with a degree ≥ 5. (B) Selection of the key
gene cluster with 15 genes using MCODE. (C) Top 15 hub genes identified by CytoHubba-MCC. (D) Intersection of mRNAs from MCODE and
CytoHubba-MCC plugins. (E, F) RF screening of key DMPs, ranked by their importance scores.
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validated. Therefore, these findings require further investigation

through in vitro and in vivo experiments. Finally, ONFH and MetS

are multifactorial conditions with complex biological interactions.

As this study focused on a select number of plasma-derived

transcripts, it may not reflect the full range of molecular

mechanisms involved.
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5 Conclusions

High-throughput sequencing was performed to profile lncRNA

and mRNA expression in plasma samples from 9 ONFH patients

and six healthy controls. Through integrated bioinformatics and

machine learning approaches, five ONFH-associated lncRNAs
FIGURE 8

Construction of the nomogram model and its ROC curve. (A) Construction of a nomogram model based on 5 key lncRNAs to predict the risk in OA
patients. (B) Calibration curve to assess the prediction accuracy of the nomogram model. (C) ROC curve analysis of the nomogram model. (D) ROC
curve of the nomogram model based on 3-fold cross-validated predictions. (E) DCA based on cross-validated predictions. (F) ROC curve analysis of
each key lncRNA.
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(MRPS30-DT, LINC01106, MIR100HG, WDR11-AS1, and

PELATON) were systematically identified, and a diagnostic

nomogram specific to ONFH in MetS patients was established.

Moreover, immune dysregulation was observed in ONFH patients

with MetS, and an immune-related lncRNA ceRNA network was

constructed. This study identifies peripheral blood lncRNAs with

diagnostic potential for ONFH in MetS patients and highlights

novel molecular pathways and targets for future therapeutic

strategies and precision medicine.
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nasileniem bólu. Endokrynol Polska. (2018) 69:283–90. doi: 10.5603/ep.a2018.0031

89. Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD, Orban T,
et al. TGF-b Induces IL-9 Production from Human Th17 Cells. J Immunol. (2010)
185:46–54. doi: 10.4049/jimmunol.1000356

90. GengW, ZhangW,Ma J. IL-9 exhibits elevated expression in osteonecrosis of femoral
head patients and promotes cartilage degradation through activation of JAK-STAT signaling
in vitro. Int Immunopharmacol. (2018) 60:228–34. doi: 10.1016/j.intimp.2018.05.005

91. Wu B, Pan Y, Liu G, Yang T, Jin Y, Zhou F, et al. MRPS30-DT Knockdown
Inhibits Breast Cancer Progression by Targeting Jab1/Cops5. Front Oncol. (2019)
9:1170. doi: 10.3389/fonc.2019.01170

92. Shirani N, Mahdi-Esferizi R, Samani RE, Tahmasebian S, Yaghoobi H. In silico
identification and in vitro evaluation of MRPS30-DT lncRNA and MRPS30 gene
expression in breast cancer. Cancer Rep. (2024) 7:e2114. doi: 10.1002/cnr2.2114

93. Huang H, Yan J, Lan X, Guo Y, Sun M, Zhao Y, et al. LncRNA WDR11-AS1
Promotes Extracellular Matrix Synthesis in Osteoarthritis by Directly Interacting with
RNA-Binding Protein PABPC1 to Stabilize SOX9 Expression. Int J Mol Sci. (2023)
24:817. doi: 10.3390/ijms24010817

94. Long S, Wu B, Yang L, Wang L, Wang B, Yan Y, et al. Novel tumor necrosis
factor-related long non-coding RNAs signature for risk stratification and prognosis in
glioblastoma. Front Neurol. (2023) 14:1054686. doi: 10.3389/fneur.2023.1054686

95. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and
inflammation-associated diseases in organs. Oncotarget. (2017) 9:7204–18.
doi: 10.18632/oncotarget.23208

96. Lin Z, Zhou Z, Guo H, He Y, Pang X, Zhang X, et al. Long noncoding RNA gastric
cancer-related lncRNA1mediates gastric malignancy throughmiRNA-885-3p and cyclin-
dependent kinase 4. Cell Death Dis. (2018) 9:607. doi: 10.1038/s41419-018-0643-5

97. Wang S, Hou Y, Chen W, Wang J, Xie W, Zhang X, et al. KIF9-AS1, LINC01272
and DIO3OS lncRNAs as novel biomarkers for inflammatory bowel disease. Mol Med
Rep. (2017) 17:2195–202. doi: 10.3892/mmr.2017.8118

98. Chen L, Huang Y. High expression of lncRNA PELATON serves as a risk factor
for the incidence and prognosis of acute coronary syndrome. Sci Rep. (2022) 12:8030.
doi: 10.1038/s41598-022-11260-2
Frontiers in Immunology 18
99. Fu H, Zhang Z, Li D, Lv Q, Chen S, Zhang Z, et al. LncRNA PELATON, a
Ferroptosis Suppressor and Prognositic Signature for GBM. Front Oncol. (2022)
12:817737. doi: 10.3389/fonc.2022.817737

100. Fang L, Zhang G, Wu Y, Li Z, Gao S, Zhou L. SIRT6 Prevents Glucocorticoid-
Induced Osteonecrosis of the Femoral Head in Rats. Oxid Med Cell Longev. (2022)
2022:1–11. doi: 10.1155/2022/6360133

101. Yang H, Ding N, Qing S, Hao Y, Zhao C, Wu K, et al. Knockdown of lncRNA
XR_877193.1 suppresses ferroptosis and promotes osteogenic differentiation via the
PI3K/AKT signaling pathway in SONFH. Acta Biochim Biophys Sin. (2025) 57:1350–
62. doi: 10.3724/abbs.2025014

102. Lu H, Fan Y, Yan Q, Chen Z, Wei Z, Liu Y, et al. Identification and validation of
ferroptosis-related biomarkers in steroid-induced osteonecrosis of the femoral head. Int
Immunopharmacol. (2023) 124:110906. doi: 10.1016/j.intimp.2023.110906

103. Sun F, Zhou JL, Liu ZL, Jiang ZW, Peng H. Dexamethasone induces ferroptosis
via P53/SLC7A11/GPX4 pathway in glucocorticoid-induced osteonecrosis of the
femoral head. Biochem Biophys Res Commun. (2022) 602:149–55. doi: 10.1016/
j.bbrc.2022.02.112

104. Adapala NS, Yamaguchi R, Phipps M, Aruwajoye O, Kim HKW. Necrotic Bone
Stimulates Proinflammatory Responses in Macrophages through the Activation of Toll-
Like Receptor 4. Am J Pathol. (2016) 186:2987–99. doi: 10.1016/j.ajpath.2016.06.024

105. Jiang C, Zhou Z, Lin Y, Shan H, Xia W, Yin F, et al. Astragaloside IV
ameliorates steroid-induced osteonecrosis of the femoral head by repolarizing the
phenotype of pro-inflammatory macrophages. Int Immunopharmacol. (2021)
93:107345. doi: 10.1016/j.intimp.2020.107345

106. Wang T, Azeddine B, Mah W, Harvey EJ, Rosenblatt D, Séguin C.
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