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Circulating cf-mtDNA has emerged as a dual-functional entity in human

pathophysiology, serving not only as a disease biomarker but also as a potent

innate immune activator through its molecular pattern recognition. Extracellular

mtDNA engages PRRs, triggering dysregulated pro-inflammatory signaling in

multiple cell lineages. Elevated mtDNA in circulation correlates with pathogenesis

of autoimmune disorders, infectious diseases, critical illnesses, neurological

disorders, and hematological abnormalities. Therapeutic strategies combining

mtDNA monitoring with inhibitors targeting its release mechanisms and

downstream pathways offer novel immunomodulatory strategies. This review

systematically examines the therapeutic nexus of blood-derived mtDNA in

immune activation and disease progression. Here we aim to elucidate the

function of mtDNA in disease pathobiology while highlighting mitochondria’s

central position in human systemic homeostasis.
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1 Introduction

Mitochondria serve as the primary sites for energy production in

eukaryotic cells and crucial reservoirs for effector molecules regulating

fundamental cellular and physiological processes (1, 2). Various

components of mitochondria and their metabolic byproducts

released from damaged mitochondria exhibit immunogenicity,

eliciting immune responses characterized by the presence of

damage-associated molecular patterns (DAMPs) (3, 4). Specifically,

mitochondrial DAMPs (mtDAMPs) encompass entities such as

mitochondrial DNA (mtDNA), cardiolipin, N-formyl peptides

(NFP), reactive oxygen species (ROS), adenosine triphosphate

(ATP), and mitochondrial transcription factor A (TFAM) (5, 6).

Recently, mtDNA has emerged as one of the most extensively

researched DAMPs.

Mitochondria evolved from bacterial ancestors and retained a

circular chromosome termed mtDNA. In vertebrates, this

maternally inherited circular mtDNA is capable of self-replication

(1, 7). It encodes 11 subunits of the electron transport chain (ETC)

and 2 subunits of ATP synthase, which critical for the oxidative

phosphorylation (OXPHOS) (8, 9). Circulating cell-free DNA

(cfDNA) has emerged as a novel biomarker with diverse

applications across various fields, including oncology, toxicology,

cardiovascular diseases (CVD), and organ transplantation (10–14).

The primary sources of circulating cfDNA are nuclear DNA

(nDNA) and mtDNA (15). Healthy individuals possess

approximately 50,000 times more copies of mitochondrial

genomes in plasma compared to nuclear genomes, constituting

10% to 25% total circulating cfDNA (16). Circulating mtDNA

demonstrates superior immunogenicity compared to Circulating

nDNA (17, 18). While optimal mtDNA can maintain

mitochondrial genome stability and facilitating its repair

mechanisms, supraphysiological concentrations induce cellular

damage and trigger immunity (19). As noted by Trumpff et al.,

the enhanced stability of cf-mtDNA as a biomarker stems from dual

protective mechanisms that physical shielding via encapsulation

within intact mitochondrial membranes or lipid vesicles, or through

protein binding (e.g., TFAM-DNA adduct) (19). And intrinsic

resistance to circulating nucleases conferred by its circular

double-stranded topology and lack of histone association (20).

mtDNA exhibits a dual role as a tissue damage biomarker and

DAMP, activating innate immunity via pattern recognition

receptors (PRRs). Current research focuses on enhancing our

understanding of the regulation of mtDNA in circulation and its

influence on disease severity. A critical gap remains in pleiotropic

injury mechanisms of systematizing mtDNA. Nevertheless, a

comprehensive review of the mechanisms through which mtDNA

induces damage have yet to be thoroughly examined.
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2 Circulating mtDNA: from
intracellular transport to
extracellular release

2.1 mtDNA is released from mitochondria
into the cytoplasm

Structurally, mitochondrial compartmentalization relies on its

dual-membrane architecture—an inner mitochondrial membrane

(IMM) and an outer mitochondrial membrane (OMM)—that

sequester mtDAMPs from cytosolic PRRs (21). mtDNA release

from the mitochondrial matrix into the cytosol must traverse both

membranes (22) (Figure 1). Current researches indicate several major

pathways regulate in the permeability of mitochondrial membranes,

including the mitochondrial permeability transition pore (mPTP),

Bcl-2-associated X protein (BAX)/Bcl-2 homologous antagonist/killer

(BAK), voltage-dependent anion channel (VDAC), and gasdermin D

(GSDMD). Activation of these channels induces mitochondrial

depolarization, disruption of OXPHOS system, mitochondrial

membrane permeabilization, and mtDNA extrusion (23–25). BAX

and BAK are proapoptotic pore-forming proteins that mediate

mitochondrial outer membrane permeabilization (MOMP), a

process enabling release of cytochrome c and mtDNA to trigger

apoptosis while impairing mitochondrial respiration (5, 25). The

VDAC, a b-barrel membrane protein located at the OMM, involves

the exchange of materials between mitochondria and the cytoplasm,

maintains intracellular calcium homeostasis, and regulates apoptosis

and necrosis (26, 27). During pyroptosis, caspase-mediated cleavage

generates GSDMD-N-terminal fragments (GSDMD-NT) that target

cardiolipin-containing mitochondrial membranes. This interaction

disrupts mitochondrial phospholipid bilayers, facilitating mtDAMPs

release prior to plasma membrane rupture in a cell lysis-independent

manner (23, 28, 29). Furthermore, pyroptosis disturbs mitochondrial

homeostasis and induces MOMP through membrane depolarization,

ionic imbalance, and suppressed mitophagy (5). The mPTP, a non-

specific channel located in the IMM, activates under stress conditions

including Ca2+ influx, oxidative stress, BAX/BAK oligomerization,

and VDAC (25, 30, 31) (Figure 1).
2.2 Cytosolic mtDNA engages multiple
pattern recognition receptors

Augmented immunogenicity of mtDNA attributable to its

unique molecular architecture: high copy number, circular

hypomethylated structure, and lacking free DNA termini (2, 29,

32). Simultaneously, these characteristics render mtDNA readily
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identifiable and capable of binding, which can elicit substantial

biological effects. It is recognized by several PRRs: cyclic guanosine

monophosphate adenosine monophosphate (cGAMP) synthase

(cGAS), nucleotide oligomerization domain (NOD)-like receptors

(NLRs), and Toll-like receptor 9 (TLR9) (33–35) (Figure 1).

cGAS: cGAS functions as a crucial cytosolic DNA sensor,

activated in sequence-agnostic through hybridization with

double-stranded DNA (dsDNA) (36). cGAS-mtDNA binding

catalyzes the synthesis of the second messenger cyclic GMP-AMP

(cGAMP) (37). This molecule subsequently regulates the

downstream stimulator of interferon genes (STING) pathway,

wherein STING1 activation ultimately recruits TANK-binding

kinase 1 (TBK1) (37, 38). Then, TBK1 catalyzes the

phosphorylation of interferon regulatory factor 3 (IRF3) and

promotes nuclear factor kappa-B (NF-kB) signaling, leading to

the production of type I interferons (IFNs) and other pro-

inflammatory cytokines (37–39).

Inflammasomes: Beyond cGAS-mediated pathways, cytosolic

mtDNA engages absent in melanoma 2 (AIM2) via C-terminal

hematopoietic interferon-inducible nuclear (HIN) domain and

NLRP3/NLRC4 inflammasomes, facilitating the secretion of

proinflammatory cytokines (29, 40, 41).
Frontiers in Immunology 03
TLR9: mtDNA retains evolutionarily conserved CpG motifs

resembling bacterial nucleic acids, serving as potent TLR9 agonists

through their hypomethylated DNA architecture (42). Cytosolic

mtDNA containing CpG motifs will stimulate endolysosomal TLR-

9 to recruit myeloid differentiation primary response 88 (MyD88),

activating transcription factors such as NF-kB, driving pro-

inflammatory cytokine and chemokine cascades (43, 44).

Transcriptional factor a mitochondrial (TFAM)-bound mtDNA

resists ROS-mediated oxidation through its compact nucleoid

structure within mitochondria (45, 46). In contrast, newly

synthesized naked mtDNA, lacking TFAM shielding and other

protective mechanisms, is prone to oxidative modification by

OXPHOS-derived mtROS due to spatial proximity to the

OXPHOS (30, 47). This susceptibility can result in the leakage of

mtDNA into the cytoplasm (48, 49). Unlike nuclear DNA, mtDNA

lacks histone protection and effective DNA repair mechanisms,

rendering it more vulnerable to damage (50). The oxidized form of

mtDNA (ox-mtDNA) acts as a potent DAMP that drives sustained

pattern recognition receptor activation and amplifies sterile

inflammation (30). However, the molecular mechanisms

underlying mtDNA oxidation and fragmentation under various

stress conditions require further investigation. Subsequent research
FIGURE 1

Cytoplasmic mtDNA mediated innate inflammation. The release of mtDNA into the cytoplasm occurs through the mitochondrial inner and outer
membrane permeability transition pore, activating multiple pattern recognition receptors. Besides, mtDNA be packaged into mitochondrial-derived
vesicles and transferred to recipient cells through extracellular vesicle mechanism.
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demonstrates that ox-mtDNA released into the cytosol during

mitochondrial dysfunction serves as an effective activator of the

NLRP3 inflammasome and TLR9 (51, 52). The NLRP3

inflammasome appears to preferentially respond to oxidized

DNA, while AIM2 is proposed to primarily recognize non-

oxidized DNA (24, 47). Topoisomerase deficiency, which serve as

genetic and pharmacological triggers of mitochondrial genome

instability, induces left-handed Z-form mtDNA accumulation

(53). This form of mtDNA is more readily recognized by the

nucleic acid sensor Z-DNA binding protein 1 (ZBP1) (53). Recent

studies reveal ZBP1 coordinates with cGAS and receptor-

interacting protein kinase 1/3 (RIPK1/3) to sustain the type I

interferon (IFN) signaling pathway activated by mtDNA

instability (53, 54). Cytosolic DNA sensors differentiate mtDNA

types. How distinct mtDNA forms engage specific PRRs to drive

unique inflammatory responses remains unclear.
2.3 mtDNA is released from the cytoplasm
to the extracellular milieu

Under pathological conditions, mtDNA escapes into the cytosol

and extracellular space through three primary pathways:

1) regulated cell death (RCD): cfDNA is released into the

circulation after apoptosis, necroptosis, and pyroptosis (28, 55,

56). Both necroptosis and pyroptosis result in the rupture of the

cytoplasmic membrane; necroptosis is mediated by the

oligomerization of mixed lineage kinase domain-like proteins

(MLKLs), while pyroptosis is mediated by GSDMD (28, 56).

Mitochondrial permeability transition (MPT)-driven necrosis is a

necrotic variant of regulated cell death that can eventually result in

the complete disintegration of mitochondrial membranes (57). This

process is characterized by a rapid depletion of ATP and oxidative

damage to macromolecules, occurring independently of caspase

activation (58); 2) the efflux of mtDAMPs due to defects in

mitochondrial quality control (MQC) (59); and 3) the active

secretion of mitochondrial-derived vesicles (MDVs) (55, 60).

Additionally, the leakage of mtDNA into the cytosol, whether in

circular or fragmented form, can result from mitochondrial damage

caused by oxidative stress and damage to membrane structures (61).

The accumulation of mtDNA in the cytosol activates intracellular

inflammatory signaling pathways, which subsequently alter the

physiological state of cells and cause cell death (60). This process

further contributes to the release of mtDNA into the extracellular

environment. Mitophagy as part of the MQC could inhibit mtDNA

leakage by facilitating the disposal of dysfunctional mitochondria

and limit potential pro-inflammatory effect (60). Following the

activation of PTEN-induced putative kinase 1 (PINK1)- and

parkin (PRKN)-mediated mitophagy, the ubiquitination of

mitochondrial proteins that induce oxidative damage takes place.

Subsequently, these ubiquitinated mitochondria are engulfed by

autophagosomes, which then coalesce with lysosomes to facilitate

the systematic degradation and recycling of mitochondrial

components (62). Sublethal MOMP activates mitophagy, enabling
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the processing of dysfunctional mitochondria through lysosomal

degradation (24, 63).
2.4 Multiple forms of cf-mtDNA

Current evidence indicates that circulating cf-mtDNA exists in

heterogeneous forms. These range from distinct compositional

states, including naked DNA, lipid vesicle-encapsulated DNA,

intact mitochondria, and neutrophil extracellular traps (NETs), to

different modes of circulation, such as free diffusion or vesicle-

mediated transport (Figure 2).

Naked as well as protein-bound mtDNA molecules are released

into the extracellular microenvironment, where they functions as an

autocrine, paracrine, or endocrine immune stimulus (24). TLR9 is

primarily expressed in innate immune cells, B lymphocytes, and

certain non-immune cell lineages. Both mtDNA and bacterial DNA

possess low-methylated CpG dinucleotide motifs that can be

recognized by TLR9 (64). In addition to being recognized directly

by TLR9 on the cell membrane, extracellular mtDNA activates

TLR9 occurring via two principal routes: phagocytosis of mtDNA-

containing cellular debris or cells, and internalized through

autophagic delivery of mitochondrial fragments within the

endolysosomal compartment (65–67). Furthermore, the

dissemination of mtDNA may occur through direct fusion

between the mitochondrial membrane and the cell membrane;

this fusion event has been associated with elevated levels of ox-

mtDNA (51, 68).

Extracellular vesicles (EVs) represent a significant source of cf-

mtDNA (69). EVs are lipid bilayer membrane vesicles found in

body fluids, essential for intercellular communication, maintaining

internal balance, and promoting pathological processes (70, 71).

EVs, as crucial transport carriers for mtDNA and play a significant

role in the sorting of mitochondrial components via the dual

MDVs. The Snx9-dependent MDVs facilitates the transport of

intact IMM and matrix proteins to EVs, whereas the Parkin-

dependent MDVs is responsible for targeting oxidatively damaged

mitochondrial components for lysosomal degradation (62).

Generally, EVs contain original cell membrane structures and

cytoplasmic components, playing a crucial role in intercellular

signaling (72, 73). EVs have the capacity to transfer mtDNA to

another cells, modifying the mitochondrial function or metabolic

state of the recipient cells. This mechanism may be involved in

tissue repair, immune regulation, and various pathological

processes. Innate immune cells can uptake either EVs or cell free

nucleotide through endocytosis, as well as mtDNA from cells and

cell debris through phagocytosis (29, 74). TLR9 may detect EVs

containing mtDNA (mtDNA-EVs) through endolysosomal

compartments in a cell-autonomous manner (29). Specifically,

PINK1 plays a crucial role in the packaging of mtDNA into EVs

through a scaffolding mechanism that is independent of its kinase

activity and traditional mitophagy processes. Furthermore, PINK1

can promote the release of mtDNA-containing EVs in breast cancer

cells. This process results in the autocrine and paracrine activation
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of TLR9, which subsequently enhances the degradation of the

extracellular matrix and the invasive capabilities of the cancer

cells (75). Activated T cells release mtDNA-EVs, which stimulate

the cGAS/STING pathway in dendritic cells (76). In a distinct

clinical context, EVs have garnered significant attention across

various domains, including drug delivery and regenerative

medicine, owing to their numerous advantages such as high

biocompatibility, low cytotoxicity, low immunogenicity, and a

rich content of growth factors (77, 78). Mitochondrial

transplantation via EVs ameliorates dysfunction in Leigh

syndrome models (79). The nanoscale dimensions of EVs present

significant challenges for current analytical systems in verifying or

regulating their effects. This situation underscores the need for

more advanced analytical techniques capable of detecting EV

subpopulations of varying sizes, which would enhance the

sensitivity and specificity of EV detection. Furthermore, critical

unknowns include EV-delivered mtDNA integration/expression in

recipient cells and its signaling mechanisms.

NETs are DNA mesh structures that function to capture and

eliminate pathogens; however, excessive formation of these structures

contributes to diverse pathologies (80). Initially, it was widely believed

that NETs were primarily composed of nDNA, emerging evidence

demonstrates the presence of mtDNA within NETs under specific

stimulating conditions (81). Neutrophils release mtDNA through a

process known as NETosis, and mtDNA can trigger the formation of

NETs (15, 81, 82). The NETosis described by Yousefi et al. revealed

that mtDNA that is released rather than nDNA during this process

(81). Beyond active extrusion via NETosis, extracellular mtDNA

accumulation may also passive diffusion from other leukocytes and

necrotic cells (83, 84). Accumulating evidence links dysregulated

NETosis to multiple inflammatory and autoimmune conditions,

including atherosclerosis, psoriasis, rheumatoid arthritis (RA), gout,

anti-neutrophil cytoplasmic antibody-associated vasculitis, and

systemic lupus erythematosus (SLE) (85, 86). Characteristically,

NET-derived DNA complexes amplify TLR7/9 signaling in

plasmacytoid dendritic cells (pDCs) or pancreatic ductal epithelial

cells, driving cytokine production. These cytokines reciprocally

enhance NETosis, establishing a self-perpetuating inflammatory

loop (87, 88).

The diagnostic research concerning mtDNA encounters

numerous challenges and issues. A significant concern is the

absence of a comprehensive classification system to differentiate

between extracellular mtDNA (ex-mtDNA) and various biological

forms of intact mitochondria (89). Caicedo et al. have delineated

four categories of ex-mtDNA (89). These distinct forms of ex-

mtDNA demonstrate varying levels and configurations under

different health and disease states. Factors such as sample type,

collection methods, processing techniques (including anticoagulant

selection and centrifugation parameters), and storage conditions

significantly influence detection accuracy, particularly in relation to

the prevention of false positives resulting from platelet activation

(16, 90). Therefore, the establishment of a standardized

classification system and detection protocol is essential for

enhancing the clinical diagnostic utility of mtDNA.
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3 The effect of cf-mtDNA in blood
circulation

3.1 Autoimmunity

Autoimmune diseases represent a complex array of disorders

driven by intricate interactions between genetic predisposition and

environmental triggers. Recent studies have increasingly

highlighted the pathogenic significance of mtDNA in facilitating

autoimmune diseases. Under physiological conditions, circulating

cf-mtDNA is regulated by the activity of DNase, which maintains

low levels to prevent aberrant immune activation. Clinically,

impaired DNase activity has been implicated in the pathogenesis

of multiple autoimmune disorders, highlighting its potential

protective function (91). Mutations in the mitochondrial genome

or prolonged exposure to pro-inflammatory cytokines promote

mitochondrial dysfunction, leading to the release of

mitochondrial components that initiate innate immune activation

(92). Furthermore, the presence of antibodies targeting

mitochondrial nucleic acids (mtDNA and mitochondrial RNA) in

autoimmune diseases demonstrats active cross-talk between

mitochondrial constituents and adaptive immunity (93–95).

Pathological amplification of type I IFN response via self-DNA

(including mtDNA) sensing underlies severe autoinflammatory

manifestations, as observed in Aicardi-Goutières syndrome and

infantile STING-associated vasculopathy (96, 97).

SLE: SLE is an autoimmune disorder characterized by high IFN-

mediated multisystemic damage, with “DNA overload” emerging as a

pivotal pathogenic driver (98, 99). mtDNA functions as a potent type

I IFN pathway agonist to facilitate disease progression. Clinically,

elevated serum anti-mtDNA IgG antibodies correlate with disease

activity and predict nephritis (93). Plasma cf-mtDNA predominantly

originates from naked mitochondria, with platelets serving as a major

source (100). In SLE patients, the release of mtDNA is linked to

platelet degranulation mediated by platelet FcgRIIA and the

fibrinogen receptor a2bb3 (101). When hydrolyzed by secretory

phospholipase A2 group IIA, naked mitochondria release pro-

inflammatory lipid mediators and mtDNA to enhance neutrophil

activation (102). Furthermore, GSDMD not only facilitates the release

of ex-DNA but requires ox-mtDNA-mediated GSDMD-N

oligomerization, establishing a self-reinforcing cycle of lytic cell

death that promotes the release of extracellular DNA and pro-

inflammatory PCD in neutrophils in SLE (103). TLR9 and RAGE

are involved in the uptake of extracellular TFAM-associated ox-

mtDNA nucleoids by pDCs, thereby stimulating IFN production

(51)(Figure 2). The pharmacological inhibition of VDAC-mediated

mtDNA release, as well as the application of the mtROS scavenger

MitoTEMPO, has been shown to reduce disease severity in murine

models of lupus (68, 104).

RA: Elevated circulating and synovial cf-mtDNA in RA patients

correlates with disease activity and serves as an early diagnostic

biomarker (11, 91, 105). Crucially, mtDNA drives RA pathogenesis

through multiple pro-inflammatory mechanisms: Platelet-derived

microparticles carrying mitochondria contribute to immune
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complex formation and stimulate monocytes to release IL-1b and

TNF-a (106, 107); mtDNA-exposed synovial neutrophils

upregulate receptor activator of nuclear factor kappa-B ligand,

promoting joint erosion (108). Supporting its pathogenic

centrality, impaired mtDNA clearance triggers RA-like arthritis in

mice (17, 109), anti-inflammatory therapies reduce cfDNA (91),

and TLR9 inhibition hydroxychloroquine (HCQ) shows clinical

efficacy (110). Expanding beyond canonical pathways of lysosomal

pH elevation, TLR signaling inhibition, and cytokine regulation,

HCQ suppresses TLR-mediated inflammation via the RNF13-

LAMP-1 axis (111, 112). Additionally, racemic HCQ inhibits

fibroblast-like synoviocyte function by blocking the PI3K/AKT

pathway, thereby ameliorating synovitis (113). These findings

collectively demonstrate the capacity of HCQ to modulate RA

pathogenesis through multitargeted synergistic mechanisms.

Systemic sclerosis (SSc): In SSc, elevated plasma mtDNA levels

correlate with TLR9 and cGAS pathway stimulation, inducing

pathogenic IFN and IL-6 production that parallels declines in

lung function (forced vital capacity) (114, 115). Critically, the

increased of mtROS is driven by the inhibition of PINK1/Parkin-

mediated mitophagy in type II alveolar epithelial cells, causing ox-

mtDNA damage and suppressing DNA repair mechanisms (116).
3.2 Neurological disorders

In the field of neurological disorders, circulating cf-mtDNA

serves as a potential biomarker for mitochondrial damage,

neuroinflammation, and stress responses, exhibiting abnormal

concentrations in multiple conditions including Parkinson’s
Frontiers in Immunology 06
disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS),

and bipolar disorder (BD). However, significant inconsistencies

exist across studies due to variables such as sample source

(peripheral blood vs. cerebrospinal fluid), disease subtype

heterogeneity, and methodological differences in detection (117–

119). This issue has been elaborated in detail in the systematic

review by Risi et al. (120).

cf-mtDNA not only correlates with neuroinflammatory

progression in depression, dementia, and amyotrophic lateral

sclerosis (ALS) but also directly contributes to pathogenesis

through specific molecular mechanisms (121–123). Notably,

current research on the pathogenic mechanisms of cf-mtDNA

remains limited, with studies predominantly concentrated on its

biomarker utility.

Serum cf-mtDNAwas significantly elevated in ALS, particularly in

SOD1 mutation carriers, and positively correlate with IL-6 levels and

disease progression rate, indicating synergistic roles of mitochondrial

dysfunction and neuroinflammation in pathogenesis (122). In

narcolepsy type 1, elevated cerebrospinal fluid cf-mtDNA inversely

correlates with hypocretin-1 concentration and associates with sleep

architecture abnormalities. Concurrent changes in IL-6/IL-18 further

implicate neuroinflammation in disease pathology (124). In BD, cf-

mtDNA positively correlates with C-reactive protein (CRP),

suggesting involvement in disease progression via inflammatory

pathway activation and interaction with metabolic syndrome-

associated low-grade inflammation (125). Together these studies

suggest a potential link but not causality between cf-mtDNA and

neuroinflammation pathologies.

Mechanistically, Tripathi et al. demonstrated that chronic

restraint stress significantly increases serum cf-mtDNA in mice.
FIGURE 2

Cell free mitochondrial nucleic acids triggers inflammation via multiple distinct pathways. Innate immune cells acquire cf-mtDNA via endocytosis
(EVs/free forms) or phagocytosis. mtDNA from deading/dying cells released during infection bind PRRs. TLR9 recognizes NET-DNA, mtDNA, and ox-
mtDNA. TFAM-associated ox-mtDNA internalized by pDC via RAGE receptors, the IFN-generating sensor in recipient cells is unclear.
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They established the centrality of the cf-mtDNA-TLR9 signaling

axis in mediat ing social behavior deficits , tr iggering

neuroinflammation in the prefrontal cortex and ultimately driving

behavioral abnormalities (126). In the chronic intermittent ethanol

exposure mouse model, high numbers of mtDNA-EVs could

promote in disease progression, exacerbating neuroinflammation

and compromising the integrity of the blood-brain barrier (127). It’s

also worth mentioning that the cGAS-STING pathway activated by

mtDNA plays dual roles in neurodegeneration: while transient

activation confers neuroprotection, excessive or chronic CNS

stimulation drives neuroinflammation and neurodegeneration (43).
3.3 Infectious diseases and critical illnesses

Circulating cf-mtDNA has been consistently associated with the

onset, severity, and prognosis of diverse diseases across multiple

studies, demonstrating significant diagnostic potential in infectious

diseases and critical illnesses. Concurrently, the inflammatory roles

of cf-mtDNA in disease pathogenesis are actively being elucidated.

Under pathogenic stimuli such as viruses or bacteria, mtDNA can

be released from damaged mitochondria into the cytoplasm and

subsequently enter the systemic circulation via active or passive

release mechanisms (128, 129). In chronic inflammatory diseases,

persistently elevated circulating cf-mtDNA is linked to progressive

cellular stress and death (22, 59). During acute disease or injury, a

marked increase in circulating cf-mtDNA can trigger acute systemic

inflammatory response syndrome (SIRS) (130).

Cardiac dysfunction: Circulating cf-mtDNA levels correlate

significantly with 30-day mortality in cardiogenic shock and

decompensated heart failure patients, but lack prognostic value in

cardiac arrest (where uric acid demonstrates superior predictive

utility). This disease-specific association positions mtDNA as a

targeted prognostic biomarker for cardiac dysfunction-related

critical illness (131).

Severe fever with thrombocytopenia syndrome (SFTS): SFTS is

an infectious disease caused by the tick-borne SFTS virus, with a high

case fatality rate ranging from 10% to 50%. Studies have demonstrated

significantly elevated circulating cf-mtDNA in SFTS patients, which

strongly correlate with adverse clinical outcomes. Mechanistically,

endothelial cell-derived mtDNA promotes B-cell activation,

migration, and differentiation via the TLR9 pathway, enhancing B-

cell susceptibility to SFTSV infection, thereby facilitating viral

replication and exacerbating disease progression (132).

COVID-19: Circulating cf-mtDNA levels distinguish COVID-

19 clinical subtypes (133–135). Critical cases: Non-survivors exhibit

76% lower mtDNA abundance and shorter fragments vs. survivors;

elevated cf-mtDNA correlates with ICU admission/death risk

(positive predictive value for mortality: 83.3%). Long COVID:

Reduced cf-mtDNA with mitochondrial structural abnormalities

indicate persistent mitochondrial dysfunction. Asymptomatic

individuals show higher cf-mtDNA than symptomatic patients,

who conversely exhibit elevated cf-nDNA (135, 136). During

respiratory failure, serum cf-mtDNA levels are elevated and

positively correlate with oxygen therapy requirement (137). In
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COVID-19-associated myocarditis models, cf-mtDNA activates

TLR/NF-kB signaling, exacerbating myocardial injury via pro-

inflammatory cytokine release in myocarditis models (128).

Sepsis: Sepsis, a life-threatening systemic inflammatory response

to infection, manifests as multiorgan dysfunction with high mortality

rates (138). circulating cf-mtDNA from damaged tissues, which

functions as a DAMP to hyperactivate innate immunity,

intensifying systemic inflammation and impairing organ function

during the progression of sepsis (139). both the administration of

mitochondrial fragments enriched with mtDNA in murine models

and in vitro and in vivo mtDNA injections can induce comparable

inflammatory cascade observed in clinical sepsis (139, 140). Clinical

investigations demonstrate that circulating cf-mtDNA increased

markedly in sepsis patients correlate with the onset of acute kidney

injury (AKI), acute lung injury (ALI), and acute respiratory distress

syndrome (ARDS) (139, 141, 142). In sepsis-induced AKI, mtDNA

can enhance mitochondrial oxidative stress driving a self-reinforcing

pathological loop (139). Clinical validation studies demonstrate strong

correlations between circulating cf-mtDNA levels and AKI severity

markers. Depletion of mtDNA mitigates acute tubular cell injury,

indicating that position mtDNA-centric therapeutics as promising

investigational approaches for AKI (143). Notably, hemodialysis

patients with elevated circulating cf-mtDNA exhibit higher risks of

adverse clinical outcomes (144). In the proinflammatory

microenvironment in end-stage renal disease, the immunogenicity

of circulating cf-mtDNA may adversely affect patient health, though

lacking all-cause mortality association (145). In sepsis-associated ALI

and ARDS, circulating cf-mtDNA activates a robust STING pathway

in macrophages, disrupting autophagic flux by impairing lysosomal

acidification in an IFN-dependent manner, thereby exacerbating lung

endothelial barrier disruption and propagate a cytokine storm (141).
3.4 CVD

The concentration, copy number, and methylation profiles of

circulating cf-mtDNA serve as critical indicators of disease status,

progression stage, and prognostic risk, demonstrating significant

clinical potential across cardiovascular and related disorders

including diabetic macroangiopathy, abdominal aortic aneurysm

(AAA), and atrial fibrillation (AF) (146–149). Additionally, cf-

mtDNA abnormalities are closely linked to mitochondrial

functional decline and accelerated biological aging: In chronic

kidney disease (CKD), low mtDNA copy number (mtDNA-cn)

coupled with high cf-mtDNA levels associates significantly with

vascular calcification and epigenetic age acceleration (150).

Among heart failure (HF) and type 2 diabetes mellitus (T2DM)

patients, heightened cf-mtDNA correlates with mitochondrial

dysfunction and metabolic stress, exhibiting positive associations

with systemic inflammatory markers—indicating its role as a

mediator of metabolic-inflammatory crosstalk in disease

progression (151). Individuals diagnosed with T2DM exhibit

elevated circulating cf-mtDNA, driven by chronic hyperglycemia-

induced mtROS and mitochondrial dysfunction (152, 153). A weak

correlation has been identified between plasma IL-1b levels and
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circulating cf-mtDNA. Mechanically, circulating cf-mtDNA

activates the AIM2 inflammasome in macrophages, triggering

caspase-1-dependent IL-1b/IL-18 maturation and secretion (152).

Additionally, cerebral vessel remodeling and impaired

cerebrovascular reactivity may be associated with variations of

mtDNA and inflammation particularly in early diabetic kidney

disease, yet the precise mechanisms underlying mtDNA-driven

cerebrovascular remodeling remain incompletely characterized

(154). Mitochondrial debris from tubular and glomerular cells

enters systemic circulation in diabetic kidney disease (155). In

blood and urine, mtDNA levels were evaluated as a specific

signature in relation to inflammatory response within the diabetic

kidney at the glomerular and tubular (156). In maintenance

hemodialysis (MHD) patients, exogenous cf-mtDNA upregulates

TLR9, ICAM-1 and TNF-a in cardiac microvascular endothelial

cells, intensifying microvascular inflammation and CVD

progression (157).

AAA: In AAA, cf-mtDNA derived from patient peripheral

blood mononuclear cells (PBMCs) stimulates macrophages to

potentiate AIM2/IFI16 inflammasome assembly, upregulating

apoptosis-associated speck-like protein (ASC) and IL-1b
expression, thereby inducing ASC speck formation and

exacerbating chronic aortic wall inflammation (146).

Myocardial ischemia/reperfusion (MI/R): During MI/R

injury, cf-mtDNA activates the NLRP3 inflammasome in a TLR9-

dependent manner, mediating splenic monocyte inflammatory

responses that amplify IL-1b release and augment infarct size (158).

Metabolic complications with CVD: Patients with metabolic

syndrome (MetS) exhibit elevated circulating ox-mtDNA and

upregulated TLR9 expression in peripheral blood mononuclear cells.

In vitro stimulation of THP-1 monocytes with cfDNA or ox-mtDNA

activates TLR9/NF-kB signaling, driving proinflammatory cytokine

secretion in MetS-associated cardiovascular disease (159). Obesity

induces elevation of cf-mtDNA in cerebrospinal fluid, particularly

found in major target organs in hypertension, such as the heart,

kidneys, and brain (160, 161). Mechanistically, cf-mtDNA in the

cerebrospinal fluid activates the sympathetic nervous system to cause

hypertension via the TGFb signaling pathway. This neuroimmune

crosstalk increases sympathetic output to the cardiovascular

system (160).

In summary, while substantial progress has been made in

elucidating the roles and mechanisms of cf-mtDNA in CVD, its

clinical utility requires further validation through large-scale

prospective studies.
3.5 blood system diseases

Sickle cell disease (SCD): SCD exhibits pathologically elevated

circulating cf-mtDNA levels, driven by abnormal mitochondrial

retention in erythrocytes and hemolysis-mediated release during

vaso-occlusive crises (VOC) (82). Hypomethylated mtDNA triggers

the formation of NETs, exacerbating chronic inflammation and organ

damage during VOC (82). The retention of functional mitochondria

in mature erythrocytes accelerates cellular senescence, driving
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membrane fragility and hemolysis (162, 163). Accelerated

intravascular lysis of sickle RBCs facilitates mitochondrial extrusion

into circulation (82). Hemolysis-derived mtDNA can be transferred

to antigen-presenting cells (APCs) by other RBCs, engaging TLR9 to

potentiate inflammatory cytokines secretion. In SCD, mitochondria-

positive RBCs exhibit reduced circulatory half-life, rendering them

susceptible to phagocytosis (164). Under physiological conditions,

aging or damaged erythrocytes undergo cleared by splenic

macrophages without eliciting an immune response; however, in

SCD, immunogenic APC subpopulations more effectively facilitate

the removal of aging RBCs increasing the possibility of producing

autoantibodies (165, 166). Consequently, circulating cf-mtDNA as a

byproduct of hemolysis has the potential to activate coagulation and

inflammatory pathways. This activation may contribute to self-

perpetuating cycle of VOC and end-organ damage (82).

Multiple myeloma (MM): Patients with MM exhibit

significantly elevated cf-mtDNA originating from malignant

plasma cells in both peripheral blood and bone marrow. These

mtDAMPs promote MM progression by activating the STING

pathway in bone marrow macrophages, inducing chemokines

release and enhancing the retention of MM cells within the bone

marrow niche (167).

Anemia: RBCs bind and eliminate circulating cf-mtDNA via

surface TLR9 receptors in the blood, which subsequently stimulate

macrophages to phagocytize these complexes and provoke

inflammatory responses (65, 168, 169). This clearance mechanism

partially alleviates pulmonary inflammation in ARDS and sepsis

patients (65, 169). Nonetheless, pathologically amplified RBC-

mtDNA interactions accelerate erythrocyte clearance, contributing

to anemia in sepsis, COVID-19, and hematologic malignancies (65,

170, 171).

As a potent proinflammatory mediator, mtDNA provides

critical insights into inflammatory disease pathogenesis (Table 1).

Its dual role as both a DAMP and a biomarker bridges

mitochondrial dysfunction with systemic inflammation.

Nevertheless, significant gaps remain in our understanding of the

specific mechanisms by which circulating cf-mtDNA operates in

different diseases. This includes the regulatory mechanisms

governing mtDNA release, its interactions with other cellular

signaling pathways, and the development of precise therapeutic

strategies aimed at targeting circulating cf-mtDNA.
4 Pharmacology

mtDNA-driven immunity dysregulation constitutes a pathogenic

axis in diverse human diseases, spanning hyperinflammatory

conditions to inefficient inflammatory states (35). Pharmacological

agents that target mitochondrial function have the potential to

modulate inflammatory processes, offering novel therapeutic

strategies for mtDNA- driven inflammatory diseases, particularly in

scenarios where conventional treatments exhibit limited efficacy. The

mitochondrial uncoupler BAM15 can reduce mortality and mitigate

kidney injury in sepsis models by breaking the mtDNA-TLR9

feedforward loop that amplifies tissue injury (139).
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Mitochondrial Pore Opening Inhibitors: Targeted

mitochondrial membrane stability emerges as a strategic

intervention to prevent pathological mtDNA release .

Pharmacological agents such as Cyclosporine A (a Cyclosporine

D inhibitor), VBIT-4 (a VDAC inhibitor), and Venetoclax (a BCL-2

inhibitor) is anticipated to facilitate the targeted inhibition of pore

opening in the IMM or OMM limiting the release of mtDNA (172–

174). Notably, Cyclosporine A is approved for use in humans,

primarily for the treatment of autoimmune diseases and the

prevention of transplant rejection (58). The application of this is

mainly based on its interaction with the cytoplasmic protein PPIF,

which inhibits calcineurin and subsequently suppresses lymphocyte

activity. Yet the partial immunosuppressive effects of Cyclosporine

A through MPT inhibition and the attenuation of mitochondrial-

driven inflammatory responses, a hypothesis that warrants further

investigation (24). VBIT-4 alleviates symptoms resembling SLE in

lupus-prone murine models (104). Some antioxidants sustains

mitochondrial function by preserving mitochondrial membrane

integrity and reducing pathological mtROS (175).

Cell Death and Autophagy: The impairment of mitochondrial

function and structural integrity associated with RCD drives

pathogenic mtDNA release. Disulfiram blocks the formation of

GSDMD pores, reducing ox-mtDNA release and alleviating

symptoms in lupus models (103). Hypocrellin A, a component in

ethnic medicinal fungus, targets NLRP3 NACHT domain to inhibit

the assembly and activation of the inflammasome (176). Mitophagy

facilitates the degradation of dysfunctional mitochondria via

lysosomal pathways, limiting the release of mtDNA and mtROS and

inhibiting PRR signaling and subsequent inflammatory responses

(177, 178). Parkin-dependent mitophagy generates mitochondria-

derived vesicles from mtDAMP, suppressing paracrine

inflammation (179). At present, the specific pharmacological

modulators of mitophagy that are available for clinical use

remain unclear.

Targeted Therapies for PRRs and Their Signaling Pathways:

Precision modulation of PRR signaling cascades activated by mtDNA
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emerges as a strategic frontier in autoimmune therapeutics. Notably,

the cGAS-STING signaling pathway has garnered considerable

attention, with several inhibitors already available, including the

competitive inhibitor of IRF3 activation, known as MITA/STING

activation, tetrahydroisoquinoline, and the cGAS cyclic peptide

inhibitor XQ2B (180, 181). Hydroxychloroquine, functioning as a

TLR-9 inhibitor, has demonstrated efficacy in the treatment of RA,

SLE, and various other connective tissue disorders (110, 182). Over the

past two decades, monoclonal antibodies (mAbs) targeting type I IFN

pathway have undergone extensive evaluation in clinical trials. Among

these, belimumab and anifrolumab have received clinical approval for

the treatment of SLE (98). Nevertheless, > 50% of patients remain

refractory to achieve the anticipated outcomes of disease improvement

and reduced flare-ups when treated with these two mAbs, highlighting

unmet needs for more effective therapeutic options (98).

Targeting the mtDNA inflammatory pathway offers therapeutic

promise for refractory inflammatory diseases, yet several

mechanisms and safety concerns must be addressed. Mechanistic

ambiguities in drug pharmacology, such as the potential dual

immunosuppressive effects of cyclosporine A. Safety trade-offs

between immune modulation and host defense; for instance,

inhibiting the STING pathway necessitates careful consideration

of infection risk. Furthermore, the dose-dependent effects of drugs,

gender differences, and long-term safety require extensive clinical

trials for validation. Research on cross-pathway interactions is vital,

as the relationships between mitochondrial membrane

permeabilization, mitophagy, and EV release are complex. Future

multidisciplinary studies should clarify mechanisms, optimize drug

design, and advance personalized treatment, ultimately enabling

precision immune interventions.
5 Conclusion

This review elucidates that elevated circulating cf-mtDNA in

blood serve not only as a indicator of cellular metabolic status, but
TABLE 1 Prominent examples of pathologies directly linked to circulating cf-mtDNA.

Disease name Experimental model Targets Reference

SLE pDC TLR9 (51)

Chronic stress Mice TLR9 (126)

SFTS B cell TLR9 (132)

SARS-CoV-2–induced acute
myocarditis

PBMC TLR-NF-kB (128)

sepsis-related acute lung injury C57BL/6 mice STING (141)

AAA THP-1 cell AIM2 inflammasome (146)

MI/R Mice TLR9- NLRP3 inflammasome (158)

CVDs in MetS THP-1 cell TLR9-NF-kB (159)

Obesity-related hypertension Mice TGFb (160)

MM Mice STING (167)
SLE, systemic lupus erythematosus; pDC, plasmacytoid dendritic cell; SFTS, severe fever with thrombocytopenia syndrome; AAA, abdominal aortic aneurysm; MI/R, myocardial ischemia/
reperfusion; CVDs, cardiovascular diseases; MetS, metabolic syndrome; MM, multiple myeloma.
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also participate in the pathogenesis of various diseases. A critical

observation is that mtDNA can activate multiple signaling

pathways, such as the cGAS-STING pathway, inflammasomes,

and TLR9, thereby initiating innate immune responses, RCD, and

alterations in lipid metabolism. This perspective offers novel

insights into the emergence and progression of specific clinical

symptoms, while simultaneously presenting opportunities for the

development of innovative therapeutic strategies. Although existing

studies have examined the mechanisms of mtDNA release and the

immune signaling pathways mediated by mtDNA, additional

clarification of the key molecular complexities and refinement of

experimental strategies remain necessary. Furthermore, future

research should prioritize the development of mitochondrial-

targeted pharmacological agents capable of regulating

mitochondrial membrane integrity, mitigating oxidative stress,

and sustaining mitochondrial autophagy functions, as well as

inhibitors of PRR immune signaling pathways.
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