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Atopic dermatitis (AD) and alopecia areata (AA) have traditionally been regarded

as inflammatory dermatoses with independent pathogenic mechanisms, with the

former mostly categorized as a type 2 inflammatory disease and the latter as a

type 1 inflammatory disease. However, immunologic studies have shown that the

immunologic properties of AD and AA do not strictly follow the traditional

classification. Both diseases are associated with systemic Th1, Th2, Th17, and

Th22 cytokine imbalances, shared genetic susceptibility loci, overlapping

immune pathways, and microbiome-mediated modulation of skin pathology.

This review systematically investigates the intricate interactions between AD and

AA, focusing on shared pathophysiologic mechanisms such as immune network

crosstalk, metabolic dysregulation, and microbial influences. Furthermore, it

critically evaluates current therapeutic strategies for overlapping disease

manifestations, with a detailed analysis of emerging targeted therapies and

their implications for clinical practice. By integrating existing evidence and

identifying research gaps, this article aims to provide new perspectives on the

understanding of the mechanisms of AD-AA interactions and to inform clinical

decision-making and future research directions.
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1 Introduction

Atopic dermatitis (AD) is a chronic, relapsing, multifactorial inflammatory skin

disorder characterized by eczematous lesions such as erythema, papules, exudation,

xerosis, and pruritus. The Global Burden of Disease Study shows that AD is the most

burdensome of the dermatologic diseases and ranks among the top non-fatals (1). Alopecia

areata (AA) is a chronic tissue-specific autoimmune disease characterized by non-scarring

alopecia affecting approximately 2% of the population (2, 3). Although traditionally viewed

as distinct entities, emerging evidence highlights a bidirectional epidemiologic link between

AD and AA, underpinned by shared immunopathogenic pathways. The convergence of

genetic susceptibility, environmental triggers, epidermal barrier dysfunction, microbiome

dysbiosis, and immune dysregulation collectively drive the pathogenesis of both conditions
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(4–6). Notably, atopic predisposition—particularly a history of AD

—is significantly overrepresented in AA cohorts and serves as a key

risk factor for AA development (7). Conversely, AD patients exhibit

a markedly elevated risk of AA onset (8). However, the existing

literature suffers from an insufficient understanding of the

comorbidity mechanism and a lack of consistency in treatment

protocols, etc. This review explains this association from the

perspectives of the interactions between AD and AA, clinical

characteristics, and treatment strategies, with the aim of providing

references for an in-depth understanding of the mechanisms of the

comorbidity between the two and for the development of

effective interventions.
2 Epidemiology

In a retrospective study of 51,561 patients with AA, Kridin et al.

identified a robust bidirectional association between AA and AD (9),

showing that AD and AA are most frequently comorbid compared to

other atopic diseases, and that AA patients with comorbid AD

presented an earlier disease onset and a higher prevalence of female

patients. In addition, a key observation was that the risk of AA in

atopic disease patients correlated with the type of comorbid atopy.

However, it is worth noting that the database did not include

information on the severity of AA versus AD, so it was not

possible to delve into the specific association between disease

severity and increased risk. A Korean retrospective study of 871

patients with early-onset (prepubertal) AA further supports these

findings (10), highlighting AD as the most prevalent comorbidity in

this population. Similarly, Conic et al. observed a high co-prevalence

of AD of 17.4% in 3,510 AA patients under 18 years of age by

analyzing data from 26 major healthcare networks in the United

States (coveringmore than 360 hospitals) (11), suggesting that this bi-

directional correlation is also present in pre-pubertal patients.

Notably, a Taiwanese cohort study involving 12,022 AA patients

and 40,307 AD patients (8), not only reiterated the bidirectional

increased risk between AD and AA, but also demonstrated that AD

patients carrying Filaggrin gene (FLG) mutations exhibited

exacerbated AA manifestations compared to those without genetic

predisposition, further strengthening the further reinforcing the

complex and multidimensional association between AD and AA.
Abbreviations: Th, T helper cell; AD, Atopic Dermatitis; AA, Alopecia Areata;

IL, Interleukin; IgE, Immunoglobulin E; IFN-g, Interferon-gamma; TNF-a,

Tumor Necrosis Factor-alpha; NK, Natural Killer cell; IFNG, Interferon-

gamma gene; FLG, Filaggrin gene; CCL11, C-C Motif Chemokine Ligand 11; T

cell, T Lymphocyte; JAK, Janus Kinase; STAT, Signal Transducer and Activator of

Transcription; B cell, B lymphocyte; IgG, Immunoglobulin G; OX40, Tumor

Necrosis Factor Receptor Superfamily Member 4; OX40L, Tumor Necrosis Factor

Superfamily Member 4 Ligand; Treg, Regulatory T cell; FceRI, High-affinity

Immunoglobulin E Receptor; CD8+ T, CD8-positive T cell; GWAS, Genome-

Wide Association Study; SCFA, Short-Chain Fatty Acid; TGF, Transforming

Growth Factor; SALT, Severity of Alopecia Tool; BSA, Body Surface Area; FMT,

Fecal Microbiota Transplantation; LGS, Leaky Gut Syndrome; APC, Antigen-

Presenting Cell; EASI, Eczema Area and Severity Index.
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3 Complex immune networks

AD is mainly mediated by Th2-driven immune responses, and

key cytokines such as interleukin (IL)-4 and IL-13 play a central role

in skin barrier disruption, promoting immunoglobulin (Ig)E

production, and modulating the inflammatory process (12). Based

on the concentration of IgE and the status of the skin barrier, AD is

further classified into two distinct subtypes: exogenous and

endogenous. Specifically, exogenous AD is characterized by high

serum total IgE levels, significantly increased expression of Th2-

type cytokines, and impairment of skin barrier function. In contrast,

endogenous AD exhibits normal serum total IgE concentrations,

low expression levels of Th2-type cytokines, and relatively intact

skin barrier function (13). Further research indicates that in the

presence of AA, AA is more inclined to exhibit a skewed Th1-type

immune response when combined with endogenous AD. In

contrast, it is more likely to present a skewed Th2-type immune

response when combined with exogenous AD (14). This immune

dynamic manifests temporally in AD progression: Th2

predominance characterizes the acute phase, while Th1

dominance emerges during chronic stages (15, 16). Critically,

cross-regulation between Th1-derived cytokines (e.g., IFN-g) and
Th2-associated IL-4/IL-13 orchestrates the evolving immune

microenvironment (17). This mechanism of immune switching

from Th2 to Th1 may contribute to the chronic progression of

AD, exacerbating the complexity and intractability of the disease.

AA pathogenesis is predominantly mediated by Th1 cell-derived

interferon-gamma (IFN-g) and tumor necrosis factor-alpha (TNF-

a), which elicit immune responses to environmental stressors (e.g.,

psychological stress, viral infection, trauma), resulting in follicular

immune dyshomeostasis and compromised hair growth (18).

Interestingly, the pattern of immune response in AA patients is

equally complex and diverse, also involving Th2 cytokines (IL-4, IL-

5, IL-10), IgE, and eosinophils (3, 19). Collectively, these findings

challenge the traditional Th1/Th2 dichotomy, revealing a

continuum of immune activation in AD and AA. The concurrent

activation of Th1, Th2, and Th17/Th22 axes—interconnected

through comorbid crosstalk—drives disease pathogenesis and

progression (20, 21). These observations indicate that immune

responses in AD and AA form a dynamic continuum rather than

distinct binary classifications, with Th1, Th2, and Th17/Th22

pathways interwoven under comorbid states. This interplay

jointly influences disease pathogenesis and progression,

while the simultaneous activation of multiple T-helper (Th) cell

subsets underscores the necessity to understand immune

equilibrium in diverse dermatoses for therapeutic optimization.

Immunopathogenesis of AD, AA, and their overlap (Figure 1).
3.1 Th1-type immunity

The core physiological function of IFN-g, as a central cytokine
of the Th1-type immune response, focuses on recognizing and

defending against intracellularly parasitized viruses and malignant

cells (22, 23) and has been established as a key mediator in the
frontiersin.org
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pathogenesis of AA. In the serum and lesion sites of AA patients,

the upregulation of IFN-g and TNF expression was positively

correlated with disease severity and duration, especially in total/

purple baldness and active AA (21, 24–26), which effectively

promotes immune cell recruitment and exacerbates immune

responses mediated by Th1 and natural killer (NK) cells by

inducing the enhancement of chemokine expression (27), a

cascade of biological events that severely disrupts the natural

cycle of hair growth and the normal function of the hair follicle.

Emerging evidence highlights IFN-g’s critical involvement in AD.

Stratification of AD patients according to IFNG expression levels

and IFN-g-secreting T cell capacity reveals two distinct subgroups:

IFN-g-high AD (exhibiting predominant endogenous AD

characteristics) and IFN-g-low AD (manifesting classical

exogenous AD features) (28), which is consistent with previous

studies (29, 30). Pathway analysis revealed that significant

enrichment of gene sets associated with innate immunity,

lymphocyte activation, inflammatory signaling, and immune

system processes in the IFN-g-high AD subgroup. IFN-g and
Frontiers in Immunology 03
TNF-a bind to keratinocytes, induce apoptosis, and create a pro-

inflammatory environment, leading to inflammatory skin lesions in

AD. Meanwhile, IFN-g also disrupts the skin barrier homeostasis by

down-regulating the expression of FLG and mitogenin-1 and

ceramide synthesis (31, 32). This barrier dysfunction facilitates

inflammatory mediator release, creating a self-perpetuating cycle

of immune activation and tissue damage.
3.2 Th2-type immunity

In both AD and AA, a Th2-skewed immune response is observed

(33), characterized by elevated levels of type 2 inflammatory cytokines,

predominantly IL-4 and IL-13. IL-4/IL-13 can combine with type 1

cytokines (e.g., IFN-g) to upregulate eosinophil-activating chemokines,

including eotaxin-1 (CCL11) and eotaxin-3 (CCL26). These

chemokines demonstrate significantly elevated expression levels in

lesional AD skin (34), driving the recruitment of T lymphocytes,

eosinophils, and basophils to the skin lesions. Furthermore, IL-4/IL-
FIGURE 1

Immunopathogenesis of AD, AA, and their overlap. Classical AD is characterized by a Th2-predominant immune-inflammatory response, where
cytokines such as IL-4, IL-13, and IL-31 stimulate B-cell production of IgE, promote mast cell degranulation, and recruit Eos. In contrast, classical AA
is driven by a Th1-dominant immune-inflammatory response, with cytokines like TNF-a and IFN-g activating macrophages, CD8+ T cells, and
inducing NK cell activation. In overlapping AD and AA, Th1, Th2, Th17, and Th22 cells collectively contribute to disease progression through the
secretion of IL-4, IL-13, IL-17, IL-22, TNF-a, and IFN-g. (Figure created with BioRender.com). AD, Atopic dermatitis; AA, Alopecia areata; Th, T helper
cells; IL, Interleukin; IFN, Interferon; TNF, Tumor necrosis factor; Eos, Eosinophils; NK, Natural killer cells; CD8+ T cells, CD8-positive cytotoxic T cells.
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13 signaling downregulates key epidermal barrier molecules including

FLG and involucrin, compromising tight junction integrity in the skin,

whereas FLG gene mutations constitute the primary genetic

determinant of epidermal barrier dysfunction (35), and also reduces

ceramide synthesis and impairs corneal cohesion (20, 36, 37). The Th2

cytokine interleukin-4 disrupts normal stratum corneum cohesion in

mice, providing implications for AD pathogenesis. Th2 cells are also

shown to have a skewed cytokine homeostasis in patients with AA

state. Specifically, IgE levels are significantly elevated in AA patients

and this elevation is not dependent on the atopic state (38). At the same

time, Th2-associated cytokines (IL-4, IL-13) also showed increased

levels (39), and these cytokines may further promote T-cell infiltration

into the skin and hair follicles, thereby triggering inflammatory

responses and follicular damage (33, 40), and in the group of

patients with AA combined with AD, the infiltration of Th2 cells

around the diseased follicles was more prevalent. prevalent (14), and

there was a significant correlation with IL-13 levels (41). In addition, it

was further noted that enhanced activation of both skin-homing and

circulating Th2 cells in AA patients versus healthy controls, with

activation intensity directly correlating with clinical severity scores.

Conversely, IFN-g expression demonstrates stronger association with

chronic disease progression (42).This observation aligns with the

established immune trajectory of AD: The acute phase is

predominantly characterized by a Th2 response, where IL-4/IL-13

signaling via the STAT6 (Signal Transducer and Activator of

Transcription 6) pathway suppresses IFN-g signaling. In contrast, the

chronic phase exhibits significantly upregulated IFN-g (43). This

elevated IFN-g can stimulate keratinocytes to produce CXCL10,

which subsequently recruits cytotoxic CD8+ T cells to infiltrate hair

follicles, ultimately triggering the autoimmune attack characteristic of

AA. Thus, the Th2-to-Th1 immune shift occurring during the AD

chronicity phase serves as a pivotal link connecting prolonged AD to

AA pathogenesis.
3.3 Th17/Th22-type immunity

Imbalances in the immune axis play a central role in the

development of AD. Specifically, the increase in Th1/IFN-g-
associated products may not only signal a pro-inflammatory

activation state of Th17/Th22 cells, but may also serve as a

mechanism of counter-regulation of Th2 and Th17 activation (44,

45). Gittler et al. emphasized the strong association between the

enhancement of this immune axis and the increase of immune

activation in the progression of AD to the chronic phase, and this

immune imbalance is already evident in the acute lesion stage (16),

especially with a significant increase in Th22, Th2 and Th1-related

products. Critically, IL-17 and IL-22, as key pro-inflammatory

cytokines for Th17 and Th22 cells, exert pivotal roles in AD

pathogenesis through distinct mechanisms. IL-22 upregulates gastrin-

releasing peptide receptor expression in keratinocytes of the skin (46),

which is key in mediating both non-histaminergic and pathologic itch

(47, 48), thus affecting the itch symptoms in AD itch symptoms in
Frontiers in Immunology 04
patients. Simultaneously, Th17 cell activation in AD facilitates the

generation of pro-inflammatory cytokines, which consequently might

intensify inflammation and lead to alopecia (49, 50). In AA,

perifollicular dermal infiltration by Th17 cells coincides with

significantly elevated serum IL-17 levels compared to healthy

controls, which is strongly correlated with the severity of AA (51). In

addition, higher serum IL-17A levels in young AA patients may be

associated with their increased susceptibility to psychological stress

(52), and this susceptibility may stem from chronic stress-induced

conversion of lymphocytes to Th17 responses (53). Therefore,

adolescent-onset AA patients may portend a poor prognosis due to

high IL-17A levels compared to those with advanced age onse (54). On

the other hand, Atwa et al. observed that AA patients displayed

elevated serum IL-22 levels compared to healthy controls, with a

positive correlation with AA and depression duration (51, 55). These

findings further support the critical role of immune imbalance in the

chronic pathology of AD and AA.
3.4 JAK-STAT signaling pathway

The JAK (Janus Kinase) -STAT signaling pathway, as a core

intracellular transduction mechanism for cytokines, critically

regulating organism development, maintaining homeostasis,

promoting cell proliferation and mediating immune responses. In

the pathological process of AD, this pathway significantly affects

keratinocyte function through JAK/STAT-dependent signaling of IL-

4 and IL-13 (56). This dysregulation is demonstrated by suppressed

FLG and endocannabinoid production, subsequently compromising

skin barrier integrity (57, 58). Notably, STAT6 protein plays a central

regulatory role in this signaling pathway, which not only upregulates

the expression of the Th2-specific transcription factor GATA3 and

regulates T cell proliferation and Th2 cell differentiation, but also

promotes the conversion of immunoglobulin classes to IgE and IgG1

in B cells (59), which correlates with the fact that multiple STAT6

polymorphisms are associated with high levels of IgE and an

increased AD susceptibility is closely associated with increased

susceptibility (60). In addition, the STAT3 component of the JAK-

STAT signaling pathway plays an amplifier role in the development

of chronic itch (61), and its activation is directly associated with

sustained itch signaling. Genome-wide association studies (GWAS)

in AA patients have identified JAK-STAT pathway components—

including STAT5A/B, STAT3, JAK1, and JAK3—as critical regulators

of follicular cycling (62, 63). The up-regulated expression of these

genes during the regression and resting phases, as well as their down-

regulation during the early anagen phase, implies that JAK-STAT

signaling may inhibit hair re-entry into the anagen phase (64). In

contrast, JAK inhibitors have indeed demonstrated a significant

ability to promote hair regrowth in clinical studies (65), as

evidenced by elevated post-treatment hair keratin content, a

reduction in perifollicular T-lymphocyte infiltration, and a

significant down-regulation of inflammatory markers in the gene

expression profile (66, 67).
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3.5 OX40-OX40L signaling pathway

OX40 and its ligand OX40L are both key members of the TNF

superfamily. OX40 is primarily expressed on enhanced effector T

cells (including Th1, Th2, Th17, and Th22 subpopulations) and

regulatory T cells (Treg), while OX40L is primarily expressed on

activated antigen-presenting cells (68). Ilves et al. found that OX40+

T cells were increased by 10-fold in the skin of AD patients

compared to non-lesional skin (69). In the pathophysiology of

AD, the OX40-OX40L signaling pathway plays a crucial role,

promoting Th2 cell differentiation, These activated Th2 cells not

only express OX40 but also release cytokines, further exacerbating

damage to the epidermal barrier function. Preclinical studies in skin

inflammation and asthma models further support that the OX40-

OX40L signaling interaction is critical for the efficiency of

regulatory responses in memory Th2 cells (70, 71). Additionally,

this signaling pathway promotes the recruitment and proliferation

of Th1, Th17, and Th22 cell subsets, which mediate keratinocyte

proliferation, epidermal thickening, and T cell recruitment by

upregulating the production of cytokines such as IFN-g, IL-17,
and IL-22 (72, 73). A study on mechanistic biomarkers

demonstrated that blocking OX40 signaling not only regulates

Th2 characteristics but also simultaneously suppresses Th1 and

Th17/Th22-related immune activation (74). However, OX40 and

OX40L are not significantly correlated with the clinical severity of

AD. Additionally, Xiao et al. found that OX40 signaling

significantly inhibits IL-17A production and Th17 differentiation

in an experimental autoimmune encephalomyelitis model (75). The

role of the OX40L/OX40 pathway in influencing Th cell fate

remains to be further elucidated. Nevertheless, the activation of

the OX40L/OX40 pathway, which promotes abnormal infiltration

of effector T cells and cytokine release, may still be a key trigger for

the disruption of follicular immune privilege. It is well known that

mast cells (MCs) play a key role in various allergic diseases,

including AD. Overactivation of the OX40L/OX40 pathway

promotes Th2 cell proliferation, and the IL-4 secreted by these

cells can induce B cells to differentiate into IgE-secreting cells. IgE

binds to the high-affinity IgE receptor (FceRI) on MCs, leading to

the release of histamine and IL-6, among other chemokines, which

further recruit Th2 cells and eosinophils, exacerbating the immune

inflammatory response (76). Additionally, mast cells upregulate

OX40L expression due to IgE-FceRI cross-linking (77). Recent

studies have further demonstrated that MCs are also involved in

the pathogenesis of AA (78, 79). Specifically, compared with healthy

control skin, the density of MCs in the dermis around lesions and

hair follicles in AA patients is significantly increased. By releasing

inflammatory mediators such as TNF-a and IL-6, they exacerbate

autoimmune reactions, a phenomenon also observed in HF

mesenchyme. This may indicate that Th2 cells act as an

important bridge between AD and AA through the OX40L/

OX40 pathway.

Meanwhile, Tregs also occupy a central position in the

pathogenesis of AA (80), while OX40L on the MC surface can
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effectively weaken the immunosuppressive function of Tregs by

interacting with OX40 on Tregs. This interaction leads to CD8+ T-

cell hyperactivation, characterized by excessive IFN-g and TNF-a
production, alongside inflammatory cell recruitment (81, 82), while

promoting the production of IgE by B cells as well as the release of

Th2 cytokines (77), an interaction that disrupts the homeostasis

between Tregs and CD8+ T cells and exacerbates the breakdown of

immune privilege in AA hair follicles. Recent experimental studies

have provided new evidence. Kim et al. found in a large-scale study

of moderate-to-severe AA patients that the OX40L/OX40 axis was

significantly upregulated in both the follicular surroundings and the

circulatory system of patients, and this phenomenon was unrelated

to atopic background. Additionally, the study observed an increase

in OX40L+ antigen-presenting cells (APC) in the circulation, and

non-skin-homing Tregs exhibited high OX40 expression,

suggesting that at least part of Treg dysfunction may originate in

the peripheral blood circulation prior to their migration to the skin

(83). Therefore, the OX40/OX40L axis plays a key role in regulating

inflammatory responses by modulating the interaction between

Tregs and MCs. Abnormal activation of the OX40/OX40L

pathway is not only a core driver of chronic inflammation in AD

but also a critical link in the susceptibility of AD patients to AA. In

AD, the sustained activation of this pathway sensitizes effector T

cells and impairs Treg function, leading to an immune imbalance

that directly disrupts the microenvironment necessary for

maintaining follicular health. Thus, the activation of the OX40/

OX40L pathway in AD is an important initiating factor in triggering

the autoimmune process of AA. The OX40/OX40L axis, as a

potential novel therapeutic target, may offer broad therapeutic

benefits for patients with AA and AD comorbidity (Figure 2).
4 Genetic factors

The contribution of genetic factors to elucidating the

pathogenesis of AD and AA has received much attention in

recent years. This surge in investigation has been most

pronounced in the field of AD research, with genetics being a key

word in up to 11% of AD studies over the past decade (84).

Similarly, positive family history, a direct reflection of genetic

influence, significantly elevates the risk of developing AA and

AD. Specifically, up to 48% of people with AA cases exhibit

disease manifestation in a relative (85), and children with a

history of atopic disease in both parents are five times more likely

to develop early-onset AD and persistent phenotypes (86). GWAS

studies have revealed significant associations between susceptibility

loci in AA and AD, particularly in genomic regions encoding

epidermal structural proteins (e.g., FLG) and immune-related

genes involved in innate and adaptive immunity (87–89).

Epidermal barrier dysfunction caused by FLG mutations is

considered a major genetic factor for AD, not only increasing the

risk of AD, but also strongly associated with early-onset disease and

severe clinical phenotypes (90). Notably, FLG mutations also
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elevated the risk of developing AA and exacerbate disease severity in

patients with a history of AD (91). The underlying mechanism may

involve FLG mutation-induced stratum corneum dysfunction,

which compromises the skin barrier in AD. This barrier defect

can subsequently disrupt the hair follicle’s immune privilege

microenvironment, facilitating the penetration of environmental

antigens. The ensuing activation of local immune responses may

ultimately trigger AA. Concurrently, chronic inflammation in AA

can spread to the skin, inhibiting keratinocyte proliferation and

downregulating FLG expression, thereby further aggravating AD-

associated barrier dysfunction and establishing a vicious cycle.

These findings underscore the pivotal role of FLG mutations as a

shared genetic underpinning in mediating the complex comorbid
Frontiers in Immunology 06
relationship between AD and AA. In addition, another GWAS

showed multiple IL-4 promoter polymorphisms in AD patients,

suggesting that abnormal IL-4 production is associated with AD

susceptibility (92, 93). Similarly, intronic tandem repeat

polymorphisms in IL-4 (specifically within intron 3) were

identified as AA risk alleles in a Turkish cohort (94). On the

other hand, IL-13 gene polymorphisms are linked to both the

allergic phenotype of AD and AA susceptibility, with this Th2

cytokine serving as a shared genetic risk factor (93, 95). Meanwhile,

IL-13 and KIAA0350/CLEC16A loci—previously associated with

autoimmune diseases—mediate genetic overlap between AA and

atopy (e.g., allergic rhinitis, asthma) (96), thereby reinforcing the

shared etiological framework linking AA, AD, and atopic disorders.
FIGURE 2

AD, AA, and overlapping immune responses and therapeutic targets. (A) The role of Th1/Th2/Th17/Th22 immunity in AD and therapeutic targets. (B)
The role of Th1/Th2/Th17/Th22 immune responses in AA and therapeutic targets. (C) The role of Th1/Th2/Th17/Th22 immune responses, the JAK-
STAT signaling pathway, and the OX40-OX40L signaling pathway in AD and AA and therapeutic targets. (Figure created with BioRender.com). AD,
Atopic dermatitis; AA, Alopecia areata; Th, T helper cells; IL, Interleukin; IFN, Interferon; TNF, Tumor necrosis factor; KC, Keratinocyte;CD8+ T cells, CD8-
positive cytotoxic T cells; NK, Natural killer cells; HF, Hair Follicle; APC, Antigen-Presenting Cell; TYK2, Tyrosine Kinase 2; FLG, Filaggrin gene; IgE,
Immunoglobulin E; OX40, Tumor Necrosis Factor Receptor Superfamily Member 4; OX40L, Tumor Necrosis Factor Superfamily Member 4 Ligand; JAK,
Janus kinase; STAT, Signal Transducer and Activator of Transcription.
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5 Microbiome

Emerging evidence from expanding human microbiome studies

has established the central involvement of both gut and cutaneous

microbiota in the pathogenesis of AD and AA (97, 98). The strong

association between gut flora imbalance and AA is partly attributed

to the fact that they share a genetic basis capable of inducing a Th1

response and promoting the production of IFN-g. As a principal

immunomodulatory mediator, IFN-g exerts its biological effects

primarily through JAK-STAT pathway activation (99), driving

dysregulated follicular keratinocyte proliferation that culminates

in hair cycle disruption. Disruption of the gut microbiota not only

affects local intestinal homeostasis but may also compromise the

integrity of the intestinal epithelial barrier, leading to “leaky gut

syndrome”(LGS). This immune homeostasis disruption triggered

by microbiota imbalance is considered one of the potential

mechanisms exacerbating AA: Rafik et al.’s case-control study

showed a positive correlation between intestinal permeability

biomarkers and AA severity (100); However, Hacınecipoğlu et al.

reached the opposite conclusion, finding no significant association

between LGS and AA (101), so the direct causal relationship

between increased intestinal permeability and AA still needs

further verification. After intestinal barrier disruption, bacterial

metabolites can spread through the bloodstream, thereby

regulating systemic immune responses and affecting the function

of distant organs, including the skin, which forms the core of the

“gut-skin axis” theory (102). Specifically, LGS leads to the leakage of

intestinal bacteria and their products, which interact with skin

receptors to induce Th2-type immune responses, exacerbating skin

inflammation in AD (49), and may even trigger systemic

pathological processes, including autoimmune diseases (103).

Although the skin microbiota dysbiosis characteristics of AD

and AA differ, AD is primarily characterized by reduced skin

microbiota diversity and increased Staphylococcus aureus

abundance (104), while AA is primarily characterized by

increased Propionibacterium acnes abundance, with no significant

changes in the relative abundance of Staphylococcus aureus (105).

However, skin microbiome imbalance may weaken the immune

privilege state of hair follicles, and the skin barrier dysfunction

caused by AD may promote bacterial antigen invasion into hair

follicle structures, jointly exacerbating the pathological progression

of AA (106). When gut microbiota ferment undigested substrates

such as dietary fiber, they produce a class of metabolites known as

short-chain fatty acids (SCFA), whose main components are

butyrate, propionate, and acetate. These substances exert anti-

inflammatory effects through various mechanisms, including

maintaining the integrity of the mucus layer and epithelial cells

(107). Studies have shown that SCFAs can regulate immune cell

activity by activating G protein-coupled receptors, not only

inhibiting the release of pro-inflammatory cytokines but also

promoting the differentiation and function of Treg cells (108).

Treg cells induce and maintain the body’s tolerance to self-

antigens by secreting TGF-b and IL-10, playing a key role in

preventing autoimmune reactions and maintaining immune

homeostasis (109).
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Conversely, gut microbiota dysbiosis leads to a significant

reduction in SCFA production, which may disrupt the balance

between pro-inflammatory CD4+IL-17+ T cells and anti-

inflammatory CD4+ FOXP3+ Treg cells in the gut, promoting

abnormal differentiation of Th17 cells and the release of pro-

inflammatory factors such as IL-17 and IL-22, thereby inducing

tissue inflammation (110), potentially contributing to the onset of

AD and AA. Han et al. also confirmed that AA patients exhibit

significantly elevated Th17 cell counts and reduced Treg cell counts

(111). Therefore, the reduction in SCFAs caused by gut microbiota

dysbiosis may be a potential underlying cause of intestinal barrier

damage, increased permeability, and exacerbated inflammation in

AD patients. While no microbiome-targeted therapies have

achieved clinical translation to date, emerging microbiota-

modulating strategies show therapeutic promise for inflammatory

autoimmune disorders. Importantly, the pathophysiological

interplay between AD and AA remains underexplored,

necessitating systematic multi-omics investigations to delineate

shared microbial etiologies and identify novel therapeutic

targets (Figure 3).
6 Targeted therapy

6.1 IL-4/IL-13 inhibitors

Tralokinumab, the first-in-class monoclonal antibody targeting

IL-13, was developed for AD. The drug modulates the expression

levels of key AD biomarkers in the skin, restoring them to a near-

nondiseased state, and effectively reduces the levels of systemic

markers of Type 2 inflammation. In addition, a published case study

showed that tralokinumab demonstrated significant efficacy in

patients with severe AD accompanied by moderate to mild AA

baseline severity AA scores (SALT of 22) (112), thus revealing its

potential application in the treatment of comorbidities. Dupilumab,

a monoclonal antibody targeting IL-4/IL-13 receptor signaling, has

demonstrated significant efficacy in AD and AA, particularly in

patients with an atopic backgrounds and elevated IgE levels (113–

116). However, its therapeutic response in AA patients presents

complexity. On the one hand, dupilumab is effective in improving

symptoms in some AA patients; on the other hand, it has been

reported that the drug may lead to worsening or new onset of AA

(117). This two-sided response may be related to the immune

skewed state of patients. In patients with Th2-skewed AA,

dupilumab may bring positive efficacy through its inhibitory

effect. Although dupilumab may ameliorate symptoms in AA

patients with a Th2-skewed immune profile, it can paradoxically

exacerbate hair loss in those with Th1-dominant AA, particularly

among patients with low IgE levels (118–120). This differential

efficacy stems from dupilumab’s dual immunomodulatory effects

mediated through IL-4Ra blockade. In comorbid AD/AA

characterized by Th2 skewing, dupilumab inhibits Th2 responses,

effectively counteracting Th2-driven IgE elevation and barrier

damage in AD, while also suppressing Th2 cell-mediated

assistance to pathogenic CD8+ T cells in AA. Conversely, in Th1-
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skewed AA lacking significant Th2 activity (e.g., low IgE),

dupilumab’s suppression of the Th2 pathway lifts the brake on

the key negative feedback control normally exerted over the Th1/

IFN-g axis. This results in excessive amplification of IFN-g
signaling, which in turn promotes CD8+ T cell-mediated

autoimmune attack on hair follicles, ultimately manifesting as

worsened alopecia. In addition, gender differences also affect the

efficacy of dupilumab in patients with AA. Studies have shown that

female patients are more inclined to Th2 skewed disease, whereas

males are more often associated with Th1 skewed disease. Thus,

during treatment, female patients (Th2 skewed) are more likely to

benefit from dupliyumab therapy, whereas male patients (Th1

skewed) may be at higher risk of deterioration (118). Stratified

treatment strategy based on Th1/Th2 skewed status and IgE levels:

preferred dopplerizumab for Th2 skewed (high IgE) patients;

combined with JAK inhibitors or OX40L antagonists for Th1

skewed (low IgE) patients. Notably, although the prognosis of

patients with dupilumab-induced AA worsening is usually

favorable, and some patients even remit spontaneously, early

recognition and intervention of AA worsening symptoms are
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crucial for timely adjustment of treatment regimens. Therefore, in

clinical practice, physicians should fully consider patients’ immune

skewed status and gender differences in order to develop

individualized treatment plans and closely monitor changes

in disease.
6.2 JAK inhibitors

The JAK-STAT pathway is a key signaling pathway in the

development of AD and AA, and JAK inhibitors have shown

promising therapeutic efficacy by blocking the signaling of key

cytokines in this pathway and suppressing inflammatory responses

(121, 122). Compared with first-generation JAK inhibitors (e.g.,

ruxolitinib and baricitinib), second-generation JAK inhibitors (e.g.,

upadacitinib and abrocitinib) have demonstrated a significant

increase in therapeutic efficacy and have been noted for their

higher selectivity and excellent safety profile. In particular,

upadacitinib has shown significant efficacy and favorable

tolerability in managing comorbid AA and AD comorbidities
FIGURE 3

Impact of gut microbiota dysbiosis on AD and AA. Gut microbiota dysbiosis impairs intestinal epithelial barrier integrity, leading to “leaky gut
syndrome” and reduced SCFA production. This disruption shifts the balance between pro-inflammatory CD4+IL-17+ T cells and anti-inflammatory
regulatory Tregs, suppresses Tregs functionality and their secretion of anti-inflammatory cytokines (e.g., IL-10), and stimulates the release of pro-
inflammatory cytokines such as TNF-a and IFN-g, thereby exacerbating the pathogenesis of both AD and AA. (Figure created with BioRender.com).
AD, Atopic dermatitis; AA, Alopecia areata; SCFA, Short-chain fatty acids; Tregs, Regulatory T cells; IL, Interleukin; TNF-a, Tumor necrosis factor-alpha;
IFN-g, Interferon-gamma.
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(123, 124), and its therapeutic potential is particularly promising in

AD patients who have failed to respond to or experienced side

effects from dupilumab (125). In clinical practice, upadacitinib has

not only brought new therapeutic hope to adolescent AA patients

with mild AD, but also enabled certain patients with moderate-to-

severe AD comorbid with AA, who demonstrated response to

baricitinib but discontinued the drug due to side effects, to

achieve skin lesion regression and scalp hair regrowth. Real-world

evidence documents upadacitinib’s dual efficacy: adolescent AA-

AD patients (12–17 years) achieved 80% hair regrowth by 6 months

(Child-SALT ≤20), while baricitinib-intolerant adults showed 2.3-

fold greater body surface area(BSA) improvement versus baseline

(126, 127). Similarly, upadacitinib has shown positive therapeutic

effects in adolescent cases of severe refractory AD combined with

AA that failed to respond to treatment with dupilumab, as well as in

AD patients with refractory AA (128, 129). Despite reports that AA

may be induced after upadacitinib treatment for AD (130), the exact

mechanism of this complication is not yet clear, and although the

efficacy of JAK inhibitors as novel oral small molecule drugs,

including baricitinib, upatinib, and abrutinib, is significant, the

non-specificity of the mechanism of action raises additional safety

consideration (131, 132). In summary, Overall, these findings imply

that, as with AD, distinct clinical phenotypes and linked endotypes

may characterize patients with AA. Emerging evidence

demonstrates the therapeutic promise of second-generation JAK

inhibitors (e.g., deuruxolitinib, brepocitinib) in AA-AD

comorbidities, yet critical gaps persist in delineating their tissue-

specific JAK-STAT pathway modulation and optimal dosing

schedules, requiring validation through multicenter Phase IIIb

trials coupled with longitudinal biomarker profiling (Figure 4).
6.3 Other biological agents

Rezpegaldesleukin, a novel biotherapeutic drug in clinical trials,

works by specifically targeting the IL-2R complex to stimulate the

proliferation of Tregs, thereby inhibiting the aberrant activation of

pathogenic T-cell subsets and cytokine storm-mediated excessive

immune responses. The drug is currently advancing into clinical

studies in several immune-related disease areas and is currently in

pivotal phase 2b trials for moderately severe AD and severe to very

severe AA (133, 134). These studies will systematically evaluate the

therapeutic potential of drugs in different immune disorder

scenarios and provide evidence-based medical support for

subsequent indication expansion. However, there are still

challenges in the field of immunotherapy where efficacy has not

met expectations, for example, a phase II study showed that for the

treatment of AD, strategies targeting IL-17A in isolation had limited

efficacy even in the hyper-activated state of Th17 (135), and that

there was no significant difference in the treatment of AD for the

anti-IL-22 monoclonal antibody compared to placebo (136).

Similarly, no significant efficacy was observed for the anti-IL-17A

drug suxinumab in patients with AA (137). In contrast, a variety of

drugs targeting the OX40L/OX40 pathway are in phase II/III
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clinical development for AD treatment and show promise. For

example, rocatilinimab has shown good efficacy at all four doses

evaluated in its phase 2b trial, with sustained improvement up to 36

weeks post-treatment and efficacy maintained for 5 months after

discontinuation. In addition, amlitelimab, by combining with

OX40L and blocking its interaction with OX40, has shown rapid

improvement in patients with moderate-to-severe AD, with a

favorable safety profile, and efficacy was maintained for 6 months

after discontinuation, both of which have demonstrated promise for

AD treatment. Both demonstrate durable improvement in AD

(138). OX40/OX40L inhibitors demonstrate compelling efficacy

and favorable safety in AD treatment. Targeting this pathway

concurrently depletes multiple pathogenic T-cell subsets

(including Th1, Th2, Th17, Th22) and their memory

counterparts. Given that aberrant interactions between OX40+ T

cells and OX40L+ antigen-presenting cells (APC) also drive AA

progression—a systemic inflammatory disease that may benefit

from systemic OX40 inhibition regardless of atopic status—this

approach holds therapeutic promise for AA. Although OX40L/

OX40-targeted research in AA remains nascent, its potential

warrants rigorous clinical validation. In light of these findings,

future multicenter cohort studies are needed to clarify biomarkers

of AD and AA comorbidity (e.g., OX40L serum levels, FLG

mutation status) and to explore the synergistic effects and long-

term safety of combination targeted therapies (e.g., JAK inhibitors +

IL-4/IL-13 blockers) (Table 1).
7 Probiotic therapy

A study by Enomoto et al. (139) showed that prenatal and six-

month postnatal administration of Bifidobacterium shortum M-

16V and Bifidobacterium longum BB536 to mothers in

combination with their newborns significantly reduced the risk of

AD in infants during the first 18 months of life. In addition, specific

strains such as Lactobacillus paracasei KBL382 and Lactobacillus

sinensis CAU 28(T) showed potential in alleviating AD symptoms

and modulating the structure of gut flora (140, 141). Iemoli et al.

demonstrated that probiotics balance Th1/Th2 immunity and

enhance Treg activity via interactions with dendritic cells (142).

However, a randomized controlled trial by Allen et al. found no

significant reduction in AD incidence among 2-year-olds receiving

probiotic supplementation compared to placebo (143). Subsequent

systematic reviews confirm considerable heterogeneity in probiotic

efficacy across pediatric, adult, and prenatal populations with AD

(144). Although considered a potential therapeutic option, the

clinical value of probiotics in AD remains inconclusive with

conflicting evidence (145). In a recent randomized, double-blind,

placebo-controlled clinical trial, Liu et al. found that FMT therapy

could effectively improve the Eczema Area and Severity Index

(EASI) scores of patients with AD by regulating the Th2/Th17

ratio, serum TNF-a, and total IgE levels, with good safety, and may

serve as a new therapeutic approach for inflammatory diseases

(146). Similarly, the long-term hair growth cases observed after
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FMT provide additional support for the involvement of the gut

microbiota in the pathogenesis of alopecia areata (147), but such

studies have small sample sizes and lack controls. Based on the

limited studies identified in the literature, a clear association

between gut microbiota dysbiosis and alopecia areata has not yet

been established. It is worth noting that AA is strongly associated

with nutritional factors, especially vitamin D deficiency and its

receptor low expression are associated with AA (148, 149). Given

that vitamin D receptor expression is regulated by the gut

microbiota (150) and that the gut microbiome influences nutrient

absorption, it has been hypothesized that reversal of gut dysbiosis

may improve the absorption of hair-growth-friendly nutrients such

as vitamin D (151). Recent studies have shown that exploratory

therapies such as fecal microbial transplantation (FMT) exhibit

potential in reducing AD severity (152), although these findings are

largely based on small experimental studies. Similarly, cases of long-

term hair growth observed after FMT provide additional support

for the involvement of the gut microbiome in AA pathogenesis

(153), although the statistical significance of the results of tests for

changes in gut flora in some AA patients was not significant (154).
8 Conclusions and perspectives

This review has systematically examined the intricate

relationship between AD and AA, focusing on their overlapping
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epidemiological links, shared pathophysiological mechanisms, and

implications for therapeutic strategies. We first delineated the

robust bidirectional epidemiological association between these

conditions, highlighting AD as a significant risk factor for AA

development and vice versa. Subsequently, we dissected the

complex immune networks underpinning both diseases, moving

beyond the traditional Th1/Th2 dichotomy to emphasize the

concurrent dysregulation and crosstalk among multiple axes,

including Th1 (IFN-g, TNF-a), Th2 (IL-4, IL-13, IgE), Th17 (IL-

17), and Th22 (IL-22). Key signaling pathways, notably JAK-STAT

and OX40-OX40L, were identified as critical convergent hubs

driving inflammation, barrier dysfunction, and follicular damage

in both AD and AA. Shared genetic susceptibility loci, particularly

involving the FLG gene and Th2 cytokines (IL-4, IL-13), further

solidify their common etiological framework. The review also

explored the emerging role of gut and skin microbiome dysbiosis,

characterized by reduced SCFA production and increased intestinal

permeability (“leaky gut”), in modulating systemic and local

immune responses that exacerbate both conditions.

Collectively, the convergence of genetic predisposition, immune

dysregulation across multiple axes, and microbiome-mediated

modulation creates a shared pathophysiological landscape for AD

and AA. We propose that the active inflammatory state in one

disease may predispose to or exacerbate the other, reflecting their

mechanistic interplay. Critically, this mechanistic overlap holds

significant therapeutic implications. Emerging evidence suggests
FIGURE 4

Targeted therapies for AD, AA, and their overlap: approved agents and investigational drugs in phase II/III trials. (Figure created with BioRender.com).
AD, atopic dermatitis; AA, alopecia areata.
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that targeted therapies effective for one condition may exert

beneficial effects on the other, as exemplified by the potential

efficacy of certain IL-4/IL-13 inhibitors and JAK inhibitors in

comorbid presentations (Figure 3). However, the bidirectional

response observed with agents like dupilumab underscores the

complexity and the need for patient stratification based on

immune endotypes (e.g., Th1 vs. Th2 skew, IgE levels).

Despite these advances, critical knowledge gaps persist. The

precise pathophysiological interplay mediated by the microbiome

in the AD-AA dyad requires further elucidation through

integrated multi-omics approaches. The long-term efficacy and

safety profiles of novel biologics targeting pathways like OX40-
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OX40L in AA, either alone or in combination with existing agents

(e.g., JAK inhibitors), warrant rigorous investigation in large-scale

clinical trials. Furthermore, reliable biomarkers predictive of

comorbid risk, disease severity, and therapeutic response (e.g.,

serum OX40L levels, specific microbial signatures, FLG mutation

status) remain to be robustly defined. Future research should

prioritize elucidating these unresolved questions and optimizing

personalized therapeutic strategies, including exploring

synergistic combinations of targeted agents and microbiota-

modulating interventions (e.g., defined probiotics, FMT), to

effectively manage the challenging clinical scenario of

overlapping AD and AA.
TABLE 1 Systematic comparison of the immunopathological mechanisms and treatment responses of AD and AA. Modified from (116, 121, 122).

Comparative Parameters AD AA

Immune response patterns
Th2-type immune response, characterized by impaired

epidermal barrier function
Th1-type immune response, characterized by
disruption of follicular immune privilege

T cell infiltration Acute phase:Th2 Chronic phase:Th17, Th22, Th1 Core:TH1 Auxiliary:Th2, Th17,Th22

Core cytokines IL-4, IL-5, IL-13, IL-31, TSLP IFN-g, TNF-a, IL-2,IL-17, IL-21

Microbiome characteristics Skin:Staphylococcus aureus↑ Gut:SCFA↓ Skin:Propionibacterium acnes↑ Gut:SCFA↓

Overlapping therapeutic agents

Dupilumab (anti-IL-4)

Patients receiving 300 mg of dupilumab every two
weeks achieved IGA clearance or near clearance (IGA
0/1) at 16 weeks, significantly higher than the placebo

group (36-38% vs. 8-10%)

After 48 weeks of dupilumab treatment, 32.5%, 22.5%
and 15% of patients achieved SALT30/SALT50/

SALT75 improvement

JAK inhibitors

1. Baricitinib (BREEZE-AD1 trial):In adult patients
with moderate to severe AD, the EASI-75 response
rate was 24.8% in the 4 mg group, 18.7% in the 2 mg
group, and 8.8% in the placebo group 2. Abrocitinib
(JADE MONO-1 Trial):In patients aged >12 years
with moderate to severe AD, the EASI-75 response

rate at week 12 was 63% in the 200 mg group, 40% in
the 100 mg group, and 12% in the placebo group 3.
Upadacitinib (Measure Up 1 trial):Patients aged >12
years with moderate to severe AD, 79.7% EASI-75

response rate at week 16 in the 30mg group, 69.6% in
the 15mg group, and 16.3% in the placebo group

1.Baricitinib:In the BRAVE-AA1 trial (N = 465), the
percentage of patients achieving a SALT score ≤20 at
week 52 was 40.9% and 21.2% in the 4mg and 2mg
baricitinib groups, respectively; In the BRAVE-AA2
trial (N = 390), the percentages were 36.8% and
24.4%, respectively 2. Abrocitinib:Among patients
treated with oral abrocitinib (50–200 mg/day) for at
least 3 months, 46.15%, 53.85%, and 38.46% achieved
a SALT score ≤20, 50% hair regrowth, and 75% hair
regrowth, respectively 3. Upadacitinib:In 25 patients
(15–30 mg qid), the median absolute SALT score

decreased from 50 to 25 at week 12 and further to 5
at week 24

Anti-OX40/OX40L

1. Rocatinlimab: At week 16, the group receiving
subcutaneous injections of 300 mg every two weeks
showed a significantly greater reduction in EASI
scores, at -61.1% (95% CI, -75.2% to -47.0% 2.

Amlitelimab: At week 16, the average EASI score
decreased significantly in the group receiving 100 mg
every 4 weeks, with a reduction of -80.12% (95% CI,

-95.55% to -54.60%)

1. IMG-007 demonstrated dose-dependent sustained
efficacy in a Phase 2a trial in patients with severe
alopecia areata. Patients in the high-dose group

experienced an average reduction of 14.3% in SALT at
24 weeks, further decreasing to 21.7% at 36 weeks

(NCT06060977) 2. Amlitelimab is currently in Phase
2 clinical trials, with no data yet

available (NCTO6444451)

Other

1. Tralokinumab (anti-IL-13):At 16 weeks,
tralokinumab 300mg every two weeks was superior to
placebo in achieving IGA 0/1 (15.8% vs. 7.1% and

22.2% vs. 10.9%, respectively) and EASI-75 (25.0% vs.
12.7% and 33.2% vs. 11.4%, respectively).

2. Lebrikizumab (anti-IL-13):Lebrikizumab 250mg
every two weeks demonstrated efficacy at 16 weeks,

achieving IGA 0/1 (33–43%) and EASI-75 (51%−59%)
compared to placebo (11–13% and

16–18%, respectively)

1. Tofacitinib (JAK inhibitor): 58% of patients (5–10
mg bid) achieved a SALT score improvement of >50%
during 4–18 months of oral treatment 2. Ruxolitinib
(JAK inhibitor): Among 12 patients with moderate to
severe alopecia areata, 9 achieved an average hair

regrowth rate of 92% after 3–6 months of treatment
Th, T helper cells; AD, Atopic Dermatitis; AA, Alopecia Areata; IL, Interleukin; IFN-g, Interferon-gamma; TNF-a, Tumor Necrosis Factor-alpha; SCFA, Short-Chain Fatty Acids; OX40, Tumor
Necrosis Factor Receptor Superfamily Member 4; OX40L, Tumor Necrosis Factor Superfamily Member 4 Ligand; JAK, Janus kinase; TSLP, Thymic Stromal Lymphopoietin; IGA, Investigator’s
Global Assessment; SALT, Severity of Alopecia Tool; EASI, Eczema Area and Severity Index; CI, Confidence Interval.
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