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Dichotomous roles of IL-36 and
IL-38 in cardiovascular disease
Haifeng Zhang, Wenhui Huang* and Shisan Bao*

Department of Cardiology, The First People’s Hospital of Baiyin, Baiyin, Gansu, China
Members of the interleukin-1 (IL-1) superfamily play crucial roles in orchestrating

inflammation and immune responses. Among them, IL-36 and IL-38 have

emerged as cytokines with contrasting roles in cardiovascular disease (CVD).

IL-36 typically promotes inflammation, contributing to endothelial dysfunction,

atherogenesis, and myocardial injury. In contrast, IL-38 exerts predominantly

anti-inflammatory effects, modulating immune responses and promoting tissue

repair. This mini-review provides a critical synthesis of current findings on IL-36

and IL-38 in the context of atherosclerosis, myocardial ischaemia–reperfusion (I/

R) injury, and post-percutaneous coronary intervention (PCI) outcomes. We

discuss their molecular mechanisms, potential as biomarkers, and therapeutic

implications, while identifying key gaps in knowledge that merit

further investigation.
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Introduction

Atherosclerosis, the underlying cause of most cardiovascular diseases (CVD), is an

autoimmune-mediated chronic inflammatory condition characterized by the accumulation

of lipids, immune cells, and fibrous elements within the arterial wall (1). Endothelial

dysfunction facilitates the infiltration of low-density lipoprotein (LDL) particles (2), which

become oxidized and subsequently promote the recruitment of circulating monocytes and

T cells. These activated immune cells, together with stimulated vascular smooth muscle

cells (3), drive plaque formation and progression. Over time, unstable plaques may rupture

in response to further stimuli (4), leading to thrombosis and clinical events such as

myocardial infarction or stroke.

The IL-1 cytokine family includes a diverse set of pro-inflammatory and anti-

inflammatory mediators such as IL-1a, IL-1b, IL-18, IL-33, IL-36a/b/g, IL-37, and IL-

38. These cytokines act through IL-1 receptors to activate downstream signaling cascades,

notably the nuclear factor-kappa B (NF-kB) and mitogen-activated protein kinase (MAPK)

pathways (5).

The IL-36 subfamily—comprising IL-36a, IL-36b, and IL-36g—binds a heterodimeric

receptor complex formed by IL-36R and the IL-1 receptor accessory protein (IL-1RAcP),

promoting inflammatory signaling. Their endogenous antagonist, IL-36Ra, competes for

receptor binding but fails to recruit IL-1RAcP, thereby blocking downstream effects (6).
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Produced predominantly by epithelial cells, IL-36 cytokines act on

immune and stromal cells and require N-terminal proteolytic

processing to become fully active. Their roles in chronic

inflammatory diseases (7, 8) and cancer are increasingly

recognized (9, 10).

In contrast, IL-38 is a more recently identified, anti-

inflammatory member of the IL-1 family that suppresses both

innate and adaptive immune responses (11, 12). IL-38 shares

structural similarity with IL-36Ra and IL-1Ra and can antagonize

their respective receptors. Its expression is upregulated in

autoimmune diseases such as rheumatoid arthritis (13) and

inflammatory bowel disease (14), but is suppressed in certain

cancers, such as colorectal carcinoma (15) or prostate cancer (16).

In CVD, IL-1 family cytokines influence endothelial dysfunction,

myocardial injury, and vascular remodeling (17).

While IL-32, IL-34, and IL-37 have received attention in the

CVD—showing abnormal expression in atherosclerotic plaques,

with IL-32 and IL-34 exhibiting pro-atherogenic properties linked

to unstable plaque phenotypes, and IL-37 playing an anti-

atherogenic role by contributing to plaque stability (18) —the

specific functions of IL-36 and IL-38 remain poorly defined.

Notably, despite their shared lineage, IL-36 and IL-38 often

exert opposing effects-pro-inflammatory and anti-inflammatory,

respectively—raising important questions about their roles in

cardiovascular pathology.

Additionally, IL-6 is a multifunctional cytokine that plays a

pivotal role in both acute-phase responses and the regulation of

chronic inflammation (19). In atherogenesis, IL-6 is secreted by

endothelial cells, macrophages, and vascular smooth muscle cells in

response to stimuli such as oxidized LDL and other pro-

inflammatory signals (20). Elevated IL-6 levels are implicated in

endothelial dysfunction, enhanced monocyte recruitment, and the

stimulation of C-reactive protein synthesis—an established

biomarker of cardiovascular risk. Through its pro-inflammatory

and pro-atherogenic effects, IL-6 contributes to the progression and

destabilization of atherosclerotic plaques, ultimately increasing the

likelihood of plaque rupture, thrombosis, and subsequent

cardiovascular events (20, 21).

This mini-review focuses on IL-36 and IL-38 in the context of

cardiovascular disease. We summarize current knowledge on their

divergent roles in vascular inflammation, atherosclerosis, and

ischemic injury, highlighting their emerging promise as diagnostic

markers and potential therapeutic targets.
Pro-inflammatory roles of IL-36 in
cardiovascular pathology

The IL-36 cytokines—IL-36a, IL-36b, and IL-36g—are pro-

inflammatory ligands that bind to the IL-36 receptor (IL-36R),

activating downstream NF-kB and MAPK pathways (5). These

cytokines are produced by epithelial cells, monocytes, dendritic

cells, and endothelial cells in response to inflammatory stimuli (22).

Clinical studies have associated elevated IL-36 levels with CVD.

Kazemian et al. reported significantly increased circulating IL-36
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levels in CVD patients compared with healthy controls (23), with

positive correlations observed with pro-inflammatory mediators

(TNF, IL-6, IL-32) and lipid markers (total cholesterol, oxLDL),

alongside a negative correlation with antioxidant capacity, as

measured by the ferric reducing ability of plasma (FRAP) (24).

These findings suggest that IL-36 may contribute to atherosclerosis

development by promoting systemic inflammation, e.g. IL-6, and

oxidative stress-mediated vascular injury. However, further studies

are required to determine which IL-36 isoforms are specifically

involved in the initiation and progression of atherosclerosis in

human plaques.

However, further studies are needed to clarify which IL-36

isoforms are specifically involved in the initiation and progression

of atherosclerosis in human plaques, as has been demonstrated for

other cytokines (4, 25). Most existing studies have focused on IL-

36g, with limited data available for IL-36a and IL-36b. Future
research should therefore investigate the differential expression of

IL-36a, IL-36b, and IL-36g at the protein and/or mRNA levels using

immunohistochemistry and qRT-PCR, in order to characterize

their expression patterns and elucidate the specific roles of

each isoform.

Furthermore, the role of IL-36 has also been investigated in

ApoE-/- mice—a well-established model of atherosclerosis—in a

dose- and time-controlled manner (26). IL-36g expression was

found to be upregulated in atherosclerotic lesions, particularly in

high-fat diet-fed mice, at both the mRNA and protein levels (26).

Expression was notably higher in advanced atheromatous plaques

compared to early-stage lesions, consistent with increased

circulating IL-36g levels in the same model (26).

Macrophages, which play a central role in the pathogenesis of

atherosclerosis in both humans and animal models (27), were

identified as the predominant infiltrating leukocyte population in

these plaques. Administration of exogenous IL-36g to high-fat diet-
fed ApoE-/- mice resulted in significantly larger atheroma formation

(26), accompanied by increased macrophage infiltration, with no

corresponding rise in CD3+ T cells. This observation aligns with

previous reports that macrophage infiltration predominates during

early atherogenesis, whereas CD3+ T cell accumulation typically

occurs in later stages (4, 27).

RNA-seq analysis revealed 511 differentially expressed genes

(DEGs), including 169 upregulated and 342 downregulated genes.

Several of these, including Ccl12, Ccl5, Ldlr, and Cxcl3, were

implicated in the PI3K-Akt and NF-kB signaling pathways (26).

Gene Ontology (GO) analysis of macrophages isolated from IL-36g-
treated plaques showed enrichment in pathways related to

inflammatory responses, cell adhesion, and LDL particle binding,

suggesting that IL-36gmodulates macrophage transcriptomic profiles

and promotes the expression of pro-inflammatory mediators.

Collectively, these findings indicate that IL-36 may contribute

to atherogenesis by initially promoting macrophage recruitment

and activation (as precursors of foam cells), followed by the

autocrine and paracrine release of inflammatory mediators.

Moreover, the IL-1 receptor accessory protein (IL-1RAcP), a co-

receptor for IL-36R, is highly expressed in endothelial cells and

infiltrating leukocytes within human atherosclerotic plaques, but
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not in smooth muscle cells (28). This distribution pattern supports a

pro-atherogenic role for IL-36 in plaque development, potentially

through the upregulation of endothelial adhesion molecules such as

ICAM and ECAM, thereby facilitating leukocyte recruitment and

promoting plaque progression. In vitro, treatment of human

umbilical vein endothelial cells (HUVECs) with anti-IL-1RAcP

reduced the expression of leukemia inhibitory factor (LIF),

chemokine C-C motif ligand 4 (CCL4), and monocyte

chemotactic protein 3 (MCP-3).

In more detail, leukemia inhibitory factor (LIF), a

multifunctional cytokine of the IL-6 superfamily, plays an

important role in host immunity and contributes to atheroma

formation (29), consistent with findings that inhibition of LIF

reduces atherosclerosis (30). C-C motif chemokine ligand 4

(CCL4), also known as macrophage inflammatory protein-1b
(MIP-1b), promotes the migration and activation of natural killer

(NK) cells (31) and contributes to plaque instability (32).

Furthermore, monocyte chemotactic protein 3 (MCP-3) has also

been shown to promote plaque instability (33). Therefore,

downregulation of these pro-inflammatory mediators may help

mitigate the development and progression of atherosclerosis.

These findings provide further evidence that IL-36 signaling

contributes to the development of atherosclerosis by regulating

these molecules (28).

Inhibition of IL-36R suppresses activation of the NOD-like

receptor pyrin domain-containing 3 (NLRP3) inflammasome,

reduces plaque size, and improves plaque stability in murine

models (28). The NLRP3 inflammasome is a crucial component

of the innate immune system, acting as a sensor of cellular damage

and infection (34). Upon activation, it triggers a cascade that leads

to the release of pro-inflammatory cytokines such as IL-1b and IL-

18, ultimately promoting inflammation. While this process is

essential for pathogen clearance and tissue repair, its

dysregulation contributes to various inflammatory diseases (34).

This supports earlier evidence that targeting the IL-36 receptor

reduces atherosclerosis by downregulating NLRP3 inflammasome

activation (35). In aged mice, IL-36 neutralization alleviated

coronary microvascular dysfunction and reduced infarct size

following myocardial ischaemia-reperfusion injury, further

highlighting IL-36R as a promising therapeutic target for

atheroma management. However, further validation in human

studies—preferably large, multicenter trials—is necessary.

Estrogen and other female sex hormones are known to confer

protection against the development of atherosclerosis (36, 37).

Supporting this, El-Awaisi et al. reported significantly higher

expression of IL-36a, IL-36b, and IL-36g in female human hearts

compared to male hearts (38), suggest ing a possible

atheroprotective role for IL-36 modulated by female hormones. In

a myocardial ischaemia–reperfusion injury model, female mice

showed increased neutrophil recruitment, whereas male mice

exhibited a greater thrombotic burden (38). Male mice also had

lower capillary density and a reduced capacity to restore perfusion,

while females exhibited improved perfusion recovery but developed

larger infarcts. Notably, treatment with IL-36 receptor antagonist
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(IL-36Ra) reduced inflammation, improved perfusion, and

decreased infarct size in both sexes, despite increased platelet

accumulation in male hearts. These benefits were attributed to IL-

36Ra’s ability to reduce endothelial oxidative stress and suppress

VCAM-1 expression. The timing of IL-36Ra administration during

the ischemic phase was found to be critical in achieving

vasculoprotective effects (38).

Most of the studies discussed above rely on single animal

models or in vitro systems, and their findings are yet to be

translated into clinical applications. Several key uncertainties

remain, including the precise cellular sources of IL-36 isoforms in

vascular tissues, their specific roles in acute versus chronic

inflammation, and their interactions with other cytokines in vivo,

particularly during the development of atheroma—all of which

merit further investigation.

While experimental evidence supports a protective role for female

sex hormones, clinical findings remain inconclusive. Large

randomized trials have generally failed to demonstrate

cardiovascular benefits of estrogen therapy, and guidelines in 2001

do not recommend hormone replacement therapy (HRT) for the

prevention of CVD (39). However, more recent data from a

substantial body of randomized clinical trials—alongside

observational studies, animal models, and basic research—suggest

that the cardiovascular effects of HRT may depend on the timing of

initiation relative to menopause (40). The ELITE trial provided direct

evidence supporting this “timing hypothesis,” while the DOPS trial

demonstrated that initiating HRT around the time of menopause (in

women with a mean age of 50 years and 7 months postmenopausal)

conferred cardiovascular benefits with minimal associated risk when

used long-term. These findings align with earlier observational studies.

Discrepancies between experimental and clinical findings—

such as differences in short-term versus long-term effects, and

single-center versus multicenter study designs—may reflect

variability in genetic background, environmental exposures, and

lifestyle factors. Therefore, further investigation is warranted to

elucidate the precise role of sex hormones in the development and

progression of atherosclerosis.

Moreover, most of the studies discussed above rely on single

animal models or in vitro systems, and their findings have yet to be

translated into clinical applications. Key uncertainties remain,

including the specific cellular sources of IL-36 isoforms within

vascular tissues, their differential roles in acute versus chronic

inflammation, and the in vivo interactions with other cytokines

during atheroma formation. These aspects warrant further

detailed investigation.
The role of interleukin-38 in
cardiovascular diseases

In contrast to the pro-inflammatory IL-36 subfamily, IL-38

functions as an anti-inflammatory cytokine and appears to exert

counter-regulatory effects within the IL-1 family. Inflammation is a

key driver of CVD, with atherosclerosis serving as the underlying
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cause of many conditions, including myocardial infarction and

aortic valve calcification. IL-38, a relatively understudied member

of the IL-1 family, exhibits immunomodulatory properties by

dampening inflammatory signaling cascades. This section

summarizes emerging evidence supporting the protective role of

IL-38 in cardiovascular health and disease.
IL-38 and atherosclerosis

Atherosclerosis is a chronic inflammatory disease characterized

by lipid accumulation, endothelial dysfunction, and immune cell

infiltration. IL-38 has been implicated in mitigating atherosclerosis

by attenuating inflammation-related signaling pathways, including

MAPK and NF-kB (41). These anti-atherogenic effects may reduce

the risk of cardiovascular events, highlighting IL-38’s potential as

both a biomarker and therapeutic target.

IL-38 has been detected in human atheromatous plaques,

suggesting a role in disease modulation. It acts in part by

antagonizing the IL-36 receptor and inhibiting NF-kB and AP-1

signaling pathways. Additionally, in experimental models, transfer

of the IL-38 gene into bone marrow-derived mesenchymal stem

cells (MSCs) in ApoE-/- mice via an adenoviral vector led to

reduced plaque burden and systemic inflammation, without the

adverse effects commonly associated with statin therapy (41),

suggesting strong potential for clinical application in

precision medicine.

Structurally, IL-38 shares homology with IL-1Ra and IL-36Ra,

and is primarily expressed by macrophages, B cells, and dendritic

cells. It signals through IL-36R and IL-1RAPL1 (11, 42). In

atherosclerotic models, exogenous IL-38 reduces expression of

endothelial adhesion molecules (VCAM-1, ICAM-1) and pro-

inflammatory cytokines, limiting monocyte/macrophage

infiltration. These findings suggest a multifaceted anti-

inflammatory mechanism relevant to atherogenesis.
IL-38 in myocardial ischaemia–reperfusion
injury

Myocardial ischaemia–reperfusion (I/R) injury exacerbates

cardiac damage following ischemic events. IL-38 has been shown

to attenuate I/R injury by suppressing macrophage-driven

inflammation (43). Specifically, it promotes M2 polarization of

macrophages, inhibits activation of NLRP3 inflammasome, and

enhances secretion of anti-inflammatory cytokines such as IL-10

and TGF-b. Polarization of M0 macrophages into M1 (pro-

inflammatory) or M2 (anti-inflammatory) phenotypes plays a

critical role in host immunity within the local environment (44),

which in turn influences the progression and outcome of local

atheroma formation (45, 46). IL-38 also interacts with IL-1RAPL1

to activate the JNK/AP-1 pathway, thereby increasing IL-6

production and promoting dendritic cell-induced regulatory T

cell (Treg) responses (47)—collectively contributing to improved

ventricular remodeling post-infarction (43).
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IL-38 in aortic valve calcification

Calcific aortic valve disease (CAVD) is the most prevalent

valvular disorder among the elderly, particularly in patients with

rheumatoid arthritis or age-related degeneration (48). It frequently

progresses to aortic stenosis, which can result in heart failure or

sudden cardiac death (49). Despite extensive research, no

pharmacological treatment has been shown to halt or reverse

CAVD progression—leaving valve replacement as the only

effective intervention.

Chronic inflammation plays a central role in CAVD

pathogenesis. Valve interstitial cells (VICs), which reside in all

layers of the aortic valve, can undergo inflammation-driven

osteogenic differentiation, leading to calcium deposition.

Inflammatory hallmarks of CAVD include immune cell

infiltration and extracellular matrix remodeling (49).

Recent evidence suggests a protective role for IL-38 in CAVD.

Its expression is significantly reduced in calcified human aortic

valves compared to non-calcified controls (50). Exogenous IL-38

treatment in VICs downregulates ICAM-1, VCAM-1, and RUNX2

expression, and reduces calcium deposition, likely via suppression

of NLRP3 inflammasome activation and caspase-1 activity. In vivo

models further support these findings, with IL-38 deficiency

accelerating valve calcification. These data indicate that IL-38

inhibits both inflammatory and osteogenic responses and may

serve as a novel therapeutic candidate in CAVD.

Following an extensive literature search, no reports were found

regarding the involvement of IL-36 in CAVD. However, given the

opposing role of IL-36 relative to IL-38, it is speculated that IL-36

may contribute to the progression of CAVD due to its pro-

inflammatory properties. Specifically, IL-36 may upregulate

adhesion molecules such as ICAM-1 and VCAM-1 on the

endothelial surface, thereby promoting the recruitment of

leukocytes to affected areas, including the aortic valves.

Nevertheless, this hypothesis requires further validation through

studies using clinical samples and animal models.
IL-38 and major adverse cardiovascular
events post-PCI

Percutaneous coronary intervention (PCI) is widely used to

restore coronary perfusion in patients with coronary heart disease

(CHD), yet major adverse cardiovascular events (MACE) remain a

significant post-procedural risk. Retrospective studies have

identified low serum IL-38 levels as an independent predictor of

MACE after PCI (51). In patients with ST-elevation myocardial

infarction (STEMI), those with low plasma IL-38 levels had a

significantly higher incidence of MACE (23.7%) compared to

those with high IL-38 levels (7.8%) (52).

Multivariate analysis revealed that post-PCI MACE risk

correlated with smoking, HbA1c, HDL-C, and IL-38 levels, but

not with age, hypertension, or baseline lipid biochemistry. Receiver

operating characteristic (ROC) analyses confirmed the specificity

and sensitivity of IL-38 as a prognostic biomarker across subgroups
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stratified by smoking status, serum HbA1c, and hs-CRP. These

findings highlight the potential of IL-38 as a non-invasive

biomarker for risk stratification following PCI.

However, there is currently no evidence linking IL-38 to sex

hormone regulation or sex-specific cardiovascular effects, as has been

discussed for IL-36 above, which warrants further investigation.
Conclusion

IL-38 is a promising anti-inflammatory cytokine with protective

effects across multiple cardiovascular conditions, including

myocardial I/R injury, atherosclerosis, aortic valve calcification,

and post-PCI outcomes. Its functions include promoting M2

macrophage polarization, inhibiting inflammatory signaling, and

supporting tissue repair. However, important questions remain

regarding receptor specificity, cell type–dependent effects, and

crosstalk with metabolic and fibrotic pathways. Further

mechanistic and translational research is warranted to clarify

these roles and explore IL-38 as a therapeutic target in

cardiovascular medicine.
Limitations and future directions

While IL-36 and IL-38 show therapeutic promise in

atherosclerosis, myocardial ischaemia-reperfusion injury, and

post-PCI outcomes, most supporting evidence remains preclinical,

derived largely from in vitro studies or single-model animal

experiments, limiting direct clinical translation. These cytokines

exemplify the contrasting roles of immune mediators in

cardiovascular inflammation: IL-36 generally drives pro-

inflammatory responses and disease progression, whereas IL-38

mitigates inflammation and promotes tissue repair. Advancing their

clinical application will require deeper mechanistic insights, better

patient stratification, and innovative therapeutic strategies.

Future research should focus on identifying upstream regulators

of IL-36 and IL-38 in cardiovascular tissues, clarifying receptor- and

cell-type-specific signaling, and evaluating their clinical relevance as

biomarkers and therapeutic targets through large-scale longitudinal

studies. Concurrently, advanced delivery methods—such as

bioengineered MSCs or targeted mimetics—may enhance the safety

and precision of cytokine-based therapies. Targeting IL-36 and IL-38

holds promise for personalized cardiovascular immunotherapy

tailored to individual inflammatory profiles and disease stages.
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