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Sepsis-driven metabolic
reprogramming shapes
cancer immunotherapy
efficacy, metastatic potential,
and drug sensitivity
Leyi Wang1, Changdong Wu1, Ming Hou1* and Zhiwei Li2*

1People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China, 2Clinical Laboratory Center,
People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
Sepsis and cancer interact in a complex, bidirectional manner that significantly

impacts patient prognosis, with metabolic reprogramming being a key factor.

Sepsis-induced immune dysregulation and metabolic changes promote

immunosuppression, tumor growth, metastasis, and resistance to

immunotherapy. Cancer patients, especially those on immunosuppressive

therapies, are more vulnerable to sepsis, complicating treatment and

worsening outcomes. An integrated approach combining immunotherapy,

metabolic interventions, and antimicrobial strategies is essential, alongside

identifying biomarkers for personalized care. Recent advancements emphasize

the need to integrate molecular insights, immunotherapy, and drug sensitivity

analysis. This review explores how sepsis-driven metabolic reprogramming

affects cancer immunotherapy and metastasis, providing a foundation for

future integrated treatment strategies. Further research should focus on

developing precise therapies that regulate metabolism, immunity, and

the microbiome.
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GRAPHICAL ABSTRACT

The interaction between sepsis and cancer presents significant clinical challenges, as illustrated in the graphical abstract. (A) Sepsis disrupts the
tumor microenvironment by triggering inflammation and immune suppression, promoting tumor growth and immune escape through mechanisms
like PD-L1 expression. (B) Sepsis alters tumor cell metabolism, increasing ROS production and metabolic stress, which accelerates tumor growth and
complicates cancer treatment. (C) Sepsis in cancer patients often presents with atypical symptoms like fever and organ dysfunction, making early
diagnosis difficult. Timely detection using biomarkers and advanced imaging is essential. (D) Effective treatment strategies involve combining
immunotherapy, antibiotics, and antitumor drugs, with emerging therapies like engineered bacteria and exosome-based nanomedicine offering
innovative dual-targeting approaches. Multidisciplinary collaboration and precision medicine are key to improving outcomes in this high-risk
population.
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1 The basic theory of sepsis and
tumor interaction

1.1 Pathological mechanisms and impact
on the tumor microenvironment

Sepsis is a life-threatening condition characterized by a

dysregulated immune response to infection, leading to systemic

inflammation, immune dysfunction, and multiorgan failure (1). A

hallmark is the cytokine storm, primarily driven by TNF-a, IL-1b, and
IL-6, which induces endothelial damage, vascular leakage,

coagulopathy, and subsequent immunosuppression through

lymphocyte apoptosis and impaired antigen presentation (2). T cell

exhaustion in the septic TME is characterized by elevated expression of

inhibitory receptors (PD-1, CTLA-4, TIM-3, LAG-3) on CD8+ T cells,

driven by chronic antigen exposure and sustained NF-kB/STAT3
signaling (3). Transcription factors such as TOX, TOX2, and NR4A

family members maintain the epigenetic and transcriptional programs

underlying exhaustion (4, 5). Pathogen-associated molecular

patterns (PAMPs), such as LPS, activate Toll-like receptors (TLRs)

on TME-resident cells, amplifying NF-kB/STAT3 signaling and

promoting tumor survival and metastasis (3). Tumor cells contribute

to systemic inflammation by secreting pro-inflammatory cytokines

(e.g., IL-1b, IL-6) and chemokines (e.g., CCL2), which intensify

immune dysregulation (6). Glioma-derived CCL2 and CCL7 facilitate

monocytic-MDSC migration via CCR2+/CX3CR1+ signaling,

reinforcing local immunosuppression (7). Sepsis induced extracellular

matrix (ECM) remodeling, mediated by matrix metalloproteinases

(MMPs), promotes tumor motility, invasiveness, and angiogenesis,

facilitating dissemination (8). The interaction between sepsis and

the tumor microenvironment (TME) is bidirectional; although acute

infection may temporarily enhance anti-tumor immunity, chronic

sepsis contributes to immunosuppression, metabolic reprogramming,

and tissue remodeling. Recent studies have demonstrated that tumor-

derived apoptotic extracellular vesicles promote metastasis and

stemness through TME-mediated communication, unveiling a novel

mechanism by which tumors exploit sepsis-induced alterations (9).

This emerging paradigm warrants further mechanistic investigation.
1.2 Immunological basis of tumor
associated sepsis

Cancer patients, especially those receiving cytotoxic therapies, face

elevated sepsis risk due to therapy-induced immunosuppression (10).

Sepsis exacerbates immune dysfunction and accelerates tumor

progression, partly through the expansion of granulocytic myeloid-

derived suppressor cells (G-MDSCs), which inhibit T cell responses via

arginase-1, nitric oxide, and reactive oxygen species (11). In sepsis-

induced tumor models, TLR4/MyD88 signaling boosts G-MDSC

survival and function, promoting tumor growth. Sepsis also causes

lymphopenia, T cell exhaustion (PD-1, TIM-3, LAG-3), and dendritic

cell dysfunction, impairing tumor surveillance and reducing

immunotherapy effectiveness (12, 13). Immune checkpoint inhibitor
Frontiers in Immunology 03
(ICI) resistance remains a major obstacle. Calreticulin-expressing

liposomal nanoparticles (CRT-NPs) have reversed anti-CTLA-4

resistance in colon cancer by inducing immunogenic cell death,

enhancing T cell activity, and reducing regulatory T cells (14). In

gastric cancer, a low VEGF-A121/VEGF-A165 ratio was associated

with improved progression-free survival, suggesting predictive value

for ICI response. In clear cell renal cell carcinoma (ccRCC), resistance to

combined anti-PD-1/CTLA-4 therapy was linked to myeloid-driven

immunosuppression and alternative checkpoint pathways beyondPD-1

and CTLA-4 (15, 16). These findings highlight the multifactorial nature

of immune resistance within the tumor–sepsis axis, emphasizing the

need for personalized, targeted immunotherapies to overcome complex

immunosuppressive networks.
1.3 Interaction between sepsis and tumor
cell metabolism

Cancer cells exhibit metabolic reprogramming, notably the

Warburg effect, characterized by elevated glycolysis despite

sufficient oxygen availability, which supports cellular proliferation

(17). Sepsis induces systemic metabolic disturbances, including

hyperglycemia and insulin resistance, which affect both immune

and tumor cell metabolism (18). In its early stages, sepsis enhances

glycolysis and mitochondrial respiration in immune cells,

augmenting anti-tumor activity. However, prolonged sepsis leads

to metabolic exhaustion and immune dysfunction, fostering a

tumor-permissive environment (19). Macrophage-targeted

autophagy may mitigate this dysregulation by promoting

inflammation resolution and tissue repair (20). Lactate, a

glycolysis byproduct elevated in both cancer and sepsis,

suppresses immune responses by impairing dendritic and T cell

function and promoting Treg and MDSC expansion. Lactate also

stabilizes Tregs via MOESIN lactylation, enhancing TGF-b/SMAD3

signaling and reinforcing immunosuppression.

Sepsis-induced oxidative stress further supports tumor survival

through DNA damage, activation of PI3K/Akt and MAPK

pathways, and oncogenic transformation (21). The impact of

sepsis on tumor progression is context-dependent. In murine

models, polymicrobial sepsis inhibited tumor growth via TLR4-

mediated NK cell activation, suggesting that sepsis-induced innate

immunity can have anti-tumor effects under certain conditions

(22). GLUT1 upregulation promotes glycolysis and NF-kB-driven
inflammation in macrophages; inhibiting it impairs cytokine

production and mitochondrial function, indicating similar

reprogramming in tumor-associated macrophages (23). Moreover,

the upregulation of CPT1A, linked to enhanced lipid metabolism

and tumor suppression in colitis-associated cancer models, may be

disrupted during sepsis, altering the tumor’s energy balance (24).

This intricate metabolic crosstalk offers opportunities for

therapeutic intervention, such as exercise-induced adipokine

secretion, which regulates tumor metabolic reprogramming and

may enhance immunotherapy efficacy when combined with

exercise interventions under septic conditions (25–27) (Figure 1).
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2 Epidemiology of sepsis and tumor
interaction

2.1 Incidence and mortality of sepsis in
cancer patients

Sepsis, a life threatening consequence of dysregulated host

responses to infection, presents a major clinical challenge in

oncology (28).Due to malignancy induced immunosuppression

and aggressive anticancer therapies, cancer patients face a

significantly higher risk of sepsis incidence and mortality

compared to the general population (29). Contributing factors

include tumor-induced immune evasion, disruption of anatomical

barriers by invasive tumor growth, and immunosuppression

resulting from cytotoxic therapies (30). Notably, despite their

anti-inflammatory properties, statins did not confer a protective

effect against sepsis in cancer patients, indicating complex

immunopathological mechanisms beyond inflammation alone.

Cancer stem cells further exacerbate immune evasion under septic

conditions by enhancing metastatic potential and promoting drug
Frontiers in Immunology 04
resistance (31). Although sepsis-related mortality among cancer

patients has declined in recent years—reflecting advances in

oncologic care—certain subgroups remain disproportionately

vulnerable (32). Hematologic malignancies, such as acute myeloid

leukemia and multiple myeloma, confer particularly high sepsis risk

due to severe neutropenia and bone marrow failure (33). The rising

threat of antimicrobial resistance, especially infections caused by

carbapenem-resistant Gram-negative bacteria, further complicates

sepsis management, elevating mortality and constraining effective

treatment options (34).
2.2 Impact of cancer type on sepsis
incidence

Sepsis risk varies significantly by cancer type, tumor biology,

and treatment modality (35). Solid tumors and hematologic

malignancies exhibit distinct infection profiles (36). Recent

Mendelian randomization studies have established a causal link

between specific malignancies, particularly lung cancer (squamous
FIGURE 1

Diagnosis and therapy of sepsis-cancer interaction. The image provides an overview of various approaches and technologies used in the
management of sepsis in cancer patients.
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cell carcinoma, adenocarcinoma, and small cell carcinoma), and

increased sepsis susceptibility (37). This association is consistent

with local tissue destruction, chronic inflammation, and

opportunistic infections common in pulmonary cancers. In

addition to tumor type, patient-specific factors such as advanced

age, comorbidities, recurrent infections, and previous

hospitalizations also contribute to an increased risk of sepsis (38).

Anatomical patterns also emerge: solid tumors are often linked to

intra-abdominal infections (e.g., post-surgical complications), while

hematologic cancers predispose to bloodstream and pulmonary

infections due to systemic immunosuppression (39). Iatrogenic

factors, such as central venous catheters, chemotherapy-induced

neutropenia, and mucosal barrier injury from radiotherapy, further

exacerbate sepsis risk (40).
2.3 Correlation between sepsis and cancer
patient prognosis

Beyond its acute mortality, sepsis exerts profound long-term effects

on cancer outcomes, potentially accelerating tumor progression,

promoting relapse, and reducing survival (41). Prognostic studies

have identified key markers, including the neutrophil to lymphocyte

ratio (NLR), brain natriuretic peptide (BNP), fluid balance, and SOFA

scores, as predictors of short-term mortality in patients with sepsis and

cancer (42).These markers offer promising avenues for early risk

stratification and individualized management. However, the

prognostic impact of sepsis is context dependent (43). For instance,

in advanced epithelial ovarian cancer, sepsis did not significantly affect

progression-free or overall survival, suggesting that host immune

competence and tumor biology modulate outcomes (44). Notably,

exercise-induced interleukin-15 (IL-15) has emerged as a potential

prognostic biomarker in this setting, with serum levels positively

correlating with tumor inhibition (45). This observation underscores

the potential of exercise-mediated immunemodulation as a therapeutic

adjunct in septic oncology patients. Nonetheless, accumulating

evidence supports the hypothesis that postoperative sepsis fosters

tumor recurrence and worsens survival by inducing immune

exhaustion and promoting tumor microenvironmental changes

conducive to metastasis and angiogenesis (46). Clinically, these

findings advocate for integrating sepsis prevention and rapid

intervention into oncologic care protocols, emphasizing infection

control, antimicrobial stewardship, and immune modulation (47).
3 Clinical manifestations of sepsis and
tumor interaction

3.1 Typical clinical manifestations of sepsis
in cancer patients

Sepsis, a life-threatening organ dysfunction from a dysregulated

host response to infection, is particularly severe in cancer patients due

to tumor- and treatment-induced immunosuppression (48).

Compared to the general population, cancer patients exhibit higher
Frontiers in Immunology 05
sepsis incidence and 30-day mortality, driven by advanced disease,

comorbidities, and immune dysfunction (49).A retrospective study of

435 ICU-admitted cancer patients identified metastatic disease,

elevated serum lactate, and need for advanced life support as key

mortality predictors, indicating severe physiological compromise (50).

Classic signs of sepsis, including fever, leukocytosis or leukopenia, and

coagulopathy, may be absent or atypical in immunocompromised

patients, thereby complicating the diagnostic process (51).

Hypothermia or afebrile presentations can obscure early signs, while

viral endothelial injury exacerbates coagulopathy via platelet activation

(52). Chronic tumor-related inflammation can further mask sepsis,

requiring individualized assessment. Cancer therapies (chemotherapy,

radiotherapy, targeted agents) impair immunity, while tumor invasion

and surgeries disrupt barriers, facilitating infections. Infection patterns

vary by cancer type: abdominal infections are common in solid tumors,

and pulmonary and bloodstream infections are common in

hematologic malignancies, often due to neutropenia (53). Cancer

patients also face higher rates of hospital-acquired infections (HAIs),

exacerbated by prolonged hospitalization, invasive procedures, and

broad-spectrum antibiotics, leading to multidrug resistance (54, 55).
3.2 Diagnostic challenges of sepsis in
cancer patients

Timely and accurate diagnosis of sepsis is critical in cancer patients,

but oncologic care presents substantial diagnostic challenges (56).

Traditional markers (e.g., CRP, PCT, leukocyte counts) have reduced

sensitivity and specificity, particularly in those receiving chemotherapy

or immunotherapy (57). The high prevalence of neutropenia and

leukopenia further limits the diagnostic utility of conventional

inflammatory parameters (58). Prior anticancer treatments further

confound clinical assessment. Immunotherapy can trigger immune-

related adverse events that mimic infection, while corticosteroids may

suppress overt inflammatory signs (59). Additionally, paraneoplastic

effects in certain cancers can distort biomarker levels, leading to false

findings (60). High colonization rates, especially with indwelling

devices or mucositis, increase the risk of culture contamination.

These challenges underscore the need for cancer-specific diagnostic

criteria for sepsis. Multifactorial strategies integrating tumor type,

treatment history, immune status, infection risk, and organ function

are essential (61). Combined biomarker panels (e.g., CRP, PCT, IL-6,

sTREM-1) show promise, but require further validation (62). Machine

learning and clinical decision support systems in electronic health

records may improve early detection and risk assessment (63).
3.3 Analysis of sepsis related complications
in cancer patients

Sepsis in cancer patients is associated with high rates of acute and

chronic complications, contributing to poor short- and long-term

outcomes (64). Multiple organ dysfunction syndrome (MODS),

particularly post-surgery, is a major sequela (65). Surgical stress

induces transient immunosuppression, increasing infection risk and
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potentially promoting tumor recurrence by impairing immune

surveillance (66). Gram-negative and polymicrobial infections,

often resulting from gut translocation or nosocomial sources, were

prevalent, thereby complicating antimicrobial management (67).

Infection profiles evolve with immunosuppression: bacterial

pathogens dominate early neutropenic phases, while fungal

infections (e.g., Candida, Aspergillus) emerge later (68). Antibiotic

resistance and superinfections complicate therapy, necessitating a

balance between empirical and targeted approaches (69). For

instance, oral hydrogels may counter antibiotic-induced

immunosuppression by modulating the gut microbiota–immune

axis (70). The complex cancer–sepsis interplay demands

individualized, multidisciplinary management (71). Collaboration

among oncologists, infectious disease specialists, intensivists, and

microbiologists is essential to improve outcomes (72).
4 Diagnostic technologies for the
interaction between sepsis and cancer

4.1 Research on combined biomarkers for
sepsis and cancer

Diagnosing sepsis in cancer patients is challenging due to

overlapping tumor-related inflammatory responses (73).
Frontiers in Immunology 06
Traditional biomarkers like CRP and PCT lack specificity in

oncology settings due to tumor-associated factors (74). To

address this, combined biomarker panels have been developed.

For instance, a panel including CD25, CD64, and CD69 achieved

an AUC of 0.978, outperforming individual markers (Figure 2) (75).

At the molecular level, VNN1 and microRNAs (miR-146a, miR-

155, miR-223) are promising biomarkers (76). VNN1, involved in

oxidative stress and immune modulation, correlates with both

sepsis and cancer outcomes (77). MicroRNAs help differentiate

septic from tumor-related inflammation (78). Emerging multi-

omics approaches, integrated with machine learning, are set to

enhance diagnostic strategies and individualized treatment (79–81).
4.2 Application of imaging techniques in
the diagnosis of sepsis and cancer

Imaging remains indispensable for the detection and

management of sepsis and malignancy (79). Advanced magnetic

resonance imaging (MRI) techniques, including magnetic

resonance spectroscopy (MRS), molecular MRI (mMRI), arterial

spin labeling (ASL), fluid-attenuated inversion recovery (FLAIR),

and diffusion-weighted imaging (DWI), enable early detection of

sepsis-associated encephalopathy (SAE), particularly in oncology

patients whose neurological symptoms may be atypical or obscured
IGURE 2F

Sepsis-induced metabolic reprogramming in cancer immunosuppression and progression.
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by treatment effects (Figure 1) (82, 83). FLAIR and DWI are

sensitive to white matter changes and cytotoxic edema, while

MRS provides metabol ic ins ights , fac i l i tat ing t imely

neuroprotective interventions (84). Beyond neuroimaging, plasma

metagenomic next-generation sequencing (mNGS) demonstrates

superior pathogen detection compared to conventional blood

cultures, which is critical in cancer patients with atypical

infections (85). Advances in optical imaging, employing

fluorescent and bioluminescent probes targeting bacterial

structures, allow real time visualization of microbial burden,

enhancing surgical and therapeutic decision making (86).

Moreover, molecular diagnostics have markedly improved the

sensitivity, specificity, and speed of infectious and oncologic

disease detection (87).In sepsis, multi-omics approaches have

identified transcriptomic, proteomic, and metabolomic signatures

that define distinct disease subtypes and prognostic trajectories,

promoting a shift toward precision diagnostics (88). PCR based

technologies, including multiplex assays like SeptFast, allow rapid,

simultaneous pathogen and resistance gene detection, significantly

reducing time to treatment despite challenges such as

contamination risk and limited detection of novel organisms

(Figure 2) (89). Meanwhile, microarrays and nanotechnology

based biosensors facilitate high throughput, point of care testing,

critical for intensive care and oncology settings (90–92).The

integration of multi-omics data with artificial intelligence (AI)

and machine learning is an emerging frontier (93). Predictive

models based on large datasets can uncover complex disease

patterns, forecast therapeutic responses, and guide individualized

treatment plans, greatly enhancing clinical decision making in

patients navigating both cancer and sepsis (94).
5 Sepsis and cancer: integrated
treatment strategies and future
perspectives

5.1 Multidisciplinary approaches for
managing sepsis in cancer patients

The coexistence of sepsis and cancer presents a major clinical

challenge, requiring dynamic management strategies to address

immune, metabolic, and physiological disruptions (95).

Treatment must focus on infection control, tumor progression,

immune stabilization, and preserving physiological function. Early

intervention is critical, as delays in antibiotics worsen outcomes

(Figure 2) (96). Multifunctional composite hydrogels offer

synergistic benefits for sepsis in bone metastasis, combining

immunomodulatory and osteogenic effects (97). Supportive

therapies, including fluid resuscitation, hemodynamic

management, respiratory support, nutrition, and psychological

care, should be tailored to individual patient needs. A

multidisciplinary team of intensivists, oncologists, and other

specialists is essential for optimizing patient survival and care (98).
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5.2 Emerging immunotherapeutic and
pharmacological innovations

Advances in immunotherapy have opened new avenues for

addressing the immune dysregulation inherent in both sepsis and

cancer (Figure 1) (99). Non-invasive physical stimulation can enhance

immune cell infiltration and mitigate T-cell depletion by altering the

tumor microenvironment (100). Agents such as thymosin a-1 improve

immune competence and survival in sepsis, while immune checkpoint

inhibitors (ICIs) reverse T-cell exhaustion and enhance antigen

presentation (101). Preclinical data indicate that anti-PD-1/PD-L1

antibodies function through Fcg receptor-dependent mechanisms,

although FcgR-independent variants may be more effective in

immunocompromised settings, underscoring the need to optimize ICI

formats (102). Immunotherapies also influence immune cell

metabolism, particularly glycolysis and mitochondrial oxidative

phosphorylation, which are critical during sepsis. Given the

heterogeneity of immune status in sepsis, biomarkers like mHLA-DR

and ferritin can help identify candidates for immunometabolic therapy

(103). T cell therapies targeting oncogenic viral antigens may overcome

antigen presentation deficits induced by sepsis, with efficacy enhanced by

metabolic modulation, such as reducing lactate and promoting fatty acid

oxidation. CD4+ T cells in sepsis exhibit persistent mitochondrial

dysfunction and elevated glycolysis, leading to IL-17 dysregulation and

impaired secondary responses (104). Targeting these pathways may

restore T cell function post-sepsis. Novel delivery platforms, such as

engineered bacteria, bacterial vesicles, and exosome-based systems,

enable targeteddeliveryofmetabolicmodulators (e.g.,NAD+precursors,

AMPKactivators,andshort-chainfattyacids)toimmunosuppressivesites.

Thesestrategiesaddressmitochondrialdysfunctionandenergydepletion

characteristicoflate-stagesepsis(105–109).
5.3 Personalization of therapy and
optimization of drug interactions

Polypharmacy in septic cancer patients significantly increases the

risk of drug–drug interactions, particularly through the modulation of

cytochrome P450 enzymes by antibiotics and antifungals, thereby

altering the pharmacokinetics and toxicity profi les of

chemotherapeutic agents (110). To address these complexities,

strategies such as therapeutic drug monitoring, pharmacogenetic

testing, computer-aided drug design techniques, and AI-driven

clinical decision support systems are needed (Figure 1) (111).

Moreover, the transition toward personalized medicine, guided by

immunophenotyping, transcriptomics, and dynamic biomarker

monitoring, holds considerable promise for both sepsis and oncology

care (112).Tailored treatment plans that incorporate genetic, metabolic,

and immune profiles may enhance therapeutic efficacy while

minimizing adverse effects, particularly in vulnerable patient

populations. Prospective validation of precision-based protocols is

crucial to fully realize the potential of individualized therapy in

improving outcomes for patients confronting the dual burden of

sepsis and malignancy.
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6 Future perspectives on the
interaction between sepsis and cancer

Advances in biomedical engineering, systems biology, and

molecular diagnostics have propelled sepsis and cancer research

(113). Technologies like high-resolution biosensors improve early

detection, while CRISPR/Cas9 aids targeted drug discovery (114).

Next-generation sequencing enhances pathogen identification, and

AI revolutionizes risk stratification in oncologic sepsis (115, 116).

These innovations drive precision diagnostics and individualized

treatments. Therapeutic targets such as inflammatory caspases,

PDGFB, TLR4, and PD-1/PD-L1 are being explored for their

roles in immune modulation and tumor growth (117). However,

ethical issues arise, particularly around consent in acute sepsis (118)

and concerns over patient privacy with AI and big data (119).

Addressing these is vital for equitable healthcare (120).
7 Conclusion

In conclusion, the bidirectional relationship between sepsis and

cancer complicates patient management, as sepsis-induced immune

dysfunction and metabolic reprogramming hinder cancer

progression, impair immunotherapy, and promote metastasis.

These metabolic shifts in cancer and immune cells worsen the

disease, resulting in a more aggressive clinical course. To improve

outcomes, integrated therapies addressing both immune and

metabolic disturbances are essential. Combining immunotherapy,

metabolic interventions, and antimicrobial treatments, along with

identifying relevant biomarkers, could significantly enhance

personalized cancer care. Ongoing research is expected to lead to

better management strategies and improved prognosis for cancer

patients at risk of sepsis.
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