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Macrophages are highly plastic and heterogeneous innate immune cells that play

pivotal roles in kidney development, kidney functions maintenance, immune

surveillance, injury, repair, fibrosis and so on. Our understanding of embryonic

derived and bone marrow–derived macrophages has evolved beyond the

classical M1/M2 polarization paradigm, shifting toward a more nuanced

investigation of macrophage subpopulations through the lens of functional

specialization and tissue-specific adaptation. Recent advancements in single-

cell and spatial transcriptomics have elucidated the diversity of kidney

macrophages, revealing their critical contribution to kidney physiology and

pathology. In acute kidney injury, macrophages orchestrate inflammatory

cascades via cytokine secretion and inflammasome activation, whereas during

the reparative phase, they promote tissue regeneration through anti-

inflammatory pathways. However, persistent or dysregulated macrophage

activation can lead to maladaptive repair and progression to chronic kidney

disease characterized by kidney fibrosis. Therapeutically, targeting macrophage

polarization, recruitment and macrophage-based adoptive cell therapy has

emerged as a promising strategy for modulating kidney inflammation and

fibrosis. This review delineates the multifaceted roles of diverse macrophage

subsets in kidney physiology and pathology, while highlighting emerging

therapeutic avenues and the translational challenges associated with

macrophage-targeted interventions.
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1 Introduction

Macrophages are a heterogeneous population integral to the

phagocytic system. While initially identified for their role in

eliminating infectious agents, they are now recognized as key

regulators of pro- and anti-inflammatory responses, tumor

microenvironment dynamics, tissue repair and fibrosis, and

systemic metabolic processes—functions that have garnered

growing attention for their critical involvement in kidney

physiology and pathology.

Kidney macrophages represent an indispensable cellular

population within the kidney, distinguished by marked

phenotypic heterogeneity and remarkable plasticity (1). Owing to

this adaptability, they assume distinct functional phenotypes across

states of homeostasis, injury, and repair (2, 3). However, the

functional attributes and mechanistic foundations of specific

kidney macrophage subsets remain incompletely defined,

underscoring a critical need for continued investigation.

Advancements in technologies such as single-cell and spatial

transcriptomics have markedly accelerated our understanding of

kidney macrophages in recent years (4, 5), enabling comprehensive

delineation of their intricate regulatory networks. This review seeks

to elucidate the multifaceted roles of heterogeneous macrophage

subsets in kidney physiology and pathology and to explore their

prospective implications for therapeutic intervention in

kidney diseases.
2 Macrophage biology and
heterogeneity in the kidney

Macrophage heterogeneity is an intrinsically complex subject,

with diverse interpretations yielding distinct contextual

frameworks. This section delineates the concept through three

principal dimensions: ontogeny, polarization, and function, and

their implications in kidney macrophage. We then provide the

molecular signature of kidney macrophage at the end of this section.
2.1 Ontogeny

Although macrophages were initially thought to arise

predominantly from hematopoietic sources, this notion has been

challenged over recent decades (6). Current evidence indicates that

macrophage populations in various tissues and developmental

stages derive from three distinct ontogenetic waves: primitive yolk

sac–derived macrophages, fetal liver–derived monocytes, and bone

marrow–derived monocytes.

Embryonic macrophages encompass both early yolk sac–

derived macrophages and fetal liver–derived monocytes (7). In

mouse models, the first wave originates from yolk sac erythro-

myeloid progenitors (EMPs) at embryonic day 7.0 (E7.0). A

subsequent wave of EMPs emerges around E8.5, migrates to the

fetal liver, and differentiates into EMP-derived macrophages (8).

These cells, often termed “pre-macrophages,” undergo rapid
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phenotypic diversification upon colonizing target tissues.

Although EMP-derived macrophages initially populate embryonic

tissues, they are progressively replaced by fetal liver–derived

monocytes. By E10.5, hematopoietic stem cells (HSCs) from the

aorta–gonad–mesonephros (AGM) region seed the fetal liver and

later colonize the bone marrow by E17.5. Postnatally, monocyte-

derived macrophages (MDMs) are maintained in each organ

through continual replenishment by circulating HSC-derived

monocytes (9, 10).

Kidney macrophages consist of both embryo-derived and

monocyte-derived populations, with embryo-derived macrophages

constituting the predominant subset. The proportions of embryo-

derived macrophages within the total kidney macrophage population

were 7.27 ± 0.4%, 46.7 ± 2.5%, and 98.8 ± 0.3% following induction at

E8.5, E13.5, and E18.5, respectively (11). After birth, embryo-derived

macrophages are maintained primarily through self-renewal

mediated by the CX3C chemokine receptor 1 (CX3CR1)/CX3CL1

axis (12). Embryo-derived macrophages, which constitute the

majority of kidney macrophages and serve as kidney resident

macrophages (KRMs), together with MDMs, form the kidney

macrophage compartment and cooperatively sustain kidney

homeostasis. Under physiological conditions, the proportion of

kidney macrophages derived from monocyte-derived macrophages

(MDMs) progressively increases with age, reaching approximately

40% (11). In an adoptive transfer mouse model and irradiation,

MDMs have the capacity to differentiate into KRMs, thereby

preserving the integrity of the kidney niche (11, 13).
2.2 Polarization

Earlier investigations have extensively examined macrophage

heterogeneity and function through the conceptual framework of

polarization—a paradigm that has become classical and remains

widely adopted.

Macrophage differentiation has been broadly categorized into

classical M1-type and alternative M2-type activation, mirroring the

T helper 1 (TH1) and T helper 2 (TH2) paradigms of T cell

differentiation (3, 14).

M1 polarization is driven by pathogen-associated molecular

patterns (PAMPs), damage-associated molecular patterns

(DAMPs), and pro-inflammatory cytokines—particularly Th1-

derived cytokines such as tumor necrosis factor-a (TNF-a) and

interferon-g (IFN-g) (15). Hallmarks of M1 polarization include the

upregulation of surface activation markers and antigen presentation

molecules, including major histocompatibility complex (MHC)

class II, CD16, CD32, CD80, CD86, secreted phosphoprotein 1

(SPP1), and the interleukin (IL)-1 receptor (IL-1R). M1

macrophages also produce a diverse repertoire of pro-

inflammatory mediators, such as IL-1, IL-6, IL-12, IL-23,

inducible nitric oxide synthase (iNOS), matrix metalloproteinase-

12 (MMP-12), and macrophage-inducible C-type lectin (MINCLE)

(3, 16), all of which contribute to inflammatory processes.

In contrast, M2 macrophages exert diverse functions in immune

regulation, notably in suppressing inflammation and promoting
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tissue repair. M2 polarization is driven by Th2-derived cytokines

such as IL-4, IL-10, and transforming growth factor-b (TGF-b)
(15). M2 macrophages are commonly identified by the expression

of markers such as arginase 1 (Arg1), the mannose receptor

(CD206), ferroportin 1 (FPN1, SLC40A1), and TGF-b (2, 17).

They are further subclassified into four phenotypically and

functionally distinct subtypes: M2a, M2b, M2c, and M2d (3, 18).

The classical M1/M2 polarization model remains widely employed

in describing kidney macrophages. In the early stages of kidney injury,

M1 macrophages predominate, functioning to clear apoptotic cells.

Furthermore, M1 macrophages, together with T cells and dendritic

cells (DCs), contribute to the formation of lymphoid aggregates,

thereby establishing a pro-inflammatory microenvironment that

amplifies kidney inflammatory responses (19). As the disease

progresses into the reparative phase, M2 macrophages become the

dominant subset, exerting anti-inflammatory and pro-repair effects

(20). However, when tissue repair fails, M2 macrophages can also

acquire pro-fibrotic properties.

Current perspectives posit that macrophages exist along a

continuum of phenotypes encompassing M1-like, M2-like, and

mixed states (21–23).
2.3 Function

Macrophages should not be viewed merely as binary responders to

polarizing cues. Instead, in response to specific microenvironmental

stimuli, they possess the capacity to differentiate into diverse

subpopulations equipped to perform highly specialized functions

(24, 25).

Perivascular macrophages (PVMs) reside adjacent to blood

vessels (26), where they regulate vascular permeability, maintain

tissue homeostasis, and modulate endocrine function (26); they also

act as a barrier against exogenous toxins but can promote

pathological angiogenesis in tumors, facilitating metastasis (27–

29). Iron-recycling macrophages, characterized by ferroportin 1

(FPN1) expression and rely on colony-stimulating factor 1 (CSF1)

and the transcription factor (NRF2) (30), clear senescent or

damaged erythrocytes to maintain systemic and cellular iron

homeostasis (31). Sympathetic neuron–associated macrophages

(SAMs), marked by solute carrier family 6 member 2 (SLC6A2)

and Monoamine Oxidase A (MAOA) expression, metabolize

norepinephrine in the sympathetic nervous system and influence

thermogenesis, with presence confirmed in human sympathetic

ganglia (32). Lipid-associated macrophages (LAMs), enriched in

metabolic disorders such as atherosclerosis, nonalcoholic

steatohepatitis (NASH), and obesity (33), are specialized in lipid

handling and apoptotic cell clearance (34–37), but may also

potentiate inflammation and aggravate disease progression (38,

39). Efferocytic macrophages specialize in apoptotic cell clearance

via receptor-mediated or bridging molecule–mediated recognition,

leveraging apoptotic cell–derived nucleotides to boost phagocytic

activity, thereby reducing apoptotic burden and preventing

secondary tissue injury (40, 41).
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Several of the aforementioned functional types of macrophages

are identified in the kidney. Researchers found a subset of

embryonically derived KRMs (phenotypically similar to SAM)

that localize in close proximity to kidney sympathetic nerves and

are indispensable for maintaining sympathetic innervation, and

highly express sympathetic nerve–relevant genes including MAOA,

Neuropeptide Y receptor type 1 (Npy1r), and SLC6A2 (42). Patients

with ANCA-associated glomerulonephritis (AGN) have a marked

enrichment of SPP1+ LAMs within the kidney, where they

contribute to both pro-inflammatory and pro-fibrotic processes

(43). In addition, efferocytic capacity of macrophages is adversely

associated with the progression of diabetic kidney disease (DKD),

suggesting a protective role of efferocytic macrophages in DKD

(23). Furthermore, manipulation of the labile iron pool in kidney

macrophages mitigate CKD mice model, implying the involvement

of iron recycling macrophage in CKD (44).

Together, examining macrophage heterogeneity through a

functional lens provides a more refined understanding of their

subpopulation-specific roles, advancing our mechanistic insight

into their contributions in the kidney under both physiological

and pathological conditions.
2.4 Molecular signature of kidney
macrophages

Initially, MDMs (Cd11bhigh, F4/80low) and KRMs (Cd11blow, F4/

80high) were distinguished on the basis of differential expression of

CD11b and F4/80 (45). Subsequent studies identified CD64 and C-C

chemokine receptor type 2 (CCR2) as complementary markers for

KRMs and MDMs, respectively (29, 46). Investigators further refine

the subclassification of kidney macrophage subsets. For example,

Some investigators have classified kidney macrophages into three

distinct subsets based on the expression of CX3CR1 and CD81

(CX3CR1-CD81-, CX3CR1+CD81-, and CX3CR1+CD81+) (47).
3 Macrophage functions in kidney

After introducing the classification and definition of kidney

macrophages, we further delineate their roles in kidney physiology

and pathology, including kidney development, kidney functional

maintenance, immune surveillance, injury, repair, fibrosis, and non-

canonical functions (Figure 1).
3.1 Kidney development

Mouse studies suggest that the development of the kidney is

dependent on the regulatory functions of macrophages. At E9.5-

E10.5, yolk sac–derived macrophages actively promote ureteric bud

branching and tubulogenesis through the CSF-1/CSF1R signaling

pathway (48), and contribute to early nephron patterning by

clearing excess rostral nephron progenitors, thereby facilitating
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precise tissue organization (49). At E11.5-E12.5, macrophage–

endothelial interactions are vital for vascular development,

supporting vasculogenesis, vascular anastomosis, and the

stabilization of kidney vascular architecture (49). At E12, fetal

liver–derived macrophages start to infiltrate the mesenchyme of

the developing metanephros, contributing to the formation of

nephron components within both the cortical and medullary

regions, including the loop of Henle (49, 50). The postnatal

expansion and maturation of kidney macrophages parallel kidney

growth, suggesting that they may play a role in this process (11).
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3.2 Kidney functional maintenance

Kidney macrophages are essential for maintaining the

reabsorptive functions of the renal tubules. Sympathetic

stimulation triggers the release of norepinephrine, which

promotes sodium and water reabsorption while concurrently

reducing kidney perfusion. Emerging evidence suggests that

embryonic-derived macrophages are essential for maintaining the

basal distribution and functionality of sympathetic fibers, thereby

safeguarding against electrolyte imbalances and preventing
FIGURE 1

Macrophage in kidney. Kidney macrophages play essential roles in kidney development, kidney functional maintenance, immune surveillance, injury,
repair, fibrosis. During development, they promote ureteric bud branching and tubulogenesis, thereby facilitating nephron formation and vascular
development. In the adult kidney, macrophages express highly MAOA, Npy1r and SLC6A2 to maintain Na+ reabsorption, renin release, and renal
blood flow by supporting the structural and functional integrity of sympathetic nerve fibers. In addition, they contribute to phosphate reabsorption
and the preservation of tubular integrity and function through particle removal. When immune surveillance fails, tumor-associated macrophages
(TAMs) contribute to the remodeling of the tumor microenvironment that promotes disease progression; meanwhile, kidney macrophages,
influenced by factors such as immune complexes and Escherichia coli, can elicit excessive inflammatory responses. Injured renal cells (tubular
epithelial cells, endothelial cells, podocytes, and mesangial cells) recruit circulating macrophages via the CCL2/CCR2 axis. These injured cells
released DAMPs, PAMPs, and cytokines activate both infiltrating and resident macrophages through TNF-TNFR2, cGAS-STING, and NLRP3 inducing a
proinflammatory phenotype (MHC II+, CD16+, CD32+, CD80+, CD86+, SPP1+) that secretes TNF-a, Mincle, and ROS to promote AKI. Alternatively,
macrophages may polarize via TGF-b–Smad, Wnt5a–Tap–YAP, and b-catenin–Foxo1 pathways into a reparative/fibrotic phenotype (ARG1+,
CD206+, TGF-b+), releasing TGF-b, MMPs, and TIMPs to drive CKD, or IL-22, VEGF, EVs, lipoxins, resolvins, and SPMs to support tissue repair. Npy1r,
Neuropeptide Y receptor type 1; MAOA, Monoamine Oxidase A; SLC6A2, solute carrier family 6 member 2; TAMs, tumor-associated macrophages;
CCL2, The C-C motif chemokine ligand 2; CCR2, C-C chemokine receptor type 2; TNF, Th1-derived cytokines such as tumor necrosis factor;
TNFR2, tumor necrosis factor receptor 2; cGAS, cyclic GMP-AMP synthase; STING, stimulator of interferon genes; NLRP3, NOD-like receptor family
pyrin domain containing 3; MHC class II, major histocompatibility complex; SPP1, secreted phosphoprotein 1; TGF-b, transforming growth factor-b;
Smad, Suppressor of Mothers Against Decapentaplegic; Wnt5a, Wnt family member 5A; Yap, Yes-associated protein; Taz, Transcriptional co-
activator with PDZ-binding motif; Foxo1, b-catenin/Forkhead box protein O1; Arg1, arginase 1; TNF-a, tumor necrosis factor-a; Mincle,
macrophage-inducible C-type lectin; ROS, reactive oxygen species; VEGF, Vascular Endothelial Growth Factor; SPMs, specialized pro-resolving lipid
mediators; MMP, matrix metalloproteinase; TIMPs, tissue inhibitors of metalloproteinases.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1642525
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1642525
disorders associated with excessive urinary excretion of Na+, K+,

and Cl- (42, 51). In addition, cortical macrophages in the kidney

exhibit elevated expression of the phosphate transporter solute

carrier family 34 member 1 (SLC34A1), enabling the active

reabsorption of phosphate from the urinary filtrate and thereby

mitigating the risk of urinary stone formation (52). The kidney

tubular epithelium forms a tight barrier that segregates urinary

solutes from the interstitium. Subepithelial macrophages,

strategically positioned beneath the epithelial layer, can extend

cellular protrusions across the epithelium to sample and monitor

the contents of the urine. This dynamic surveillance mechanism

facilitates the removal of particulate matter and contributes to

tubular integrity and function (53).
3.3 Immune surveillance

Under physiological conditions, kidney macrophages act as

immune sentinels, continuously conducting surveillance to

maintain tissue homeostasis. Upon detection of PAMPs or

DAMPs, macrophages rapidly recognize these cues via pattern

recognition receptors, initiating downstream signaling cascades

that shape the broader kidney immune landscape (2, 3).

Perturbation of this surveillance system may precipitate a variety

of pathological conditions. KRMs are capable of recognizing small

immune complexes (SICs), thereby triggering excessive immune

activation that culminates in a type III hypersensitivity reaction

(29). In renal cell carcinoma (RCC), tumor-associated macrophages

(TAMs) (predominantly M2-like) facilitate immune evasion by

promoting immunosuppression and upregulating PD-L1

expression within the tumor microenvironment. In clear cell renal

cell carcinoma (ccRCC), TAMs secrete IL-23, thereby exacerbating

immune evasion (54). Kidney macrophages participate in host

defense against exogenous pathogens, such as uropathogenic

Escherichia coli (UPEC), by phagocytosis, yet their simultaneous

suppression of adaptive immunity and potential to induce

hyperinflammatory injury contribute to disease persistence and

kidney tissue damage (55, 56).
3.4 Injury

During kidney injury, macrophages are either locally activated

or arise from circulating monocytes recruited to the damaged tissue

(57–60). The C-C motif chemokine ligand 2 (CCL2)/CCR2

signaling axis is traditionally recognized as a principal mechanism

for monocyte recruitment, particularly in DKD, IgA nephropathy

(IgAN), and ischemia–reperfusion injury (IRI) (61–64). The injured

kidney establishes a pro-inflammatory microenvironment that

activates macrophages (65). In glomerulonephritis, damaged

endothelial cells promote the conversion of CCR2+ monocytes

into proinflammatory macrophages through the TNF/tumor

necrosis factor receptor 2 (TNFR2) signaling axis, thereby

exacerbating the inflammatory response (62). Injured tubular

epithelial cells release DAMPs, such as self-DNA, HMGB1, etc. to
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activate downstream innate immune response including the cyclic

GMP-AMP synthase (cGAS)/stimulator of interferon genes

(STING) pathway (66), the NOD-like receptor family pyrin

domain containing 3 (NLRP3) inflammasome in macrophages

(67, 68). Together, these processes promote the conversion of

macrophages into a proinflammatory phenotype. Additionally,

phosphoinositide 3-kinase (PI3K) may facilitate macrophage

infiltration into the kidney, thereby exacerbating kidney injury

and fibrosis (58, 69, 70).

Activated macrophages contribute to kidney injury via multiple

mechanisms (57). They secrete pro-inflammatory cytokines, such as

IL-1b and TNF-a, that induce apoptosis and necrosis in glomerular

and tubular epithelial cells, impairing filtration and reabsorption

(67, 71). They also produce cytotoxic molecules such as the

macrophage-inducible C-type lectin (Mincle), which recognizes

necrotic tubular cells and amplifies inflammatory cytokine

production while impeding clearance of dead cells in IRI (72).

This establishes a self-perpetuating inflammatory cycle, in which

junctional adhesion molecule-like protein (JAML) plays a critical

role (73). Moreover, macrophages generate reactive oxygen species

(ROS), directly damaging kidney macromolecules and exacerbating

tissue injury (74).
3.5 Repair

As kidney repair progresses, macrophages undergo phenotypic

transition toward a pro-repair phenotype (20, 75) (76). Although

macrophages are involved, tubular epithelial cells remain the

principal compartment contribute to the clearance of cellular

d eb r i s and apop t o t i c bod i e s w i t h i n t h e d amaged

microenvironment (77, 78). In addition to their scavenging

functions, macrophages secrete a range of cytokines and growth

factors—including IL-22 and Vascular Endothelial Growth Factor

(VEGF)—that support angiogenesis and epithelial regeneration

(79, 80).

Furthermore, kidney macrophages express anti-inflammatory

mediators such as lipoxins, resolvins, and specialized pro-resolving

lipid mediators (SPMs), which actively promote inflammation

resolution and tissue homeostasis (81). For example, Maresin—a

macrophage-derived SPM—facilitates lipid mediator class

switching from pro-inflammatory to pro-resolving profiles,

thereby supporting kidney repair (82).
3.6 Fibrosis

Kidney macrophages can also participate in kidney fibrosis

under pathological conditions (83–86). Under pro-fibrotic

conditions, macrophages can adopt a fibrogenic phenotype,

characterized by the secretion of TGF-b and VEGF, induction of

epithelial-mesenchymal transition (EMT), and impaired

mitophagy, which collectively promote the progression of fibrosis.

TGF-b not only promotes M2-like polarization via the

Suppressor of Mothers Against Decapentaplegic (Smad) signaling
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axis but also induces macrophage-to-myofibroblast transition

(MMT) (87). Excessive pro-fibrotic macrophage accumulation,

fueled by persistent TGF-b/Smad activation, facilitates collagen

and extracellular matrix (ECM) deposition, exacerbating fibrotic

remodeling (88). In the UUO model, both Wnt family member 5A

(Wnt5a)/Yes-associated protein (Yap)/Transcriptional co-activator

with PDZ-binding motif (Taz) and b-catenin/Forkhead box protein

O1 (Foxo1) signaling pathways have been shown to potentiate

TGF-b-mediated fibrogenesis through macrophage-dependent

mechanisms (89, 90).

Moreover, macrophages secrete exosomes that contain CD63

and tumor susceptibility gene 101 (TSG101) to promote the

progression of fibrosis in DKD (91). Concomitantly, kidney

macrophages promote kidney lymphangiogenesis by activating

the VEGF-C/VEGFR3 axis, thereby contributing to fibrosis

progression (92).

Macrophages also facilitate EMT in tubular epithelial cells, a key

event in fibrogenesis whereby epithelial cells acquire mesenchymal

traits (93). Additionally, macrophages support fibroblast survival by

delivering platelet-derived growth factor (PDGF) ligands through

direct cell–cell interactions (94–96). In the UUO model,

macrophage recruitment is further sustained through MMP-9

derived from injured tubular endothelial cells, which also

promotes EMT and accelerates fibrotic progression (97).

Disruption of phosphatase and tensin homolog-induced

kinase1 (PINK1)/mitofusin-2 (MFN2)/Parkin signaling pathway

impairs mitochondrial quality control, driving macrophage

polarization toward a pro-fibrotic phenotype, thereby

exacerbating kidney fibrosis (98). Moreover, similar findings have

been observed in CKD patients with interstitial fibrosis and tubular

atrophy (99), Dysregulation of the kidney macrophage-specific

mitochondrial quality control mechanism exacerbates fibrosis,

unequivocally underscoring its substantial potential in preventing

the progression of kidney fibrosis.

Moreover, MMT has garnered considerable attention (100), as

it plays a pivotal role in driving the progression of kidney fibrosis.

Increasing evidence indicates that targeting MMT could be a

therapeutic strategy to attenuate fibrosis (101, 102).
3.7 Non-canonical functions

Kidney macrophages, owing to their high heterogeneity and the

complexity of the kidney microenvironment, exhibit non-canonical

functions (Figure 2).
3.7.1 Crosstalk with stromal cells
Stromal cells are defined as all non-epithelial and non-

endothelial cells within an organ, such as fibroblasts, vascular

smooth muscle cells (VSMCs), and pericytes etc. (103). The

crosstalk between kidney macrophages and these cellular

populations is of paramount significance. The interaction between

kidney macrophages and fibroblasts is pivotal for both maintaining

kidney homeostasis and driving disease progression (104).

Macrophages can produce PDGF to stimulate fibroblast migration
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and proliferation, whereas fibroblasts can secrete CSF1 to promote

macrophage migration, differentiation, and survival (105). In

unilateral IRI–induced AKI, kidney macrophages can establish a

vitronectin (VTN)–enriched extracellular microenvironment,

which activates fibroblasts via integrin avb5– and Src kinase–

mediated signaling, thereby promoting kidney fibrosis (106). In

DKD, kidney macrophages can secrete filopodial tip vesicles (FTVs)

enriched in IL-11, which can initiate fibroblast transdifferentiation

and induce kidney interstitial fibrosis (107). Using single-cell

sequencing technology, researchers identified a macrophage

subset—monocyte-derived extracellular matrix remodeling-

associated macrophages (EAMs)—that activates fibroblasts via

insulin-like growth factor (IGF) signaling, thereby contributing to

kidney fibrosis (108). Mural cells encompass VSMCs and pericytes,

whereas mesangial cells represent specialized pericytes residing

within the glomerulus (103). Kidney macrophages are associated

with the progression of renal artery stenosis (RAS), suggesting a

potential interaction between macrophages and VSMCs (109, 110).

Exosomes secreted by high glucose (HG)-stimulated macrophages

can disrupt the normal architecture of mesangial cells by mediating

inflammatory responses through the Nuclear Factor kappa-light-

chain-enhancer of activated B cells (NF-kB) p65 signaling pathway
(111). Moreover, in lupus nephritis (LN), kidney macrophages can

mediate mesangial cell proliferation and migration through the

CXC motif chemokine ligand 12 (CXCL12)/dipeptidyl peptidase 4

(DPP4) axis, suggesting that targeting macrophages to suppress

mesangial cell proliferation and migration may represent a potential

strategy to delay the progression of LN (112).

3.7.2 Iron metabolism
Inhibition of iron dependent ferroptosis in kidney macrophages

through the STAT1/Poly(rC)-binding protein 1 (PCBP1) axis can

attenuate kidney fibrosis (113). Notably, iron supplementation can

restore the labile iron pool (LIP) in kidney macrophages, leading to

reduced oxidative stress and pro-inflammatory cytokine levels and

suppressed TGF-b-driven fibrotic response of macrophages (44,

114). These findings highlight the limitations of the traditional view

that focuses solely on the detrimental effects of iron overload, and

underscore the substantial therapeutic potential of dynamically

regulating macrophage iron metabolism.

3.7.3 Neuroimmune interactions
Kidney macrophages are capable of interacting with the nervous

system, thereby mediating neuroregulation in the kidney. Under

physiological conditions, KRMs contribute to the regulation of the

kidney sympathetic nervous system (42). In pathological

conditions, the sympathetic neurotransmitter norepinephrine

(NE) has been shown to promote macrophage polarization, with

b2-adrenergic receptor (b2-AR)–G stimulatory protein a-subunit
(Gas) signaling, in UUO mouse models (115). In IRI-induced AKI,

sympathetic signaling via the b2-AR/protein kinase A (PKA)

pathway activates T cell Ig and mucin domain 3 (Tim3) +

macrophages within the kidney, thereby mitigating kidney injury

(105). On the other hand, vagus nerve stimulation (VNS) attenuates

IRI-induced AKI through the cholinergic anti-inflammatory
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pathway (CAP), acting via the spleen and peritoneal macrophages,

thereby underscoring the substantial potential of extrarenal

macrophages in neuroimmune interactions towards kidney

diseases (116, 117).
4 Recently established paradigm of
kidney macrophage based on single-
cell and spatial transcriptomics

With the advance of single-cell and spatial transcriptomic

technologies, the phenotypic, spatial, and functional heterogeneity

of kidney macrophages has been increasingly recognized (42,

53, 118).

Single-cell and spatial transcriptomic analyses revealed that

KRMs exert beneficial functions in responding to immune
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challenges and in maintaining the homeostasis of the local

microenvironment. V-domain Ig suppressor of T cell activation

(VISTA)+ KRMs take part in the clearance of apoptotic cells and

suppression of excessive T cell activation, thereby mitigating

overactive inflammatory responses, in IRI-induced AKI (119). In

addition, the progressive decline in the number of KRMs during the

course of DKD suggests their involvement in the pathophysiological

processes of the disease (23).

Single-cell and spatial transcriptomic analyses also revealed that

MDMs are recruited to the sites of injury when kidney damage occurs

and drive the progression of disease. Blockade of this recruitment

process confers significant protective effects. S100A8/A9+ MDMs

infiltrate the kidney within hours after AKI onset, initiating and

amplifying inflammatory responses (120). In the early phase of AKI,

MDMs and neutrophils exhibited pronounced accumulation within

the outer stripe of the outer medulla, indicative of the establishment

of a pro-inflammatory microenvironment (108). In DKD patients,
FIGURE 2

Macrophages non-canonical functions in kidney. The non-canonical functions of macrophages in the kidney also encompass crosstalk with stromal
cells, iron metabolism, and neuroimmune interactions. Kidney macrophages promote fibrosis by secreting PDGF, FTVs, and vitronectin to activate
fibroblasts; additionally, they can release exosomes that act on pericytes via the NF-kB p65 and CXCL12/DPP4 pathways to enhance inflammation.
Therapeutic strategies such as iron supplementation in macrophages or inhibition of macrophage ferroptosis through the STAT1/PCBP1 axis have
both been shown to attenuate renal fibrosis. Moreover, macrophages can modulate the vagus nerve through the CAP or influence sympathetic
innervation via b2-AR signaling, thereby either alleviating acute kidney injury (AKI) or exacerbating renal fibrosis. PDGF, platelet-derived growth
factor; FTVs, filopodial tip vesicles; NF-kB p65, Nuclear Factor kappa-light-chain-enhancer of activated B cells; CXCL12, the CXC motif chemokine
ligand 12; DPP4, dipeptidyl peptidase 4; CAP, cholinergic anti-inflammatory pathway; b2-AR, b2-adrenergic receptor; IRI, ischemia–reperfusion
injury; AKI, induced acute kidney injury; UUO, Unilateral Ureteral Obstruction.
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distinct MDM subsets exhibit spatial specialization, with TREM2+

and S100A4+ MDMs enriched in glomerular and tubular regions,

whereasMRC1+MDMs predominate in the tubulointerstitium (121),

providing a framework for future spatially investigations.

In addition, KRMs also comprise specific subsets that

contribute to disease progression. In IgAN, the high expression of

CCL2 and CX3CR1 in KRMs aids active recruitment of monocytes

and amplification of inflammatory responses. Moreover, KRMs

exhibit marked metabolic reprogramming, with significant

enrichment of the Notch signaling pathway and pathways

regulating glycolysis, fatty acid metabolism, and amino acid

metabolism, directing KRMs towards a pro-inflammatory

phenotype in IgAN (64). In both Immune Checkpoint Inhibitor-

associated nephrotoxicity (ICI-AN) and polycystic kidney disease,

KRMs act as drivers of disease progression (122, 123).

Conversely, MDMs also comprise specific subsets that exert

protective functions under pathological conditions. A distinct

MDMs subset expressing MMP-12 emerges exclusively during the

reparative phase of injury resolution and is implicated in tissue

remodeling (124). Arg1+ MDMs, which accumulate in the kidney

cortex, have been implicated in promoting tissue repair during AKI

recovery (125).

In summary, single-cell and spatial transcriptomic technologies

have elucidated the question of “which macrophage subtypes are

located where, in proximity to which cell types, and what functions

they exert,” providing multidimensional evidence that offers novel

perspectives for future microenvironment-targeted interventions and

the selective modulation of specific macrophage subpopulations.
5 Macrophage-based therapeutic
strategies

Building upon above foundation of kidney macrophages, an

expanding body of work has underscored the therapeutic potential

of targeting macrophage function. Accordingly, the following

section will introduce emerging macrophage-based therapeutic
Frontiers in Immunology 08
strategies aimed at modulating their activity to mitigate kidney

injury and fibrosis (Table 1).
5.1 Anti-inflammation and anti-fibrosis

Pharmacologic inhibition of the CCL2/CCR2 axis is a viable

strategy for modulating macrophage-driven inflammation.

Emapticap Pegol (NOX-E36), a CCL2 inhibitor, has demonstrated

efficacy in reducing proteinuria in patients with DKD (61). Similarly,

clinical trials involving CCX140-B, a CCR2 antagonist, have reported

decreased proteinuria in patients with DKD and focal segmental

glomerulosclerosis (FSGS), suggesting a potential renoprotective

effect (126, 127). These agents act by attenuating macrophage

recruitment and activation, thereby disrupting inflammatory

amplification loops.

Fostamatinib, an inhibitor of spleen tyrosine kinase (Syk), has

shown therapeutic benefit in patients with IgA nephropathy and

ANCA-associated vasculitis, partly by limiting macrophage

infiltration. (128, 129).

Moreover, Extracellular vesicles based IL-10 delivery to kidney

macrophages mitigates IRI-induced AKI, possibly through

downregulation of the mTOR pathway (130).

Metformin, widely prescribed as a first-line agent for type 2

diabetes mellitus (T2DM) (131), has demonstrated potential

renoprotective effects in large-scale cohort studies (132).

Mechanistically, metformin activates AMP-activated protein kinase

(AMPK), leading to the suppression of TGF-b expression (86, 133).

This pathway mitigates macrophage polarization toward the M2

phenotype, thereby decelerating fibrotic remodeling in CKD. In a

murine model of calcium oxalate (CaOx) crystal-induced kidney

injury, metformin was shown to attenuate fibrosis and improve

kidney function by modulating macrophage activation (134).

However, high-dose metformin has been associated with deleterious

effects in AKI, likely due to excessive neutrophil recruitment (135).

In addition, macrophages regulate ECM remodeling by

modulating MMPs and tissue inhibitors of metalloproteinases
TABLE 1 Macrophage-based therapeutic strategies.

NO. Name
Anti-inflammation/

anti-fibrosis/macrophage
based cell therapies

Main signal
pathway

Kidney disease Reference

1 Emapticap Pegol (NOX-E36) anti-inflammation CCL2/CCR2 DKD (61)

2 CCX140-B anti-inflammation CCL2/CCR2 DKD and FSGS (126, 127)

3 Fostamatinib anti-inflammation Syk-JNK
IgAN and ANCA-
associated vasculitis

(128, 129, 141)

4 extracellular vesicles-IL-10 anti-inflammation mTOR AKI (130)

5 Metformin anti-fibrosis AMPK CKD (86, 133, 134)

6 CAR-M macrophage based cell therapies IL-4 signalling pathway AKI (137)

7
macrophages overexpressing
CPT1a

macrophage based cell therapies fatty acid oxidation CKD (138, 139)

8 TREM2 macrophages macrophage based cell therapies PI3K-AKT CKD (140)
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(TIMPs), which inhibit MMP activity, leading to ECM

accumulation and fibrosis (136).
5.2 macrophage-based cell therapies

Cell-based therapies have emerged as a promising frontier in

clinical implications, and macrophage-based strategies are gaining

substantial traction within kidney research. Researchers have

developed a CAR-M capable of recognizing TNF and activating

the intracellular IL-4 signaling pathway, thereby conferring

anti-inflammatory functions in IRI-induced AKI (137).

Genetically engineered macrophages overexpressing carnitine

palmitoyltransferase 1a (CPT1a) exhibit augmented phagocytic

activity by facilitating fatty acid oxidation and extracellular matrix

clearance, suppressing pro-fibrotic cytokine release in CKD (138,

139). In addition, adoptive transfer of macrophages engineered to

overexpress Triggering Receptor Expressed on Myeloid Cells 2

(TREM2) enhance the anti-inflammatory phenotype of kidney

macrophages by PI3K/protein kinase B (AKT) pathway, resulting

in reduced fibrosis and improved kidney function in CKD (140).

In summary, a substantial body of research has already focused

on targeting kidney macrophages, aiming to modulate their

polarization, phenotype, and function to achieve anti-inflammatory

and anti-fibrotic effects, as well as to develop macrophage-based cell

therapies, thereby attenuating disease progression.
6 Future directions and challenges

With ongoing technological innovation, our understanding of

macrophage biology has deepened considerably. The advent of

single-cell and spatial transcriptomics has revealed extensive

cellular heterogeneity within macrophage populations, prompting

the development of increasingly nuanced classification systems

(118). However, the absence of methodological standardization

and limited cross-platform reproducibility have impeded the

establishment of universally accepted criteria for macrophage

subset definition, particularly in kidney research.

Single-cell and spatial transcriptomic approaches are not

without limitations. Investigators often classify macrophages

according to their specific research objectives, yet no unified

standard currently exists. This lack of standardization frequently

results in discrepancies and even contradictory findings across

different studies. For example, in the context of AKI, different

investigators have reported diametrically opposed roles for Arg1+

MDMs, with some studies attributing to them pro-inflammatory

functions, whereas others suggest a pro-repair phenotype (124,

125). Moreover, divergent trends in the overall shift toward M2-

like macrophages have been reported in late-stage DKD across

different studies (23, 121). Clarifying these differences could provide

valuable insights for the development of precision strategies to

target specific macrophage subsets.
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Future research should prioritize the development of

standardized analytical pipelines, physiologically relevant in vitro

models, and rigorous functional validation strategies. These

advances will be essential to fully exploit the therapeutic potential

of macrophage heterogeneity in kidney disease.
7 Conclusion

The growing body of evidence underscores the indispensable

role of macrophages in the physiological maintenance and

pathological progression of kidney diseases. Macrophage

subpopulations, shaped by their microenvironment, demonstrate

remarkable functional plasticity in modulating immune responses,

mediating tissue injury, promoting regeneration, and driving

fibrosis. Technological advancements such as single-cell and

spatial transcriptomics have propelled our understanding of

kidney macrophage heterogeneity, yet significant gaps remain

regarding the functional validation and therapeutic translation of

these insights. Future research could emphasize the development of

standardized classification criteria, robust in vitro modeling

systems, and subset-specific targeting strategies to optimize

macrophage-based therapies. Ultimately, harnessing the

therapeutic potential of macrophages represents a promising

avenue to mitigate kidney injury, prevent fibrosis, and improve

outcomes in patients with kidney diseases.
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