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Plasma cell disorders present challenges in phenotypic determination, as they

range from monoclonality of plasma cells to multiple myeloma and plasma cell

leukemia. According to World Health Organization guidelines, no single aberrant

marker is recognized to be uniquely linked to multiple myeloma. The absence of

a preset marker panel proven to account for multiple myeloma diversity causes

difficulties in diagnosis and clinical research; therefore, the need to create a well-

defined panel is urgently needed. For this manuscript, we reviewed the literature

on the phenotypic and immunological features that lead to incomplete

information and problems in immunophenotyping. We offer proposed

solutions for identifying the suitable markers and technology to fill this gap, by

using a well-defined gating strategy in a high-dimensional mass cytometry

(CyTOF) panel and by next-generation flow cytometry. We analyze pitfalls,

starting with sample preparation, selection of the marker panel, gating strategy,

cleaning up events, quality control, troubleshooting and validation, and finally,

analysis of data. We advance a comprehensive protocol that allows for a detailed

analysis of the immunophenotype of myeloma cells. By identifying aberrant

markers in the panel, we may be able to facilitate diagnosis and prognosis,

ultimately influencing the choice of therapeutic regimens and patients’

overall survival.
KEYWORDS

mass cytometry, flow cytometry, multiple myeloma, immunophenotyping, plasma cell,

immune markers, gating, CyTOF
1 Introduction

Multiple myeloma (MM) is characterized by abnormally high levels of aberrant plasma

cells (PCs) in the bone marrow (BM) (1). MM arises from a pre-malignant syndrome

known as monoclonal gammopathy of unknown significance (MGUS) (2). Smoldering

multiple myeloma (SMM), which is asymptomatic, and ultimately active MM can develop
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from MGUS over time (3). In a small percentage of patients, MM

progresses into plasma cell leukemia (PCL), a condition in which

malignant PCs circulate outside of the BM (4).

From a developmental point of view, immature B lymphocytes

undergo immunoglobulin heavy and light chain rearrangement

before leaving the BM and entering peripheral organs to mature

(5). Somatic hypermutation (SHM) and class-switch recombination

(CSR) occur during this process, introducing genomic errors (6).

Through mutations, SHM improves antigen-antibody affinity,

whereas CSR permits the creation of immunoglobulins with

various isotypes (7).

Oncogenes are upregulated as a result of translocations, which

are frequently found in MM patients and mostly affect the IgH locus

(8). The non-hyper-diploid pathway, which is characterized by IgH

translocations, and the hyper-diploid system, which involves

recurring alterations in chromosomal number, have both been

identified as mechanisms in MM oncogenesis (9). It is also

common to observe translocations involving the immunoglobulin

kappa (IgK) and lambda (IgL) loci, and IgH translocation

frequently results in dysregulation of the cyclin D (CCND) genes

(10). Additionally, hyper-diploid events occur in 50–60% of MM

patients (11). The heterogeneity of MM is also influenced by genetic

mutations, clonal evolution, and epigenetic alterations.

With the introduction of immune modulatory drugs

(lenalidomide and pomalidomide) (12) and lately with the advent

of antibody and T cell-based therapies, such as daratumumab, CAR

T cells, and T cell engagers, patients upon relapse exhibit not only

further genetic and non-genetic abnormalities in their cancer cells

but also immune deregulation. For example, while genetic

abnormalities of the targeted antigens have been observed in

approximately 30% of the patients treated with T cell engagers

(13), this effect is less frequent in patients treated with CAR-T cells,

with less than 4% of relapsing patients carrying cancer cells with

downregulated or lost surface targeted antigens (14). Nevertheless,

most patients currently treated with T cell-based therapy appear to

progress due to a dysfunctional immune environment. Patients

frequently develop extramedullary disease, in which MM cells

maintain the targeted antigen but upon exit from the bone

marrow become more resistant to T cell therapies (15, 16).

Hence, it is not surprising that, during events associated with

both plasma cell degeneration and immune system impairment,

researchers observe variations not only in MM cell surface markers,

which are often phenotypically different even in the same patient,

but also measurable changes in other immune subsets found to be

associated with disease progression (17).

For all these reasons, it is becoming more urgent to follow the

phenotypical changes of plasma cells and non-cancer immune

subsets, using more standardized surface markers and robust and

reproducible single-cell acquisition methods, which do not rely on a

specific operator gating strategy. It is also important to identify

specific populations and how these populations become more

heterogeneous during disease progression.

Although at present the definitive identification of abnormal

plasma cells is generally done by flow cytometric analyses, currently
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cells based on a fixed set of markers. One key factor in this process is

the absence of the normally balanced surface expression of

immunoglobulin light chains, replaced instead by a monotypic

cytoplasmic immunoglobulin light chain. Various markers have

been proposed in clinical studies to encompass the plasma cell

neoplasms, with each marker believed to play a specific role in the

disease. However, it is challenging to fully understand the specific

function of each abnormal marker in accurate diagnosis and disease

development. For example, it is still unclear how the pattern of

expression of CD56, a well-known MM plasma cell surface marker

(18), can change with respect to therapeutic resistance and tumor

heterogeneity (19). The cross talk between multiple myeloma

cancer cells and immune cells in the tumor microenvironment is

considered as a key point for correct diagnosis, prognosis and

therapeutic monitoring (20, 21). An example of immune cells

crosstalk is emphasized in Figure 1.

Usually, identifying the immune cells is performed by

investigating the immune markers on the targeted immune cells.

This process is known as immunophenotyping (IPT) (22). IPT is

performed by different techniques, such as flow cytometry or mass

cytometry. Both techniques rely on specific bindings of

commercially available antibodies to the targeted antigens or

markers in order to be investigated qualitatively and

quantitatively. The pattern of positive results from the antibody

panel identifies the cells and their functions (23). More details about

the immunophenotyping techniques will be discussed in detail in

Section 3. Some hematological consortia, such as EuroFlow, have

contributed to identifying aberrant markers, as well as designing,

validating, and optimizing immunological assays for diagnosis, but

this approach it is not reliably predictive for disease

progression (24).

Lately, the use of single cell RNA sequencing (scRNAseq)

platforms, together with the interest of the myeloma community

in understanding changes in activated and exhausted T cell

phenotypes, have led to some confusion (25), since single cell

populations profiled by scRNAseq have not been validated by

surface marker expression of corresponding markers. In fact, at

present, many studies have not addressed the diverse variations in

the immunophenotype of myeloma cells that might contribute to

the development of the disease, nor have they validated the presence

of specific immune cells throughout different lines of therapies.

Therefore, a comprehensive analysis of cells from a large group of

patients is required to achieve a more comprehensive and forward-

thinking approach to diagnosis.

By incorporating these markers into future diagnostic strategies,

we can enrich our understanding of the disease and enable more

precise and efficient diagnoses (26–28). Here we review the current

literature associated with plasma cell and immune phenotyping in

MM, and, based on our laboratory experience, we also provide

guidelines for more informative and reproducible immune

phenotyping in patients with MM. To our knowledge, we provide

for the first time a systematic comparison of the use of flow

cytometry versus that of single cell mass cytometry analysis.
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2 The immune landscape in multiple
myeloma and its clinical implications

2.1 Immunophenotyping of multiple
myeloma

Clinically, the evidence of the malignant clone was and

continues to be diagnosed by the presence of M protein, in

addition to fluorescent in situ hybridization (FISH) studies to

detect the potential underlying gene abnormalities (29, 30).

Nonetheless, the requirement for tools to monitor the clonal

mutation(s) and disease progression at the cellular level revealed

the necessity of immunophenotyping techniques. For instance,

from a clinical decision-making point of view, IPT has enabled

cellular monitoring to detect signs of disease aggravation such as the

absence of CD45 expression in MM (28), the overexpression of

FOXP3 and CTLA4 in the BM (31), and the overexpression of

CD229 on myeloma clonogenic precursors (32). By revealing the

patterns of alterations at the cellular level, IPT can provide useful

information that could aid in better clinical decision-making.

Additionally, myeloma cells from different patients are

heterogeneous, creating unique genotypic patterns (33). The

characteristics of each genetic variant affect how the aberrant

markers are expressed and consequently determine the phenotype.

In clinical hematology, the immunophenotypic and genotypic
Frontiers in Immunology 03
characterization of peripheral blood and BM-derived myeloma cells

is frequently used for initial diagnosis, determination of aberrant

expression, and tracking the efficacy of therapeutic regimens (34).

Myeloma cells can be recognized using common aberrant markers

included in the World Health Organization (WHO) classification of

hematological malignancies. However, this list is not all-inclusive. For

example, it has been shown that both healthy PCs and malignant

myeloma cells exclusively express the plasma cell marker Syndecan-1

(CD138) (35). Recently, it was discovered that Syndecan-1 influences

CD4+ T-cell modulation (36). In lymphoid and myeloid lineages,

CD38, a transmembrane glycoprotein with ectoenzymatic activity, is

typically expressed during different cell maturation and activation

processes (37, 38). Additionally, it is expressed on both healthy and

cancerous plasma cells (39). PCs are the only population that

expresses BCMA (B-cell maturation antigen) (40). The basic

phenotypic profile of myeloma cells is distinguished from normal

PCs by a CD38-dim CD138-bright expression pattern, together with

cytoplasmic light chain kappa or lambda restriction (41). Negative or

low expression of CD45, negative CD19 expression in 95% of cases,

and negative or low expression of CD27 and CD81 are examples of

aberrant expression patterns of MM cells, compared to the phenotype

of normal plasma cells (42). Multivariate research has not been able

to determine these indicators’ independent prognostic relevance,

despite the possibility that some expression patterns are linked to

more serious conditions.
FIGURE 1

Crosstalk between myeloma cells, immune cells, and bone marrow microenvironment. This figure depicts the intricate crosstalk dynamics between
myeloma cells and various components of the immune system, as well as their interaction with key cellular players within the bone marrow
microenvironment: Immune cell crosstalk (left panel) and bone marrow organ crosstalk (right panel). NK cells, Natural killer cells; DCs, Dendritic
cells; MDSCs, Myeloid-derived suppressor cells; BM-MMCs, Bone marrow multiple myeloma cells.
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Immunophenotyping plays a crucial role in MM, as it provides

valuable information about the characteristics of myeloma cells

(43). By examining the expression patterns of specific markers, such

as CD138, CD38, and BCMA, immunophenotyping helps to

accurately identify and differentiate myeloma cells from normal

cells. Given the heterogeneity of myeloma cells, it is particularly

important to address the need to differentiate them from other

plasma cell disorders. Moreover, immunophenotyping enables the

monitoring of disease progression and response to therapy (42, 44,

45). Changes in the expression of certain markers can indicate

treatment efficacy or disease relapse. It allows clinicians to assess

minimal residual disease (MRD), which refers to the presence of

small number of residual malignant cells that may not be detectable

by conventional diagnostic methods. MRD assessment through

immunophenotyping provides valuable insights into treatment

outcomes, helps guide therapeutic decisions, and potentially

improves patient prognosis. In addition, immunophenotyping

contributes to the development of personalized treatment

approaches in MM (46). By identifying specific marker expression

profiles, clinicians can tailor treatment strategies to target the

unique characteristics of each patient’s disease, potentially leading

to improved treatment responses and long-term outcomes (47).

However, research is still ongoing to establish the prognostic

significance of various markers and refine the classification of

myeloma cells.

The expression of one marker, CD24, on the surface of clonal

PCs is directly correlated with overall survival (48). The expression

of another marker, CD45, and its role in disease etiology has also

been studied (43). In untreated or relapsed MM or SMM, CD45

expression has been reported to be inversely correlated with disease

progression and negatively correlated with high-grade angiogenesis

(49). Furthermore, the expression of CD45 on PCs is negatively

correlated with their expression of CD138, CD56, and CD54 (49).

In terms of marker expression, the expression of two additional

markers, MPC-1 and CD49e, was restricted to the mature myeloma

cells. Researchers identified immature, intermediate, and mature

cells as MPC-1−CD45−/+ CD49e−, MPC-1+ CD45−/+ CD49e−, and

MPC-1+ CD45+ CD49e+, respectively (50). Importantly, these

morphological and phenotypic classifications do not have

established prognostic significance. Nonetheless, understanding

the immunophenotypic and genotypic characteristics of myeloma

cells is crucial for diagnosing and monitoring the disease.

CD138 (syndecan-1) expression is significantly elevated on the

surface of myeloma cells. Elevated CD138+ expression on myeloma

cells is associated with enhanced proliferation, prolonged survival,

and suppressed apoptosis. This positive correlation is driven by

amplified IL-6R signaling, highlighting the role of CD138 in

myeloma cell dynamics (51). Nevertheless, low expression of

CD138 is associated with tumor fibrosis in bone marrow and is

correlated with heparin-binding growth factors that contribute to

the pathogenesis of myeloma (52). Blocking CD138 in a myeloma

mouse model renders myeloma more vulnerable to bortezomib

chemotherapy, resulting in a dramatic decrease in tumor size (51).

Combining anti-CD138 antibodies with proteosome inhibitors
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(bortezomib) or immune modulatory drugs (IMiDs) such as

lenalidomide, creates a potentially powerful new strategy to fight

myeloma, boosting the immune system’s ability to engulf and

destroy both sensitive and resistant cancer cells (53).

An aberrant paraprotein called monoclonal protein is typically

produced in patients with MM (54). Both the presence of neoplastic

PCs in the BM and the detection of monoclonal protein in the blood

or urine are used to establish a diagnosis of MM (54). Although

neoplastic myeloma cells constitute the majority of the PCs in

patients with MM, some of these patients also have normal or

reactive plasma cells. A study by Rawstron et al. revealed that

peripheral blood myeloma PCs had much lower levels of CD56

and Syndecan-1 expression compared to levels in bone marrow

samples from the same patients (55). These cells were found in

75% (38/51) of patients at presentation, 92% (11/12) of relapsing

patients, and 40% (4/10) of stem cell harvests (55). Jeong et al.

discovered that a simplified immunophenotyping panel consisting of

CD56/CD19/CD138/CD38/CD45 is beneficial in clinical practice for

discriminating neoplastic myeloma cells from reactive PCs in a study

of 70 individuals with MM (62 newly diagnosed vs. 8 treated) (56).

Notably, CD19 expression in neoplastic PCs was negative in both

untreated and treated patients, independent of therapy (56). In this

regard, it is possible to infer that CD19 is the most helpful marker for

distinguishing neoplastic PCs from reactive plasma cells. However,

because the immunophenotype of NK cells is frequently identified as

CD38+/CD56+/CD19- by flow cytometry, re-gating of cells with dim

or negative CD45 expression is required to exclude NK cells. In a

study of 132 patients with MM, Robillard et al. discovered that

malignant PCs accounted for a median of 97% of total CD38

+/CD138+ plasma cells (range: 76.5% to 100%) (1). Their research

also found that PCs missing CD19 and expressing either CD56 or

CD28 were the most common immunophenotypic population in

MM samples (1). Furthermore, Klimienė et al. discovered that a

decrease in adhesion molecule expression in MM patients’ BM may

contribute to the abundance of circulating PCs in the peripheral

blood of patients with relapsed/refractory disease, resulting in the

absence of CD49d, CD49e, CD56, CD138, and CD58 markers in

circulating peripheral blood plasma samples (57).

Several studies correlated the aberrant expression of markers to

clinical outcomes: CD117, HLA-DR, and CD33 were found to be

independent prognostic factors for decreased progression-free

survival (58–61), and the expression of CD200 and CD307 are

related to decreased overall survival and poor prognosis,

correspondingly (62–65). According to Sanoja-Flores et al.,

circulating malignant PCs in patients with MM display decreased

levels of activation/differentiation-associated antigens such as

CD27, Vs38c, and Ki67 (a proliferation marker) (66). Other

maturation-associated antigens previously reported to be

aberrantly expressed in MM, such as CD19, CD20, and CD45,

were found to have no significant differences in the phenotypic

profile of peripheral blood versus BM neoplastic plasma cells (66).

These findings suggest that antigen expression levels in circulating

and BM PCs differ in MM patients, and more research is needed to

fully characterize these differences (Figure 2).
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2.2 Major immune populations and gating
strategy

To clarify immune cell subset accumulation and its influence on

immune system homeostasis, researchers have employed a range of

immunological models, encompassing diverse methodologies and

approaches beyond immune cell markers. These models aid in

unraveling the complex dynamics and effects of specific immune

cell subsets on overall immune system balance. For example, the

accumulation of terminally differentiated effector memory T-cells

(TEMRA), which are identified as CD3+, CD4+/CD8+, CD127+/dim,

CD27-, CD45RA+, and CCR7-, may indicate the exhaustion or

malfunction of some immune subsets such as NK cells. Another

example is related to the difference in the pattern expression of

mature NK cells and early NK cells, which are CD56+/CD16+ and

CD56++/CD16-, respectively. Such findings are important in

understanding how immune cells can contribute to tumor

progression and for developing new strategies for treating cancer

(Figures 3, 4).

Recent research has shown that studying peripheral blood

mononuclear cells (PBMCs) in patients with cancer is important

for understanding how immune exhaustion mechanisms contribute

to tumor progression. Gating PBMCs from patients with MM is

similar to the normal gating strategy for healthy donors; however,

the detection of circulatory myeloma cells is the main goal in the

study of MM patient PBMCs as opposed to regular PBMCs. Herein,

we review the marker expression of PBMCs in MM patients. Please

refer to Table 1 for a detailed breakdown of the 43 markers in the

CyTOF panel.
Frontiers in Immunology 05
2.2.1 NK cells
In MM PBMCs, in addition to MM cells, a gating approach may

also be used to detect additional immune cells in the sample, such as

T cells and NK cells (67). These cells are essential for the

immunological response to MM and can be utilized to track the

patient’s immune health throughout a therapy (68). Numerous

studies have been conducted to investigate the marker expressions

on NK cells and the presence of NK-related markers in patients with

MM. For instance, Carbone et al. discovered that BM-derived

myeloma cells from early-stage MM express low levels of the NK

cell inhibitory ligand MHC class I and high levels of the NKG2D

ligands MHC class I polypeptide-related sequence A (MICA) and

MICB, whereas tumors from later-stage disease had the opposite

expression pattern and were less susceptible to NK cell cytotoxicity

(69). Pazina et al. reported contrasting findings between healthy

donor samples and NK cells from patients with MM. They observed

decreased expression of DNAM-1, NKG2D, CD16, and NKp44 in

MM, whereas increased expression was observed for NKp30, NKp46,

and LFA-1 (CD11a) (70). They additionally demonstrated how these

variations in marker expression are associated with the stage of MM

(70). In this regard, they noted that the changes may be observed in

relapsed/refractory MM and post-stem cell transplantation (70).

Additionally, they noticed that blood NK cells, particularly in

patients with relapsed/refractory disease, expressed more CD69 and

SLAMF7 and less CD57 and DNAM-1 (70). Barberi et al. provided

additional evidence by demonstrating a significant increase in the

CD94dimCD56dim NK cell subpopulation among the total number

of NK cells in patients with MM. This subpopulation was found to be

notably present in clinical settings associated with MM (71).
FIGURE 2

Normal versus malignant plasma cells. Comparison of marker expressions for immunophenotyping purposes.
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FIGURE 3

Suggested gating scheme for a high-dimensional panel for identifying the peripheral blood leukocytic continuum.
FIGURE 4

Representative scheme for phenotypic differentiation of T-cells: T-cell maturation after antigen pulsation, showing maturation from naïve T cells to
terminal differentiated effector memory T-cells expressing the differential markers with each subset, which drive capacity towards proliferation,
homing, and cytotoxicity.
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2.2.2 Gamma-delta T cells
Under 5% of the peripheral T-cell population are gd T cells,

which are crucial for host defense and tumor monitoring (72). The

majority of gd T lymphocytes are MHC-restricted in their antigen

recognition and do not express CD4 or CD8 on their surface (73).

These cells also exhibit broad cytolytic activity against tumors and

virus-infected cells via the death receptor/ligand (Fas/FasL)-

dependent and perforin/granzyme- or granulysin-dependent

pathways (74). The activating NK receptor NKG2D and TCR-

mediated antigen recognition are both involved in the cytotoxic

activity of gd T lymphocytes (74). These cells play a crucial role in

cancer immunosurveillance because they are among the BM

infiltrating cells with both innate and adaptive immune cell

characteristics (75). There have been few investigations on the ratio

or marker expressions of gd T cells in patients with MM to date;

nevertheless, the number of research studies on T cell markers used in

the diagnosis of MM patients is growing. According to Sowińska

et al., patients with MM have higher percentages of both activated

and total CD25-positive gd-T cells (76). Additionally, they noted that

there was a higher percentage of activated CD25+ gd-T cells (76). In a

recent study, Corsale and colleagues explored the role of gd-T cells in

MM, including its early stages (77). Through the development of the

first single-cell atlas of gd T cells in MM, the researchers identified

seven distinct gd T cell clusters. These included two naive

subpopulations (CD4-/CD8- and CD4+ gd T cells), two Granzyme

B+ (GZMB) effector/terminally differentiated subpopulations (CD8

+/TIGIT+/LAG3+, TIM3+/CD27- and GNLY+/FTH1+ gd T cells),
Frontiers in Immunology 07
and two Granzyme K+ (GZMK) memory subpopulations (GZMK+

and C-X-C Motif Chemokine Receptor 3 [CXCR3+] gd T cells). The

study findings revealed a significant decrease in naive gd T cells

(p<0.05), which was coupled with an increase in TIM3 expression, a

well-studied exhaustion marker, as MM progressed (77). The

researchers also observed a decrease in Vd2+ T cells compared to

levels in healthy donors, as well as an increase in the Vd1+/Vd2+ ratio

throughout MM progression (77). Additionally, they noticed a

positive correlation between the frequency of Vd2+ T cells and free

kappa light chain serum levels in MM.

Interestingly, their research found that both Vd1+ and Vd2+ T

cell subsets have elevated TIM3 expression, which was linked to

altered functioning of both Vd1+ and Vd2+ T cells, with decreased

TNF-a and IFN-g production (77). It appears that the TIM3 marker

on the surface of T cells may be employed in the marker expression

panel for MM diagnosis in the future. Additionally, Brauneck et al.

showed that, compared to healthy donors, MM patients’ BM-

infiltrating Vd1+ T cells displayed an increased TEMRA cell

population with an aberrant subpopulation of CD27CD45RA++

cells (78). Four markers for these cells—TIGIT, PD-1, TIM-3, and

CD39—were expressed by Vd1 T cells more often than the

matching CD4+ T cell population and at levels comparable to

those of CD8+ effector cells in hematologic malignancies. When

compared to Vd2 T cells, Vd1 T cells had a higher frequency of PD-

1+, TIGIT+, TIM-3+, and CD39+ cells. These cells were associated

with the TEMRA Vd1 population, which had a significant co-

expression of PD-1, TIM-3, and TIGIT (78).
TABLE 1 Suggested basic CyTOF panel for the characterization of cancer and immune cells.

Order Markers
Target
cells

Order Markers
Target
cells

Order Markers Target cells

1 CD45 Leukocytes 16 CD57 NK/NKT 31 PD-1 (CD279)

Exhaustion markers
2 CD3

T cells

17 CD19

B cells

32 LAG-3

3 CD4 18 CD20 33 Tim-3

4 CD8 19 CD27 34 TIGIT

5 TCR gd 20 CD66b

Myeloid cells

35 CD138

Plasma cells/Multiple
Myeloma (MM)

6 TCR ab 21 CD294 36 IgGk

7 CD25 22 CD123 37 IgGl

8 CD127 23 HLA-DR APCs 38 CD117

9 CD45RA 24 CD11b Myeloid
cells/

Monocytes

39 BCMA

10 CCR7 25 CD33 40 CD81

11 CD95 26 CD14 Monocytes 41 CD200

12 CD28 T cells/MM 27 CD16
Monocytes/

NK
42 CD307

13 TCR Va24
NKT cells

28 CD11c
DCs/

monocytes 43 CD38 MM/B cells/monocytes

14 CD1d 29 Granzyme B Cytotoxicity
markers15 CD56 NK/NKT 30 CD107a
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1642609
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Singer et al. 10.3389/fimmu.2025.1642609
2.2.3 B cells
Clonotypic B lymphocytes (CBLs), also known as progenitors of

neoplastic plasma cells, are thoroughly characterized in MM (33).

These monoclonal B lymphocytes have identical, rearranged IGH-

CDR3 sequences with myeloma cells and have been found in MM

patients’ peripheral blood (79). It is agreed that these B cells develop

outside of the BM, such as in lymph nodes or other lymphoid organs,

and only become PCs after migrating to the BMmilieu, which offers a

favorable environment for terminal PC development (80). According

to Conway et al., circulating B-lineage cells (CBLs), which may serve

as the progenitors of cancerous plasma cells, are found in the stem cell

harvests from patients with MM. Sixty percent of the patients (12 out

of 20) in their study had CBLs that expressed CD34, CD38, CD184,

CD31, CD50, and the same immunoglobulin light chain as the

patients’ known myeloma cells. The identified CBLs were negative

for CD19, CD20, and CD138 (81).
3 A practical workflow for high-
dimensional cytometry for MM
profiling

(Methods available: flow cytometry vs. mass cytometry)
3.1 History of mass cytometry

In recent years, different sophisticated single-cell analysis

methods that can be used for IPT have evolved. Moldavan is

widely regarded as having made the first attempt to count or

quantify cells in suspension (1934) (82). Tsutomu Nomizu et al.

later found in 1994 that it was feasible to nebulize, dry, and ignite

single cells in a hot plasma to form ion clouds detectable by

emission spectrometry; this experiment was the first true mass

experiment of single cells (83). In 2007, Scott D. Tanner, inspired by

flow-cytometry innovations, invented mass cytometry, also known

as Cytometry by Time-of-flight (CyTOF), which is the most

promising technology for high-dimensional and high-throughput

single-cell analysis at the protein level (84). Later, in 2008, Tanner

and colleagues depicted that the tandem attachment of a flow

cytometer to an inductively coupled plasma mass spectrometry

(ICP-MS) machine together with tagging antibodies to metal tags

would allow higher multiplexity (85).
3.2 Flow cytometry versus mass cytometry

CyTOF may be used to investigate cell phenotypes and

function, signaling networks, apoptosis, cell cycle, and a variety of

other complicated biological processes. Both CyTOF and flow

cytometry (FCM) are founded on the notion of multiplexed

single-cell analysis utilizing labeled antibodies. However, there are

several key distinctions between the two technologies (Table 1). In

place of traditional fluorescent labels, CyTOF employs non-

biologically accessible metal isotopes with succinct mass
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spectrometry parameters. Flow cytometry, on the other hand,

detects cellular targets using fluorophore-labeled antibodies (86).

This change of labeling method allows mass cytometry to examine

up to 50 variables simultaneously, avoiding the difficulties

associated with overlapping emission spectra, which are common

in FCM research (87).

A typical FCM test detects 8–10 distinct markers, while bigger

panels are becoming feasible for researchers to develop (88). With

the use of next generation flow cytometry (NGF), researchers can

now study up to 12 markers in a single staining sample to detect

minimal residual disease in MM (70). However, this capacity is less

than that of CyTOF, which can identify at least 43 markers in a

single sample. In CyTOF staining, the cells are stained by incubating

them with a cocktail of probes or antibodies labeled with non-

radioactive and non-biological heavy metal isotopes (89). The

single-cell suspension is next passed through an argon (Ar)

plasma, which atomizes and ionizes the sample, transforming

each cell into a cloud containing ions of the elements present

within or on the cell surface (90). A high-pass optic extrudes low-

mass ions obtained from each cloud, resulting in a cloud containing

sole ions linked with the isotope-conjugated probes. The ions are

then dispersed by m/z in the time of flight (TOF) chamber before

being strengthened and converted into electrical signals (91). Flow

cytometry acquisition, by contrast, entails passing intact

fluorescently labeled cells through a series of lasers and collecting

the emitted light, using specific detectors (92). CyTOF’s exceptional

qualities have positioned it as a powerful tool for analyzing

considerably diverse clinical samples, while also playing a crucial

role in the diagnosis and research of malignancies.

CyTOF detects more markers per sample compared to FCM,

whereas FCM has faster acquisition times and preserves cell

integrity, allowing them to be recovered for future use (93).

Because a CyTOF instrument uses just one detector, no extra

tuning or calibration is required for each experiment (94).

Moreover, concurrent analysis may be performed from a single

tube without the need for single-stained or autofluorescence

controls, which is a significant advantage in cases when in vivo or

clinical research materials are scarce. For example, researchers may

profile 30 immune markers from just 300 µL of blood using the

Standard BioTools Maxpar® Direct™ Immune Profiling Assay™, a

validated, dry-format antibody panel for use on the CyTOF XT™

and Helios™ mass cytometry systems (95). Additionally, mass

cytometry data processing does not necessitate post-acquisition

data normalization, and although correction of spectrum overlap

is essential in flow cytometry, CyTOF requires less compensation

due to the use of heavy metal tags rather than fluorochromes.

Another advantage of CyTOF is that the metal tags are exceedingly

durable and can endure fixation, permeabilization, and freezing

without affecting the signal. This feature enables the simultaneous

staining of cell surface and intracellular markers, as well as the

storage and shipment of labeled samples for multi-site

investigations. The use of fluorophores, alternatively, may alter

cellular and proteomic changes in the cells, which may influence

the immunophenotypic signature as well as the intracellular and

functional targets.
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On the other hand, one present disadvantage of CyTOF is that it

is a relatively new technique when compared to FCM. Heavy metal-

conjugated antibodies are less frequently commercially accessible

than fluorophore-conjugated antibodies (96). As a result, if a large

mass cytometry panel is sought, a major amount of a researcher’s

effort may be allocated to self-reagent production, such as in-house

antibody conjugation. Furthermore, the need to sort the

subpopulations discovered by high-dimensional phenotyping for

further downstream research, such as single-cell RNAseq or

functional studies, is widespread and addressable with full-

spectrum FCM rather than CyTOF (97). Flow rates in CyTOF

(500 events/s) are substantially slower than in fluidic or acoustic

flow cytometers (3,000 and 35,000, respectively) (98). Also, the

Helios™ CyTOF cytometers are fairly expensive (98). When this

cost is combined with the additional expense of conjugating

antibodies to heavy metal tags, many researchers cannot

accommodate the expenditures.

However, CyTOF is beneficial in clinical scenarios, where a

large number of variables on a small sample size may be examined
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(99). Indeed, CyTOF analysis has been used in several clinical

research studies throughout the world to examine various areas of

human illness to better understand and enhance the effectiveness of

clinical treatments. The most significant barrier that remains is

inherent in the complexity of the data processing, which

necessitates extensive biostatistical and bioinformatic abilities,

which frequently complicates its implementation in a clinical

situation. Table 2 summarizes the advantages and disadvantages

of FCM and CyTOF (99).

Based on our experience with and the guidelines for use of flow

cytometry (126) for cleaning up the non-specific signals generated

from unstable signals, beads, cell doublets, non-viable cells, and

other unknown noises, we adopted these methods for cleaning up

the fcs data files of CyTOF samples: After data normalization, the

next clean-up step is to gate on the stable signal events (Figure 5A),

followed by a selection of positive intercalator signal (Ir191/Rh103),

while excluding the negative beads population (Ce140) (Figure 5B).

The outcome events of the previously selected gates may be further

refined by a selection of singlets population (Figures 5C, D). In
TABLE 2 Pros and cons of next generation flow cytometry, spectral unmixing flow cytometry and CyTOF for immunophenotyping.

Next generation
flow cytometry

Spectral unmixing
flow cytometry

CyTOF (Mass cytometry by
time of flight)

References

Identification tag Fluorochromes Fluorochromes
Rare heavy metal isotopes (only
15 metals)

(100, 101)

Specificity Level Highly specific Highly specific Highly specific (102)

Basis of Sensitivity quantum-efficient fluorochromes

separating overlapping spectral signals
(Coarse Wavelength Division
Multiplexing [CWDM] semiconductor
detector arrays)

Lanthanide metals and their isotopes (103, 104)

Acquisition Up to 20,000 events/second Up to 20,000 events/second Up to 300 events/second (102, 105)

Multiplicity
Generally, 12 markers (in
development to reach up to
35 channels)

Up to 40 colors in combination, with
64 fluorescence detectors

Up to 43 markers (in development to
reach up to 150 channels)

(99, 106, 107)

Standardization CE, FDA approved China and Europe N/A (108)

Background noise Auto-fluorescence of cells Auto-fluorescence of cells
Very low background, comes from
oxides and metal impurities

(109)

Discrimination of
population based
on positivity

Moderate Moderate Higher (99, 110, 111)

Channel resolution Wide range Wide range Wider range (112)

Compensation Mandatory Auto Compensation by beads No compensation required (110, 113, 114)

Percentage of overlap
between fluorochromes

0 – 50% ≤ 98% <2% (108, 115, 116)

Validity for samples
acquiring after staining

Few hours due to
photobleaching process

Few hours due to
photobleaching process

Up to 2 weeks without loss of signal (117–119)

Cryopreservation of
stained samples

Not stable Not stable Stable for up to 1 month (120, 121)

Disadvantages/
Limitations

- Limited with
fluorochrome spillovers

- Computationally complex; still
fluorescence

- Limited when using dyes and
antibody markers

- Absence of physical property of
cells (cell size and granularity)

- High loss of cells during
acquisition

- No cell sorting
- Expensive

(122–125)
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exceptional cases when using frozen samples, monocytes are shown

to be aggregated and appear in the doublet’s region; therefore, it is

better to include these doublets and subsequently perform cleaning

at each step of sequential gating. The last step is the exclusion of

non-viable cells (Figure 5E) before starting the gating of backbone

markers (usually CD45) for analysis (Figure 5F).
4 Challenges and future directions

4.1 Challenges and pitfalls in the
immunophenotyping of myeloma

The need for the use of next-generation flow cytometry and

CyTOF has increased recently in immunophenotyping research,

notably in the analysis of larger panels of markers (130). The use of

larger panels enables a more thorough characterization of immune

subsets and offers a deep comprehension of the intricate

interactions between various cell types under both healthy and

diseased circumstances (122).

CD3, a crucial T cell marker, is found to be expressed abnormally

on neoplastic plasma cells (131). This overlap between different

markers, either normally or abnormally expressed, makes
Frontiers in Immunology 10
comprehensive immunophenotypic profiling and functional

analysis very challenging and requires that all plasma cell

subpopulations be considered. In addition to these considerations,

alternate markers or gating techniques can also be investigated.

Unusual and less frequent cases, such as MM that is CD138-

negative, might render typical flow cytometry procedures difficult

(132). Additionally, the use of certain monoclonal antibodies, such as

daratumumab (a CD38-targeted monoclonal antibody), during

therapy may affect plasma cells’ CD38 positivity (133). For a

precise diagnosis and evaluation of the effectiveness of the

treatment, such variations require careful observation and

reporting. To minimize diagnostic errors, pathologists should also

be attentive to aberrant expression patterns and ensure they address

any discrepancies or imbalances in their interpretations. Aberrant

expression patterns can be recognized and addressed with quality

control procedures and staying current with new research discoveries.

Heterogeneous marker distribution in myeloma can also result

in missed diagnoses, particularly when inadequate sample size or

sampling errors are involved. To reduce the likelihood of

misdiagnoses, it is crucial to consider the total morphological

picture and combine other diagnostic methods, including imaging

or genetic analysis. Due to the intricate modifications needed for

color correction in flow cytometry, simultaneous multi-color
FIGURE 5

Suggested steps for cleaning up CyTOF data. Based on our extensive experience in mitigating non-specific signals arising from unstable data, beads,
cell doublets, non-viable cells, and other sources of unknown noise, we have implemented a robust data-cleaning protocol. Following data
normalization, the cleaning process involves a series of gating steps to isolate the desired signal events [as depicted in (A)]. Firstly, we identify and
gate the stable signal events (A), followed by the selection of positive intercalator signals, specifically Ir191 and Rh103, while excluding the negative
bead population Ce140 (B). Subsequently, the selected events from the prior gates are further refined by singlet population selection (C, D). In
unique cases where frozen samples are used, monocytes may exhibit aggregation and appear within the doublet region. In such instances, it is
better to include these doublets in the analysis and conduct cleaning at each sequential gating step. The final stage of the cleaning process involves
the exclusion of non-viable cells (E), ensuring that only viable and relevant data are retained for subsequent analysis. Ultimately, the gating of
backbone markers, typically CD45, is initiated for the final analysis (F). PeacoQC analysis for removing diverse anomalies associated with data
acquisition across various platforms also effectively identifies and filters out low-quality events within stable density peaks. This comprehensive
approach to data cleaning and signal refinement is essential for ensuring the accuracy and reliability of downstream analyses and result
interpretation. Sources for FCS files used for illustration were imported from the flow repositories (127–129).
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immunophenotyping might be difficult. Data quality can be

affected, and variability can be introduced by the operator’s

subjective manipulation of instrument controls. In clinical flow

cytometry laboratories, using automated technology for color

adjustment during data gathering can lower operator-dependent

variability and raise uniformity. Making the right choices for color

compensation can be aided by using software such as Bagwell and

Watson’s automated technique.
4.2 Common pitfalls and challenges in
using CyTOF

4.2.1 Sample quality importance for correct
immunophenotyping

Sample preparation is also significant, since it is essential to

collect reliable and accurate immunophenotypic data. Throughout

the experimental workflow, proper sample processing enables the

maintenance of cell viability, reduces artifacts, and maintains the

integrity of cellular markers. The use of processed stale blood

samples poses a technical risk that has a substantial impact on

the results. Non-fresh samples may exhibit altered phenotypes due

to metabolic changes that may affect cell activity and/or exhaustion

(134). Therefore, it is recommended to prepare and isolate

leukocytes from fresh samples before any immunophenotyping

attempt. Additionally, when freshly taken samples are unavailable,

the samples need to have been properly thawed and frozen.

Maintaining cell viability requires proper freezing and thawing

techniques. The release of free DNA and RNA from non-viable

cells and cell debris can result in cell death and aggregation (135).

Sample integrity can be preserved by using DNase, heparin as an

anticoagulant, or a washing step using Benzonase Nuclease. Based

on our experience, for the best outcomes, a concentration of up to

50 units of Benzonase per ml of full RPMI-1640 medium can be

used. The effectiveness and reliability of immunophenotypic

analyses have been improved by this powerful DNA and RNA

degrading enzyme, which has shown superior performance in

avoiding cell aggregation and maintaining the integrity of surface

markers (136, 137).

4.2.2 Unified staining protocol for reproducibility
Additionally, it is important to use an established staining

procedure with accurate antibody titration and proper timing for

each incubation step. Accurate and reproducible results can be

achieved by adhering to the manufacturer’s recommendations and

avoiding superfluous vortexing. To acquire high-quality data, it is

crucial to validate and optimize the Helios machine’s acquisition

settings, including quality control validation, barium background,

and rationalized sample acquisition speed. Between 250 and 600

events/second can be gathered by increasing the number of pushes

and adjusting the acquisition speed to improve separation (138).

Ultimately, data analysis and comparability can be enhanced by

normalizing all the FCS files from the same experiment at the

same time.
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4.2.3 Quality control importance in IPT to avoid
false results

It is indeed promising that a novel multi-omics approach has

been meticulously developed to elucidate the surfaceome dynamics

observed in MM cells, thereby offering valuable insights into

potential immunotherapeutic strategies (139). However, it is

important to acknowledge that, when comparing patients with

MM to cell line models, the inherent heterogeneity in the

surfaceome poses a significant challenge in the straightforward

translation of these findings into effective therapeutic models. In

recent years, there has been a significant expansion in the

development of comprehensive antibody panels, comprising, for

example, over 40 antibodies employed in CyTOF analyses.

Nevertheless, the presence of signal streak outliers has posed a

challenge to the precision of the results obtained. To address this

issue, researchers have utilized several algorithms, such as

Flowclean and FlowAI, to rectify these signal streak aberrations,

primarily focusing on flow cytometry data (140). However, these

algorithms exhibit limitations in their applicability, as they are

tailored exclusively for flow cytometric data. An updated and

versatile data cleaning tool, PeacoQC, has emerged as a solution

to address these limitations. PeacoQC not only excels in removing

diverse anomalies associated with data acquisition across various

platforms, but also effectively identifies and filters out low-quality

events within stable density peaks. This capability is achieved

through the innovative utilization of an isolation tree and Median

Absolute Deviation (MAD) distances (141, 142). PeacoQC is

distinguished by its adaptability across a range of cytometric

technologies, including flow cytometry, mass cytometry, and

spectral cytometry datasets. One of its characteristic features is

the ability to evaluate and discriminate flow rate from signal

stability independently, providing a comprehensive approach to

enhancing data quality (142). In conclusion, there are several

challenges and risks associated with the immunophenotyping of

myeloma, which can be overcome by taking into account the

aforementioned factors and the use of cutting-edge technologies,

optimizing sample processing, and validating staining protocols.
4.3 Future directions in using novel
algorithms in analysis to accommodate the
level of multiplexity

To ensure the quality and reliability of the data acquired,

researchers are faced with new hurdles when handling larger

antibody panels in CyTOF. The lack of analytical tools that can

successfully accommodate these larger panels is one of the main

issues (143). The number of parameters that a conventional flow

cytometry analysis software can manage is usually limited, and the

computing power required to process the data is another limiting

factor (144). It is crucial to have new processes to contend with the

challenges of larger panels. To address the increased complexity of

the data produced by more extensive antibody panels, the field

requires the development of advanced algorithms and data
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processing methods (145). Improvements to the physical

infrastructure, such as increasing processing and storage capacity,

are among the other requirements for an efficient analysis of the

data associated with large antibody panels (146). Furthermore, it is

essential to recruit reliable validation strategies in addition to new

analytical instruments. This approach entails ensuring that the

antibody staining is accurate and reliable, optimizing the panel

design to reduce spectral overlap and maximizing the resolution,

and setting the right quality control methods in place along the

experimental workflow.

Spectral unmixing flow cytometry offers advantages in studying

the immune map of multiple myeloma to characterize the

immunohematology complexities. Using 40 markers will help to

provide a deep comprehensive view of the hematopoietic and

immune cell landscapes at the single-cell level, such as plasma cell

populations, changes in immune cell profiling, and their

microenvironment. This multiplexing in addition to different

unbiased analysis algorithms may quantify rare cell types, discern

differences in cell abundance and phenotype across patients, and

find any subtle changes in the immune landscape that lead to either

disease progression or treatment response (147). With over 40

markers, diagnostic panels are critical to MM management. These

panels help distinguish MM from other plasma cell disorders,

identify high-risk MGUS and smoldering MM, and are essential

for post-treatment MRD assessment (42). Both spectral unmixing

flow cytometry or CyTOF will help to capture detailed

immunophenotypic profiles that can also contribute to the

definition of antigenic profiles that impact prognosis, as well as

the identification of new therapeutic targets, potentially leading to

more personalized treatment approaches (42).

The precise quantitative and qualitative data required to analyze

marker expression kinetics, population similarity, and sample

comparisons at the minor population level can only be obtained

through the implementation of several crucial algorithms. The cells

can be visualized in a 3D projection alongside the overall stained

markers and then represented in a 2D figure in an unbiased manner

(147). Using machine learning algorithms and this tSNE

programming helps to improve the tSNE plotting. As a result of

several developments, optimized tSNE (Opt-NSE) emerges as an

automated solution for analysis to improve the visualization of large

sets of data (148, 149). Based on tSNE, vast comparative algorithms

are created with regard to events clustering (such as FlowSOM,

SPADE) and statistical characterization (such as CITRUS) (150–152).
5 Conclusion

Determining the phenotype of plasma cell disorders is often

complex, and its correlation with disease prognosis is not
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adequately established. The need to create a well-descriptive panel

to identify a comprehensive aberrant pattern may be useful in

monitoring the patient’s immune response as well as tracking

cancer cell mutational status. CyTOF can offer higher

dimensional panels with comparatively more analytical tools to

delve into the immune continuum of patients with MM. Updating

our analytical tools may advance the choice of therapeutic regimens

and extend patients’ overall survival.
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